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Abstract

We explore evolutionary dynamics for repeated games with small,

but positive complexity costs. To understand the dynamics, we extend

a folk theorem result by Cooper (1996) to continuation probabilities,

or discount rates, smaller than 1. While this result delineates which

payoffs can be supported by neutrally stable strategies, the only strat-

egy that is evolutionarily stable, and has a uniform invasion barrier,

is All D. However, with sufficiently small complexity costs, indirect

invasions - but now through “almost neutral” mutants - become an

important ingredient of the dynamics. These indirect invasions include

stepping stone paths out of full defection.
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If more complex strategies for repeated games are also more costly than

less complex ones, evolutionary dynamics in populations playing them will

differ from the dynamics in the absence of complexity costs. The difference

that complexity costs can make has been noticed, also in the non-evolutionary

repeated games literature. Classic papers which do account for complexity

costs are for instance Rubinstein (1986), Abreu and Rubinstein (1988) and

Kalai and Stanford (1988), while classics without complexity costs include

Friedman (1971), Aumann and Shapley (1976), Rubinstein (1979, 1980), Fu-

denberg and Maskin (1986), Abreu (1988) and van Damme (1989). In the

evolutionary game theory literature about repeated games, most papers do

not account for complexity costs; see for instance Axelrod and Hamilton

(1981), Axelrod (1984), Boyd and Lorberbaum (1987), May (1987), Farrell

and Ware (1989), Fudenberg and Maskin (1990), Linster (1992, 1994), Kim

(1994), Bendor and Swistak (1995, 1997, 1998), Ho (1996), Miller (1996),

Lorberbaum et al. (2002). Notable exceptions are Binmore and Samuelson

(1992), Cooper (1996), and Volij (2002), which all model settings where com-

plexity costs are relatively small compared to the payoffs of the game.

Without complexity costs, we know that no pure strategy is evolutionarily

stable (Selten and Hammerstein, 1984), and that there is a multitude of

strategies that are neutrally stable (Bendor and Swistak, 1995). Robustness

against indirect invasions (RAII, van Veelen, 2011) is a refinement of neutral

stability that implies the presence of a set that is asymptotically stable in

the replicator dynamics, and in van Veelen and Garćıa (2010) we apply this

concept to repeated games. We find that no finite mixture of strategies is

RAII, and that the vulnerability to indirect invasions shapes the evolutionary

dynamics in finite populations; in simulations, the population finds itself in

equilibrium most of the time, but regularly transitions from one equilibrium

to the other through these indirect invasions.

In this paper we will again explicitly aim at understanding the dynamics
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in repeated games, but now with complexity costs. We will use a Folk The-

orem result by Cooper (1996), but because we also want to include repeated

games with discounting, we will extend it to continuation probabilities, or

discount factors, smaller than 1. With this extension, the result no longer

holds true for the entire interval between the symmetric Pareto efficient pay-

off and the one-shot Nash equilibrium payoff, but only for parts of it. The

perimeters of the payoffs that can be supported by an NSS vary with the

continuation probability and can be visualized in a tree-like figure.

Another result that will help understand the dynamics is that with posi-

tive complexity costs, All D is evolutionarily stable and even has a uniform

invasion barrier. Because all other equilibria from the extension of Cooper’s

(1996) result are not RAII, and therefore can be left through indirect inva-

sions, this suggests that All D is more stable than all other equilibria. Yet, if

we run simulations, we find that for low complexity costs, a population vis-

its a range of strategies with different average cooperation levels. That can

be understood if we realize that, as complexity costs decrease to 0, mutants

that are not neutral with positive complexity costs become “almost neutral”

if complexity costs decrease. Transitions that would be indirect invasions

in the absence of complexity costs then become the driver of the dynamics

again with vanishing complexity costs, and these include indirect invasions

out of All D.

Section 2 considers continuation probabilities smaller than 1. In Section

3 we return to infinitely repeated games, and link up with results in Bin-

more and Samuelson (1992) and Volij (2002), which also consider infinitely

repeated games. There we will see that, together with the transitions that

are of primary importance to the concepts of a MESS (Binmore and Samuel-

son, 1992) and a LESS (Volij, 2002), indirect invasions complete the picture

of relevant transitions.
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1 Preliminaries

We start by repeating a few formal definitions from van Veelen and Garćıa

(2010). Consider a symmetric one-shot 2-player game g characterized by a

set of players I = {1, 2}, an action space A, equal for both players, and a

payoff function π : A×A→ R2. Here we will immediately restrict ourselves

to prisoners dilemmas, and choose A = {C,D}. Using a discount factor δ,

interpreted as a continuation probability, this one-shot game is turned into

a repeated one, which will be called Γ (δ). A history at time t is a list of

the actions played up to and including time t − 1, where an empty pair of

brackets is used to denote the history ‘no history’. If at,i is the action played

by player i at time t, then these histories are:

h1 = ()

ht = ((a1,1, a1,2) , ..., (at−1,1, at−1,2)) , t = 2, 3, ...

Sometimes we will also write (ht, (at,1, at,2)) for a history ht+1. The set of

possible histories at time t is:

H1 = {h1}
Ht =

∏t−1
i=1 (A× A) t = 2, 3, ...

and the set of all possible histories is:

H =
∞⋃
t=1

Ht.

It will furthermore be useful to have a way of writing down a history with the

roles of the players reversed. Given a history ht as they are defined above,

its mirror image h←t is found by simply renumbering the players:
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h←1 = ()

h←t = ((a1,2, a1,1) , ..., (at−1,2, at−1,1)) , t = 2, 3, ...

The reason why histories with roles reversed are needed, is that we assume

that both players label themselves as player 1 and the other as player 2, and

therefore face mirrored histories as they go along.

A strategy is a function that maps histories to the action space; S : H →
A. For two strategies, say S and T , the course of actions is determined by

recursion; all actions at all stages are determined by the initiation

hS,T1 = ()

and the recursion step

aS,Tt =
(
S
(
hS,Tt

)
, T
(
hS,T←t

))
hS,Tt+1 =

(
ht, a

S,T
t

)
, t = 1, 2, ...

For 0 ≤ δ < 1 the discounted, normalised payoffs to (a player that uses)

strategy S against strategy T is given by:

Π (S, T ) = (1− δ)
∞∑
t=1

δt−1π1

(
aS,Tt

)
The discount factor will mostly be interpreted as a continuation probability,

which makes Π (S, T ) the normalized expected payoff of strategy S against

T . For δ = 1 we will consider average payoffs, or the limit of means, for the

infinitely repeated game:
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Π (S, T ) = limτ→∞
1
τ

τ∑
t=1

π1

(
aS,Tt

)
Because we need a measure of complexity, we will restrict ourselves to

finite state automata. This is also in line with the literature. If a strategy S

is a finite automaton, or a Moore machine, then it can then be represented

by a tuple {{1, ..., NS} , λS, µS}, where NS is the number of states, λS :

{1, ..., NS} → {C,D} gives the output in every state and µS : {1, ..., NS} ×
{C,D} → {1, ..., NS} gives the transitions. Sometimes the formal definition

of a machine also states in which state the machine starts, but because the

states can always be renumbered so that the starting state is the first, we

assume, without loss of generality, that the machine starts in state 1. Also

without loss of generality, we assume that if it plays against itself, it will

transition from state i to state i + 1, until for the first time it goes back to

a state it has already been in, or remains in the state it is currently in.

2 Continuation probabilities smaller than 1

2.1 A “tree” full of NSS’es

Here we extend a result by Cooper (1996) to continuation probabilities

smaller than 1. Theorem 2 gives perimeters of the combinations of pay-

offs and continuation probabilities that allow for NSS’es, provided that the

complexity costs are not too large. As in Cooper (1996) we define the fitness

- or profits - of the players as the payoffs from the game minus the costs:

U (S, T ) = Π (S, T )− k |S|,

where |S| is the number of states and k > 0 is the per state cost. The only

difference with Cooper (1996) is that we also allow Π (S, T ) to be normalized,
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discounted payoffs instead of the limit of means.

It will also be useful to have a value function for the states of strategy

S from the point of view of its opponent. Given a continuation probability,

or discount factor δ, the value to the opponent of strategy S of S being in

state i is denoted by V ∗S (i) , i = 1, ..., NS, and is the solution to the following

system of equations.

VS (i) = max
a∈{C,D}

{π1 (a, λS (i)) + δVS (µS (i, a))} i = 1, ..., NS

In the absence of complexity costs, strategy S is a best response to itself

if λS (i) ∈ arg maxa∈{C,D} {π1 (a, λS (i)) + δV ∗S (µS (i, a))} for all i = 1, ..., NS.

If S is indeed a best response to itself, then the value in the first state is the

not normalized, discounted payoff of S playing against itself; (1− δ)V ∗S (1) =

Π (S, S).

If we include complexity costs, and if a strategy S is to be an NSS, or

even an equilibrium, then that immediately puts some restrictions on the

shape of S. As noted in the literature, from the definition of U it directly

follows that an equilibrium cannot have unused states. Also, if S is to be an

NSS, then it must defect in the first state.

Lemma 1. If S is an NSS, then λS (1) = D.

Proof. We begin with two simple observations. If λS (i) = C and µS (i, C) =

i+1, and S is an equilibrium, then V ∗S (i) = b+δV ∗S (i+ 1), which implies that
b

1−δ − V
∗
S (i) = δ

(
b

1−δ − V
∗
S (i+ 1)

)
, and therefore that V ∗S (i+ 1) < V ∗S (i).

If λS (i) = D and µS (i,D) = i + 1, and S is an equilibrium, then V ∗S (i) =

c + δV ∗S (i+ 1), which implies that V ∗S (i) − c
1−δ = δ

(
V ∗S (i+ 1)− c

1−δ

)
, and

therefore that V ∗S (i+ 1) > V ∗S (i). In other words, if S is an equilibrium,

then after a state in which C is played, the value goes down, and after a

state in which D is played, the value goes up.
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Now assume that strategy S is an equilibrium, and that λS (1) = C. If

NS = 1 then this is All C, which obviously is not an equilibrium. Therefore

NS > 1. Note that, without loss of generality, we assumed that if strategy S

plays against itself, it will transition from state i to state i+ 1, until for the

first time it goes to a state it has already been in, or remains in the state it is

currently in. For i = 1 and λS (1) = C this implies that either µS (1, C) = 1

or µS (1, C) = 2.

If µS (1, C) = 1 then state 2 is unused when S plays against itself, which

implies that S is not an equilibrium. Therefore µS (1, C) = 2

If µS (1, C) = 2 and S is an equilibrium, then c + b + δV ∗S (µS (1, D)) ≤
b+ δV ∗S (2), so certainly V ∗S (µS (1, D)) < V ∗S (2). Also V ∗S (2) < V ∗S (1). Now

let V S = minj∈{1,...NS} V
∗
S (j) and let m be a state for which this minimum

is attained; V ∗S (m) = V S. From the previous observations, we can conclude

that m > 1 and that m is preceded by a state in which C is played. But if

S is an equilibrium, then b + δV ∗S (m) > c + b + δV ∗S (µS (m− 1, D)), which

is impossible because V ∗S (m) ≤ V ∗S (i) for all i = 1, ..., NS.

With all NSS’es starting with at least one defection, we will go on to look

at strategies that, when playing against themselves, start with exactly n > 0

defections before they play cooperate for the first time. Theorem 2 gives

the perimeters of equilibrium strategies for every n > 0. Together with the

1-state automaton All D, that covers all possible NSS’es; it is clear that if

a strategy always plays D against itself, it cannot be an NSS if it has more

than 1 state.

Theorem 2. If strategy S is an NSS, and if for n ≥ 1

1. λS (i) = D if 1 ≤ i ≤ n and λS (n+ 1) = C

2. µS (i,D) = i+ 1 if 1 ≤ i ≤ n
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Figure 1: Two strategies that, when playing against themselves, first defect
exactly n times, and then cooperate.

then

c+
δn (1− δ)
1− δn+1

b ≤ Π (S, S) ≤ c+ δn (b− c)

Proof. If strategy S is an equilibrium, then the following two must hold.

(i) V ∗S (1) =
n∑
i=1

δi−1c+ δnb+ δn+1V ∗S (µS (n+ 1, C))

(ii) b+ δV ∗S (µS (n+ 1, C)) ≥ b+ c+ δV ∗S (µS (n+ 1, D))

The proof of Lemma 1 can easily be rearranged to also imply that the

value in the initial state is the lowest of all values. This implies that V ∗S (µS (n+ 1, D)) ≥
V ∗S (1). We can therefore replace the former with the latter in (ii).

δV ∗S (µS (n+ 1, C)) ≥ c+ δV ∗S (1)

Using equation (i), we get
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V ∗S (1)− 1− δn

1− δ
c− δnb ≥ δn [c+ δV ∗S (1)](

1− δn+1
)
V ∗S (1) ≥ 1− δn

1− δ
c+ δnc+ δnb

(1− δ)V ∗S (1) ≥ c+
δn (1− δ)
1− δn+1

b

This gives the lower bound. The upper bound follows immediately from

the maximum discounted, normalized payoff that is still attainable after n

mutual defections.

The theorem naturally implies that if b−c < 1−δ
1−δn+1 b, there are no equilib-

ria that, when playing against themselves, start with exactly n > 0 defections

before they play cooperate for the first time. As a consequence, for δ < c
b

there are no equilibria other than All D; if δ < c
b

then 1−δ
1−δn+1 b > (1− δ) b >(

1− c
b

)
b = b − c for all n > 0. On the other hand, if b − c > 1−δ

1−δn+1 b,

then for sufficiently low costs of complexity the following strategy is an NSS,

and attains the upper bound: NS = n + 1; λS (i) = D if 1 ≤ i ≤ n and

λS (n+ 1) = C; µS (i, j) = i + 1 if 1 ≤ i ≤ n and µS (n+ 1, D) = 1 and

µS (n+ 1, C) = n + 1 (see also Figure 1a). These strategies are NSS’es for

reasons similar to those given in Cooper (1996) for δ = 1. All strategies

that do not play against themselves the way S does – that is, when playing

against themselves, they do not start by playing exactly n defections before

they play cooperate for the first time and ever after – earn a lower payoff

against S than S does against itself. The fact that for such a strategy T

we have Π (T, S) < c + δn (b− c) = Π (S, S) implies that for k sufficiently

close to 0, we get U (T, S) < U (S, S). Having more than n + 1 states is su-

perfluous, so the only strategies that remain are strategies T that also have

n+1 states and that, when playing against themselves, do start with exactly
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n > 0 defections before they play cooperate for the first time and ever after.

For those strategies clearly U (T, S) = U (S, S) = U (S, T ) = U (T, T ).

At the threshold, where 1−δ
1−δn+1 b = b − c, this strategy is not an equilib-

rium, because then Π (AllD, S) = Π (S, S) while |S| > |AllD|.
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Figure 2: Equilibrium properties for b
c

= 2 and k > 0. In the area that,
roughly speaking, lies to the left of the jagged line, there are no equilibria.
To the right there are many, and many are also NSS, although not every point
there can be approximated arbitrarily closely with an equilibrium strategy.
Also the complexity costs has to be sufficiently close to 0 to make a strategy
an NSS. These NSS’es are however not RAII. All D on the other hand is an
ESS for all continuation probabilities and positive complexity costs, and also
has a uniform invasion barrier.

The equilibria and the perimeters are summarized for an example in Fig-

ure 2. For b = 2 and c = 1 we find that then there are no equilibria with

n = 1 (the lower bound from Theorem 2 exceeds the upper bound for all

δ < 1). However, for every n > 1 we get a new branch on the “tree” in the

picture. A few more details are worth mentioning. The first that within a
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branch, not the entire area between the upper and lower bound is filled with

equilibria. We can add ever more equilibria, but on the lower end of the

branches, we can also carve out ever more space between the leaves. This

can be done by zooming in on a branch and refining the possibilities after

the first n defections and the subsequent first C. Such a procedure gives new

equilibria, but also carves out extra areas without equilibria.1 The adding

of equilibria and carving out spaces without equilibria can be repeated by

refining the initial sequence ever more.

The second detail that is worth mentioning is that for continuation prob-

abilities lower than 1
2

not all normalized, discounted payoffs between b and c

are feasible, even if we disregard equilibrium considerations. That can easily

be seen by looking at an example; if δ = 1
3

then the only payoffs that remain

1Consider all strategies that first defect n times and then cooperate for the first time,
when playing against themselves. After that, there are two possibilities: 1) they defect
at least once and 2) they cooperate at least once. By looking at the restrictions on
the value functions we find, rather similar to the proof of Theorem 2, that in case 1)
the normalized, discounted payoff is less than or equal to c

(
1− δn + δn+1 − δn+2

)
+ b(

δn − δn+1 + δn+2
)

and in case 2) at least
c(1−δn+δn+1−δn+2)+b(δn−δn+2)

1−δn+2 . This implies that
payoffs between those two values are not attainable in equilibrium. The last inequality is
found by combining V ∗ (1) = 1−δn

1−δ c+ δnb+ δn+1b+ δn+2V ∗ (n+ 3) and b+ δV ∗ (n+ 3) ≥
b + c + δV ∗ (µ (n+ 2, D)) ≥ b + c + δV ∗ (1). After this second step, the tree looks as
follows (where the tips of branches and sub-branches again are not equilibria. This is not
indicated in the picture by lack of space).
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are those that can be written as c + x (b− c), where x must be an element

of the Cantor set.

The NSS’es however are not RAII. That is easily seen if we realize that

neutral mutants can be constructed without increasing the size of the automa-

ton. If strategy S is an equilibrium with Π (S, S) > c, we can change the tran-

sitions in the following way: define T as equal to S, except that µT (i,D) =

µS (i, C) for all i. This is a neutral mutant – U (T, S) = U (S, S) = U (S, T ) =

U (T, T ) – and it is easily seen that Π (AllD, T ) > Π (T, T ), and therefore

a sequence of first T and then AllD constitutes an indirect invasion. This

observation follows the same logic as the proof of the second half of Claim 1

in Volij (2002). Also here, the fact that no strategy S with Π (S, S) > c is

RAII implies that there is no ES-set other than {AllD} (van Veelen, 2011).

The existence of neutral mutants is also a concern in Binmore and Samuel-

son (1992, page 294), although there the role they play is not explored by

looking explicitly at whether or not they open doors for other mutants.

2.2 All D has a uniform invasion barrier

With complexity costs k > 0, one can show that All D, in its simple, 1-state

implementation, is an ESS for all δ ∈ [0, 1] and even has a uniform invasion

barrier.

Theorem 3. The strategy All D in its 1-state implementation has a uniform

invasion barrier for all δ ∈ [0, 1] and costs k > 0.

Proof. All other strategies either also always play D against themselves, or

they do not. In the first case the matrix of fitnesses, or profits, is:

AllD S

AllD c− k c− k
S c− kNS c− kNS
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If S is not also All D in its 1-state implementation, then NS > 1, and

therefore the invasion barrier against S is 1.

If S does not always play D against itself, then there is a state n ≥ 1 in

which it plays C for the first time, if it plays against itself or against All D.

That implies that against itself, it attains at most a normalized, discounted

payoff of c+ δn−1 (b− c). Against All D, S attains at most c− (1− δ) δn−1c,
while All D against S attains at least c+(1− δ) δn−1b. The matrix of fitnesses,

or profits, now contains lower and upper bounds.

AllD S

AllD c− k ≥ c+ (1− δ) δn−1b− k
S ≤ c− (1− δ) δn−1c− kNS ≤ c+ δn−1 (b− c)− kNS

If c + (1− δ) δn−1b − k ≥ c + δn−1 (b− c) − kNS, then All D dominates

S and the invasion barrier is 1 again. If not, then the invasion barrier is at

least

εS ≥
(c− k)− (c− (1− δ) δn−1c− kNS)

(c− k)− (c+ (1− δ) δn−1b− k)− (c− (1− δ) δn−1c− kNS) + (c+ δn−1 (b− c)− kNS)

=
(1− δ) δn−1c− (NS − 1) k

− (1− δ) δn−1b+ (1− δ) δn−1c+ δn−1 (b− c)

=
(1− δ) δn−1c+ (NS − 1) k

δn (b− c)

=

(
1
δ
− 1
)
c+ (NS−1)k

δn

b− c
> 0
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2.3 What if complexity costs are small?

Theorem 3 states that with complexity costs, All D, in its simplest form, has

a uniform invasion barrier. Together with the finding that with complexity

costs, no other strategy is RAII – which precludes the existence of other

ES-sets – this suggests that if complexity costs are positive, All D is more

stable than any other equilibrium. In the absence of complexity costs, on

the other hand, we know that with sufficiently high continuation probability

no strategy is RAII (van Veelen and Garćıa, 2010), while NSS’es exist with

levels of cooperation ranging from full defection to full cooperation (Bendor

and Swistak, 1995). This suggests that without complexity costs, and for

δ < 1, All D is neither more nor less stable than other NSS’es.
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Figure 3: Equilibrium properties for b
c
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. See also van Veelen et al. (2012) for the equilibrium analysis left of 1/2

Many results in the literature focus on small complexity costs. The results

above, using static equilibrium concepts, imply that if the take the limit of

complexity costs k decreasing to 0, there is a certain discontinuity; for all
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k > 0, All D is more stable than all other NSS’es, while at k = 0 it is not.

More precisely, the lower bound for the invasion barrier from the proof of

Theorem 3 implies that if k ↓ 0 the uniform invasion barrier for All D does

not tend to 0, and yet at k = 0, there is no uniform invasion barrier, and All

D is not even RAII. Moreover, there are windows of payoffs that cannot be

supported by an NSS for any k > 0 – this is the space between “branches”

in Figure 2 – while at k = 0 all symmetric payoffs can be approximated

arbitrarily closely – see Figure 3.

The finite population dynamics on the other hand are continuous in k;

they are ergodic Markov chains, transition probabilities of which are contin-

uous functions of k. It is therefore to be expected that the dynamics in the

limit of k ↓ 0 are the same as the dynamics for k = 0. In order to under-

stand this discrepancy between static concepts and dynamics, we consider

the effect of a decrease in k on the stability of the different equilibria.

The first two effects do not yet explain the discrepancy, even though they

are reasons why a decrease in k makes All D a little less and some cooperative

equilibria a little more stable. It is relatively easy to see that the lower bound

on the invasion barrier for All D in Theorem 3 can actually be attained. This

makes it the largest uniform invasion barrier, which implies that the closer

k is to 0, the lower this lower bound. However, for δ < 1 the largest uniform

invasion barrier remains bounded away from 0. Only for δ = 1 does the

largest uniform invasion barrier actually go to 0 if k goes to 0.

The effect on cooperative equilibria on the other hand is that a decrease in

k comes with an increase in abundance of equilibria that are NSS; cooperative

strategies that for instance attain the upper bound in Theorem 2 can only be

equilibria for sufficiently low k, and a lowering of k adds ever more equilibria.

There are however two more effects of a decrease in k, and those do explain

the discrepancy. The first is that a decrease in k also destabilizes All D in

another way, even for δ < 1, and in spite of the fact that the largest uniform

16



invasion barrier is bounded away from 0 there. The reason is that the closer

k is to 0, the closer to neutrality strategies are that have more states, but

that also always play D against themselves. Some of them open the door

for successive mutants, and therefore these “almost neutral” strategies can

induce indirect invasions. By choosing a sufficiently small k we can get the

first mutant arbitrarily close to neutrality. In the limit of k ↓ 0 we should

therefore expect indirect invasions, through almost neutral mutants, and into

cooperation, to become important in the dynamics, in spite of the fact that

All D has a uniform invasion barrier.

The second effect is that a decrease in k also reduces the instability of

cooperative strategies that have unused punishment states, like Tit-for-tat.

Such strategies cannot be equilibria as long as k > 0, but they can for k = 0.

What makes Tit-for-tat a disequilibrium strategy for k > 0 is the presence of

All C, which has less states, and therefore does strictly better than Tit-for-

tat against Tit-for-tat, as long as k > 0. However, what is a direct invasion

of All C into Tit-for-tat for all k > 0 gets closer and closer to being a neutral

transition if k ↓ 0. All C only harms cooperation because it opens the door for

All D, and the deletion of unused punishment states more generally destroys

cooperation through opening the door for mutants that take advantage of

that. By choosing a sufficiently small k we can, again, get the first mutant

arbitrarily close to neutrality. In the limit of k ↓ 0 the relevant way out of

Tit-for-tat therefore becomes an indirect invasion through a neutral mutant,

even though All C is not neutral yet for any k > 0. Therefore, even though

Tit-for-tat is not an equilibrium for k > 0, if k decreases to 0, its stability

in the dynamics gets arbitrarily close to the stability in the dynamics of Tit-

for-tat at k = 0, where Tit-for-tat is an NSS – but not RAII, just like all

other NSS’es.

Simulations with varying complexity costs confirm that in the dynamics

a decrease in complexity costs increases the average level of cooperation (see
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Figure 4). Moreover, when k decreases to 0, the average level of cooperation

seems to approach the average level of cooperation at k = 0 from below,

suggesting that there is indeed no discontinuity at k = 0 in the expected

level of cooperation.
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Figure 4: Levels of cooperation with different costs of complexity. The game
has payoffs P = 1, R = 3, S = 0 and T = 4

The population size also plays a role. For fixed costs k, an increase in

population size shifts the balance back towards what is suggested by the

equilibrium analysis with positive costs (see Figure 2). This is also expected,

because population size, amongst other things, magnifies the small deviations

in fixation probabilities from 1
N

in almost neutral transitions, and makes it

relatively hard to overcome a (small) positive invasion barrier. That makes

two different ways of leaving All D more difficult. Leaving All D through

what would have been an indirect invasion if we disregard complexity costs

is the most relevant way out for δ < 1. This transition becomes relatively

hard as population size increases. Direct invasions by strategies like Tit-for-

tat are the most relevant ways out of All D for δ = 1. For this a positive
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invasion barrier has to be overcome, which also becomes increasingly hard –

also in relative terms – if population size increases.
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Figure 5: Levels of cooperation with increasing population size and fixed
costs and continuation probability. Complexity costs k are 0.01, δ = 0.85

If we compare the setting without complexity to the one with (small) com-

plexity costs, it is not unintuitive that adding complexity costs would harm

average cooperation a little. If we start with the case without complexity

costs, then stepping stone paths into cooperation typically require strategies

with increased complexity, while paths out of cooperation do not, and often

even involve a decrease in complexity. Adding just a little cost of complex-

ity makes those paths into cooperation become a little less likely, while the

suggested paths out of cooperation become a little more likely. Simulation

results in Ho (1996) also suggest that including costs that depend on the

size of an automaton is not good for the level of cooperation. There however

the runs are only a 100 generations long, and it seems that the runs do not

contain enough transitions to draw strong conclusions.
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3 Infinitely repeated games

Games that are repeated indefinitely – δ = 1 – have received extra attention

in the literature. Also in our analysis δ = 1 is an interesting case. What it

shares with the case of δ < 1 is that the analysis suggests that All D is more

stable than cooperative equilibria at k > 0. What is different is that All D

is less stable than cooperative equilibria at k = 0, because in the latter case

All D can directly be invaded, and therefore it is not even an NSS. Thereby

it differs from the situation at δ < 1, where All D becomes an NSS that is

not RAII at k = 0, which makes it not less and not more stable than the

cooperative strategies that are also NSS but not RAII.

In order to better understand the dynamics at δ = 1, and in order to link

RAII with existing equilibrium concepts, we now reproduce the definitions

of a MESS from Binmore and Samuelson (1992) and of a LESS from Volij

(2002). We will see that the three stability concepts – MESS, LESS and

RAII – focus on different transitions. As we have already seen above, the pa-

rameters k and N manipulate the relative importance of different transitions,

which implies that the results of the simulations can be well understood if

all relevant types of transitions are considered.

In the definition there are again two objectives; payoffs from the game,

and complexity costs. Note that here the set of mutants that T can be chosen

from is also the set of finite automata, not the set of all strategies.

Definition 4. MESS (Binmore and Samuelson, 1992)

A finite automaton S is a MESS if for any mutant T

1) Π (S, S) ≥ Π (T, S)

2) if Π (S, S) = Π (T, S) then Π (S, T ) ≥ Π (T, T )

3) if Π (S, S) = Π (T, S) and Π (S, T ) = Π (T, T ) then |S| ≥ |T |

An automaton S is a strict MESS if one of the inequalities is strict
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(Samuelson and Swinkels, 2003)2. With the sets of better, equal and worse

performers, defined in van Veelen (2011) and in the companion paper, one

can also give an equivalent and shorter definition.

Definition 5. An finite automaton S is a MESS if

1) SB (S) = ∅ and

2) If T ∈ SE (S) then |T | ≥ |S|

The second definition is:

Definition 6. LESS (Volij, 2002)

A finite automaton S is a LESS if for any mutant T

1) Π (S, S) ≥ Π (T, S)

2) if Π (S, S) = Π (T, S) then |S| ≥ |T |
3) if Π (S, S) = Π (T, S) and |S| = |T | then Π (S, T ) > Π (T, T )

One could define a neutral LESS by allowing the last inequality to be

non-strict. The difference between these concepts – and especially between

a strict MESS and a LESS – is explained clearly in Samuelson and Swinkels

(2003).

For symmetrized, infinitely repeated games, where payoffs are evaluated

according to the limit of means, Binmore and Samuelson (1992) find that

strategies that are a MESS must be utilitarian (a utilitarian strategy playing

against itself maximizes the sum of payoffs in the underlying game). Applied

to standard prisoners dilemmas, where the sum of payoffs is maximized if

both cooperate, this implies that, after an initial phase, a MESS always

cooperates, when playing against itself.

2Samuelson and Swinkels (2003) also allow for mixed strategies in their definition of a
MESS and LESS. They also indicate that they follow the standard practice (cf. Rubin-
stein (1986) and Abreu and Rubinstein (1988)) of working with pure MESS or LESS to
avoid difficulties in interpreting the complexity of mixed strategies. We do the same, also
because the main results from Binmore and Samuelson (1992) and Volij (2002) concern
pure strategies.
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The main result in Volij (2002, Claim 1) is that only AllD is a LESS, and

that there is no other ES-set other than {AllD}, if the definition of an ES-

set does not look just at payoffs, but instead uses lexicographic preferences

where complexity matters after payoffs.3.

In this paper we want to establish links with dynamics for repeated games.

It might therefore be good to first start with what the dynamics would be

with a simple, restricted strategy set, and see how complexity costs affect

those. We therefore follow Imhof, Fudenberg and Nowak (2005) and consider

a strategy space consisting of three strategies; All D, All C and Tit-for-tat.

The setting in Imhof, Fudenberg and Nowak (2005) is slightly different,4 but

what they find does carry over to our setting. With those three strategies,

the population will move in circles, going from All D to Tit-for-tat, to All

C, and back to All D. More importantly, we can use complexity costs and

population size to manipulate the dynamics such that the population is either

cooperating almost all of the time or defecting almost all of the time. The

key is in the likelihood of the transition from All D to Tit-for-tat. With

3Volij (2002) actually shows that in the repeated prisoners dilemma, there is no evolu-
tionary stable family of strategies (ESF) other than the singelton set {AllD}. An ESF as
defined in Volij (2002) is a (Balkenborg & Schlag) ES-set, and therefore also a (Thomas)
ES set (see Thomas, 1985; Balkenborg and Schlag, 2001; van Veelen, 2011) but the reverse
is not true; in the following game, the set of all mixtures of the first two strategies is an
ES-set, but not an ESF.  1 2 0

1 2 0
0 0 0


The proof of Claim 1 in Volij (2002) however also works perfectly well for showing that
there is no ES-set other than the singelton set {AllD}.

4They have a finite number of repetitions, over which payoffs are added, and where
Tit-for-tat incurs a fixed complexity cost, independent on the number of repetitions. That
implies that, compared to our setting, an increase of the number of repetitions reduces
the relative importance both of the loss that Tit-for-tat incurs from its initial cooperation
with All D and of the cost of complexity. Increasing the number of repetitions is therefore
equivalent to bringing δ closer to 1 and k closer to 0 at the same time. See also Fudenberg
and Imhof (2008) for a proof of the main result in Imhof, Fudenberg and Nowak (2005);
apply Theorem 1 from the former to the appropriate strategy space.
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complexity costs, the game between those two strategies is a coordination

game. The size of the basin of attraction of All D depends on complexity

costs; if k goes to 0, then the size of the basin of attraction goes to 0. For

a fixed population size, that means that the basin of attraction can even be

reduced to below 1
N

, which makes every single mutation push the population

out of the basin of attraction of All D and into the basin of attraction of Tit-

for-tat already. For a fixed k, however, if we increase the population size, then

making it from All D into the basin of attraction of Tit-for-tat becomes very

unlikely. The variables k and N can therefore be used to make the transition

from All D to Tit-for-tat much more or much less likely than the transition

from Tit-for-tat to All C. The latter transition is, for k close to 0, almost

neutral; although All C strictly dominates Tit-for-tat, the identical self-play

implies that the difference in fitness is only due to the (small) difference in

complexity costs. If going from All D to Tit-for-tat is much more likely than

from Tit-for-tat to All C – while going from All C to All D is the most likely

transition – then more time is spent in Tit-for-tat than anywhere else. If

going from All D to Tit-for-tat is much less likely than from Tit-for-tat to

All C, then more time is spent in All D than anywhere else.

With a larger strategy set there are more transitions to consider, but the

tuning of the relative likelihood of these three will still play an important

role.

If we look at the difference between a MESS and a LESS, then we see

that, provided that a strategy is a Nash equilibrium, the performance in

self-play matters first for being a MESS, and complexity matters first for

being a LESS. That makes MESS align with relatively low k and low N

and LESS with relatively high k and high N (or with relatively small payoff

differences). Also more in general, transitions with increasing cooperation

typically require increasing complexity, as the more cooperative strategies

need an exploration phase in order to determine which strategy they are
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playing against, a part for self-play and a part for playing against the other

(see Binmore and Samuelson 1992, page 292). The increase in cooperation

in self-play is more important than the increase in complexity in the concept

of a MESS and less important in the concept of a LESS. Again, such a

transition is relatively likely for low k and low N and relatively unlikely for

high k and high N . These two concepts therefore explain why cooperation

is low for high k and high N and high for low k and low N , as it is in Imhof,

Fudenberg and Nowak (2005).

With this in mind, one might expect that, for a fixed population size

N , the average level of cooperation can be pushed down to 0 by increasing

complexity costs, because All D is the only LESS. Moreover, one might also

expect that in the limit of k ↓ 0 the average level of cooperation will be 1,

because there all MESS’es are efficient (and the set of MESS’es is not empty).

The first is true, but the latter is not. If we look at the level of cooperation

in simulations for fixed N , δ = 1 and varying k, we find that the level of

cooperation is close to 0 already for k = 0.1. For k ↓ 0, on the other hand,

we do not find that the level of cooperation goes to 1 (see Figure 4); the

simulations suggest that at k = 0 the average level of cooperation is a value

smaller than 1, which is approached from below if k decreases to 0. Why

that is, can be understood by looking at the dynamics at k = 0, provided

that we consider a part of the web of transitions that includes strategies with

unused states. Strategies with unused states obviously cannot be a MESS

or a LESS, nor an NSS if we have explicit complexity costs k > 0. Such

strategies are therefore ruled out at the onset by the definitions of a MESS,

LESS and an NSS with explicit complexity costs. This has an important

implication in the case of infinitely repeated games, where transient states

do not matter for the payoff. In infinitely repeated games, and in the absence

of unused states, any strategy can be figured out, and optimally responded

to, while a strategy can also cooperate fully when it figures out that it is
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Figure 6: Three strategies with mutants that make them not satisfy def-
initions of different static stability concepts. The first two are not fully
cooperative at δ = 1, the third is. With complexity costs k decreasing to 0,
the first transition away from the first strategy becomes ever more likely in
finite population dynamics. The transition away from the second strategy
becomes less likely with decreasing k. The fixation probability of the mutant
that leads away from it becomes arbitrarily close to the fixation probability
of the mutant that leads away from the third, fully cooperative, strategy. In
the limit of k ↓ 0 these two strategies become equally (in)stable in the finite
population dynamics.
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playing against a copy of itself (see Binmore & Samuelson, 1992). Invasions

that exploit that possibility become more likely as complexity costs go to 0.

The concept of a MESS captures this transition out of strategies that are

not fully cooperative, and that do not have unused punishment states, while

strategies with unused states are ruled out at the onset.

However, as complexity costs go to 0, the disadvantage of having unused

states also goes to 0. In the limit of k going to 0, strategies that do not coop-

erate fully, when playing against themselves, and that do have punishment

states that are not used in self-play, thereby become as stable as they are for

k = 0. Some of these strategies cannot be figured out without triggering ev-

erlasting punishment. That explains why we do not achieve full cooperation

if we let k go to 0.

For k ↓ 0 the transition probabilities in the entire web of transitions go

to the transition probabilities at k = 0. On the one hand some not fully

cooperative strategies – ones that do not have unused punishment states

– have become disequilibrium states, because at k = 0 it is free to build

a machine that can figure them out. On the other hand, some other not

fully cooperative strategies – ones that do have unused punishment states;

see Figure 6 – move in the opposite direction; at k = 0 they have become

equilibria, more or less getting in through the back door. Furthermore, at

k = 0 we also know that no strategy is RAII, so the remaining NSS’es are all

susceptible to indirect invasions, the fully cooperative ones as well as the not

fully cooperative ones (while the fully defecting ones are not even NSS’es).

Since the dynamics for k ↓ 0 go to the dynamics at k = 0, this explains why

we do not see average behaviour converge to full cooperation if k ↓ 0. With

small complexity costs, transitions that would be indirect invasions without

complexity costs therefore turn out to complete the picture of the dynamics

at δ = 1.
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4 Conclusion and discussion

If we include complexity costs, we find that there are strategies with positive

levels of cooperation that are NSS’es for sufficiently low complexity costs

and sufficiently high continuation probability. This extends a folk theorem

result in Cooper (1996) for infinitely repeated prisoners dilemmas without

discounting to repeated prisoners dilemmas with discounting, or, in our in-

terpretation, with continuation probabilities smaller than 1. The difference

between the result in Cooper (1996) and the extension is that in the for-

mer all levels of cooperation can be approximated arbitrarily closely by a

strategy that is an NSS for sufficiently low costs of complexity, while this

is not the case anymore for continuation probabilities (or discount factors)

smaller than 1. The NSS’es with positive levels of cooperation are however

not robust against indirect invasions – which was also the case without com-

plexity costs – while All D, in its 1-state implementation, is an ESS, and

even has a uniform invasion barrier, which was not the case without com-

plexity costs. The simulations also suggest that the dynamical behaviour

in the limit of complexity costs going to 0 equals the dynamical behaviour

at complexity costs 0, where indirect invasions drive the dynamics for large

enough population size. Furthermore, high continuation probability and low

costs of complexity are good for cooperation, while large population sizes are

bad for cooperation. The simulation results for the case of infinitely many

repetitions and no discounting, or for continuation probabilities close to 1,

can be understood by looking at typical invasions considered by the concepts

of a MESS (Binmore and Samuelson, 1992) and a LESS (Volij, 2002) as well

as RAII. With small complexity costs, neutral and almost neutral mutants

that open doors for mutants with a selective advantage complete the picture

of the relevant transitions.
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