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Abstract 
We analyse the behaviour of market participants in a multi-modal commuter network where roads 

are not priced, but public transport has a usage fee, which is set while taking the effects on the roads into 
account. In particular, we analyse the difference between markets with a monopolistic public transport 
operator, which operates all public transport links, and markets in which separate operators own each 
public transport link. 

To do so, we consider a simple transport network consisting of two serial segments and two parallel 
congestible modes of transport. We obtain a reduced form of the public transport operator’s optimal fare 
setting problem and show that, even if the total travel demand is inelastic, serial Bertrand-Nash 
competition on the public transport links leads to different fares than a serial monopoly; a result not 
observed in a static model. This results from the fact that trip timing decisions, and therefore the 
generalized prices of all commuters, are influenced by all fares in the network.  

We then use numerical simulations to show that, contrary to the results obtained in classic studies 
on vertical competition, monopolistic fares are not always higher than duopolistic fares; the opposite can 
also occur. We also explore how different parameters influence the price differential, and how this affects 
welfare.   
 

Keywords: Public transport, congestion, market design. 
JEL Classification:  L10, L92, R41, R48 
 

 

1. Introduction 
A substantial literature exists on road pricing, as well as on the effects of road pricing on public 

transport markets, and second-best pricing of roads in the presence of unpriced substitutes. In reality, road 
pricing is politically difficult to implement and, with a few exceptions, roads remain unpriced. It is 
therefore interesting to consider the opposite, but common situation, in which roads are unpriced, but 
public transport has a usage fee, which is set while taking the effects on the roads into account. 

Recent decades have seen a shift from governmental provision of public transport to provision by 
private firms, thus reducing the government’s control over fares. However, not all systems have been 
privatized in the same way and consequently, various market structures have emerged. Although, in many 
countries, there is now at least some form of vertical separation between service operators and 
infrastructure managers, the amount of competition between service operators differs greatly. In some 

                                                            
1 Corresponding author. Tel.: +31 (0) 20 59 86016.  
E-mail addresses: h.vander.weijde@vu.nl (A.H. van der Weijde), e.t.verhoef@vu.nl (E.T. Verhoef), v.a.c.vanden.berg@vu.nl 
(V.A.C. van den Berg). 
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countries, such as The Netherlands, one operator owns the exclusive rights to operate most or even all 
connections in the network; in others, such as the UK, new operators can freely enter the market to offer 
new services, or directly compete for franchises to operate existing ones. 

We therefore test how these different market structures influence public transport fares and social 
welfare, and how they compare with governmental provision. In particular, we analyse the difference 
between markets with a monopolistic public transport operator, which operates all public transport links, 
and markets in which separate operators own each public transport link. Standard economic theory would 
predict that in normal markets, both Bertrand (price) and Cournot (quantity) competition lead to lower 
prices than a monopoly; in the former, prices would be driven down to marginal costs when there are at 
least two competitors; in the latter, prices approach marginal costs only when the number of competitors 
approaches infinity.  

Transport systems usually consist of several interacting markets, and there are unpriced externalities 
associated with travel, so these standard results do not always apply. Previous studies (Economides & 
Salop 1992, see De Borger et al., 2008 for a transport application) have shown that, generally, parallel (or 
horizontal) competition, where a number of competitors offer different possibilities to travel between two 
points, is beneficial, both to consumers and to society. In contrast, serial (or vertical) competition, in 
which different operators own complementary links, increases fares and adversely affect social welfare. 
In this situation, each serial competitor exerts local market power, and is able to set a price above 
marginal cost. If the overall demand is price-sensitive, this has a negative effect on the patronage of other 
links, but this externality is disregarded by the individual operators; a phenomenon that is comparable to 
the mechanism of double marginalization. 
 However, these results have been obtained with static models. In these models, commuters only 
choose a mode, or combination of modes, to travel; the models disregard the fact that commuters can also 
choose the moment at which they travel. In most real-world applications, commuters do have this choice, 
and empirical evidence suggests that this has non-negligible effects (Small, 1982). We will therefore use 
dynamic modelling techniques, and examine how this affects competition. In order to do so, we assume 
that demand is fixed, such that we can isolate dynamic interaction effects from possible effects of price-
sensitive demand.  

To further improve tractability, we only examine networks in which commuters from different 
origins, located along one transportation corridor, travel to one destination; this may, for example, 
represent a morning commute from a series of suburbs to a central business district. More general 
network models exist (e.g. Pels & Verhoef, 2007), but are often too complicated to yield the economic 
insights we are interested in. Simpler multi-modal network models (e.g. Arnott & Yan, 2000; Verhoef, 
2008) often assume that there are only two nodes in the network, that only one mode is chosen for the 
entire journey, or that all parallel links are exactly the same, which is too simple for our purposes. There 
is also some earlier literature on the properties of congested many-to-one commuter networks similar to 
ours (e.g. Tian et al., 2007; Arnott & DePalma, 2010), but these are usually concerned with the user 
equilibrium only, and do not include competing parallel modes.  

We therefore combine elements from different contributions to this literature, to model a simple 
dynamic multi-modal many-to-one commuter network where transfers between modes are possible, but 
costless. In this way, we can capture the essence of serial competition, parallel competition, mode choice 
and departure time choice in one analytical framework, and study the efficiency of different types of 
market organization. Using this model, we obtain a reduced form of the public transport operator’s 
optimal fare setting problem, assuming that its fare is constant over time. This reduced form is 
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considerably simpler and easier to use than the original optimal control problem, and we can use it to 
show that in this dynamic model, even though the total travel demand is inelastic, serial Bertrand-Nash 
competition on the public transport links leads to different fares than a serial monopoly. However, 
contrary to the results obtained in classic studies on vertical competition, the difference between 
duopolistic and monopolistic fares is not necessarily positive. We also show why these results cannot be 
observed in static models, and further examine these results in a series of numerical simulations. 

The following section will outline the methodology and assumptions. In section 3, we examine the 
fare-setting behaviour of public transport operators in a static model with fixed demand, and briefly 
discuss why the monopolistic and serial Nash-Bertrand equilibrium fares are equal in that setting; this 
gives us a benchmark against which to compare the results of a dynamic model.  In section 4, we then 
formulate this dynamic model, derive a reduced form of the public transport operator’s profit optimization 
problem and again compare monopolistic and serial Nash-Bertrand fares. Section 5 illustrates these issues 
with a numerical version of the dynamic model, and examines which parameters influence the difference 
between the monopolistic and duopolistic fares, and thus social welfare. Section 6 concludes. 
 
2. Methodology 
Even our simple models require a significant amount of notation. Table 1 summarizes the main indexes, 
variables and parameter that will be used in our exposition. 
 

Table 1 – Notation 

Indexes 
l Segments (1,2) 
m Modes (R=road, T=train) 
t Time 
Variables 
ܿ Operation and maintenance costs of a monopolistic operator 
ܿ Operation and maintenance costs of a duopolistic operator on segment ݈ 

݂
 Usage fee for mode m on segment l (road price or rail fare) 

݊
 Number of commuters travelling on mode ݉, segment l 

ଵݐ
 Arrival time at the destination of the first commuter from the first node who has used mode m 

ଶݐ
 Arrival time at the destination of the first commuter from the second node who has used mode m 

ݒ
 Arrival flow on link l, mode m 

ݎ
 Congestion costs faced by users of mode ݉ on segment l 

ݏ
 Travel speed on link l, mode m 

  Profit of a monopolistic operatorߨ
 ݈  Profit of a duopolistic operator on segmentߨ
 .Schedule delay costs of a commuter arriving at the destination ߠ
Parameters 
N Number of commuters travelling from each node to the destination 
݉ Segment length 
 Desired arrival time (common to all travellers) כݐ

 
To examine the effects of different market structures in a multi-modal network, we will first 

consider the simplest possible network in which this is possible, and later consider how the results 
obtained can be generalized. This simple network, shown in Fig. 1, consists of three nodes (two origins 
and one destination), which are connected by two segments. Each segment consists of two links. We will 
call these two links “rail” and “road”, but they could also represent other modes, as long as they are 
completely separate, such that commuters using one node do not influence the travel costs of the 
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commuters on the other node. Importantly, we ignore the discrete nature of public transport, and instead 
assume that passengers can depart and arrive continuously. Although it is theoretically possible to include 
a limited number of departures, this major complication would not qualitatively affect the results.2  

Travellers treat the two modes as perfect substitutes, so that Wardropian equilibrium conditions 
apply for used alternatives; their generalized prices should be equal in equilibrium, and there are no 
unused alternatives with a lower price (Wardrop, 1952). If modes were imperfect substitutes, this would 
reduce the effects of competition, but it would not eliminate them. 

We examine a typical morning commute, in which N commuters travel from node 1 to the 
destination, and another N commuters from node 2 to the destination.3 Commuters from node 1 can 
transfer to a different mode at node 2, although, as we will see in sections 3 and 4 below, this assumption 
does not influence the results in an interior equilibrium; it is also possible to disallow all transfers or only 
allow transfers in one direction. Transfers are costless since, in an interior equilibrium, a positive transfer 
cost would simply eliminate all transfers. The total number of commuters traveling from each node, N, is 
fixed, as we want to exclude the effects of elastic demand from our analysis, and in particular from 
complicating the comparison of equilibrium use levels across alternative market configurations. 

  

 
Figure 1 – Network  

 
As a benchmark, we first consider a static model, in which departure time decisions are therefore 

ignored; the congestion costs commuters face are influenced by all commuters using the same links. 
Afterwards, we will examine a dynamic model, in which commuters choose a departure time to minimize 
the total cost of travelling, and only the number commuters travelling on the same links at the same time 
influences the congestion cost they face. In that model, there is flow congestion on the road, as in Chu 
(1995), a reformulation of Henderson (1974); travel speeds of commuters depend on the density of the 
traffic flow at the moment of arrival, where there are no specific restrictions on the functional form of this 
relation. This assumption allows us to obtain reduced-form formulations that could not have been 
obtained if other forms of congestion, such as bottleneck congestion, would have been present.  

In the general formulation, we only examine interior solutions, in which all modes are used from all 
origins; where necessary, we assume that such a solution exists. The numerical analysis allows for all 
possible equilibria, and thus for the possibility that one or more links may remain unused in equilibrium. 
 
3. Static model 
3.1. Generalized prices 

Commuters travelling over segment l pay a road price ݂
ோor rail fare ݂

், where the index T stands 
for train travel, and R for road travel. In addition to that, they also face a congestion cost ݎ

, ݉ א ሼܶ, ܴሽ, 

                                                            
2 Especially if passengers do not know the schedule and headways are exogenous; in that case, each passenger would simply 
incur an additional cost, equal to the value of waiting time multiplied by the expected waiting time. If passengers know the 
schedule or headways are endogenous, solutions will be very difficult to obtain (See also Tian et al., 2007). 
3 This assumed equality of commuter numbers simplifies notation, but could otherwise easily be dropped. 

1 2 D 

N N 

2N 

Rail 1 Rail 2 

Road 1 Road 2 
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which is a function of the number of commuters travelling on that same link, ݊
. Since there is no time 

dimension in the static model, schedule delay costs are not defined.  
 
3.2. Rail monopoly 

A monopolistic rail operator, which operates both rail segments, maximizes the sum of the revenues 
of both links minus operating and maintenance costs ܿ: 

max ߨ ൌ ଵ݂
்݊ଵ

்  ଶ݂
்݊ଶ

் െ ܿሺ݊ଵ
், ݊ଶ

்ሻ (1)

There are two Wardropian user equilibrium constraints for commuters from the upstream node, as they 
can follow three possible mode choice patterns (train–train, car–car and car–train), and one constraint 
ensuring user equilibrium for commuters from the downstream node, as they can only choose between 
two modes (train or car). Two other constraints apply, ensuring that all commuters from each origin 
travel. The Lagrangian for profit optimization can therefore be written as 

ܮ ൌ ଵ݂
்݊ଵ

்  ଶ݂
்݊ଶ

் െ ܿሺ݊ଵ
், ݊ଶ

்ሻ  ଵݎଵሾߣ
்ሺ݊ଵ

்ሻ  ଵ݂
் െ ଵݎ

ோሺ݊ଵ
ோሻ െ ଵ݂

ோሿ
 ଶݎଶሾߣ

்ሺ݊ଶ
்ሻ  ଶ݂

் െ ଶݎ
ோሺ݊ଶ

ோሻ െ ଶ݂
ோሿ  ଷሾ݊ଵߣ

்  ݊ଵ
ோ െ ܰሿ  ସሾ݊ଶߣ

்  ݊ଶ
ோ െ 2ܰሿ 

(2)

where ߣଵ to ߣସ are the Lagrange multipliers associated with the constraints mentioned above. Combining 
and simplifying the first-order conditions yields the optimal monopolistic rail prices: 

݂
் ൌ

߲ܿ

߲݊
்  ݊

் ݎ߲
்

߲݊
்  ݊

் ݎ߲
ோ

߲݊
ோ 

(3)

Hence, the price on each link consists of the marginal cost of accommodating an extra commuter on that 
link, and a congestion-related mark-up. This mark-up consists of two parts. The second term in Eq. (3) is 
the increase in congestion costs that all rail users experience as a result of an increase in the number of 
users; naturally, the monopolist internalizes these costs. The third term in Eq. (3), which also internalizes 
part of the congestion on the road, is the equivalent of a standard monopolistic mark-up in a market with 

price-sensitive demand. With an inverse demand function ݀
்ሺ݊

்ሻ and in absence of an alternative mode, 

this mark-up would be equal to – ݊
்൫߲݀

் ߲݊
்⁄ ൯. Because, in our model, any rail traveller shifted away 

from rail to road, the term ߲ݎ
் ߲݊

்⁄  in (3) is equivalent to what െ ߲݀
் ߲݊

்⁄  would be in this 
conventional setting. 
 
3.3. Rail Bertrand-Nash duopoly 

If the two rail links are owned by separate operators, each operator maximizes its own profits, while 
both maximization problems are subject to the same constraints as those applying for the monopolistic 
operator. Hence, the two Lagrangians are: 

ଵܮ ൌ ଵ݂
்݊ଵ

் െ ܿଵሺ݊ଵ
்ሻ  ଵݎଵሾߣ

்ሺ݊ଵ
்ሻ  ଵ݂

் െ ଵݎ
ோሺ݊ଵ

ோሻ െ ଵ݂
ோሿ  ଶݎଶሾߣ

்ሺ݊ଶ
்ሻ  ଶ݂

் െ ଶݎ
ோሺ݊ଶ

ோሻܰ െ ଶ݂
ோሿ

 ଷሾ݊ଵߣ
்  ݊ଵ

ோ െ ܰሿ  ସሾ݊ଶߣ
்  ݊ଶ

ோ െ 2ܰሿ 
(4)

ଶܮ ൌ ଶ݂
்݊ଶ

் െ ܿଶሺ݊ଶ
்ሻ  ଵݎଵሾߛ

்ሺ݊ଵ
்ሻ  ଵ݂

் െ ଵݎ
ோሺ݊ଵ

ோሻ െ ଵ݂
ோሿ  ଶݎଶሾߛ

்ሺ݊ଶ
்ሻ  ଶ݂

் െ ଶݎ
ோሺ݊ଶ

ோሻܰ െ ଶ݂
ோሿ

 ଷሾ݊ଵߛ
்  ݊ଵ

ோ െ ܰሿ  ସሾ݊ଶߛ
்  ݊ଶ

ோ െ 2ܰሿ 
(5)

Where ߣଵ – ߣସ and ߛଵ – ߛସ are Lagrangian multipliers. The sum of the two duopolists’ operation and 
maintenance costs may be larger than those of the monopolist if the latter can exploit economies of scale, 
so ܿଵ  ܿଶ  ܿ. The first-order conditions yield: 

݂
் ൌ

߲ܿ

߲݊
்  ݊

் ݎ߲
்

߲݊
்  ݊

் ݎ߲
ோ

߲݊
ோ 

(6)

With the exception of the first term, Eq. (6) is equal to Eq. (3); contrary to a standard Bertrand duopoly, 

both operators can raise their process above marginal production cost ܿ
், for two reasons. The first is that 
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they internalize the congestion externality on their own link, and collect the revenue from the associated 
toll. The second is that the serial setup implies that they are not offering pure substitutes, but rather 
complements, so that the parallel road is their direct competition; not the other duopolists. 
 
3.4. Price comparison 

If the monopolistic operator does not benefit from economies of scale in the number of rail links its 

owns, and thus 
డ

డ
 ൌ

డ

డ
 , Eqs. (3) and (6) are equal; there is no difference between Bertrand-Nash and 

monopolistic prices on . Only if 
డ

డ
 

డ

డ
 , which may be the case if a monopolistic operator can save 

costs as a result of owning both links, it is possible that monopolistic and duopolistic fares are different. 
Since the exact parameters of the model determine whether this happens or not, we will ignore this case in 
the analyses below.  
 To some extent, the above results are intuitive. All users have to travel, and all commuters from 
node 1 (the upstream node) pass through node 2, where they can take the train regardless of the mode they 
used to arrive there. Hence, the number of train travellers between each pair of nodes does not depend on 
the rail fare on the other link. In other words, a duopolistic operator does not have to take into account 
how its customers arrived at the start of its segment or how they will depart at the end, nor how much this 
costs the customers, since the number of customers arriving at and departing from each segment is fixed. 
The monopolistic optimization problem is therefore perfectly separable in the two segments, and the two 
duopolists set exactly the same prices as the monopolist. 
 So far, we have allowed commuters from node 1 to transfer between modes in either way, by not 

placing any restrictions on ݊ଶ
் and ݊ଶ

ோ. However, transfers between modes do not have to be considered 
explicitly; it can be shown mathematically that the inclusion of an additional constraint specifying that 

݊ଶ
்  ݊ଵ

் (such that only transfers from road to train are possible) or ݊ଶ
்  ݊ଵ

் and ݊ଶ
ோ  ݊ଵ

ோ (such that no 
transfers are possible) does not change the results, as these constraints do not include the rail fares, and 
will apply to both duopolists and to the monopolist. The reason that the fare setting problem is still 
separable, even when transfers are not possible, is that commuters from the downstream node equalize the 
generalized price of travel on both modes on the downstream segment. Hence, when commuters from the 
upstream node decide which mode to use, it is sufficient for them to only consider the road prices and rail 
fares on the upstream segment, since the full price of travelling on the downstream segment is, thanks to 
the downstream commuters, independent of the chosen mode.  
 
4. Dynamic model 

The static model above does not allow commuters to choose a departure time that minimizes their 
generalized travel price. Although this may be realistic in some settings, departure time choices cannot be 
ignored in most real-world situations, especially in the context of congestion, and it is important to 
consider if the model outcomes are different if departure time choices are indeed included.  

The full dynamic formulation of the problem outlined above yields a complex optimal control 
problem, as rail operators should now maximize the time integral of profits on each link, subject to 
integral constraints and temporal Wardropian equilibrium conditions. However, it is possible to derive a 
reduced-form formulation, under the assumption that fares are constant over time, as we will do here. In 
order to do this, we first establish the arrival order of commuters from the different origins and modes. 
We then divide the time between the arrival of the first and last commuters at the destination in four 
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periods, and subsequently solve the resulting reduced-form model as if it were a static optimization 
problem. 
 
4.1. Generalized prices and arrival order 

As before, users face road prices or rail fares, and a congestion cost ݎ
. In the dynamic model, 

however, the congestion costs are a function of the number of commuters arriving at the same time, so 

ݎ
ሺݐሻ ൌ ݎ

൫ݒ
ሺݐሻ൯. In addition, commuters also face a schedule delay cost ߠ, which increases as 

commuters arrive further away from their preferred arrival time כݐ. For simplicity, we assume that late 
arrivals (after כݐ) are not allowed.4 We also assume that the free-flow travel speed of a car is higher than 
the speed of a train; this allows for establishment of the arrival order. 

 Define ݐଵ
ோ as the time the first road–road commuter from node 1 arrives at the destination, and ݐଶ

ோ 

the time the first road commuter from node 2 arrives. To ensure user equilibrium, 
డభ

ೃ

డ௩భ
ೃ

డ௩భ
ೃ

డ௧


డమ
ೃ

డ௩మ
ೃ

డ௩మ
ೃ

డ௧


డఏ

డ௧
ൌ 0 when commuters from node 1 are travelling, and 

డమ
ೃ

డ௩మ
ೃ

డ௩మ
ೃ

డ௧


డఏ

డ௧
ൌ 0 when commuters from node 2 

are travelling, such that no commuters want to change their arrival time. Moreover, generalized prices 
faced by users from both nodes have to be lower when they are travelling then when they are not 

travelling. Using these facts, it can be shown that ݐଶ
ோ  ଵݐ

ோ, that the flow of road-road commuters from 

node 1 is positive from ݐଵ
ோ to כݐ and that the flow of road commuters from node 2 is positive from ݐଶ

ோ to 
 Moreover, as soon as road commuters from node 2 start to arrive, the arrival flow of commuters from .כݐ
node 1 becomes constant.5 

Define ݐଵ
் as the time the first rail–rail commuter from node 1 arrives at the destination, and ݐଶ

் the 
time the first rail commuter from node 2 arrives. Assuming that the free-flow travel speed on the road is 

higher than or equal to the travel speed of the train, ݐଵ
்  ଵݐ

ோ. As on the road, the first upstream commuter 

arrives first, so ݐଶ
்  ଵݐ

். Hence, ݐଵ
ோ  ଵݐ

், ଶݐ
ோ, ଶݐ

் ൏  Fig. 2 shows an example of the user equilibrium .כݐ
arrival flows in model with linear congestion costs and linear costs of schedule delay. 
 Using these insights, we can divide period between the first and last arrival into four partially 
overlapping periods; two for road travel and two for rail travel, as summarized in Table 2. Within each 
time period, the generalized price faced by commuters using the indicated mode is constant, to satisfy the 
Wardropian user equilibrium constraints.  
 

Table 2 – Time periods 

Road 
RI ݐଵ

ோ  ݐ ൏ ଶݐ
ோ 

RII ݐଶ
ோ  ݐ   כݐ

Train 
TI ݐଵ

்  ݐ ൏ ଶݐ
் 

TII ݐଶ
்  ݐ   כݐ

 

                                                            
4 It is also possible to allow late arrivals, which is more realistic, but this complicates the analysis without yielding additional 
insights. In line with some of the previous literature, (e.g. Arnott & Kraus, 1993, 1995; Kraus & Yoshida, 2002; Kraus (2003); 
van den Berg & Verhoef (2011)) late arrivals are therefore prohibited. 
5 Tian et al. (2007) more rigorously show some of these properties for a single-mode many-to-one network with discrete 
departure times. Arnott & DePalma (2011) do the same for a single-mode many-to-one network where origins are distributed 
continuously. 
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Figure 2 – Equilibrium arrival order and arrival flows at destination 

 
4.2. Price setting – monopolistic rail operator 
Period  RI 
As explained above, the generalized user price for road-road commuters from the upstream node arriving 
at the destination at time t is given by: 

ଵ݂
ோ  ଶ݂

ோ  ଵݎ
ோ ൭ݒଵ

ோ ቆݐ െ
݉

ଶݏ
ோሺݐሻ

ቇ൱  ଶݎ
ோ ቀݒଶ

ோሺݐሻቁ  ;ݐሺߠ  ሻߚ
(8)

Note that commuters arriving at the destination at time ݐ enter the second segment at time ݐ െ


௦మ
ೃሺ௧ሻ

, as 



௦మ
ೃሺ௧ሻ

 is the time needed to traverse the second segment; hence, congestion costs, which are assumed to be 

a function of the flow of commuters out of the segment, are incurred at that time.  
In a Wardropian equilibrium, these generalized prices are time-invariant, so the time-derivative of 

(8) is equal to zero during the whole period. Moreover, since there are no commuters from another node 
using the road in this period and both links are identical, each individual commuter’s speed is constant 

along the whole route, so ݒଵ
ோ ቀݐ െ



௦మ
ೃሺ௧ሻ

ቁ ൌ ଶݒ
ோሺݐሻ, and therefore  

ଵݒ߲
ோ ቆݐ െ

݉
ଶݏ

ோሺݐሻ
ቇ ൗݐ߲ ൌ ଶݒ߲

ோሺݐሻ ⁄ݐ߲ ൌ െ
ሻݐሺߠ߲

ݐ߲
ቈ
ଵݎ߲

ோ

ଵݒ߲
ோ 

ଶݎ߲
ோ

ଶݒ߲
ோ൘  

(9)

An expression for the road travel flow in this period can be obtained by integrating (9): 

ଵݒ
ோ ቆݐ െ

݉
ଶݏ

ோሺݐሻ
ቇ ൌ ଶݒ

ோሺݐሻ ൌ െ න
ሻݐሺߠ߲

ݐ߲
ቈ
ଵݎ߲

ோ

ଵݒ߲
ோ 

ଶݎ߲
ோ

ଶݒ߲
ோ ൘ݐ݀  

(10)

where, by construction, ݒଵ
ோ ൬ݐଵ

ோ െ


௦మ
ೃ൫௧భ

ೃ൯
൰ ൌ ଶݒ

ோሺݐଵ
ோሻ ൌ 0; there are no arrivals before ݐଵ

ோ. Using this, the 

total numbers of commuters using both roads during this interval, ଵܰ
ோூ (for the first segment) and 

ଶܰ
ோூ  (for the second segment) can be written as the integral of the arrival flow, which is now a function of 

ଵݐ
ோ and ݐଶ

ோ only: 

Road 1 

Train 2 

From node 1 

From node 2 

ଶݒ
ோሺݐሻ 

ଶݒ
்ሺݐሻ 

ଵݐ
ோ ݐଵ

் ଶݐ
ோ ଶݐ

் כݐ
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ଵܰ
ோூ ൌ ଶܰ

ோூ ൌ න ଶݒ
ோሺݐሻ

௧మ
ೃ

௧భೃ

ݐ݀ ൌ ଵܰ
ோூሺݐଵ

ோ, ଶݐ
ோሻ 

(11)

 
Period TI 
In this period, the generalized user costs for train–train commuters are constant over time. Moreover, 

since only commuters from the upstream node use the train, ݒଵ
் ቀݐ െ



௦మ
ሺ௧ሻ

ቁ ൌ ଶݒ
்ሺݐሻ. ݒଵ

் and ݒଶ
் are 

therefore given by: 

ଵݒ
் ቆݐ െ

݉
ଶݏ

்ሺݐሻ
ቇ ൌ ଶݒ

்ሺݐሻ ൌ െ න
ሻݐሺߠ߲

ݐ߲
ቈ
ଵݎ߲

்

ଵݒ߲
் 

ଶݎ߲
்

ଶݒ߲
் ൘ݐ݀  

(12)

where, by construction, ݒଵ
் ൬ݐଵ

் െ


௦మ
൫௧భ

൯
൰ ൌ ଶݒ

்ሺݐଵ
்ሻ ൌ 0 

Hence, the total number of commuters travelling by train on the first and second segment, respectively, 
can be written as: 

ଵܰ
்ூ ൌ ଶܰ

்ூ ൌ න ଶݒ
்ሺݐሻ

௧మ


௧భ


ݐ݀ ൌ ଵܰ
்ூሺݐଵ

், ଶݐ
்ሻ 

(13)

 
Period RII 
Now, the generalized user costs for road–road commuters from the upstream node and road commuters 
from the downstream node are constant over time, and equal to those of users in the previous period. 
Moreover, the flow of road–road commuters from the upstream node is constant, so 

ଵݒ߲
ோ ቀݐ െ



௦మ
ೃሺ௧ሻ

ቁ ⁄ݐ߲ ൌ 0. 

Hence, the total number of commuters using the first road segment in this period can be obtained through 

multiplication of the commuter flow at ݐଶ
ோ െ



௦మ
ೃ൫௧మ

ೃ൯
 (since commuters exiting the first segment at that time 

will arrive at their destination at ݐଶ
ோ) with the length of the period: 

 ଵܰ
ோூூ ൌ ቆቀכݐ െ



௦మ
ೃሺ௧כሻ

ቁ െ ൬ݐଶ
ோ െ



௦మ
ೃ൫௧మ

ೃ൯
൰ቇ ଵݒ

ோ ൬ݐଶ
ோ െ



௦మ
ೃ൫௧మ

ೃ൯
൰ ൌ ଵܰ

ோூூሺݐଵ
ோ, ଶݐ

ோሻ 
(14)

On the downstream link, 
డ௩మ

ೃሺ௧ሻ

డ௧
ൌ െ

డఏሺ௧ሻ

డ௧

డమ
ೃ

డ௩మ
ೃൗ , and therefore 

ଶݒ
ோሺݐሻ ൌ െ න

ሻݐሺߠ߲

ݐ߲
ଶݎ߲

ோ

ଶݒ߲
ோ൘  ݐ݀

(15)

where ݒଶ
ோሺݐଶ

ோሻ is given by Eq. 10. 
and thus, 

ଶܰ
ோூூ ൌ න ଶݒ

ோሺݐሻ
௧כ

௧మ
ೃ

ݐ݀ ൌ ଶܰ
ோூூሺݐଵ

ோ, ଶݐ
ோሻ 

(16)

 
Period TII 
Here, the generalized user costs for all types of commuters are constant over time, and equal to those of 

users in the previous period. Moreover, ߲ݒଵ
் ቀݐ െ



௦మ
ሺ௧ሻ

ቁ ⁄ݐ߲ ൌ 0. Hence, 

ଵܰ
்ூூ ൌ ቈכݐ െ

݉
ଶݏ

்ሺכݐሻ
 െ ቈݐଶ

் െ
݉

ଶݏ
்ሺݐଶ

்ሻ
൩ ଵݒ

் ቆݐଶ
் െ

݉
ଶݏ

்ሺݐଶ
்ሻ

ቇ ൌ ଵܰ
்ூூሺݐଵ

், ଶݐ
்ሻ 

(17)
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ଶܰ
்ூூ ൌ න ଶݒ

்ሺݐሻ
௧כ

௧మ


ݐ݀ ൌ ଶܰ
்ூூሺݐଵ

், ଶݐ
்ሻ 

(18)

Where ݒଶ
்ሺݐሻ ൌ െ 

డఏሺ௧ሻ

డ௧

డమ


డ௩మ
ൗ ଶݒ and ݐ݀

்ሺݐଶ
்ሻ is given by Eq. 12. 

 
4.3. Monopolistic rail fares 

A monopolistic operator chooses the four earliest arrival times ሼݐଵ
ோ, ଵݐ

், ଶݐ
ோ, ଶݐ

்ሽ and both fares to maximize 
the sum of profits in all four periods6: 

max ߨ ൌ ሾ ଵܰ
்ூ  ଵܰ

்ூூሿ ଵ݂
்  ሾ ଶܰ

்ூ  ଶܰ
்ூூሿ ଶ݂

் (19)

Note that, since we have expressed the numbers of commuters using each mode as a function of the 
arrival times of all groups of commuters, using the Wardropian user equilibrium conditions, these four 
arrival times are now decision variables, instead of the original commuter numbers. Since fares are time-
invariant, no further temporal user equilibrium constraints are necessary, because they have already been 
substituted in the total commuter numbers. However, two intermodal user equilibrium constraints are 
needed to ensure that, for users from both nodes, the generalized prices of both modes are equal. These 
constraints can be evaluated at a number of points in time, but, since all groups commuters are travelling 
at ݐ ൌ  :it is convenient to use that point ,כݐ

ଵ݂
்  ଵݎ

் ቀݒҧଵ
்ሺݐଵ

், ଶݐ
்ሻቁ ൌ ଵ݂

ோ  ଵݎ
ோ ቀݒҧଵ

ோሺݐଵ
ோ, ଶݐ

ோሻቁ (20)

ଶ݂
்  ଶݎ

் ቀݒҧଶ
்ሺݐଵ

், ଶݐ
்ሻቁ ൌ ଶ݂

ோ  ଶݎ
ோ ቀݒҧଶ

ோሺݐଵ
ோ, ଶݐ

ோሻቁ (21)

Where ݒҧ
 is the flow on mode m, link l at ݐ ൌ  כݐ

The final two constraints ensure that all commuters travel: 

ଵܰ
்ூ  ଵܰ

்ூூ  ଵܰ
ோூ  ଵܰ

ோூூ ൌ ܰ (22)

ଶܰ
்ூ  ଶܰ

்ூூ  ଶܰ
ோூ  ଶܰ

ோூூ ൌ 2ܰ (23)

The Lagrangian for profit maximalization then becomes: 

ܮ ൌ ߨ  ଵሾߣ ଵ݂
்  ଵݎ

்ሺݒҧଵ
்ሻ െ ଵ݂

ோ െ ଵݎ
ோሺݒҧଵ

ோሻሿ  ଶሾߣ ଶ݂
்  ଶݎ

்ሺݒҧଶ
்ሻ െ ଶ݂

ோ െ ଶݎ
ோሺݒҧଶ

ோሻሿ
 ଷሾߣ ଵܰ

்ூ  ଵܰ
்ூூ  ଵܰ

ோூ  ଵܰ
ோூூ െ ܰሿ  ସሾߣ ଶܰ

்ூ  ଶܰ
்ூூ  ଶܰ

ோூ  ଶܰ
ோூூ െ 2ܰሿ 

(24)

Where ߣଵ to ߣସ are the Lagrangian multipliers associated with constraints (20)–(23). The relevant first-
order conditions are: 
ܮ߲

߲ ଵ݂
் ൌ ଵܰ

்ூ  ଵܰ
்ூூ  ଵߣ ൌ 0 

(25)

ܮ߲

߲ ଶ݂
் ൌ ଶܰ

்ூ  ଶܰ
்ூூ  ଶߣ ൌ 0 

(26)

ܮ߲

ଵݐ߲
ோ ൌ െߣଵ

ଵݎ߲
ோ

ҧଵݒ߲
ோ

ҧଵݒ߲
ோ

ଵݐ߲
ோ െ ଶߣ

ଶݎ߲
ோ

ҧଶݒ߲
ோ

ҧଶݒ߲
ோ

ଵݐ߲
ோ  ଷߣ ቈ

߲ ଵܰ
ோூ

ଵݐ߲
ோ 

߲ ଵܰ
ோூூ

ଵݐ߲
ோ   ସߣ ቈ

߲ ଶܰ
ோூ

ଵݐ߲
ோ 

߲ ଶܰ
ோூூ

ଵݐ߲
ோ  ൌ 0 

(27)

ܮ߲

ଵݐ߲
் ൌ ଵ݂

் ቈ
߲ ଵܰ

்ூ

ଵݐ߲
் 

߲ ଵܰ
்ூூ

ଵݐ߲
்   ଶ݂

் ቈ
߲ ଶܰ

்ூ

ଵݐ߲
் 

߲ ଶܰ
்ூூ

ଵݐ߲
்   ଵߣ ቈ

ଵݎ߲
்

ҧଵݒ߲
்

ҧଵݒ߲
்

ଵݐ߲
்   ଶߣ ቈ

ଶݎ߲
்

ҧଶݒ߲
்

ҧଶݒ߲
்

ଵݐ߲
் 

 ଷߣ ቈ
߲ ଵܰ

்ூ

ଵݐ߲
் 

߲ ଵܰ
்ூூ

ଵݐ߲
்   ସߣ ቈ

߲ ଶܰ
்ூ

ଵݐ߲
் 

߲ ଶܰ
்ூூ

ଵݐ߲
்  ൌ 0 

(28)

                                                            
6 For simplicity, we assume that costs have no influence on the difference between the optimal monopolistic and duopolistic 
prices, and thus that there are no economies of scale in the number of links owned. If this were not the case, general conclusions 
are impossible (see also the static model above). 
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ܮ߲

ଶݐ߲
ோ ൌ െߣଵ

ଵݎ߲
ோ

ҧଵݒ߲
ோ

ҧଵݒ߲
ோ

ଶݐ߲
ோ െ ଶߣ

ଶݎ߲
ோ

ҧଶݒ߲
ோ

ҧଶݒ߲
ோ

ଶݐ߲
ோ  ଷߣ ቈ

߲ ଵܰ
ோூ

ଶݐ߲
ோ 

߲ ଵܰ
ோூூ

ଶݐ߲
ோ   ସߣ ቈ

߲ ଶܰ
ோூ

ଶݐ߲
ோ 

߲ ଶܰ
ோூூ

ଶݐ߲
ோ  ൌ 0 

(29)

ܮ߲

ଶݐ߲
் ൌ ଵ݂

் ቈ
߲ ଵܰ

்ூ

ଶݐ߲
் 

߲ ଵܰ
்ூூ

ଶݐ߲
்   ଶ݂

் ቈ
߲ ଶܰ

்ூ

ଶݐ߲
் 

߲ ଶܰ
்ூூ

ଶݐ߲
்   ଵߣ ቈ

ଵݎ߲
்

ҧଵݒ߲
்

ҧଵݒ߲
்

ଶݐ߲
்   ଶߣ ቈ

ଶݎ߲
்

ҧଶݒ߲
்

ҧଶݒ߲
்

ଶݐ߲
் 

 ଷߣ ቈ
߲ ଵܰ

்ூ

ଶݐ߲
் 

߲ ଵܰ
்ூூ

ଶݐ߲
்   ସߣ ቈ

߲ ଶܰ
்ூ

ଶݐ߲
் 

߲ ଶܰ
்ூூ

ଶݐ߲
்  ൌ 0 

(30)

Using Eqs. (29)–(34), it is possible to obtain closed-form sultions for ଵ݂
் and ଶ݂

், however, the resulting 
expressions are very tedious, and economic interpretation is therefore hard to give.  
 
4.4. Duopolistic rail fares 

A Bertrand operator on the first segment maximizes its own profit, subject to the same constraints 
as the monopolistic operator. The relevant first-order conditions for the two duopolists are very similar to 
the ones for the monopolist; Eqs. (25)–(27) and (30) are unchanged, although the shadow prices are 
different. Eqs. (28) and (29) are replaced by: 

ଵܮ߲

ଵݐ߲
் ൌ ଵ݂

் ቈ
߲ ଵܰ

்ூ

ଵݐ߲
் 

߲ ଵܰ
்ூூ

ଵݐ߲
்   ଵߛ ቈ

ଵݎ߲
்

ҧଵݒ߲
்

ҧଵݒ߲
்

ଵݐ߲
்   ଶߛ ቈ

ଶݎ߲
்

ҧଶݒ߲
்

ҧଶݒ߲
்

ଵݐ߲
்   ଷߛ ቈ

߲ ଵܰ
்ூ

ଵݐ߲
் 

߲ ଵܰ
்ூூ

ଵݐ߲
் 

 ସߛ ቈ
߲ ଶܰ

்ூ

ଵݐ߲


߲ ଶܰ
்ூூ

ଵݐ߲
 ൌ 0 

(31)

ଵܮ߲

ଶݐ߲
் ൌ ଵ݂

் ቈ
߲ ଵܰ

்ூ

ଶݐ߲
் 

߲ ଵܰ
்ூூ

ଶݐ߲
்   ଵߛ ቈ

ଵݎ߲
்

ҧଵݒ߲
்

ҧଵݒ߲
்

ଶݐ߲
்   ଶߛ ቈ

ଶݎ߲
்

ҧଶݒ߲
்

ҧଶݒ߲
்

ଶݐ߲
்   ଷߛ ቈ

߲ ଵܰ
்ூ

ଶݐ߲
் 

߲ ଵܰ
்ூூ

ଶݐ߲
் 

 ସߛ ቈ
߲ ଶܰ

்ூ

ଷݐ߲


߲ ଶܰ
்ூூ

ଷݐ߲
 ൌ 0 

(32)

ଶܮ߲

ଵݐ߲
் ൌ ଶ݂

் ቈ
߲ ଶܰ

்ூ

ଵݐ߲
் 

߲ ଶܰ
்ூூ

ଵݐ߲
்   ߮ଵ ቈ

ଵݎ߲
்

ҧଵݒ߲
்

ҧଵݒ߲
்

ଵݐ߲
்   ߮ଶ ቈ

ଶݎ߲
்

ҧଶݒ߲
்

ҧଶݒ߲
்

ଵݐ߲
்   ߮ଷ ቈ

߲ ଵܰ
்ூ

ଵݐ߲
் 

߲ ଵܰ
்ூூ

ଵݐ߲
் 

 ߮ସ ቈ
߲ ଶܰ

்ூ

ଵݐ߲


߲ ଶܰ
்ூூ

ଵݐ߲
 ൌ 0 

(33)

ଶܮ߲

ଶݐ߲
் ൌ ଶ݂

் ቈ
߲ ଶܰ

்ூ

ଶݐ߲
் 

߲ ଶܰ
்ூூ

ଶݐ߲
்   ߮ଵ ቈ

ଵݎ߲
்

ҧଵݒ߲
்

ҧଵݒ߲
்

ଶݐ߲
்   ߮ଶ ቈ

ଶݎ߲
்

ҧଶݒ߲
்

ҧଶݒ߲
்

ଶݐ߲
்   ߮ଷ ቈ

߲ ଵܰ
்ூ

ଶݐ߲
் 

߲ ଵܰ
்ூூ

ଶݐ߲
் 

 ߮ସ ቈ
߲ ଶܰ

்ூ

ଶݐ߲
் 

߲ ଶܰ
்ூூ

ଶݐ߲
்  ൌ 0 

(34)

Again, it is possible to solve for ଵ݂
் and ଶ݂

், but this does not yield helpful results. 
  
4.5. Fare comparison and comparison with static model 

Although, in this general setting, it is not possible to determine in which cases the fare differentials 
between the monopolistic and duopolistic settings is positive or negative, the difference between Eqs. (28) 
– (29) and (32) – (34) clearly shows that there is no reason that this differential will be zero, as it was in 
the static model. Each duopolist disregards the effect that a change in its fare will have on its competitor’s 
patronage. Fares on one link influence patronage on the other, because a change in one fare affects the trip 
timing of all commuters using that link, which indirectly affects the trip timing of all commuters, and 
therefore all generalized prices. A monopolist internalizes these effects. 

This phenomenon is not unrelated to the ‘double marginalization’ in static networks with price-
sensitive demand, but it is different. In that case, competitors reduce demand to a level below the social 
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optimum, by charging fares that are too high. Here, competitors shift demand to sub-optimal times, by 
charging fares that, in principle, could be either too high or too low. Naturally then, a static model does 
not capture this effect, as it disregards trip timing, and hence only allows for inefficiencies in the total 
commuter flow rather than the flow at any point in time. If demand is fixed, the monopolist’s fare setting 
problem is no longer perfectly separable in two duopolistic problems if there are possibilities for 
intertemporal substitution. If demand is price-sensitive, both the total number of commuters using each 
mode and their arrival times can be suboptimal; both the effect discussed above and the static ‘double 
marginalization’ are present. From the above, however, it is not obvious whether these effects work in the 
same direction, or may partly cancel each other.  
 
4.6. Towards a general network 

The above results, and the reduced-form optimization problem used to obtain them, also apply to a 
more general multi-modal many-to-one commuter network. The only assumption needed is that, in 
equilibrium, all routes are used at least some time. As long as this is the case, adding more serial origin 
nodes, or adding more parallel modes between all nodes will not qualitatively change the results. It is also 
possible to allow the total number of commuters per node to differ across nodes. Although this will 
complicate the derivations, the qualitative results will again not change.  
 It is significantly more difficult to also allow for travel to more destinations; for example, from node 
1 to 2. In this case, travel time growth on a downstream link cannot at the same time compensate for 
schedule delay cost developments for travellers using only that link, and travellers using that link together 
with other links, when travel delays are time-varying. This would lead to a temporal separation of 
travellers from different OD-pairs, and different models have to be developed to address this. It is also 
difficult to allow for other network structures, where not all nodes can be placed on a straight line; in that 
case, establishing an arrival order ex-ante may be impossible, and numerical simulations would have to be 
performed for every possible combination. Also for the present setting, however, numerical modelling can 
produce additional insights, as we will see in the next section. 
 
5. Numerical analysis 

The above analysis shows how a reduced-form of the dynamic user equilibrium can be derived 
analystically. This reduced form was then used to prove that, in a dynamic model, there is likely to be a 
difference between monopolistic and duopolistic fares. It is possible to obtain closed-form expressions for 
the user equilibrium flows, as functions of the fares. However, these allow for little, if any, economic 
interpretation. Closed-form expressions for the optimal fares are more difficult to obtain, and even more 
difficult to interpret. It is not possible to derive whether this difference is positive or negative, nor how it 
is influenced by the various model parameters, without specifying the congestion functions ݎ

ሺݒ
ሻ, and 

the schedule delay function ߠሺݐሻ. However, these questions are important, particularly to assess whether 
they lead to fares and commuter flows that are further away from the optimum, or whether they could 
cancel out some of the negative effects of the traditional static ‘double marginalization’-phenomenon in a 
more realistic network  setting with price-sensitive demand. 

We therefore present the results of a numerical analysis, and use those results to identify how the 
various model parameters influence optimal monopolistic and duopolistic fares. Although much of the 
previous literature has focused on fares only, it is equally important to examine the welfare implications 
of the two market structures. To do so, we also consider the relative social costs under both market 
structures; since demand is fixed, this is the equivalent of social surplus. 
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5.1. Functions and base case parameters 

Train speeds, ்ܵ, are constant. However, commuters face in-vehicle crowding costs, which we 
assume to increase linearly in the commuter flow. Fares are constant over time. A traveller’s total costs of 
travelling on  a link are then: 

ݎ
்ሺݐሻ  ݂

் ൌ ߙ
݉
்ܵ  ݒଵߦ݉

்ሺݐሻ  ݂
் (36)

Where ߙ is the value of travel time, ݉ the segment length, and ߦଵ a parameter. Link-based congestion 
costs for road users consist only of the costs of travel time and, as before, roads are not priced:  

ݎ
ோሺݐሻ ൌ ߙ

݉
ݏ

ோሺݐሻ
 (37)

where  ݏ
ோሺݐሻ  is the road speed on segment ݈ at time ݐ. Speeds increase linearly in the commuter flow7, 

with a maximum (free-flow) speed ܵோ: 
1

ݏ
ோሺݐሻ

ൌ
1

ܵோ  ݒଶߦ
ோሺݐሻ 

(38)

Where ߦଶ is a parameter. 
Finally, schedule delay costs ߠሺݐሻ are linear in ݐ: 
ሻݐሺߠ ൌ כݐሾߚ െ ሿ (39)ݐ
where ߚ is the value of schedule delay early. As before, late arrivals are prohibited. Base case parameters 
are listed in Table 3; they are chosen to result in realistic fares and costs of congestion. 
 

Table 3 – Base case parameters 

Parameter Value 

 hr/€ 5 ߙ
 hr/€ 3 ߚ
݉ 10 km 
்ܵ 100 km/h 

ܵோ 120 km/h 
ଵ 0.002 [€/pass.] [km/h]-1ߦ

ଶ 0.002 [pass./hr]ߦ -1 [km/h]-1 
ܰ 100 pass. 

 
For simplicity, we assume that the marginal costs of transporting passengers is zero; assuming a 

constant positive marginal cost would complicate the analysis without qualitatively changing the results.  
 
5.2. Value of time and value of schedule delay 

We first vary the value of schedule delay, fixing all other parameters to the values listed in Table 2; 
in effect, we therefore vary the ratio between the value of schedule delay and the value of time. The left 
panel in Fig. 2 shows the difference between the duopolistic and monopolistic price for each segment, as 
a fraction of the monopolistic price. The right panel shows the social cost difference as a fraction of 
monopolistic welfare; positive values indicate that social costs are higher in a duopoly. 

                                                            
7 I.e., there is flow congestion as in Chu (1995). Since the network consists of two serial segments, the more popular bottleneck 
congestion is difficult to implement. For simplicity, the congestion function is linear; there is no hypercongestion. 
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Figure 2 – Varying the value of schedule delay 

 
An increase in ߚ has two effects. Since being early at work is now more expensive, commuters will 

want to arrive closer to their desired arrival time, and the total network-wide congestion costs will be 
higher (see Eqs. (9) – (15) above, where now ߲ߠሺݐሻ/߲ݐ ൌ  Both the monopolist and the duopolists take .(ߚ
advantage of the increased level of congestion to raise fares, but the duopolists disregard the effect on 
each other’s patronage, and consequently raise fares by a higher amount than the monopolist. This 
increases the fare differential. However, an increased value of schedule affects rail and road users in 
different ways. While, in this linear model, road travel flows increase at rate ߚ ⁄ଶߦ݉ߙ2  in period RI and 
twice as fast in period RII (see Eqs. (9) and (37)–(38)), rail flows increase at rate ߚ ⁄ଵߦ2݉  in period TI 
and twice as fast in period TII (see Eqs. (12) and (36)). Since rail flows increase at a higher rate to begin 
with, an increase in the value of schedule delay also has a higher impact on train users. Hence, an increase 
in ߚ reduces the market power of rail operators, and thus the tendency of the duopolists to charge higher 
fares, which reduces the price differential. As Fig. 2 shows, the second effect is clearly stronger on the 
more heavily congested downstream segment, as well as on the downstream segment for large values of 
 However, both are small; although the relative .ߚ The first effect dominates for very small values of .ߚ
fare differences do vary in ߚ, they do not vary by large amounts. 

The figure also shows that, whatever the value of schedule delay, the fare differential is much 
higher on the upstream segment. This results from the fact that all fares are lower on this segment due to 
the lower number of commuter traversing it; the same absolute fare difference therefore leads to much 
higher fractions on the upstream segment.  

Finally, although the difference is small in relative terms, the duopolistic fare on the downstream 
segment can be lower than the monopolistic fare. This is more likely to happen as the value of schedule 
delay approaches the value of time, and implies that commuters from node 2 can be worse off in the 
monopolistic situation. This is an important observation, as it is a clear difference with the static ‘double 
marginalization’-effect; while the latter can only lead to higher duopolistic fares, the dynamic effect can 
apparently reduce fares and hence, work in the opposite direction. However, although the numerical 
results therefore confirm the analytical finding that the duopolistic fare may be smaller than the 
monopolistic fare, this effect may have a limited quantitative impact in practice, despite its qualitative 
significance. The right panel in Fig. 2 also shows that, for society as a whole, a monopoly is still 
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preferable. Although the relative social costs do vary with the value of schedule delay, as a result of 
varying fares and commuter flows, social costs remain between 4% and 5% higher in the duopolistic 
situation. 
 
5.3. Congestion 

Fig. 3 shows the results of a similar exercise, in which ߦଵ, the rail congestion parameter, is varied 
from 1/1000 to 1/100. This parameter multiplies the commuter flow in the link-based rail cost functions, 
so an increase in ߦଵ increases the cost of in-vehicle crowding. Since ߦଶ is held constant, this increases the 
importance of congestion in the train relative to the importance of congestion on the road. We can 
therefore again expect two effects: firstly, as ߦଵ increases, rail operators face tougher competition from 
the road, which will decrease fares, and the tendency of duopolistic competitors to charge higher fares 
than a monopolist. However, the congestion costs increase in the whole network, as commuters equate the 
generalized prices of the two nodes. This increases the tendency of duopolistic competitors to charge 
higher fares. 
 

 
Figure 3 – Varying the costs of congestion 

 
 All fares do indeed decrease in ߦଵ; as congestion in the train is more costly, competition from the 
road increases, and rail fares subsequently decrease. The relative fare difference between duopoly and 
monopoly, however, increases in ߦଵ on both segments; the total congestion effect is, in this case, stronger. 
Again, however, this effect is relatively small in the observed range. Again, also, a monopoly is always 
more efficient than a duopoly, although the cost difference between the two is very small for a very high 
unit cost of congestion. This shows that the social surplus effects of a parameter change can be rather 
different from the effects on fares.  
  
5.4. Congestion and value of schedule delay 

So far, we have considered the influence of the congestion parameter and the value of schedule 
delay separately. Of course, there are also interaction effects between these two parameters. Fig. 4 
therefore shows the effects of a change in the value of schedule delay for a congestion parameter twice as 
high as the value used in Fig. 2 (ߦଵ ൌ 0.004ሻ.  
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Figure 4 – Varying the value of schedule delay (ߦଵ ൌ 0.004ሻ 

 
Comparing Figs. 2 and 4, it is clear that this interaction effect is important. With this higher 

congestion parameter, the first, direct effect of an increase in ߚ on congestion (see above) and thus on the 
ability of operators to charge higher fares, is much more important. However, the ranges of relative fare 
differences have not changed much. The influence of the value of schedule delay on the fare differential is 
still limited and social cost differences, although lower, also do not change by large amounts when ߚ is 
varied. 

 
5.5. Commuter numbers 

Fig. 5 shows the results of a simulation in which the number of commuters departing from each 
node was increased to up to ten times the base case value. Naturally, all fares increase in the number of 
commuters, as an increased number of commuters increases the congestion costs in the system. Both the 
monopolist and the duopolists are able to increase their fares as a result of a higher number of commuters. 
The duopolists, disregarding the externality they impose on their competitor’s patronage, increase their 
fares more than the monopolist; hence, absolute fare differences increase in N. However, the relative fare 
difference changes very little, and the same is true for the relative welfare difference. 
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Figure 5 – Varying the number of commuters 

 
5.6.  Numerical conclusions 
 The relative fares and relative cost differences appear to be remarkably robust in this numerical 
exercise. That suggests that lessons on desirable market organization one can draw for this particular 
spatial setup are quite generic, which is good news is policies are to be developed in a changing world or 
under conditions of uncertainty on parameter values. 
 
6. Conclusions 

We have shown that, in a multi-modal many-to-one commuter network where rail operators 
compete with unpriced roads, serial competition can influence fares, even in the absence of elastic 
demand. This results from the fact that, in a dynamic model, commuters have possibilities for 
intertemporal substitution, even if they do not have the option not to travel. Therefore, a fare change on 
one rail link changes not only the number of rail commuters relative to the number of road commuters, 
but also their trip timing decisions. If demand is fixed, the former will not necessarily affect anyone 
travelling on other links in the network, as we have shown with a simple static model, but the latter will 
change passengers flows in the whole network and through those, other operators’ patronages and profits.  
Naturally, a monopolistic operator internalizes the effect a price increase on one link has on the patronage 
of the other links, but a Bertrand-Nash operator disregards this, which leads to different, and potentially 
higher fares.  

However, compared to static models, dynamic models are much more difficult to solve. For the 
many-to-one network described above, we have derived a reduced form under the assumption that fares 
are time-invariant, in which the rail operators optimize their fares and the boundaries of arrival time 
intervals, rather than the commuter flows. This makes subsequent calculations considerably easier, 
although general analytical solutions are still difficult to obtain. 

Our numerical simulations show that, although duopolistic fares are higher than monopolistic for a 
wide range of parameters, this need not always be the case. Especially if the value of time approaches the 
value of schedule delay, and the unit cost of congestion in the train is higher than on the road, fares on at 
least one link may in fact be lower in a duopoly. This is a distinct difference with the static ‘double 
marginalization’-effect observed in models with price-sensitive demand. However, the simulations also 
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show that model parameters, such as the value of schedule delay and the cost of congestion have only a 
limited effect on the fare difference between a monopoly and a duopoly and on the differences in social 
costs. This indicates that the conclusions drawn above are robust to assumption changes, and may also 
apply in many other spatial setups.  
 More research is necessary to explore these issues in at least three directions. Firstly, the effect of 
ownership on the substitute mode (the road) should be examined, especially in situations where the road 
is owned by a public operator, who sets a second-best road price to offset the negative effects of serial 
competition in the rail market. Secondly, as the numerical simulation shows that the fare increases may 
not affect all groups of commuters equally, local policy makers may try to influence the rail market to 
compensate the commuters in their area by, for example, subsidising rail commuters from travelling from 
one node, or limiting the number of train services on one link. This could be modelled by adding an 
additional level, in which local governments maximize the social benefit in one node only by 
manipulating the variables over which they have control. Finally, a more general network setting, in 
which there is more than one destination, should be explored, as spatial interactions are clearly important. 
 However, despite the relative simplicity of the models outlined above, they do show that it is 
important to consider the effects of market structures in a situation where rail operators compete with an 
unpriced road, and to consider them in a dynamic setting. This introduces another reason for fare 
differences between different forms of competition, through the commuter’s departure timing choices. As 
we have shown, although these effects often work in the same direction as the classic ‘double 
marginalization’ that occurs when demand is elastic, there is a potential for it to work in the opposite 
direction. In any case, it should not be ignored, and we have shown ways to facilitate implementation. 
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