
TI 2012-058/1 
Tinbergen Institute Discussion Paper 

 
Screening for Collusion:  
A Spatial Statistics Approach  
 
 

Pim Heijnen1 

Marco A. Haan1 

Adriaan R. Soetevent2 

 
 
 
 
 
 
 
1 Faculty of Economics and Business, University of Groningen; 
2 Faculty of Economics and Business, University of Amsterdam, and Tinbergen Institute. 
 
 
 
 
 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the 
ambition to support innovative research and offer top quality academic education in core areas of 
finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



Screening for collusion: A spatial statistics
approach

Pim Heijnen∗ Marco A. Haan† Adriaan R. Soetevent‡

June 15, 2012

Abstract

We develop a method to screen for local cartels. We first test whether
there is statistical evidence of clustering of outlets that score high on
some characteristic that is consistent with collusive behavior. If so, we
determine in a second step the most suspicious regions where further
antitrust investigation would be warranted. We apply our method to
build a variance screen for the Dutch gasoline market.

JEL-codes: C11, D40, L12, L41

Keywords: collusion, variance screen, spatial statistics, K-function

1 Introduction

Tracking down and prosecuting cartels are among the most important areas

of antitrust enforcement. To track down a cartel, an antitrust authority has

numerous instruments at its disposal. For example, it may actively screen

markets for price patterns or other markers that suggest collusive behavior.

In this paper we develop a method to screen for local cartels. First, we use
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spatial statistics to test whether outlets that show suspicious behavior are

clustered. Second, if so, we provide an algorithm to find the most suspicious

cluster of such outlets. We apply our method to data on gasoline prices in

the Netherlands.

We thus consider the following problem. Suppose that an antitrust au-

thority has data on all outlets in a particular industry. It suspects that there

may be local cartels but it is not sure whether, and if so where, to start an

investigation. Yet, it is able to identify a number of outlets that exhibit suspi-

cious behavior. This suspicious behavior can take any form, e.g. particularly

high prices or remarkably little variability in prices. The first question then

is whether the spatial distribution of suspicious outlets exhibits local cluster-

ing, and hence that there is reason to believe that there may be local cartels.

If so, the next question is where the most suspicious cluster is located that

warrants further investigation. Finally, the question remains whether among

remaining outlets there is reason to suspect further local cartels. In this pa-

per, we propose a method that allows the antitrust authority to do exactly

this. We thus provide a formal approach to integrate price data and spatial

information into a collusion screen that is easily applicable for practitioners.

Abrantes-Metz and Bajari (2009) provide an overview of various screens

that are used to detect anticompetitive behavior. Harrington (2008) also

surveys methods to screen collusion. He argues (p. 250) that there are at

least three requirements for systematic and ubiquitous screening. Evidence of

collusion must be discernable by just looking at data that is readily available

such as prices or market shares; the procedure should be routinizable so that

it can be conducted with minimal human input; and the screen should be

costly for the cartel to beat. Our method satisfies these criteria.

Needless to say, a collusion screen like the one we propose can never serve

to establish the existence of local cartels. Further research to find evidence

for collusion will always be necessary. Yet, a screen can be used to identify

areas where the existence of a cartel is most likely.

For the application of our collusion screen, the identification of suspicious
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outlets is particularly important. One identification method is the price vari-

ance screen, pioneered by Abrantes-Metz, Froeb, Geweke and Taylor (2006)

(AFGT henceforth). It is based on the observation that prices of firms that

are in a cartel often exhibit less volatility than prices of firms that are not.1

Yet, this literature does not fully exploit data on the location of outlets.2 Our

contribution to this literature is a formal test for clustering, plus an algorithm

to determine where these clusters are located. It is important to stress that

the price variance screen is just one possible application of our method. Any

other marker for suspicious behavior can also be used as an input, such as

high prices, little advertising, or any other behavior or characteristic that an

antitrust authority could think of.

As noted, the first step in our method borrows heavily from the litera-

ture on spatial statistics and spatial economics. In particular, our test for

local clustering largely follows Diggle and Chetwynd (1991). They provide a

statistic to test whether type 1 events (in our case: suspicious outlets) are

more highly clustered than type 0 events (non-suspicious outlets). In eco-

nomics, a related approach is that in Duranton and Overman (2005). They

do a kernel density estimation of the bilateral distances between all pairs

of establishments in an industry, and compare this to a counterfactual in

which the establishments in that industry are randomly distributed across

all industrial sites. Thus, they also test whether type 1 events (in their case:

establishments in a particular industry) and more highly clustered than type

0 events (establishments in all other industries).

The second step in our method, finding the most prominent local cluster,

is novel. A large literature in many fields is concerned with testing for local

clustering but, to our knowledge, there is no work that addresses the problem

of identifying the most prominent clusters. Our method boils down to finding

1This is in line with theory. For example, Athey et al. (2004) show that when firms
face privately-observed i.i.d. cost shocks, the profit-maximizing cartel agreement often has
them setting prices independent of marginal costs.

2AFGT (2006) use eyeballing to determine that gasoline stations with low price variabil-
ity in their data set are not clustered. Jimenez and Perdiguero (2009) look at pre-defined
markets.
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the local cluster that is least likely to occur by chance.

The main contributions of this paper are thus twofold. To the literature

of collusion screening, we add a formal test to identify suspicious clusters.

To the literature of agglomeration we add a method to identify the most

prominent clusters.

We apply our method to the gasoline market. Price data for this market

are abundantly available: for many countries price quotes for most individual

outlets can now be obtained on a weekly or even daily basis (e.g. Soetevent

et al. 2011; Wang, 2009). Moreover, gasoline markets are often suspected to

be prone to anti-competitive price manipulation, and in many countries they

are subject to close antitrust scrutiny (FTC, 2005). Since 2002, the Federal

Trade Commission (FTC) monitors gasoline prices on a daily basis using

fleet-card data to detect “anomalous” pricing (Froeb et al., 2005).

We look at a data set of almost daily prices in the Netherlands. We test for

local clustering in the period 2005 – 2007. In applying our collusion screen,

many choices have to be made. For example, we have to decide on the number

of outlets that we qualify as suspicious, and on the distance at which we look

for local clustering. Also, we may focus on raw prices, but may also choose to

correct prices for station characteristics. Any screen would be of little use if

the suspicious clusters that are found would highly depend on these choices.

We therefore perform a large number of robustness checks.

Naturally, our results differ somewhat depending on the choice we make,

but an area close to Rotterdam persistently pops up as the most suspicious

cluster in our data. Hence, if the Dutch antitrust authority would have used

this tool in that period, the advise would have been to have a closer look

at the gasoline stations in that particular area. If we repeat our analysis for

the period 2007 – 2009, however, we find that an area close to Eindhoven is

now the most suspicious, although Rotterdam is still among the identified

clusters as well. Hence, there may now be a local cartel near Eindhoven and,

if so, it is likely to have formed after 2005.

The remainder of this paper is structured as follows. In the next section,
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we provide a more detailed overview of our method. In Section 3 we consider

the first step of our method: testing for local clustering. We discuss our

test statistic and compare it to other methods used in spatial statistics and

economics. Section 4 discusses our method to identify the most suspicious

region. In Section 5, we apply our method to Dutch gasoline data. We perform

a sensitivity analysis in Section 6, and conclude in Section 7.

2 Overview of the method

Our method proceeds in five steps. Before actually doing the analysis, we

of course have to collect and prepare the necessary data. This is step 1.

This can be a nontrivial exercise, as price data are often plagued by missing

observations. In our empirical application, we largely follow AFGT by using

Markov chain Monte Carlo methods to impute missing data. Step 2 is to

determine which outlets are suspicious and which are not. For simplicity, we

will refer to suspicious outlets as type 1, and to non-suspicious outlets as

type 0 outlets. In our baseline application, we will consider outlets with a

variation coefficient that is among the lowest 5% as suspicious, and the other

outlets as non-suspicious.

In step 3, we establish whether there is statistical evidence for cluster-

ing of type 1 outlets. To this end, we use a slight variation of Diggle and

Chetwynd’s (1991) test statistic. Essentially, this involves testing whether

there is random labelling, in the sense that the type 1 ‘labels’ are randomly

distributed over all existing outlets. To do so, we compare our population of

type 1 outlets with a sample of controls consisting of the same number of

outlets that is drawn from the entire population. More precisely, we compare

the extent of clustering of type 1 outlets (that is, the average number of type

1 outlets within a fixed distance h of each type 1 outlet), to the extent of

clustering in the sample of controls (that is, the average number of sampled

outlets within a fixed distance r of each type outlet in the sample). Under

random labelling, the difference between these two measures should be 0 on

average, where the average is taken over all possible samples of controls. This
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step is described more extensively in section 3.

If we find evidence for local clustering, we move to step 4. We partition

the type 1 outlets into clusters of outlets that are relatively close to each

other. For each such cluster, we determine the number of type 1 outlets, and

the number of type 0 outlets in the same area. The most suspicious cluster is

then the one for which the observed number of type 1 outlets relative to the

total number of outlets, is most unlikely to occur under the null hypothesis

of random labeling. This step is discussed in more detail in Section 4. Step

5 then consists of eliminating all outlets within the identified region from the

data. After having done so, we move back to step 3 to test whether there is

evidence for local clustering in the remaining outlets.

3 Testing for local clustering

In this section, we introduce and motivate our test statistic to determine

whether there is evidence for local clustering of type 1 events. Our problem

can be stated as follows. We have a set N consisting of n outlets.3 The

location of outlet i ∈ N is given by xi ∈ R2. On the basis of some observable

characteristic, we partition the set N into two subsets; the set N1 of type

1 outlets (or, more generally, type 1 events) that are “suspicious”, and the

set N0 of remaining type 0 outlets. We denote the fraction of outlets that is

designated as type 1 as γ: γ ≡ n1/n. The main question is whether there is

local clustering, in the sense that type 1 outlets are on average more likely

to be surrounded by other type 1 outlets.

In economic geography, a number of methods have been developed to test

for local clustering or spatial agglomeration. Many of these, including Ellison

and Glaeser (1997), and Rysman and Greenstein (2005), look at existing

geographic entities (such as states or cities) and then test whether some

statistic is significantly different between these entities. Such methods are

not suitable for our purpose: when we look for areas where the variability of

3Throughout, we use the convention that upper-case letters refer to the set and lower-
case letters denote the cardinality of the set.
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prices is suspiciously low, these areas do not necessarily coincide with cities,

municipalities, or even zip codes. We thus need a distance-based method.

In spatial statistics, the ubiquitous test for spatial dependence is Ripley’s

planar K-function (Cressie 1991, pp. 615–619). It tests whether events are

more clustered than what one would expect purely on the basis of complete

spatial randomness (CSR). Under CSR, events occur with the same proba-

bility at each location, and event locations are independent from each other.

The planar K-function at radius h counts the average number of other

events within h of an event and relates this to the expected number of events

under spatial randomness. The canonical K-function has the form:

K(h) =
1

λ
E[# further events within distance h of a randomly chosen event],

with λ the intensity of the spatial process, that is, the number of events per

unit area. Ripley’s planar K-function thus represents the average relative

occurrence of events within distance h from any randomly chosen event. With

more spatial clustering, events are located close to each other, henceK(h) will

be higher. Confidence intervals are determined by Monte Carlo simulation.4

The null hypothesis of CSR can be tested for a pre-determined distance h, or

by using a joint test for a range of values, typically from 0 to some natural

upper bound. Applications of Ripley’s K include spatial patterns of trees

(see e.g. Stoyan and Penttinen, 2000), plant communities (Haase, 1995), and

disease cases (Diggle and Chetwynd, 1991), amongst many others (see also

Dixon, 2002). Applications in economics include Picone et al. (2009) who

study spatial clustering of alcohol retailers.

For the problem at hand, this method has one major drawback. It tests

whether locations are randomly distributed on a plane. Our problem is

slightly different. We have a set of given locations, and are interested in

knowing whether type 1 events are randomly distributed over these fixed

locations.5 Thus we are not so much interested in whether type 1 events

4Under some additional assumptions on the underlying spatial data generating process,
these confidence intervals can also be derived analytically.

5As an example, consider an isolated area A in which 4 outlets are located, 2 of which
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are clustered per se, but rather whether, given the locations of events, the

type 1 labels are randomly distributed over all available locations. Diggle

and Chetwynd (1991) study a very similar problem in the context of possible

clustering of rare diseases. In their approach, a type 1 event is an occurrence

of the disease. These occurrences are limited to the places where people live.

Their approach is as follows. Consider Ripley’s K for type 1 events. Thus,

K1(h) ≡ λ−11 E[# further type 1 events within h of random type 1 event],

with λ1 the intensity of type 1 events. Now take a sample of controls consisting

of n1 events drawn from the entire population. Thus, the number of events

in the sample of controls equals the number of type 1 events. We can also

calculate Ripley’s K for our sample of controls:

Kc(h) ≡ λ−11 E[# further controls within h of random control].

Consider the test statistic D(h), defined as

D(h) ≡ K0(h)−Kc(h).

Under random labelling, there is no systematic clustering of type 1 events rel-

ative to that in the underlying population. In that case we expect D(h) = 0.

A value of D(h) > 0 indicates that type 1 events are more clustered than

what can be expected on the basis of chance. To test whether D(h) signif-

icantly differs from 0, Diggle and Chetwynd (1991, pg. 1157-1158) propose

to either use the asymptotic distribution of D(h) under the null of random

sampling, or to approximate the true distribution by doing a Monte Carlo

simulation consisting of a number of random permutations of the type 1

labels over the type 1 events and controls.

are type 1. All outlets are located within a distance h of each other. Compare this to area
B in which 40 outlets are located, 3 of which are type 1. Arguably, A is more suspicious
than B, as the fraction of type 1 outlets is much higher. Still, Ripley’s K would flag B as
more suspicious, simply because this statistic only looks at the absolute number of type
1 outlets. A test statistic that is appropriate for our purposes should thus correct for the
density of stations and look at the relative number of type 1 outlets in an area, rather
than at the absolute number.
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We closely follow this approach. The only difference between our appli-

cation and that in Diggle and Chetwynd (1991) is that we have information

on the entire population of possible controls (i.e. all actual locations of out-

lets), while they only have one sample of controls. Therefore, rather than

calculating Kc(h) on the basis of one sample of events, we can be somewhat

more precise by using K̄c(h), the average value of Kc(h) over 1000 samples of

controls of size n1. We calculate K̄c(h) by doing a Monte Carlo simulation.

Summarizing, for a given radius of h we proceed as follows. In step 3a,

we take a sample of n1 controls, calculate the corresponding Kc(h), and

repeat this procedure 1,000 times to calculate K̄c(h). In step 3b, we take

a random sample of n1 events, assign them a type 1 label and calculate the

corresponding K1(h). On the basis of that, we calculate D(h) = K1(h) −
K̄c(h). We repeat this procedure 1,000 times to calculate the distribution of

D(h) under the null of random labelling. In Step 3c we look at the actual

incidence of type 1 labels, calculate the corresponding K1(h) and use the

distribution derived in step 3b to test whether the resulting D(h) significantly

departs from the null of random labelling. If so, we conclude that there are

clusters of low price variation at scale h.

This method is relatively easy to implement and interpret. As the density

of type 1 events is given by λ1, we have that λ1D(h) represents the average

number of extra type 1 events within distance h of a typical type 1 event

over and above the number expected by random labeling.6

The null hypothesis of random labeling can either be tested for a pre-

determined distance h, or by using a joint test for a range of values, see e.g.

the discussion in Diggle and Chetwynd (1991) for such tests. We have chosen

to look at a fixed h. One natural interpretation is that an antitrust authority

6An alternative could have been to use the approach used by Marcon and Puech (2010).
In the context of our application they essentially look for all type 1 events at the fraction
of all events within a distance r of that event that is also of type 1, take the average of that
number over all type 1 events and compare that average to a Monte Carlo simulation. We
prefer to use Diggle and Chetwynd (1991), as that method has clear theoretical properties.
One advantage of Marcon and Puech (2010) in other applications is that is easy to allow
for different weights of events. When studying clustering of industries, for example, one
can weigh different outlets with their level of employment.
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first determines at which distance h firms still (should) effectively compete

with each other. Alternatively, different distances of h could be used as a

robustness check. That is also what we will do in our application.

Our approach is close in spirit to Duranton and Overman (2005). They

do a kernel density estimation of the bilateral distances between all pairs

of establishments in an industry, and compare this to a counterfactual in

which the establishments in that industry are randomly distributed across

all industrial sites. The main difference with our approach is that where

Duranton and Overman (2005) look at the density of establishments at a

distance h, we look at the density within a distance h. For our application,

this makes more sense. After all, the natural way to define a market is to look

at competitors within h kilometer, rather than the competitors at a distance

h.7.

4 Identifying the location of clusters

Suppose that, using the method described in the previous section, we have

found evidence for local clustering at a distance of h kilometer. To judge

which cluster is the most suspicious one, we determine the likelihood of the

number of type 1 outlets in that cluster, taking into account the number

of type 0 outlets in the same area. More formally, this step is split into

three. In step 4a, we determine clusters of type 1 outlets. In step 4b, we

determine the geographical areas where these clusters are located. In step

4c, we determine which of these areas is the most suspicious.

For step 4a, we first have to decide which type 1 outlets are part of a

cluster. We will consider two type 1 outlets to be part of a cluster if they are

within a distance of h kilometer from each other. If there exists another type

1 outlet that is also within h kilometers of any of the outlets in our tentative

cluster, then that outlet is also considered to be part of the cluster. Repeating

7Note that, as the number of establishments within a given distance is a much smoother
function than the number of establishments at a given distance, we can refrain from doing
kernel density estimates.
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this procedure leads to partitioning of all type 1 outlets into clusters. By

construction, any type 1 outlet is less than h kilometer removed from at

least one other outlet in that cluster, and more than h kilometer removed

from an outlet in any other cluster.

Consider the set of type 1 outlets N1. We consider two type 1 outlets as

being adjacent if they are located less than h kilometers from each other.

Linking adjacent outlets yields an undirected graph of type 1 outlets. We

define a cluster as any connected component of that graph, that is, any

subset of N1 in which any two outlets are connected to each other by paths,

and which is connected to no additional outlet. This yields a set of clusters

that is a partition of N1.

Suppose that this procedure yields s clusters of more than 1 outlet;

S1, S2, . . . Ss. The cardinality of cluster Si is denoted si. Without loss of

generality, we order clusters from largest to smallest, so si ≥ si+1,∀i < ss.

Although S1 is the cluster with the largest number of type 1 outlets, it is

not necessarily the most suspicious cluster. For example, it may well be the

case that, say, S1 has 10 type 1 outlets but is located in an area where also

20 type 0 outlets are active, while S2 has 8 outlets, but is located in an area

where only 1 type 0 outlet is active. Then S2 is arguably more suspicious

than S1.

To formalize this, we define the area where cluster Si is located as the

convex hull of the locations of all outlets in Si: Ai = Conv(Si).
8 This is step

4b of our procedure. The number of type 1 outlets in Ai obviously is si, while

we denote the number of type 0 outlets in Ai as s0i . Note that a fraction γ of

all outlets is of type 1. Under the null hypothesis of random labelling, we can

calculate the probability that, given that there are a total of si + s0i outlets

in Ai, at least si are of type 1. We will denote this as the p-value of cluster

8Of course, it would also be possible to take into account type 0 outlets in the close
proximity but outside the convex hull, as arguably these stations also compete with our
type 1 stations. We have chosen not to do so, as that would imply that type 0 stations can
be part of more than 1 cluster. Anyhow, we do not believe that this would greatly affect
our analysis: an alternative clustering method that we will consider in the next section is
close in spirit to this approach but yields a similar outcome.
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Si:

p(Si) =

si+s0i∑
j=si

(
si + s0i
j

)
(γ)j (1− γ)si+s0i−j . (1)

It is important to note that these p-values should not be compared to tradi-

tional significance levels: as we deliberately look for clusters of type 1 outlets,

the p-values that we find are necessarily low. There are infinitely many pos-

sible clusters that can be defined. Hence, necessarily, there always are some

clusters that are very unlikely to occur when looked at in isolation.

For ease of exposition, we will report the negative of the log of p: this is

a positive number that is usually between 0 and 10. In the example above,

it turns out that − log p(S1) = 5.9, while − log p(S2) = 9.5. Hence, S2 is

indeed identified as the more suspicious cluster. In step 4c of our procedure

we identify the most suspicious cluster, which is the cluster with the lowest

p-value or, alternatively, the largest value of − log p(S):

SM = arg max
S∈{S1,...SS}

(− log p(S)) .

After having identified this cluster, we remove it from our data. We then

move back to step 3 as described in the previous section to test whether

among the remaining outlets, there is still evidence for clustering of type 1

outlets. If that is the case, we again perform the procedure described above

to find the now most suspicious cluster.

5 Empirical application

5.1 Introduction

In this section, we apply our method to data on the Dutch gasoline market.

Following AFGT, our measure of price variability of station i is the variation

coefficient vi. This variation coefficient is defined as the standard deviation

σi of i’s retail price, divided by its mean price µi. Members of a cartel often

exhibit low price variability and charge high prices. Both adversely affect
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the variation coefficient, thus making it a useful instrument to screen for

collusion. We denote as type 1 stations those that have a particularly low vi.

In the remainder of this section we go through the five steps of our pro-

cedure. We first describe our data, and then discuss how we impute missing

data. Second, we identify the type 1 stations. Third, we determine whether

there is statistical evidence for local clustering. That turns out to be the

case. In step 4 we determine the most suspicious cluster. After removing

that cluster we find no further evidence for clustering in the remaining data.

Before being able to apply our method, we have to make a number of

choices. First, we have to decide on the time period to consider. On the one

hand, we want a period that is long enough for the presence of possible local

cartels to be fully captured by the price variability of those stations relative

to others. On the other hand, we do not want a period that is too long: local

cartels may be temporary, so if we look at a period that is too long we may

not be able to catch them. In our application, we look at a period of almost

2 years, between May 2005 and March 2007.

Second, we have to decide on the distance h at which we test local clus-

tering. In our baseline, we will use h = 5 km. Third, we have to decide on

the fraction γ of stations that we flag as suspicious. We will use γ = 0.05.

Fourth, we have to decide whether we look at the raw price data, or whether

we correct these for e.g. local circumstances. Initially we go for raw prices.

In the next section, we will do a sensitivity analysis to check how sensitive

the results are for all of these choices.

5.2 Step 1: Data

5.2.1 Step 1a: data collection

We use a fleet card data set which contains regular price quotes for 3,259

gasoline retail outlets in the Netherlands9. Price data were downloaded on a

9For comparison, the Dutch competition authority NMa (2006a, p. 8) cites a total
number of 3,625 outlets in the Netherlands in 2004. An estimate of Bovag (the Dutch
industry association for the automotive sector) mentions 4,319 outlets in 2005.
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daily basis from the website of Athlon, the largest independent car leasing

company in the Netherlands with a fleet of over 125,000 cars. For now, we

limit attention to the period October 1, 2005 - June 30, 2007.

The price at a particular gasoline station on a given day is observed only

if at least one fleet card owner bought gasoline there. On each day we observe

a price quote for on average 37.5% of all stations. We restrict attention to

prices of regular unleaded gasoline, the most common type and hence the

one for which the most data is available. Using point of interest-data and

Google Earth, we append our station data with geographic coordinates. It

is important to note that we have the exact location of each station, rather

than merely an approximation of that location based on e.g. the zip code, a

method that is often used in other applications.

5.2.2 Step 1b: data imputation

There are 3,259 outlets that we follow for 637 days. We should thus have

3, 259× 637 = 2, 075, 983 price quotes. Yet, we only observe 669, 000 quotes.

If we ignore the missing data and compute the variation coefficient on the

basis of observed prices, a number of problems arise. First, this may bias

our estimates of the station-specific variation coefficient. Second, additional

uncertainty as a consequence of missing data is ignored. To confront these

problems, we follow the method proposed AFGT to impute the missing data.

We only give a sketch of this approach here.10

The essence of the approach is to draw multiple imputations from a

Bayesian predictive distribution. A Markov chain Monte Carlo method is

then used to draw from this distribution, using Gibbs sampling that incorpo-

rates the Metropolis-Hastings algorithm. To find the predictive distribution.

first decompose the price pit of firm i at date t into the average price on that

day p̄·t and the deviation of firm i from this average zit:

pit = p̄·t + zit.

10Full details can be found in AFGT, pg. 475-478.
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Assume that these deviations zit follow a stationary AR(1)-process with mean

µi and correlation ρi:

zit − µi = ρi(zit−1 − µi) + εit, (2)

where εit ∼ N (0, σ2
i ) and the error terms are independent.

Take a flat prior over the parameters (µi, ρi, σ
2
i ) and the missing prices.

Given observed prices, the likelihood function of the data-generating process

as given in (2) is a posterior distribution of the parameters and the missing

prices. Missing prices can now be replaced by a draw from the posterior

distribution. We then proceed with the analysis using the imputed data.

Figure 1: Histogram of average price, station level
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Figure 1 shows the average price per site for the time period considered.

The distribution is clearly bimodal, with the second peak caused by stations

located close to or along the highway. These stations systematically charge

higher prices. In two competition cases, the European Commission has also

judged that highway stations constitute a separate product market.11 In our

11See e.g. European Union, 1999, where it is argued in the Exxon/Mobil case that ”in
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analysis we therefore exclude the 224 highway stations and limit attention

to the 3,035 remaining non-highway stations.

5.3 Step 2: identifying type 1 stations

For each station we calculate the variation coefficient vi on the basis of the

observed and imputed data. For each value of γ, we classify as type 1 stations

those that have a vi that is among the lowest γn. Formally,

N1(γ) ≡ {i ∈ N |vi ≤ v̄(γ)},

where v̄(γ) is defined such that n1 = γn, whereas N0(γ) ≡ N \ N1(γ). As

noted, we will use γ = 0.05.

Figure 2: Histogram of the variation coefficient
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A histogram of the variation coefficients for all stations is given in Figure

2. The distribution is unimodal and roughly symmetric. Figure 3 gives a

scatter plot of the standard deviation against the mean for all stations in the

data. Type 1 stations are depicted as red dots. As in AFGT, stations with

some countries, it is possible to consider fuel retailing on motorways as a separate product
market” (point 436).
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Figure 3: Relation between mean price and standard deviation
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Non-highway stations, October/2005-June/2007). Mean price (in e per liter) on the hor-
izontal axis, standard deviation on the vertical axis. Stations with a variation coefficient
in the lowest 5% in red.

higher means tend to have (slightly) higher variance, and there are no clear

outliers in terms of stations with a high mean and low standard deviation.

5.4 Step 3: testing for local clustering

In Figure 4, we plot our D-function for different values of h. As noted, we

focus on clusters at a distance of 5 kilometers. At h = 5, the D-function shows

clear evidence for clustering of type 1 stations. The average type 1 station

has 0.4 more type 1 neighbors than expected. This is a substantial excess, as

the average circle with a radius of 5 km only has 0.3 type 1 stations12.

5.5 Step 4: identifying the location of clusters

In this step we determine the most suspicious cluster. Table 1 gives all clusters

with more than 2 type 1 stations, listing the coordinates of the midpoint of

12We have 153 type 1 stations, the Netherlands is roughly 40,000 km2. That yields one
type 1 station per 261 km2; a circle with radius 5 km has an area of 78 km2.

17



Figure 4: D-function

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Distance (km)

λ 1 D

Non-highway stations, October/2005-June/2007. The solid line is the D-function, 95%
confidence interval is indicated by the dashed lines, events are gasoline stations whose
variation coefficient is among the lowest 5%

the cluster, the number of type 1 stations it contains, the number of type

0 stations enclosed by the cluster, and the resulting p-value. For ease of

reference (and for the benefit of readers with an intimate knowledge of Dutch

geography), we have also included for each cluster the city closest to it.

A cluster of suspicious stations may be due to a local cartel, but it may

also simply reflect the presence of a local monopoly. For that reason we have

calculated the Hirschman Herfindahl Index for the entire cluster (HHIT) and

for the subset of suspicious stations within a cluster (HHIS). That informa-

tion is also included in Table 1. For reasons of data availability, we calculated

HHIs on the basis of brand share (i.e. the relative number of station within

an area that carries a certain brand) rather than market share. For reference,

note that the HHI on a nationwide level is 0.161.

The most suspicious cluster turns out to be an area slightly to the north

of the city of Rotterdam, that includes 11 type 1 and 13 type 0 stations,

yielding a − log(p)-value of 5.1. The values of the HHI that we find for this

cluster do not indicate that this is due to high market concentration.
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Table 1: Clusters in the data
cluster midpoint si s0i − log p HHIT HHIS nearest city
S1 (95,443) 11 13 8.2 0.163 0.174 Rotterdam
S2 (141,473) 5 10 3.2 0.138 0.280 Hilversum
S3 (110,452) 4 2 4.1 0.278 0.375 Bodegraven
S4 (137,449) 4 0 5.2 0.375 0.375 Nieuwegein
S5 (159,402) 4 3 3.7 0.184 0.375 Veghel
S6 (77,393) 3 0 3.9 0.556 0.556 Bergen op Zoom
S7 (131,480) 3 0 3.9 0.556 0.556 Weesp
S8 (134,520) 3 0 3.9 0.556 0.556 Hoorn
S9 (229,527) 3 0 3.9 0.333 0.333 Hoogeveen

Only clusters consisting of more than two stations. Sample: October 2005 - June 2007. 5%
of stations classified as type 1, cluster size 5 km

The most suspicious clusters (including our prime suspect) are located in

the south-west corner of the country. Figure 5 zooms in on this area, depicting

both type 1 (red) and type 0 (black) stations. The most suspicious area is

the one slightly north of Rotterdam, S1 in the table. Some other suspicious

clusters are depicted as well: S2 (Hilversum) is the area to the slight south-

east of Amsterdam, S3 roughly halfway between Rotterdam and Utrecht, and

S4 is close to Utrecht. The other clusters are outside this map.

5.6 Step 5: iterative elimination of clusters

After eliminating this most suspicious cluster, we move back to step 3 to test

whether there is evidence for local clustering in the remaining data. Note that

the number of type 1 stations has now decreased by 11, while the number of

type 0 stations has decreased by 13. This implies that the value of γ, which

is the fraction of all stations that is of type 1, has also changed. Naturally

this change has to be taken into account when deriving the new D-function.

Figure 6 shows the resulting D-function after the elimination of the most

suspicious cluster. The function is now no longer significant at h = 5 kilome-

ter. It is at almost all other values of h, but that is largely by construction:

our precise aim was to reduce clustering at 5 km, and we achieved that by
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Figure 5: Type 1 stations: Rotterdam-The Hague-Amsterdam-Utrecht region.
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Map of the western part of the Netherlands. Grey lines indicate province boundaries. Red
circles are type 1 stations, black dots type 0 stations. Blue lines reflect convex hulls of
clusters of suspicious stations. Sample October 2005 - June 2007. 5% of stations classified
as type 1, cluster size 5 km

removing the most suspicious clusters at that distance.

Table 2: Identified suspicious clusters

# midpoint type 1 type 0 − log p HHIT HHIS nearest city
1 (95,443) 11 13 8.2 0.163 0.174 Rotterdam

Sample October 2005 - June 2007. 5% of stations classified as type 1, cluster size 5 km.

For future reference, table 2 gives the output of our collusion screen in

terms of suspicious clusters that are identified. Based on this, the advice

to an antitrust authority would be to have a close look at the area around

Rotterdam, where a local cartel may be in place. Of course, this in no way
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Figure 6: D-function after removal of first suspicious cluster

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Distance (km)

λ 1 D

The solid line is the D-function, 95% confidence interval is indicated by the dashed lines.
Sample October 2005 - June 2007. 5% of stations classified as type 1, cluster size 5 km

provides evidence for collusion. Still, there is an unusually large concentration

of stations that exhibit behavior consistent with collusive practices.

6 Sensitivity analysis

In applying our collusion screen, we had to make many choices. For example,

we fixed the number of type 1 stations at 5%, which is a rather arbitrary

choice. Also, we focused on local clustering at 5 kilometer, and choose one

particular method for identifying the most suspicious cluster. We used data

from 2005-2007, rather than focusing on a smaller, larger, or different time

period. Finally, we chose to focus on listed prices, rather than to correct these

prices for station characteristics. In this section, we test the sensitivity of the

method in our empirical application with respect to these choices. Any screen

would be of little use if the suspicious clusters that are found would highly

depend on these choices. Moreover, in any practical application of our screen,

it is wise not to fully rely on one particular set of choices, but to consider

some other choices as well.
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6.1 An alternative cluster size

In our baseline, we looked for evidence for local clustering at a distance of 5

kilometers. In this section we vary this distance by looking at distances of 3

and 7 kilometers, respectively. Note that this will affect both step 3 and step

4 of our method. In step 3, we will now look at whether there is statistical

evidence for clustering at 3 (7) kilometers, while in step 4 we will look at

clusters of stations that are at least 3 (7) kilometers from each other.

Table 3: Identified suspicious clusters at h = 3
# midpoint type 1 type 0 − log p HHIT HHIS nearest city
1 (95,442) 9 11 6.7 0.155 0.210 Rotterdam
2 (137,449) 4 0 5.2 0.375 0.375 Nieuwegein
3 (131,480) 3 0 3.9 0.556 0.556 Weesp
4 (134,520) 3 0 3.9 0.556 0.556 Hoorn

Sample October 2005 - June 2007. 5% of stations classified as type 1, cluster size 3 km.

Figure 4 shows that there is statistical evidence for local clustering at

both 3 and 7 kilometers. Table 3 gives the list of suspicious clusters that are

generated at a distance of 3 kilometers. A number of observations stand out.

First, the most suspicious cluster is the same as that in our baseline case:

close to Rotterdam. Second, the second most suspicious cluster (Nieuwegein)

was also the second most suspicious in our baseline, as can be seen from Table

1. Yet, in our baseline this cluster was not flagged, as the elimination of the

first cluster already yielded lack of statistical evidence for further clustering.

That is no longer the case here. Third, our procedure now also generates 2

suspicious clusters of only 3 type 1 stations. Herfindahl indices indicate that

these clusters each contain 2 stations that carry the same brand.

By construction, using a distance of 3 km generates smaller clusters. This

suggests that in the implementation of our screen, it is important not to look

at distances that are too small.

Table 4 lists the clusters that are found when looking at a distance of 7

km. Again, the area close to Rotterdam yields the most suspicious cluster,
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Table 4: Identified suspicious clusters at h = 7

# midpoint type 1 type 0 − log p HHIT HHIS nearest city
1 (93,444) 16 31 9.3 0.112 0.180 Rotterdam
2 (163,406) 12 17 8.3 0.119 0.190 Veghel

Sample October 2005 - June 2007. 5% of stations classified as type 1, cluster size 7 km.

although it is now larger than in the baseline. The second most suspicious

cluster is now an area close to Veghel. Comparing Table 4 to Table 1, clusters

are obviously (much) larger now, but also have a higher share of type 0

stations. Choosing the right value of h thus implies a tradeoff between finding

many clusters that are too small in the sense that they include only a few

type 1 stations, and finding a few clusters that are too large in the sense that

they include many type 0 stations.

6.2 An alternative fraction of type 1 stations

In our baseline, we classified stations with a variation coefficient among the

5% lowest as type 1. In this section, we consider different definitions. We will

look at the lowest 4% and the lowest 6% respectively. This may seem a slight

change in the number of type 1 stations, but it does imply a decrease, resp.

in an increase of 20 % in the number of type 1 stations that we consider.

In both cases, we again find statistical evidence for local clustering at 5

km. Table 5 shows that the most suspicious cluster is now Nieuwegein, with

the same midpoint and number of stations as in the baseline. Apparently,

classifying only 4% of stations as suspicious implies that the area near Rot-

terdam is broken up in a number of smaller clusters. In Table 6 the most

suspicious cluster is again near Rotterdam, and has the same midpoint and

number of stations as in the baseline. In both cases, removing 1 cluster is suf-

ficient for concluding that there is no statistical evidence for local clustering

in the remaining data.
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Figure 7: D-function
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The solid line is the D-function, 95% confidence interval is indicated by the dashed lines.
Sample October 2005 - June 2007. Cluster size 5 km. 4% (left panel) and 6% (right panel)
of stations classified as type 1.

Table 5: Identified suspicious clusters, 4% classified as type 1
# midpoint type 1 type 0 − log p HHIT HHIS nearest city
1 (137,449) 4 0 5.2 0.375 0.375 Nieuwegein

Sample October 2005 - June 2007. Cluster size 5 km.

Table 6: Identified suspicious clusters, 6% classified as type 1
# midpoint type 1 type 0 − log p HHI HHI1 nearest city
1 (95,443) 11 13 8.2 0.163 0.174 Rotterdam

Sample October 2005 - June 2007. Cluster size 5 km.

6.3 An alternative method to identify clusters

In Section 4, we proposed a method to identify local clusters, and a way to

find the most suspicious of those clusters. Yet, it is conceivable that there

may be circumstances in which that method does not perform optimally.

For example, if an area has a high density of stations, it is also more likely

that that area includes more type 1 stations that are thus misidentified as a

suspicious cluster.13 Also, the identity of a cluster may be sensitive to whether

one station in the middle is qualified as type 1. We therefore also consider

13At the same time, in such a case, it is unlikely that that cluster has the lowest p-value
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an alternative method to identify the most suspicious cluster.

Consider a particular type 1 station, which we denote i. If there is local

clustering, then this station is particularly suspicious if there are more type

1 stations in its neighborhood. Consider a circle of k kilometer around i, and

denote that area as A(i; k). If we count the number of type 1 and type 0

stations in A(i; k), we can calculate the p-value of that area, just as we did

in (1). We denote this p-value as p(A(i; k)). We repeat this analysis for all

other type 1 stations, and also allow for different cluster sizes by varying h

between 3 and 7. With some abuse of notation, our must suspicious cluster

is then given by

AM = arg min
i∈N1,k∈{3,4,5,6,7}

p (A (i; k))

Admittedly, this method is much cruder than the one proposed in section

4, but at the same time it may be more robust to e.g. the classification of

one single station.14

Table 7: Identified suspicious clusters with circle-based method

# midpoint type 1 type 0 log p HHI HHI1 nearest city radius
1 (92,443) 12 43 4.9 0.146 0.194 Rotterdam 7 km
2 (165,402) 6 11 3.9 0.185 0.222 Veghel 6 km

Sample October 2005 - June 2007. Last column gives radius of circle as found by algorithm.
5% of stations classified as type 1.

Table 7 shows that, also when using this method, Rotterdam and Veghel

are identified. The cluster near Rotterdam is now larger than in the baseline.

6.4 Accounting for site characteristics

The variance screen that we use looks at the variance of prices relative to

the mean of prices at a particular station. Yet, there may be reasons for a

high price other than a lack of competitive pressure. For example, stations

14Note that it is even possible to combine the two methods by comparing the p-value of
the most suspicious cluster found in section 4 to the p-value of the most suspicious area
from the method above, and favoring whichever has the overall lowest p-value.

25



may offer a better service, they may be located close to the border, close to

a highway, they may have higher demand, face higher marginal costs, etc. If

there are such perfectly valid reasons for a station to charge higher prices,

then we may underestimate its variation coefficient if we do not adjust for

these factors.15 In turn, that may affect the classification of stations that are

of type 1, and also the clusters of type 1 stations that our method identifies.

In this section, we therefore look at prices that are adjusted for such

factors. For each station, we determine the average price it would charge if

it would have the average characteristics of a station in our data set. Using

these adjusted prices, we calculate the adjusted variation coefficients which

we then use as input for our collusion screen.

Formally, denote the average price at station i as µi. Let xi denote a

vector of station characteristics given as a deviation from the sample mean.

To estimate the effect of the different site characteristics on the average level

of a particular station, we perform the regression

µi = µ+ xiβ + εi, (3)

The adjusted average price at station i is its counterfactual average price if

it would have the characteristics of the average station in our sample, so if

xi = 0. Hence µa
i = µ + εi: the adjusted average price at station i is the

sample average plus the unexplained part of its true price.

As station characteristics, we include16 number of pumps; plot size; size

of shop area, and dummies for being close to the German or Belgian border,

being company owned, carrying one of the four major brands17, serving hot

drinks, having a car wash and being fully automated (‘unmanned’). We also

include the log of the numbers of cars owned by private households within

20 kilometer of the station as a measure of local demand.18 Inclusion of these

15Of course, factors that increase prices by a fixed amount do not have an effect on the
variance of prices.

16Data on the characteristics of each gasoline station were obtained from Experian
Catalist Ltd.

17Esso, Shell, Texaco and BP.
18These data are available for all but 34 stations.
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variables is motivated by Soetevent, Haan and Heijnen (2011), where we find

that these indeed affect gasoline prices.

Table 8: Regression of average price on explanatory variables (Sample: non-
highway stations; Period: October/2005-June/2007)

(1) (2)
Local competition measures: Excluded Included

coefficient s.e. coefficient s.e.
sample mean 1.3641 1.3641

Geographical characteristics
German border -0.0042 (0.0029) -0.0064∗ (0.0029)
Belgian border 0.0118∗∗ (0.0033) 0.0102∗∗ (0.0033)

Site characteristics
Company owned -0.0145∗∗ (0.0010) -0.0126∗∗ (0.0011)

Major brand 0.0110∗∗ (0.0010) 0.1142∗∗ (0.0010)
# pumps -0.0003 (0.0005) -0.0001 (0.0005)

Unmanned -0.0031∗ (0.0015) -0.0037∗∗ (0.0014)
Hot drinks 0.0037∗ (0.0015) 0.0036∗ (0.0015)

Carwash 0.0020† (0.0011) 0.0021∗ (0.0011)
Plot size (area) -2.73e-07 (3.73e-07) -3.54e-07 (3.69e-07)

shop area 3.69e-05 (2.32e-05) 3.91e-05† (2.29e-05)
Local demand

# priv. owned cars ≤ 20km 0.0056∗∗ (0.0007) 0.0079∗∗ (0.0012)
Local market concentration
ln(# non-highway stations+1) at...

≤ 1 km -0.0032∗∗ (0.0009)
1− 2 km -0.0048∗∗ (0.0076)
2− 5 km -0.0008 (0.0007)

5− 10 km -0.0008 (0.0012)
ln(# highway stations+1) at...

≤ 1 km 0.0094∗ (0.0052)
1− 2 km 0.0018 (0.0023)
2− 5 km 0.0018† (0.0010)

5− 10 km 0.0004 (0.0008)

R2 0.1308 0.1557
obs. 3035 3035

Plot size area and shop area in sq. m; privately owned cars in ’000.000.
†: Significant at the 10% level; ∗ : Significant at the 5% level; ∗∗ : Significant at the 1%

level.

We could also add concentration measures to our list. Yet, this is tricky. If

local cartels are more likely to exist in areas with low market concentration,

then we are effectively destroying possible evidence for collusion if we use local

market concentration as a basis to adjust prices for stations that are active
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in such areas. With this caveat in mind, we calculate two sets of adjusted

prices: one in which concentration measures are also taken into account, an

one in which they are not. As concentration measures we use the logs of the

number of highway stations and the number of other non-highway stations

within distances of 1, 2, 5 and 10 kilometer. Regression results are given in

Table 8.

The estimates in column (1) of Table 8 show that gasoline prices at outlets

close to the Belgian border are some 1.2% higher. Ceteris paribus, outlets of

one of the major brands charge prices that are on average 1% higher, whereas

company owned outlets charge prices that are 1.5% lower. Prices at fully

automated stations are 0.3% lower on average. Column (2) also includes local

concentration measures. The estimates show that the presence of other non-

highway stations within 2 kilometer distance puts a downward pressure on

prices, while having highway stations nearby increases prices. Most probably

this picks up the positive demand effect of being close to a highway exit.19

Figure 8: D-function, adjusted prices
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The solid line is the D-function, 95% confidence interval is indicated by the dashed lines.
Left panel: local concentration variables excluded. Right panel: local concentration vari-
ables included. (Sample: non-highway stations; Period: October/2005-June/2007). 5% of
station classified as type 1, cluster size 5 km.

Figure 8 shows the D-function for the adjusted prices. In the left-hand

panel, prices have been adjusted for differences in site characteristics; in the

19The estimates are very similar to those in Soetevent et al. (2011, Table 3).
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right-hand panel, they have also been adjusted for regional differences in

market concentration.

Table 9: Identified suspicious clusters, adjusted for station characteristics

# midpoint type 1 type 0 − log p HHIT HHIS nearest city
1 (91,443) 15 25 9.4 0.135 0.173 Rotterdam

Sample October 2005 - June 2007. 5% of stations classified as type 1, cluster size 5 km

Table 9 lists clusters generated by applying our method to prices that

are only adjusted for station characteristics, not for concentration measures.

Again, Rotterdam is the only suspicious cluster that our method generates,

although the identified area is now somewhat larger than in the baseline. The

same is true if we also adjust for concentration measures, in Table 10.

Table 10: Identified suspicious clusters, prices adjusted for station character-
istics and concentration measures

# midpoint type 1 type 0 − log p HHIT HHIS nearest city
1 (91,443) 15 25 9.4 0.135 0.173 Rotterdam

Sample October 2005 - June 2007. 5% of stations classified as type 1, cluster size 5 km

6.5 An alternative time period

Next, we investigate how our method is affected when we consider a different

time period. In Figure 9, the D-function is plotted based on imputed price

data for the period July 2007 to April 2009. For this period too, we find

clustering of suspicious stations for all possible choices of h.

When looking at the most suspicious clusters for h = 5 kilometer, the

picture looks different. Our method now generates 5 clusters before there is

lack of evidence for further clustering, see Table 11. Eindhoven is flagged as

the most suspicious cluster, although Rotterdam still makes the list as well.

One observation that stands out in Table 11 is the extremely high value

of the Herfindahl index among type 1 stations in cluster 3. Out of 10 type
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Figure 9: D-function, July/2007-April/2009)
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The solid line is the D-function, 95% confidence interval is indicated by the dashed lines.
5% of stations classified as type 1, cluster size 5 km.

1 stations in this cluster, 9 carry the Texaco brand. Among the 25 type

0 stations, there is not a single Texaco station. Hence, rather than a local

cartel, this cluster is more likely to reflect market dominance of Texaco in

this particular area.

Table 11: Identified suspicious clusters, sample period July 2007 - April 2009

cluster midpoint type 1 type 0 − log p HHI HHI1 nearest city
S1 (160,377) 9 12 6.5 0.152 0.259 Eindhoven
S2 (103,490) 5 1 5.8 0.222 0.280 Haarlem
S3 (80,453) 10 25 5.3 0.171 0.820 Den Haag
S4 (94,440) 10 29 4.8 0.120 0.180 Rotterdam
S5 (92,464) 4 1 4.5 0.440 0.625 Leiden

Sample July 2007 - April 2009. 5% of stations classified as type 1, cluster size 5 km

One explanation for the different picture that we see now is that the

market environment may have changed substantially; areas that were a cartel

in 2005-2007 may not be so anymore in 2007-2009. That is confirmed if we

look at the robustness checks that we also did for the period 2005-2007.
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Changing the cartel distance or the fraction of type 1 stations consistently

yields 5 or 6 clusters are flagged as suspicious, with Eindhoven and Haarlem

being the most suspicious cluster equally often, and with substantial overlap

among the other clusters that are generated as well. Yet, when correcting

for site characteristics, the most suspicious cluster is close to Arnhem, an

area that was not flagged before. That is true when we correct only for site

characteristics, but also when we correct for both site characteristics as well as

concentration measures. Different from the situation in 2005-2007, correcting

for site characteristics now makes a substantial difference in the outcome

of the collusion screen. When using the alternative method to determine

clusters, we again find Eindhoven as the prime suspect.

7 Conclusion

In this paper, we developed a method to screen for local cartels. Our method

takes as an input information on which outlets score high on some charac-

teristic that is consistent with collusive behavior. It then tests whether there

is statistical evidence that these suspicious outlets are clustered and, if so,

provides an algorithm to find which clusters are the most suspicious. Our

method can readily be used in applications outside the realm of competition

policy or economics.

Our approach has a number of advantages. It uses data that are readily

available, is easy to implement and hard for a cartel to beat. It only iden-

tifies suspicious clusters if there is statistical evidence for such clustering. It

continues to identify suspicious clusters as long as there still is evidence for

clustering in the remaining data.

We applied our method to the Dutch gasoline market. Using daily price

data on virtually all gasoline stations in the Netherlands, we classified as sus-

picious those stations with a particularly low variation coefficient, following

the literature on variance screens initiated by Abrantes-Metz et al (2006). For

the period 2005-2007 we find clustering in an area close to Rotterdam. This

areas is persistent, in the sense that it is robust to variations in our method.
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Naturally, this can never be construed as evidence for collusion, but it does

suggest that an antitrust authority may have a closer look at the stations ac-

tive in that area. For the period 2007-2009, the picture is less clear, and areas

around Eindhoven, Haarlem and Arnhem turn up as most suspect, depending

on the exact method that is used. our method returns many small clusters,

plus some larger clusters that also contain many non-suspicious stations.

Needless to say, any method that screens for collusion can only be as

good as the data that are used as its input. In the end, it is up to antitrust

practitioners to come up with criteria to determine whether a station is sus-

picious or not. The variance screen is one such criterion, but without doubt,

many others can be thought of. Other inputs of the variance screen, such as

cluster size or the fraction of outlets that are classified as suspicious, may

also influence its output, although as we saw in Section 6 that is reasonably

robust for such choices. Just like any other tool, our collusion screen should

be applied with care. Its output can only serve as a starting point for further

investigation.

References

Abrantes-Metz, R., and P. Bajari (2009): “Screens for Conspiracies

and their Multiple Applications,” The Antitrust Magazine, 24(1), 66–71.

Abrantes-Metz, R., L. Froeb, J. Geweke, and C. Taylor (2006):

“A variance screen for collusion,” International Journal of Industrial Or-

ganisation, 24, 467–486.

Athey, S., K. Bagwell, and C. Sanchirico (2004): “Collusion and

Price Rigidity,” Review of Economic Studies, 71, 317–349.

Cressie, N. (1991): Statistics for Spatial Data. Wiley and Sons, New York.

Diggle, P., and A. Chetwynd (1991): “Second-Order Analysis of Spatial

Clustering for Inhomogeneous Populations,” Biometrics, 47, 1155–1163.

32



Dixon, P. (2002): “Ripleys K function,” in Encyclopedia of Environmetrics,

ed. by A. H. El-Shaarawi, and W. W. Piegorsch, vol. 3, pp. 1796–1803. John

Wiley & Sons, Chichester.

Duranton, G., and H. Overman (2005): “Testing for localisation using

micro-geographic data,” Review of Economic Studies, 72, 1077–1106.

Ellison, G., and E. L. Glaeser (1997): “Geographic concentration in

US manufacturing industries: a dartboard approach,” Journal of Political

Economy, 105(5), 889–927.

European Union (1999): “Merger Procedure Case No IV/M.1383 -

Exxon/Mobil,” Regulation (EEC) No 4064/89L.

Froeb, L., J. Cooper, M. Frankena, P. Pautler, and L. Silvia

(2005): “Economics at the FTC: Cases and Research, with a Focus on

Petroleum,” Review of Industrial Organization, 27, 223–252.

Haase, P. (1995): “Spatial pattern analysis in ecology based on Ripleys K-

function: Introduction and methods of edge correction,” Journal of Vege-

tation Science, 6, 575–582.

Harrington, J. E. (2008): “Detecting Cartels,” in Handbook in Antitrust

Economics, ed. by P. Buccirossi, chap. 6, pp. 213–258. MIT Press.

Jimenez, J. L., and J. Perdiguero (2009): “(No) competition in the

spanish retailing gasoline market: a variance filter approach,” mimeo.

Marcon, E., and F. Puech (2010): “Measures of the geographic con-

centration of industries: improving distance-based methods,” Journal of

Economic Geography, 10, 745–762.

NMa (2006): “Benzinescan 2005/2006,” Discussion paper.

Picone, G. A., D. B. Ridley, and P. A. Zandbergen (2009): “Distance

Decreases with Differentiation: Strategic Agglomeration by Retailers,” In-

ternational Journal of Industrial Organization, 27, 463–473.

33



Rysman, M., and S. Greenstein (2005): “Testing for agglomeration and

dispersion,” Economics Letters, 86, 405–411.

Soetevent, A., M. Haan, and P. Heijnen (2011): “Do Auctions and

Forced Divestitures increase Competition? Evidence for Retail Gasoline

Markets,” Tinbergen Institute Discussion Paper 2008-117/1.

Stoyan, D., and A. Penttinen (2000): “Recent applications of point

process methods in forestry statistics,” Statistical Science, 51, 61–78.

Wang, Z. (2009): “(Mixed) Strategy in Oligopoly Pricing: Evidence from

Gasoline Price Cycles Before and under a Timing Regulation,” Journal of

Political Economy, 117(6), 987–1030.

34


	VarScreenJune2012b.pdf
	Introduction
	Overview of the method
	Testing for local clustering
	Identifying the location of clusters
	Empirical application
	Introduction
	Step 1: Data
	Step 1a: data collection
	Step 1b: data imputation

	Step 2: identifying type 1 stations
	Step 3: testing for local clustering
	Step 4: identifying the location of clusters
	Step 5: iterative elimination of clusters

	Sensitivity analysis
	An alternative cluster size
	An alternative fraction of type 1 stations
	An alternative method to identify clusters
	Accounting for site characteristics
	An alternative time period

	Conclusion


