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Abstract

A (point-valued) solution for cooperative games with transferable utility, or simply TU-

games, assigns a payoff vector to every TU-game. In this paper we discuss two classes of

equal surplus sharing solutions, one consisting of all convex combinations of the equal divi-

sion solution and the CIS-value, and its dual class consisting of all convex combinations of

the equal division solution and the ENSC-value. We provide several characterizations using

either population solidarity or a reduced game consistency in addition to other standard

properties.

Keywords: TU-game, equal division solution, CIS-value, ENSC-value, population solidar-

ity, consistency

JEL Classification: C71



1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, shortly TU-game. A (point-

valued) solution on a class of TU-games assigns a payoff vector to every game in the class.

Recently, egalitarian or equal surplus sharing solutions gained attention in the lit-

erature. Three well-known equal surplus sharing solutions are the equal division solution

which allocates the worth of the ‘grand coalition’ equally among all players, the Center-

of-gravity of the Imputation-Set value, shortly denoted by CIS-value (see Driessen and

Funaki (1991)) which first gives every agent its own singleton worth and distributes the

remainder equally among all players, and the Egalitarian Non-Separable Contribution value

(also known as Equal Allocation of Non-Separable costs or EANS-value), shortly denoted

by ENSC-value being the dual of the CIS-value. In van den Brink and Funaki (2009) the

class of all convex combinations of these three solutions is studied.

Chun and Park (2012) characterize the CIS-value by efficiency, covariance and pop-

ulation solidarity , the last property requiring that upon an arrival of a new player all the

original players should be affected in the same direction, all weakly gain or all weakly lose.

It turns out that all convex combinations of the equal division solution and the CIS-value

satisfy population solidarity. We extend the characterization of the CIS-value given by

Chun and Park (2012) to this class of solutions.

Besides axiomatizing all convex combinations of the equal division solution and the

CIS-value using population solidarity, we reconsider the axiomatizations using consistency

provided by van den Brink and Funaki (2009). Whereas they axiomatized the class of

all convex combinations of the equal division solution, the CIS-value and the ENSC-value

using a parametrized standardness for two-player games and a parametrized consistency,

the convex combinations of the equal division solution and the CIS-value have a non-

parametrized consistency in common which we use in an axiomatization together with

α-standardness for two-player games. For a fraction α ∈ [0, 1], α-standardness for two-

player games states that for two-player games each player first receives a fraction α of its

singleton worth, and what remains of the worth of the ‘grand coalition’ is split equally

among the two players. In van den Brink and Funaki (2009) it is shown that any solution

that satisfies efficiency, symmetry and linearity on the class of two-player games satisfies

α-standardness for two-player games for some α ∈ [0, 1]. Since linearity is only used for

two-player games, we prefer to have a characterization of α-standardness without linearity.

In their characterization of the CIS-value, Chun and Park (2012) use covariance. However,

the CIS-value is the only covariant solution in the class considered here. Therefore, we

consider a weak covariance which requires that the payoffs of all players change the same

if we add a constant times the sum of the unanimity games of all singletons. Although
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this can also be seen as a weakening of the fairness axiom in van den Brink (2001), we use

another weak fairness axiom requiring that the payoffs of all players change by the same

amount when we only change the worth of the ‘grand coalition’. We show that any solution

on the class of two-player games that satisfies these two properties together with efficiency,

homogeneity and weak individual rationality (requiring that every player in any weakly es-

sential game earns at least the minimum of its singleton worth and the per capita payoff),

satisfies α-standardnesss for some α ∈ [0, 1]. Requiring this lower bound on the payoffs of

a player for any game (we call this the boundary condition), the equal division solution is

the only solution satisfying this property together with efficiency and weak fairness.

To select a particular solution from the convex combinations of the equal division

solution and the CIS-value, we use α-individual rationality requiring that for appropriate

games a player always earns at least a fraction α ∈ [0, 1] from its singleton worth. For

specific values of α (1, respectively 0), this axiom yields the usual individual rationality or

nonnegativity. This axiom gives α an interpretation as some ‘wealth taxation’ parameter.

Without taxation, every player can guarantee itself its own singleton worth. This singleton

worth can be seen as the individual wealth of the single player which it can earn on its

own without any cooperation with other players. Then individual rationality means that

a player gets at least its own wealth. However, if there is some taxation on the wealth of

players, then they cannot guarantee themselves their singleton worth, but only a fraction

α (if (1 − α) is the tax rate). Of course, these ‘after tax’ individual wealths can only be

satisfied if the worth of the ‘grand coalition’ is large enough.

Finally, we introduce some dual version of population solidarity that is satisfied by

the ENSC-value, the equal division solution and all their convex combinations.

The paper is organized as follows. Section 2 discusses some preliminaries on TU-

games and solutions. In Section 3, we consider two-player games and characterize α-

standardness for two-player games. In Section 4, we extend these definitions to n-player

games using a consistency. In Section 5, we give an axiomatic characterization using

population solidarity. Finally, in Section 6 we consider the dual class consisting of all

convex combinations of the equal division solution and the ENSC-value.

2 Preliminaries

A cooperative game with transferable utility, shortly TU-game, is a pair (N, v), where

N ⊂ IN is a finite set of players with |N | ≥ 2, and v: 2N → R is a characteristic function

on N such that v(∅) = 0. For any coalition S ⊆ N , v(S) is called the worth of coalition

S. This is what the members of coalition S can obtain by agreeing to cooperate. We

denote the class of all TU-games by G. For a fixed player set N , we denote the class of all
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TU-games (N, v) by GN .

A payoff vector of game (N, v) is an |N |-dimensional real vector x ∈ RN , which rep-

resents a distribution of the payoffs that can be earned by cooperation over the individual

players. A (point-valued) solution on a class of TU-games C ⊆ G is a function ψ which

assigns a payoff vector ψ(N, v) ∈ RN to every TU-game (N, v) ∈ C. If a solution assigns

to every game a payoff vector that exactly distributes the worth of the ‘grand coalition’

N then the solution is efficient1. In this paper we discuss two classes of solutions for

TU-games that all have some egalitarian flavour.

The equal division solution ED distributes the worth of the ‘grand coalition’ equally

among all players, i.e., for all (N, v) ∈ G and i ∈ N,

EDi(N, v) =
1

|N |
v(N).

Instead, the Center-of-gravity of the Imputation-Set value CIS, shortly called CIS-value,

first assigns to every player its individual worth, and distributes the remainder of the worth

of the ‘grand coalition’ N equally among all players, i.e., for all (N, v) ∈ G and i ∈ N,

CISi(N, v) = v({i}) +
1

|N |

(
v(N)−

∑
j∈N

v({j})

)
.

In this paper, we are mainly interested in convex combinations of the equal division

solution and the CIS-value, i.e. for every α ∈ [0, 1], the corresponding solution is defined

by

ϕα(N, v) = αCIS(N, v) + (1− α)ED(N, v). (2.1)

We denote the class of all solutions that are obtained in this way by Φ := {ϕα | α ∈ [0, 1]}.
It is straightforward to verify that for every (N, v) ∈ G and every α ∈ [0, 1] it holds that

ϕαi (N, v) = αv({i}) +
1

|N |

(
v(N)−

∑
j∈N

αv({j})

)
. (2.2)

Next we state some well-known properties of solutions for TU-games. Players i, j ∈
N are symmetric in game (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}. Player

i ∈ N is a null player in game (N, v) if v(S ∪ {i}) = v(S) for all S ⊆ N \ {i}. For a

game (N, v) ∈ G and a permutation π:N → N , the permuted game (N, πv) is defined by

πv(S) = v({π(i) | i ∈ S}) for all S ⊆ N . For (N, v), (N,w) ∈ G and a, b ∈ R the game

(N, av + bw) ∈ G is defined by (av + bw)(S) = av(S) + bw(S) for all S ⊆ N . Finally, a

game (N, v) ∈ G is called weakly essential if
∑

i∈N v({i}) ≤ v(N). A solution ψ

1Efficient solutions are often called values.
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• satisfies efficiency on C ⊆ G if
∑

i∈N ψi(N, v) = v(N) for all (N, v) ∈ C;

• satisfies symmetry on C ⊆ G if ψi(N, v) = ψj(N, v) whenever i and j are symmetric

players in (N, v) for all (N, v) ∈ C;

• satisfies linearity on C ⊆ G if ψ(N, av+bw) = aψ(N, v)+bψ(N,w) for all (N, v), (N,w) ∈
C and all a, b ∈ R such that (N, av + bw) ∈ C;

• satisfies individual rationality on C ⊆ G if ψi(N, v) ≥ v({i}) for all i ∈ N and all

weakly essential games (N, v) ∈ C;

• is nonnegative on C ⊆ G if ψi(N, v) ≥ 0 for all i ∈ N and all (N, v) ∈ C satisfying

v(N) ≥ 0;

• satisfies α-standardness for two-player games on C ⊆ G if for every (N, v) ∈ C with

N = {i, j}, i 6= j, it holds that

ψi(N, v) = αv({i}) +
1

2
[v(N)− α(v({i}) + v({j}))].

The last property is used by Joosten (1996) to characterize the class of α-egalitarian

Shapley values. Standardness for two-player games coincides with α = 1, and egalitarian

standardness coincides with α = 0.

3 Characterizations for two-player games

In the following sections we use α-standardness to characterize solutions in the class Φ. In

order to have axiomatizations on the class Φ with no parameterized axiom, in this section

we first support α-standardness by showing how α-standardness can be characterized on

the class of two-player games by axioms that do not depend on α. We denote the class of

all two-player TU-games by G2.
In van den Brink and Funaki (2009, Proposition 4.2) it is shown that any solution

that satisfies efficiency, symmetry and linearity on the class of two-player games also sat-

isfies α-standardness for some α ∈ [0, 1]. Since we do not need linearity in the following

sections, in this section we characterize α-standardness for two-player games without lin-

earity. Note that on the class of two-player games, a solution satisfying α-standardness for

some α ∈ [0, 1] is equivalent to saying that the solution belongs to Φ.

First, we impose a weak fairness axiom,2 stating that changing only the worth of the

‘grand coalition’ changes the payoffs of all players by the same amount. This is a rather

2A solution ψ satisfies fairness on G if ψi(N, v + w) − ψi(N, v) = ψj(N, v + w) − ψj(N, v) whenever i

and j are symmetric players in (N,w). For further discussion, see van den Brink (2001).
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weak axiom which is satisfied by many solutions such as all equal surplus division solutions

in van den Brink and Funaki (2009) and the Shapley value (Shapley, 1953).

Axiom 3.1 A solution ψ satisfies weak fairness on C ⊆ G if for every pair of games

(N, v), (N,w) ∈ C such that v(S) = w(S) for all S ( N , there exists c∗ ∈ R such that

ψi(N, v)− ψi(N,w) = c∗ for all i ∈ N .

Next, we state a boundary condition saying that a player always earns at least the

minimum of its own worth and the per capita worth of the grand coalition. It provides

each player an incentive to participate by guaranteeing at least the minimum of the two

numbers.

Axiom 3.2 A solution ψ satisfies the boundary condition on C ⊆ G if for every game

(N, v) ∈ C and i ∈ N it holds that ψi(N, v) ≥ min
{
v({i}), v(N)

|N |

}
.

As it turns out, these two axioms together with efficiency characterize the equal

division solution. We note that this theorem holds for all n-player games.

Theorem 3.3 A solution ψ on G satisfies efficiency, weak fairness and the boundary con-

dition if and only if it is the equal division solution.

Proof It is obvious that the equal division solution satisfies efficiency, weak fairness and

the boundary condition. To show uniqueness, suppose that a solution ψ satisfies efficiency,

weak fairness and the boundary condition, and let (N, v) be an n-player game. Suppose

without loss of generality that v({1}) = mini∈N v({i}). First, consider a game (N,w) given

by w(S) = v(S) for all S ( N , and w(N) = |N |v({1}). The boundary condition implies

that ψi(N,w) ≥ min
{
w({i}), w(N)

|N |

}
= min{v({i}), v({1})} = v({1}). Efficiency for game

w implies that
∑

i∈N ψi(N,w) = |N |v({1}), and thus ψi(N,w) = v({1}) for all i ∈ N .

Weak fairness then implies that there is a c∗ ∈ R such that ψi(N, v) = v({1}) + c∗ for all

i ∈ N . Efficiency for (N, v) then determines c∗ = v(N)−|N |v({1})
|N | , and thus ψi(N, v) = v(N)

|N | =

EDi(N, v) for all i ∈!N . 2

It is obvious that ϕα does not satisfy the boundary condition if α ∈ [0, 1). However, it does

satisfy this property if we require it to hold only for weakly essential games. Since this

property is implied by individual rationality, we refer to it as weak individual rationality .

Axiom 3.4 A solution ψ satisfies weak individual rationality on C ⊆ G if for every weakly

essential game (N, v) ∈ C and all i ∈ N it holds that ψi(N, v) ≥ min
{
v({i}), v(N)

|N |

}
.
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Although from the class of solutions ϕα ∈ Φ, the CIS-value (α = 1) is the only solution

satisfying individual rationality, all solutions in this class satisfy weak individual rationality.

Adding homogeneity and a weak covariance property characterizes the class of solutions

Φ, i.e. α-standardness for two-player games.

Axiom 3.5 A solution ψ satisfies homogeneity (of degree 1) on C ⊆ G if for every game

(N, v) ∈ C and c ∈ R such that (N, cv) ∈ C, it holds that ψ(N, cv) = cψ(N, v).

Axiom 3.6 A solution ψ satisfies weak covariance on C ⊆ G if for every pair of games

(N, v), (N,w) ∈ C such that there is c ∈ R with w(S) = v(S) + |S|c for all S ⊂ N , it holds

that ψi(N,w) = ψi(N, v) + c for all i ∈ N .

Note that w in Axiom 3.6 can be written as v + c
∑

i∈N u({i}), where u({i}) is defined by

u({i})(S) = 1 if S 3 i, u({i})(S) = 0 otherwise. Also note that both axioms are weaker than

covariance.

We prove the characterization of α-standardness for two-player games by a series

of lemmas. We first fix the player set N = {1, 2}. A game (N, v) ∈ G is inessential (or

additive) if
∑

i∈N v({i}) = v(N). In the following, let G{1,2}A be the class of all inessential

(additive) games on N = {1, 2}, and let G{1,2}0 be the class of all inessential games on

N = {1, 2} such that v({1}) = 0 (and thus v({2}) = v(N)).

Lemma 3.7 A solution ψ on G{1,2}0 satisfies efficiency, homogeneity, and weak individual

rationality if and only if for some α ∈ [0, 1], ψ satisfies α-standardness on G{1,2}0 .

Proof It is obvious that each ϕα ∈ Φ satisfies efficiency, homogeneity and weak individual

rationality on G{1,2}0 . Conversely, let ψ be a solution satisfying efficiency, homogeneity,

and weak individual rationality. Let (N, v) ∈ G{1,2}0 such that v({2}) = 1. By weak

individual rationality, ψ1(N, v) ≥ 0 and ψ2(N, v) ≥ 1
2
. By efficiency, there exists an

α ∈ [0, 1] such that ψ1(N, v) = 1−α
2

and ψ2(N, v) = α+1
2

. For any (N,w) ∈ G{1,2}0 , since

there exists c = w({2}) ∈ R such that ψ(N,w) = ψ(N, cv), by homogeneity, we have

ψ(N,w) = cψ(N, v) = (w({2})(1−α)
2

, w({2})(α+1)
2

) = ϕα(N,w), as desired. 2

Without homogeneity, we can prove that the solution assigns to every game a convex

combination of the equal division solution and the CIS-value, but the solution does need

to belong to the class Φ since the weights given to the equal division solution and the

CIS-value need not be the same for different games.

Next, we show that adding weak covariance characterizes the α-standard solutions

on the class of all inessential (additive) games on N = {1, 2}.
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Lemma 3.8 A solution ψ on G{1,2}A satisfies efficiency, homogeneity, weak individual ra-

tionality and weak covariance if and only if for some α ∈ [0, 1], ψ satisfies α-standardness

on G{1,2}A .

Proof It is obvious that solution ϕα satisfies efficiency, homogeneity, weak individual ratio-

nality and weak covariance on G{1,2}A . Conversely, let ψ be a solution satisfying efficiency, ho-

mogeneity, weak individual rationality and weak covariance, and (N, v) ∈ G{1,2}A . Consider

a game (N,w) given by w({i}) = v({i})−v({1}) for i ∈ {1, 2}, and w(N) = v(N)−2v({1}).
By Lemma 3.7, ψ(N,w) = ϕα(N,w) for some fixed α ∈ [0, 1]. But then weak covariance

implies that ψi(N, v) = ψi(N,w) + v({1}) = ϕαi (N,w) + v({1}) = ϕαi (N, v) for i ∈ {1, 2}.
2

Since N is the only coalition with more than one player, adding weak fairness implies a

characterization of α-standardness for all games on N = {1, 2}.

Theorem 3.9 A solution ψ on G{1,2} satisfies efficiency, homogeneity, weak individual

rationality, weak covariance and weak fairness if and only if for some α ∈ [0, 1], ψ satisfies

α-standardness for all two-player games.

Next we show logical independence of the five axioms in Theorem 3.9 by the following five

alternative solutions that do not satisfy α-standardness for any α ∈ [0, 1]:

1. The solution ψ given by ψi(N, v) = v({i}) for all i ∈ N and (N, v) ∈ G{1,2} satisfies

the axioms of Theorem 3.9 except efficiency.

2. The solution ψ given by ψ(N, v) = ED(N, v) if |v({1})−v({2})| ≤ 10, and ψ(N, v) =

CIS(N, v) if |v({1}) − v({2})| > 10, satisfies the axioms of Theorem 3.9 except

homogeneity.

3. The solution ψ given by ψi(N, v) = 2v({i}) +
v(N)−

∑
j∈N 2v({j})
|N | for all i ∈ N and

(N, v) ∈ G{1,2} satisfies the axioms of Theorem 3.9 except weak individual rationality.

4. The solution ψ given by ψ(N, v) = ED(N, v) if v({1})
v({2}) ≤ 10, and ψ(N, v) = CIS(N, v)

if v({1})
v({2}) > 10 satisfies the axioms of Theorem 3.9 except weak covariance.

5. The solution ψ given by ψ1(N, v) = v({1}), and ψ2(N, v) = v(N) − v({1}) for all

(N, v) ∈ G{1,2} satisfies the axioms of Theorem 3.9 except weak fairness.

Note that as corollaries from Theorem 3.9 we obtain characterizations of the equal division

solution and the CIS-value, which extend to n-player games with the properties of consis-

tency and population solidarity which are discussed in the next sections. As shown before,
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the equal division solution is the only solution in the class Φ that satisfies the boundary

condition or nonnegativity, and the CIS-value is the only solution in Φ that satisfies covari-

ance or individual rationality. With Theorem 3.9 this immediately yields axiomatizations

of the equal division solution and the CIS-value as corollaries. Further, it is obvious that

adding anonymity characterizes α-standardness on the class of all two-player games.

Next, we characterize specific solutions ϕα from the class Φ using a parametrized

axiom that has nonnegativity and individual rationality as special cases. For α ∈ [0, 1]

we call a game α-essential if
∑

i∈N αv({i}) ≤ v(N). Clearly, for α = 0 this boils down to

v(N) ≥ 0, while for α = 1 this is weak essentiality.

Axiom 3.10 Let α ∈ [0, 1]. A solution ψ satisfies α-individual rationality on C ⊆ G if for

every α-essential game (N, v) ∈ C it holds that ψi(N, v) ≥ αv({i}) for all i ∈ N .

Clearly α = 1 yields individual rationality, while α = 0 yields nonnegativity. This

axiom gives α an interpretation as some ‘wealth taxation’ parameter. Without taxation,

every player i can guarantee itself its own singleton worth v({i}). This singleton worth can

be seen as the individual wealth of the single player which it can earn on its own without

any cooperation with other players. Then, individual rationality means that a player gets

at least its own wealth. However, if there is some taxation on the wealth of players, then

they cannot guarantee themselves their singleton worth, but only a fraction α if (1 − α)

is the tax rate. Of course, these ‘after tax’ individual wealths can only be satisfied if the

game is α-essential.

Before, we introduced weak fairness, and gave a characterization of the class of

solutions Φ for two-player games using axioms that do not depend on α in Theorem 3.9.

For a specific α ∈ [0, 1], α-standardness for two-player games is characterized by efficiency,

weak fairness and the corresponding α-individual rationality.

Theorem 3.11 Let α ∈ [0, 1]. A solution ψ on G2 satisfies efficiency, weak fairness and

α-individual rationality if and only if it satisfies α-standardness for two-player games.

Proof It is obvious that on G2, ϕα satisfies efficiency, weak fairness and α-individual

rationality. Conversely, let ψ be a solution satisfying efficiency, weak fairness and α-

individual rationality for some α ∈ [0, 1]. Let (N, v) be a two-player game with N = {i, j},
i 6= j. First, consider a game (N,w) given by w({i}) = v({i}), w({j}) = v({j}) and

w(N) = α(v({i}) + v({j})). Since (N,w) is an α-essential game, α-individual rationality

implies that ψi(N,w) ≥ αw({i}) = αv({i}) and ψj(N,w) ≥ αw({j}) = αv({j}). Efficiency

then implies that these inequalities are equalities. But then weak fairness implies that

ψi(N, v)−αv({i}) = ψj(N, v)−αv({j}). With efficiency it follows that ψ(N, v) = ϕα(N, v).

2
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Taking α = 0 and α = 1 we obtain the following corollaries.3

Corollary 3.12 (i) A solution ψ satisfies efficiency, weak fairness and nonnegativity if

and only if it satisfies egalitarian standardness for two-player games.

(ii) A solution ψ satisfies efficiency, weak fairness and individual rationality if and only if

it satisfies standardness for two-player games.

4 Consistency and egalitarian solutions

In this section we consider the extension of the solutions in the previous section to n-

player games. We can use the reduced game introduced by van den Brink and Funaki

(2009, Section 5), but since we consider only convex combinations of the equal division

solution and the CIS-value, we can make a simplification of their reduced game.

Take a game (N, v) ∈ G, a payoff vector x ∈ RN , and a player j ∈ N . The player

set of a reduced game is obtained by removing player j from the original player set N .

The worths of the coalitions in this reduced game reflect what these coalitions can earn if

player j has left the game with its payoff xj. The worth of the coalition N \{j} (the ‘grand

coalition’) in the reduced game is equal to the worth of N minus the payoff xj assigned to

player j. Clearly, this is what is left to be allocated to the players in N \{j} after removing

player j from the game with payoff xj. For the other coalitions S ⊂ N \ {j} we assume

that they simply earn their worth v(S) in the original game4.

Definition 4.1 Given a game (N, v) ∈ G with |N | ≥ 3, a player j ∈ N , and a payoff

vector x ∈ RN , the reduced game with respect to j and x is the game (N \ {j}, vx)
given by

vx(S) =

{
v(N)− xj if S = N \ {j}
v(S) if S ⊂ N \ {j}.

Although we can allow for different worths for coalitions of size strictly between 1 and

|N | − 1, we consider only the game given above.5 We are ready to give a definition of the

3Recall that van den Brink and Funaki (2009) characterized the equal division solution (respectively

CIS-value) by efficiency, symmetry, linearity and a weaker nonnegativity requiring nonnegative payoffs

only if the worths of all coalitions are nonnegative (respectively individual rationality).
4In van den Brink and Funaki (2009) it is assumed that in the reduced game a coalition has the

participation of the leaving player j (but must pay xj to j) or not. Also, because of the simplification we

do not have to consider the case |N | = 3 different from the case |N | ≥ 4, as done in van den Brink and

Funaki (2009).
5Here we only consider the class G of all TU-games. If one considers subclasses C ⊂ G, then in

the definition of consistency one should additionally require that the reduced game (N \ {j}, vx) in this

definition also belongs to C.

9



consistency property of a solution associated with this reduced game.6

Definition 4.2 A solution ψ satisfies consistency if and only if for every (N, v) ∈ G
with |N | ≥ 3, j ∈ N , and x = ψ(N, v) it holds that ψi(N \ {j}, vx) = ψi(N, v) for all

i ∈ N \ {j}.

Consistency implies that given a game (N, v), if x is a solution payoff vector for (N, v),

then for every player j ∈ N , the payoff vector xN\{j} with payoffs for the players in N \{j},
must be a solution payoff vector of the reduced game (N \ {j}, vx). It is a kind of internal

consistency requirement to guarantee that players respect the recommendations made by

the solution.

Proposition 4.3 For every α ∈ [0, 1] the solution ϕα satisfies consistency on the class of

all games G.

Proof7 Take any α ∈ [0, 1], and any (N, v) ∈ G with |N | ≥ 3. For x = ϕα(N, v) and

i ∈ N \ {j} we have

ϕαi (N \ {j}, vx) = αvx({i}) +
1

|N | − 1

vx(N \ {j})− ∑
k∈N\{j}

αvx({k})


= αv({i}) +

1

|N | − 1

v(N)− xj −
∑

k∈N\{j}

αv({k})


= αv({i}) +

1

|N | − 1

v(N)− αv({j})− 1

|N |

(
v(N)−

∑
k∈N

αv({k})

)
−

∑
k∈N\{j}

αv({k})


= αv({i}) +

1

|N | − 1

(
|N | − 1

|N |

(
v(N)−

∑
k∈N

αv({k})

))
= ϕαi (N, v).

2

Adding α-standardness for two-player games characterizes8 the solution ϕα.

6The equal division solution satisfies several well-known consistency axioms that are also satisfied by

the Shapley value such as those of Sobolev (1973) and Hart and Mas-Colell (1988, 1989), which are not

satisfied by the CIS-value. In van den Brink, Funaki and Ju (2011) it is shown that all convex combinations

of the Shapley value and equal division solution as introduced in Joosten (1996), satisfy Sobolev (1073)’s

consistency. Ju, Borm and Ruys (2007) consider the convex combinations of the Shapley value and the

CIS-value.
7Since we slightly changed the reduced game of van den Brink and Funaki (2009) for β = 1, we give

the short proof, which follows similar lines as that of their Proposition 5.3. Their case |N | ≥ 4 with β = 1

now also holds for the case |N | = 3.
8Note that, compared to van den Brink and Funaki (2009), we do not need efficiency.
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Theorem 4.4 Let α ∈ [0, 1]. A solution ψ satisfies α-standardness for two-player games

and consistency on the class of all games G if and only if ψ = ϕα.

Proof The solution ϕα satisfying α-standardness for two-player games is straightforward.

Consistency follows from Proposition 4.3. Here we prove the ‘only if’ part. Take α ∈ [0, 1],

and let ψ be a solution which satisfies α-standardness for two-player games and consistency.

If |N | = 2 then ψ(N, v) = ϕα(N, v) follows from α-standardness for two-player games.

Proceeding by induction, for |N | ≥ 3, suppose that ψ(N ′, v′) = ϕα(N ′, v′) whenever

|N ′| = |N | − 1. We will show that ψ(N, v) = ϕα(N, v). Take any i, j ∈ N such that

i 6= j. Let x = ψ(N, v) and y = ϕα(N, v). For the two reduced games (N \ {j}, vx) and

(N \ {j}, vy), by consistency of ϕα and ψ, and the induction hypothesis we have

xi − yi = ψi(N \ {j}, vx)− ϕαi (N \ {j}, vy) = ϕαi (N \ {j}, vx)− ϕαi (N \ {j}, vy). (4.3)

By definition of ϕα and the reduced game, we have

ϕαi (N \ {j}, vx)− ϕαi (N \ {j}, vy)

= αvx({i}) +
1

|N | − 1

v(N \ {j})−
∑

k∈N\{j}

αvx(k)

− αvy({i})
− 1

|N | − 1

v(N \ {j})−
∑

k∈N\{j}

αvy(k)


= αv({i})− αv({i})− 1

|N | − 1

∑
k∈N\{j}

(αv({k})− αv({k})) = 0.

With (4.3) this implies that xi− yi = 0 for all i ∈ N . This shows that ψ(N, v) = ϕα(N, v).

This completes the proof. 2

By Theorem 3.11, and Theorem 4.4, we obtain the following corollary.

Corollary 4.5 Let α ∈ [0, 1]. A solution ψ satisfies efficiency, weak fairness, α-individual

rationality and consistency on the class of all games G if and only if ψ = ϕα.

5 Population solidarity and egalitarian solutions

Now we consider another extension of α-standardness to n-player games by imposing the

axiom of population solidarity. Population solidarity requires that upon an arrival of a

new player all the original players should be affected in the same direction, all weakly gain

or all weakly lose. Its implications have been studied in various contexts (Thomson, 1983;

Chun 1986), and for TU-games by Chun and Park (2012).
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Axiom 5.1 A solution ψ satisfies population solidarity if for all (N, v), (N ′, w) ∈ G satis-

fying N ⊂ N ′ and v(S) = w(S) for all S ⊆ N , it holds that either ψj(N, v) ≥ ψj(N
′, w)

for all j ∈ N , or ψj(N, v) ≤ ψj(N
′, w) for all j ∈ N .

It is easy to check that the convex combinations of the equal division solution and

the CIS-value are the only ones in the class of equal surplus division solutions considered

in van den Brink and Funaki (2009) that satisfy population solidarity. Chun and Park

(2012, Theorem 1) shows that standardness for two-player games, efficiency and population

solidarity characterize the CIS-value. In a similar way we can show the following theorem,

and refer to the appendix for the proof.

Theorem 5.2 Let α ∈ [0, 1]. A solution ψ satisfies efficiency, α-standardness for two-

player games and population solidarity if and only if ψ = ϕα.

Logical independence of the axioms in Theorem 5.2 follows from the following three

alternative solutions:

1. The solution ψα, given by ψαi (N, v) = αv({i}) + 1
2

∑
T⊆N

|T |=2

(
v(T )− α

∑
k∈T v({k})

)
for all (N, v) ∈ G and i ∈ N , satisfies α-standardness for two-player games and

population solidarity. It does not satisfy efficiency.

2. For all i ∈ IN, let ti be a number assigned to player i, such that these numbers are

distinct. The solution ψ, for all (N, v) ∈ G given by ψ(N, v) = ϕα(N,w), where

(N,w) is a game such that w({i}) = tiv({i}) for all i ∈ N and w(S) = v(S) for

any other S, satisfies efficiency and population solidarity. It does not satisfy α-

standardness for two-player games.

3. The Shapley value satisfies efficiency and α-standardness for two-player games. It

does not satisfy population solidarity.

By Theorem 3.11, and Theorem 5.2, we obtain the following corollary.

Corollary 5.3 Let α ∈ [0, 1]. A solution ψ satisfies efficiency, weak fairness, α-individual

rationality, and population solidarity if and only if ψ = ϕα.

Whereas Theorem 5.2 characterizes each solution ϕα, α ∈ [0, 1], by Theorem 3.9

and Theorem 5.2 it follows straightforwardly that adding anonymity, a solution ψ on G
belongs to Φ if and only if it satisfies efficiency, homogeneity, weak individual rationality,

weak covariance, weak fairness, anonymity and population solidarity. It turns out that

we can even do without anonymity which follows from the following lemma which states

that under efficiency and population solidarity, a solution that satisfies α-standardness for
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games on a player set N = {i, j}, i 6= j, must satisfy the same α-standardness on any class

of games on player sets N ′ ⊂ IN with |N ′| = 2. In other words, α does not depend on the

choice of the player set N ′.

To prove the following lemma, we use this notation: For any (N, v) ∈ G and T ⊂ N ,

the subgame (T, vT ) is given by vT (S) = v(S) for all S ⊆ T .

Lemma 5.4 Suppose that a solution ψ satisfies efficiency and population solidarity. If ψ

satisfies αij-standardness for two-player games on G{i,j} for any i, j ∈ IN, then αij = αi′j′

for any i, j, i′, j′ ∈ IN.

Proof Let ψ be a solution that satisfies efficiency, population solidarity, and αij-standardness

for two-player games on G{i,j} for any i, j ∈ IN. Suppose by contradiction that there exist

i, j, k ∈ IN such that αij 6= αik. For simplicity, we assume that i = 1, j = 2, k = 3 and

α12 > α13. Let δ and ε be positive real numbers such that

α12 − α13 < δ < 2(α12 − α13)

0 < ε < 2α12 − 2α13 − δ.

Then it follows that

3α12 + 2α13 + δ < 5α12 − ε.

Now, consider the following game (N, v) where N = {1, 2, 3} and v ∈ GN defined as

follows:

S {1} {2} {3} {1, 2} {2, 3} {1, 3}
v(S) 1 2 2 3α12 4α12 − 2ε 3α13 + 2δ

and v(N) is any real number satisfying

3α12 + 2α13 + δ < v(N) < 5α12 − ε. (5.4)

Note that, by αij-standardness for two-player games,

ψ1({1, 2}, v{1,2}) = α12 +
1

2
(3α12 − 3α12) = α12

ψ2({1, 2}, v{1,2}) = 2α12 +
1

2
(3α12 − 3α12) = 2α12

ψ2({2, 3}, v{2,3}) = 2α23 +
1

2
(4α12 − 2ε− 4α23) = 2α12 − ε

ψ3({2, 3}, v{2,3}) = 2α23 +
1

2
(4α12 − 2ε− 4α23) = 2α12 − ε

ψ1({1, 3}, v{1,3}) = α13 +
1

2
(3α13 + 2δ − 3α13) = α13 + δ

ψ3({1, 3}, v{1,3}) = 2α13 +
1

2
(3α13 + 2δ − 3α13) = 2α13 + δ.
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We distinguish the following three cases.

1. Suppose that ψ1(N, v) < α12. Applying population solidarity to ({1, 2}, v{1,2})
and (N, v), yields ψ2(N, v) ≤ 2α12. Since α12 < α13 + δ, it follows that ψ1(N, v) < α13 + δ.

Applying population solidarity to ({1, 3}, v{1,3}) and (N, v), yields ψ3(N, v) ≤ 2α13 + δ.

Then,

v(N) = ψ1(N, v) + ψ2(N, v) + ψ3(N, v) < α12 + 2α12 + 2α13 + δ = 3α12 + 2α13 + δ,

a contradiction to (5.4).

2. Suppose that ψ1(N, v) > α12. Applying population solidarity to ({1, 2}, v{1,2})
and (N, v), yields ψ2(N, v) ≥ 2α12. Since ψ2(N, v) > 2α12 − ε, applying population soli-

darity to ({2, 3}, v{2,3}) and (N, v), yields ψ3(N, v) ≥ 2α12 − ε. Then,

v(N) = ψ1(N, v) + ψ2(N, v) + ψ3(N, v) > α12 + 2α12 + 2α12 − ε = 5α12 − ε,

a contradiction to (5.4).

3. Suppose that ψ1(N, v) = α12. Then, ψ1(N, v) < α13 + δ. Applying population

solidarity to ({1, 3}, v{1,3}) and (N, v), yields ψ3(N, v) ≤ 2α13+δ. Since 2α13+δ < 2α12−ε,
it holds that ψ3(N, v) < 2α12 − ε. Applying population solidarity to ({2, 3}, v{2,3}) and

(N, v), yields ψ2(N, v) ≤ 2α12−ε. Then, since ψ3(N, v) ≤ 2α13+δ and ψ2(N, v) ≤ 2α12−ε,

v(N) = ψ1(N, v) + ψ2(N, v) + ψ3(N, v) ≤ α12 + 2α12 − ε+ 2α13 + δ < 3α12 + 2α13 + δ,

a contradiction to (5.4). 2

Now, by Theorem 3.9, Theorem 5.2 and Lemma 5.4, we obtain the following corol-

lary.

Corollary 5.5 A solution ψ on G belongs to Φ if and only if it satisfies efficiency, ho-

mogeneity, weak individual rationality, weak covariance, weak fairness and population sol-

idarity.

Note that in this corollary, homogeneity, weak individual rationality, weak covari-

ance and weak fairness can be replaced by symmetry9 and linearity.

9Instead of symmetry we can also use local monotonicity meaning that ψi(N, v) ≥ ψj(N, v) whenever

v(S ∪ {i}) ≥ v(S ∪ {j}) for all i, j ∈ N, all S ⊆ N \ {i, j}, and all (N, v) ∈ C ⊆ G. This axiom used in

Levinský and Silársky (2004) is also known as desirability, see Peleg and Sudhölter (2003).
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6 The ENSC-value

The dual game (N, v∗) of a game (N, v) is the game that assigns to each coalition S ⊆ N

the worth that is lost by the ‘grand coalition’ N if coalition S leaves N , i.e.,

v∗(S) = v(N)− v(N \ S) for all S ⊆ N.

The ENSC-value assigns to every game (N, v) the CIS-value of its dual game, i.e.,

ENSCi(N, v) = CISi(N, v
∗) = v∗({i}) +

1

|N |

(
v∗(N)−

∑
j∈N

v∗({j})

)

= v(N)− v(N \ {i}) +
1

|N |

(
v(N)−

∑
j∈N

(v(N)− v(N \ {j}))

)

= −v(N \ {i}) +
1

|N |

(
v(N) +

∑
j∈N

v(N \ {j})

)
for all i ∈ N.

Thus, the ENSC-value assigns to every player in a game its marginal contribution to the

‘grand coalition’ and distributes the (positive or negative) remainder equally among the

players.

It is known that the ENSC-value is the dual of the CIS-value and has several dual

properties. In this section we present two properties for values that are defined as a convex

combination of the ENSC-value and the equal division solution. These properties are

induced from the theorems in the previous two sections by its duality. Thus we omit the

proofs of the two theorems. Note that for two-player games, both solutions coincide (with

any standard solution).

For each α ∈ [0, 1], let ϕα be given by

ϕα(N, v) = αENSC(N, v) + (1− α)ED(N, v). (6.5)

It is easy to check that the solution ϕα is the dual of ϕα, that is, ϕα(N, v) = ϕα(N, v∗).

From Funaki (1998) it follows that, for any game (N, v) ∈ G with |N | ≥ 3, a player

j ∈ N , and a payoff vector x ∈ RN , the dual of the reduced game defined in Definition 4.2

(we call this the dual reduced game with respect to j and x) is the game (N \ {j}, (vx)∗)
given by

(vx)∗(S) =

{
v(S ∪ {j})− xj if S ⊆ N \ {j}, S 6= ∅
0 if S = ∅.

The consistency property related to this reduced game is called projection consis-

tency and is defined similar as Definition 4.2. Together with α-standardness for two-player

games it characterizes the corresponding convex combination of the equal division solution

and the CIS-value.

15



Theorem 6.1 Let α ∈ [0, 1]. A solution φ satisfies α-standardness for two-player games

and projection consistency on the class of all games G if and only if φ = ϕα.

Now we consider the dual property of population solidarity. It is obtained by re-

placing (N, v) by (N, v∗) in the original property. For a game (N ′, w) and N ⊂ N ′, let

w̄(S) = w̄(S ∪ (N ′ \N)) for all S ⊆ N .

Axiom 6.2 A solution ψ satisfies the dual of population solidarity if for all (N, v), (N ′, w) ∈
G satisfying N ⊂ N ′ and v(N)− v(N \S) = w̄(N)− w̄(N \S) for all S ⊆ N , it holds that

either ψj(N, v) ≥ ψj(N
′, w) for all j ∈ N , or ψj(N, v) ≤ ψj(N

′, w) for all j ∈ N .

The dual of population solidarity requires the following. Consider two games (N, v)

and (N ′, w) such that N ⊂ N ′. We compare the worth of the coalitions in the two games

for the player set N . Then we consider w̄ instead of w. If for any S ⊂ N , the contributions

of S to N in both games coincide, all the original players in N should be affected in the

same direction.

Theorem 6.3 Let α ∈ [0, 1]. A solution φ satisfies efficiency, α-standardness for two-

player games and the dual of population solidarity if and only if φ = ϕα.

Since ϕα satisfies α-standard for two-player games, we can formulate similar corol-

laries as at the end of Section 4.
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Appendix: Proof of Theorem 5.2

We present a proof of Theorem 5.2 which generalizes that of Chun and Park (2012). It is

obvious that ϕα satisfies efficiency, α-standardness for two-player games and population

solidarity.

To prove uniqueness, let ψ be a solution satisfying efficiency, α-standardness for

two-player games and population solidarity. We assume that N = {1, . . . , n}. For any

game (N, v) ∈ G and α ∈ [0, 1], we define the real number xα(N, v) by

xα(N, v) =
v(N)− α

∑
k∈N v(k)

|N |
,

and we also define a vector θα(N, v) ∈ RN by θαi (N, v) = ψi(N, v) − αv(i) for all i ∈ N .

For notational convenience, in case there is no confusion we will often omit the superscript

α and shortly write x(N, v) and θ(N, v). Note that from efficiency,∑
i∈N

θi(N, v) =
∑
i∈N

ψi(N, v)− α
∑
i∈N

v({i}) = v(N)− α
∑
i∈N

v({i}) = x(N, v) · |N |. (6.6)

If |N | = 2, then ψ(N, v) = ϕα(N, v) follows from the assumption that ψ satisfies

α-standardness for two-player games. Let (N, v) ∈ G with |N | ≥ 3. For simplicity, let

N = {1, 2, 3, . . . , n}. It is sufficient to show that θi(N, v) = x(N, v) for all i ∈ N . We will

show this by contradiction. Suppose that there is a player k ∈ N such that θk(N, v) 6=
x(N, v). Since

∑
i∈N θi(N, v) = x(N, v) · |N |, there exists a player j ∈ N such that

θj(N, v) > x(N, v). Without loss of generality, we may assume that θ1(N, v)−x(N, v) > 0.

Let δ be a positive real number defined by

δ ≡ θ1(N, v)− x(N, v)

2(n+ 1)2
.

Let N ′ ≡ {1, 2, . . . , n+ 1} and N ′′ ≡ {1, 2, . . . , n+ 1, n+ 2}. We consider a game (N ′′, w)

such that for all S ⊂ N , w(S) = v(S), and w satisfies the following:

S w(S)

{i, n+ 1} for i ∈ N \ {1} αw(i) + αw(n+ 1) + 2(x(N, v) + δ)

{i, n+ 2} for i ∈ N \ {1} αw(i) + αw(n+ 2) + 2(x(N, v) + 2δ)

{1, n+ 1} αw(1) + αw(n+ 1) + 2(x(N, v) + 2(n+ 1)2δ)

{1, n+ 2} αw(1) + αw(n+ 2) + 2(x(N, v) + (2n+ 3)δ)

{n+ 1, n+ 2} αw(n+ 1) + αw(n+ 2) + 2(x(N, v) + 3
2
δ)

N ′ α
∑n+1

i=1 w(i) + (n+ 1)(x(N, v) + (2n+ 2)δ)

N ′′ α
∑n+2

i=1 w(i) + (n+ 2)(x(N, v) + (2n+ 2)δ)

For simplicity, for any S ⊆ N ′′, the subgame of (N ′′, w) induced by S is denoted by (S,w).
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From the previous table and from the fact that ψ is equal to ϕα for all two-player

games, we have the following: for i ∈ N \ {1},

θi({i, n+1}, w) = θn+1({i, n+1}, w) = x({i, n+1}, w) = x(N, v) + δ (6.7)

θi({i, n+2}, w) = θn+2({i, n+2}, w) = x({i, n+2}, w) = x(N, v) + 2δ (6.8)

and for i ∈ {n+ 1, n+ 2},

θi({n+1, n+2}, w) = x({n+1, n+2}, w) = x(N, v) +
3δ

2
. (6.9)

In addition, it holds that

θ1({1, n+1}, w) = θn+1({1, n+1}, w) = x({1, n+1}, w) = x(N, v) + 2(n+ 1)2δ (6.10)

θ1({1, n+2}, w) = θn+2({1, n+2}, w) = x({1, n+2}, w) = x(N, v) + (2n+ 3)δ (6.11)

x(N ′, w) = x(N ′′, w) = x(N, v) + 2(n+ 1)δ. (6.12)

Together with (6.6) and (6.12),

n+1∑
i=1

θi(N
′, w) = (n+ 1)x(N ′, w) = (n+ 1)x(N, v) + 2(n+ 1)2δ (6.13)

n+2∑
i=1

θi(N
′′, w) = (n+ 2)x(N ′′, w) = (n+ 2)x(N, v) + 2(n+ 1)(n+ 2)δ. (6.14)

Next, we prove several claims.

Claim 1. θ1(N
′, w) = x(N, v) + 2(n+ 1)2δ.

Proof of Claim 1. Suppose that θ1(N
′, w) > x(N, v)+2(n+1)2δ. Since x(N, v)+2(n+1)2δ =

θ1(N, v) by the definition of δ, θ1(N
′, w) > θ1(N, v). Applying population solidarity to

(N, v) and (N ′, w), it holds that θi(N
′, w) ≥ θi(N, v) for all i ∈ N . Then

n∑
i=1

θi(N
′, w) >

n∑
i=1

θi(N, v). (6.15)

Then by (6.13) and (6.6),

n∑
i=1

θi(N
′, w) = (n+ 1)x(N, v) + 2(n+ 1)2δ − θn+1(N

′, w),

and by (6.6),
∑n

i=1 θi(N, v) = nx(N, v). It follows by (6.15) that (n+1)x(N, v)+2(n+1)2δ−
θn+1(N

′, w) > nx(N, v) or θn+1(N
′, w) < x(N, v) + 2(n+ 1)2δ. By (6.10), this is equivalent

to θn+1(N
′, w) < θn+1({1, n+1}, w). Applying population solidarity to ({1, n+1}, w) and

(N ′, w), it holds that with (6.10) that

θ1(N
′, w) ≤ θ1({1, n+1}, w) = x(N, v) + 2(n+ 1)2δ,
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which is a contradiction to the assumption that θ1(N
′, w) > x(N, v) + 2(n + 1)2δ. If

θ1(N
′, w) < x(N, v) + 2(n+ 1)2δ, we can reach a contradiction similarly. Therefore, Claim

1 holds.

Claim 2. θn+1(N
′, w) ≤ x(N, v) + δ.

Proof of Claim 2. Suppose that θn+1(N
′, w) > x(N, v)+δ. By (6.7), we have θn+1(N

′, w) >

θn+1({i, n+1}, w) for all i ∈ N \ {1}. Applying population solidarity to ({i, n+1}, w) and

(N ′, w) for each i ∈ N \ {1}, we obtain θi(N
′, w) ≥ θi({i, n+1}, w) for each i ∈ N \ {1}.

By (6.7), θi(N
′, w) ≥ x(N, v) + δ for all i ∈ N \ {1}. All together with Claim 1, we have

θ1(N
′, w) = x(N, v) + 2(n+ 1)2δ

θi(N
′, w) ≥ x(N, v) + δ for all i ∈ N \ {1}

θn+1(N
′, w) > x(N, v) + δ,

and so
∑n+1

i=1 θi(N
′, w) > (n+ 1)x(N, v) + 2(n+ 1)2δ+nδ, which contradicts (6.13). There-

fore, Claim 2 holds.

Claim 3. θi(N
′′, w) > θi(N

′, w) for some i ∈ N ′.

Proof of Claim 3. Suppose that θi(N
′′, w) ≤ θi(N

′, w) for all i ∈ N ′. Then

θn+1(N
′′, w) ≤ θn+1(N

′, w) ≤ x(N, v) + δ < x(N, v) +
3

2
δ = θn+1({n+1, n+2}, w),

where the second inequality follows from Claim 2, and the last equality follows from (6.9).

Applying population solidarity to ({n+1, n+2}, w) and (N ′′, w), we have θn+2(N
′′, w) ≤

θn+2({n+1, n+2}, w). Since, from (6.8) and (6.9), for all i ∈ N \ {1},

θn+2(N
′′, w) ≤ θn+2({n+1, n+2}, w) = x(N, v) +

3

2
δ < x(N, v) + 2δ = θn+2({i, n+2}, w),

it follows that for all i ∈ N \ {1}, θn+2(N
′′, w) < θn+2({i, n+2}, w). Applying population

solidarity to ({i, n+2}, w) and (N ′′, w), it holds that θi(N
′′, w) ≤ θi({i, n+2}, w) for all

i ∈ N \{1}. By (6.8), θi(N
′′, w) ≤ x(N, v) + 2δ for all i ∈ N \{1}. All together with Claim

1, we have

θ1(N
′′, w) ≤ θ1(N

′, w) = x(N, v) + 2(n+ 1)2δ

θi(N
′′, w) ≤ x(N, v) + 2δ for all i ∈ N \ {1}

θn+1(N
′′, w) ≤ x(N, v) + δ

θn+2(N
′′, w) ≤ x(N, v) +

3

2
δ.
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Then
∑n+2

i=1 θi(N
′′, w) ≤ (x(N, v) + 2(n + 1)2δ) + (n − 1)(x(N, v) + 2δ) + (x(N, v) + δ) +

(x(N, v) + 3
2
δ), and so

n+2∑
i=1

θi(N
′′, w) ≤ (n+ 2)x(N, v) + (2n2 + 6n+

5

2
)δ < (n+ 2)x(N, v) + 2(n+ 1)(n+ 2)δ,

which yields a contradiction to (6.14). Therefore, Claim 3 holds.

Claim 4. θi(N
′′, w) < θi(N

′, w) for some i ∈ N ′.

Proof of Claim 4. Suppose that θi(N
′′, w) ≥ θi(N

′, w) for all i ∈ N ′. Then

θ1(N
′′, w) ≥ θ1(N

′, w) = x(N, v) + 2(n+ 1)2δ > x(N, v) + (2n+ 3)δ = θ1({1, n+2}, w),

where the second equality follows from Claim 1, and the last equality follows from (6.11).

Applying population solidarity to ({1, n+2}, w) and (N ′′, w), we have θn+2(N
′′, w) ≥

θn+2({1, n+2}, w). Then

θn+2(N
′′, w) ≥ θn+2({1, n+2}, w) = x(N, v) + (2n+ 3)δ > x(N, v) + 2(n+ 1)δ,

where the second equality follows from (6.11). Since θi(N
′′, w) ≥ θi(N

′, w) for all i ∈ N ′,
n+1∑
i=1

θi(N
′′, w) + θn+2(N

′′, w) >
n+1∑
i=1

θi(N
′, w) + (x(N, v) + 2(n+ 1)δ).

By (6.13) and (6.14),

(n+ 2)x(N, v) + 2(n+ 1)(n+ 2)δ > (n+ 1)x(N, v) + 2(n+ 1)2δ + (x(N, v) + 2(n+ 1)δ),

where the right side is (n+2)x(N, v)+2(n+1)(n+2)δ, which is a contradiction. Therefore,

Claim 4 holds.

From Claim 3 and Claim 4, we reach a contradiction to population solidarity applied

to (N ′, w) and (N ′′, w). It completes the proof of Theorem 5.2. 2
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