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Abstract

We propose a new semiparametric observation-driven volatility model where the form of
the error density directly influences the volatility dynamics. This feature distinguishes our
model from standard semiparametric GARCH models. The link between the estimated
error density and the volatility dynamics follows from the application of the generalized
autoregressive score framework of Creal, Koopman, and Lucas (2012). We provide sim-
ulated evidence for the estimation efficiency and forecast accuracy of the new model,
particularly if errors are fat-tailed and possibly skewed. In an application to equity return
data we find that the model also does well in density forecasting.

Keywords: volatility clustering, Generalized Autoregressive Score model, kernel density
estimation, density forecast evaluation.

JEL codes: C10, C14, C22.

1 Introduction

We contribute to the literature on volatility modeling and return density forecasting by intro-

ducing a new semiparametric observation-driven time-varying volatility model. We estimate the

error density using kernel density estimation techniques and use the resulting estimate to drive

the volatility dynamics using the generalized autoregressive score dynamics of Creal, Koopman,

and Lucas (2011, 2012). Unlike familiar semiparametric GARCH models, the new model pro-

vides a direct link between the form of the error distribution and the volatility dynamics. We

show that this enhances the forecasting stability of the model.

Volatility clustering in financial return data is a well-established empirical fact. Starting

with the seminal (G)ARCH papers by Engle (1982) and Bollerslev (1986), many variations

∗Both authors thank the Dutch National Science Foundation (NWO) for financial support. Correspond-
ing author: Jiangyu Ji, VU University Amsterdam, FEWEB/FIN, de Boelelaan 1105, 1081 HV Amsterdam,
Netherlands, phone: +31 20 598 2895, email: j.ji@vu.nl.
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and extensions of the GARCH class of models have been proposed in the literature, such as

the GARCH-M model of Engle, Lilien, and Robins (1987), the EGARCH model of Nelson

(1991), the GJR-GARCH model of Glosten, Jagannathan, and Runkle (1993), and the Thresh-

old GARCH (TGARCH) model by Zakoian (1994). Interestingly, Quasi Maximum Likelihood

Estimation (QMLE) of these models based on the (possibly incorrect) assumption of condi-

tional normality for the error terms still yields
√
n-consistent estimators in many cases, with

n denoting the sample size; see Weiss (1986), Lee and Hansen (1994), and Lumsdaine (1989).

This is important, as the conditional normality assumption is often refuted for empirical data.

The statistical efficiency loss, however, can be considerable. Therefore, many empirical studies

assume non-Gaussian conditional distributions, for example a (skewed) Student t, see Baillie

and Bollerslev (1989) and Bauwens and Laurent (2005).

To simultaneously avoid the potential efficiency loss and the risk of assuming a wrong para-

metric family of conditional distributions, semiparametric GARCH models have been proposed.

Engle and Gonzalez-Rivera (1991) show that more efficient parameter estimates can be obtained

by estimating the error density nonparametrically, though some efficiency loss remains. Drost

and Klaassen (1997) and Sun and Stengos (2006) develop kernel-based estimators and establish

the semiparametric efficiency bounds for parameter estimation. They characterize the condi-

tions under which one can adaptively estimate a subset of the model’s parameters, i.e., one can

achieve the same asymptotic efficiency as if the true error density were known.

In all of the above models, the form of the conditional distribution has no impact on the

specification of volatility dynamics. Creal, Koopman, and Lucas (2011) argue that if, for

example, the error distribution is fat-tailed, we expect to see large (squared) observations from

time to time. The occurrence of such observations should not automatically be attributed to an

increase in volatility, as would be the case when the standard GARCH dynamics are used for

volatility. Similarly, if the data are drawn from a skewed conditional distribution, one expects a

large negative observations to convey a different signal about current volatility levels than large

positive observations. Again, this implies a link between the shape of the error distribution

and the specification of the volatility dynamics. No such direct link is embedded in standard

GARCH or semiparametric GARCH models.

Our main contribution in this paper is to provide a semiparametric model for time-varying

volatility in which the form of the error distribution is directly linked to the volatility dynamics.

We do so by extending the current semiparametric GARCH framework to the Generalized

Autoregressive Score (GAS) framework of Creal, Koopman, and Lucas (2011, 2012). At the

same time, we extend the class of GAS models to the semiparametric context. A second
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important contribution is that we use our semiparametric volatility model to perform out-

of-sample forecasting. Most of the literature on semiparametric volatility modeling focuses

on the in-sample behavior of the estimators. The out-of-sample forecasting performance of

semiparametric methods, however, is equally important in most economic settings.

Within the class of GAS models, the volatility dynamics are driven by the score of the ob-

servation density with respect to the (log) volatility parameter. The interpretation is straight-

forward: at each time point the local likelihood fit of the model is improved using a Newton

or gradient step. For the normal distribution, the GAS framework reduces to the standard

GARCH model under appropriate parameterization and scaling choices. The GAS framework

is, however, much more generally applicable. For example, under fat-tailed error distributions

the GAS framework results in a model with interesting robustness properties, see the discussion

in Creal, Koopman, and Lucas (2011). It is useful at this stage to note that the semiparametric

nature of our model relates to the nonparametric estimation of the error distribution as in

Drost and Klaassen (1997) and Sun and Stengos (2006), and not the nonparametric estimation

of the volatility dynamics as in Pagan and Schwert (1990), Linton and Mammen (2005) and

Yang (2006). The latter would be interesting in its own right, but is not pursued in the present

paper.

Parameter estimation for our model is straightforward, since the model is defined in condi-

tional terms similar to standard GARCH models. This implies that the likelihood function can

be specified in closed form. Parameter estimation is carried out in two steps. First, we estimate

the model by QMLE using a normal or Student’s t quasi-likelihood. From this we obtain the

standardized residuals and the kernel density estimate of the error density. Second, the kernel

density estimate is used to re-estimate the model’s parameters, resulting in the Semiparametric

Maximum Likelihood Estimator (SMLE).

We investigate the new model’s performance in an extensive simulation study using a variety

of error distributions and volatility patterns. We find that the SMLE regains a substantial part

of the efficiency loss due to the use of the QMLE. If the volatility transition dynamics are

possibly mis-specified, we also find that the SMLE produces large improvements in in-sample

estimation accuracy and out-of-sample forecast accuracy of the volatilities compared to QMLE.

We also make a comparison between our semiparametric model and the semiparametric GARCH

model in volatility forecasting.

In our empirical application, we estimate a model for IBM daily equity returns. We use the

density forecast evaluation methods proposed by Diebold, Gunther, and Tay (1998) to evaluate

the model’s performance. The density forecast results show that our model satisfies all relevant
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adequacy criteria, whereas the models based on other densities and volatility dynamics have

more trouble in attaining statistical adquacy of the density forecasts. We conclude that the

semiparametric GAS model provides a useful alternative to standard semiparametric GARCH

models for in-sample fit and out-of-sample forecast accuracy.

The remainder of this paper is organized as follows. Section 2 introduces the model. Section

3 provides Monte Carlo evidence of the new model’s performance. Section 4 presents our

empirical application to equity return data and density forecast evaluation. Section 5 concludes.

2 The semiparametric volatility model

2.1 Semiparametric GARCH models

Let yt ∈ R denote a time series of financial returns. The standard GARCH(1,1) model is given

by

yt = µ+ ξt = µ+ h
1/2
t εt, εt ∼ q(εt), (1)

with µ ∈ R the conditional mean, q(·) the density of the standardized error term εt, and ht ∈ R+

the condiational variance satisfying the recursion

ht+1 = ω · (1− α− β) + αξ2t + βht, (2)

with parameters ω ∈ R+, and α, β > 0, and α + β < 1. The standardized density q(·) does

not depend on ht. Note that we can easily replace the conditional mean µ by a non-constant

conditional mean involving exogenous regressors or autoregressive moving average components.

Moreover, we can include lags of ξt and ht in (2).

If the distribution q(·) of εt is unknown and needs to be estimated, model (1)–(2) is called

a semiparametric GARCH(1,1) model. Estimation is usually performed in two steps. First,

one uses a Quasi Maximum Likelihood estimator (QMLE) based on a standard normality

assumption for εt to estimate (µ, ω, α, β). Using the standardized residuals and nonparametric

density estimation techniques, one can then obtain an estimate q̂(·) of the error density. The

estimated density is used to estimate the parameters in a second stage by semiparametric

ML, assuming the density estimate q̂(·) is the true density. Engle and Gonzalez-Rivera (1991)

uses the discrete maximum penalized likelihood estimator (DMPLE) of Tapia and Thompson

(1978) for density estimation, followed by a BHHH algorithm to maximize the semiparametric

likelihood. Drost and Klaassen (1997) and Sun and Stengos (2006) use standard kernel density

methods to estimate the error density and develop a Newton-Raphson algorithm to maximize
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the semiparametric likelihood. Their estimator achieves the same asymptotic efficiency for

(α, β) as the true MLE.

2.2 The semiparametric Generalized Autoregressive Score model

In model (1)–(2), the form of the error density has no impact on the volatility dynamics (2).

Whatever the form of the error density q(·), future volatility levels ht+1 always react to the

squared errors ξ2t . The reaction pattern can be extended to allow for asymmetric reactions

as in Nelson (1991) or Glosten, Jagannathan, and Runkle (1993), but this would still leave

the volatility dynamics unrelated to the form of the error density. Following the arguments

in Creal, Koopman, and Lucas (2011) as discussed in the introduction, such a strict delinkage

may be counterintuitive.

In order to build a natural link between the error density and the volatility dynamics,

we use the generalized autoregressive score (GAS) framework of Creal, Koopman, and Lucas

(2011, 2012). The GAS framework nests many other successful time series models, such as

the GARCH model, the autoregressive conditonal duration (ACD) model of Engle and Russell

(1998), and the multiplicative error model (MEM) of Engle and Gallo (2006). The GAS(1,1)

specification that we use in our current volatility context is given by equation (1) and

ft+1 = ω̃ · (1− β̃) + α̃st + β̃ft, (2′)

where ht = exp(ft), ω̃, α̃ ∈ R, |β̃| < 1, and

st =
∂ log

(
h
−1/2
t · q(h−1/2t ξt)

)
∂ft

. (3)

Further lags of st and ft can easily be included. Equation (2′) has two main differences compared

to (2): the use of the density score st rather than ξt, and the parameterization of the log-variance

ft rather than ht itself. We discuss each of these in turn.

The use of the score st rather than ξ2t is the main distinguishing feature of the GAS frame-

work. As explained in Creal, Koopman, and Lucas (2012), the intuition is that a local steepest

ascent step is taken in the time varying parameter ft to improve the local log-density fit p(yt|ht)
of the model at time t, where p(·) denotes the observation density. As a result, the time-varying

parameter automatically adapts to the most recent model mis-fit as measured by the score of

the density. For example, if q(·) is the Gaussian density, this implies that ft reacts to a linear

function of ξ2t as expected. If q(·) is the Student t distribution with ν degrees of freedom, Creal,
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Koopman, and Lucas (2011) show that (2′) reduces to

ft+1 = ω̃ + α̃(1 + 3ν−1)

(
1 + ν

ν − 2 + ξ2t /ht
· ξ

2
t

ht
− 1

)
+ β̃ft, (4)

which clearly shows that large standardized squared errors ξ2t /ht for fat-tailed (ν <∞) densities

automatically have less impact on the volatility dynamics due to the weight factor (1 +ν)/(ν−
2 + ξ2t /ht), which is decreasing in ξ2t /ht. As argued before, this is intuitive: under fat-tailed

densities we expect to see large values of ξ2t /ht more often, and they should therefore not

automatically be taken as a signal that the volatility has increased.

The second difference between (2) and (2′) is the parameterization of the log variance

ft = log(ht). Though this parameterization is not crucial and other parameterizations (such

as ft = ht) are also possible, the current parameterization has a number of advantages. First,

we need not to worry about the signs of the coefficients ω̃, α̃, and β̃, as the variance ht is

positive by construction. This brings the current specification close to the familiar EGARCH

model of Nelson (1991). Second, the GAS specification in (2′) only uses the score or gradient.

Creal, Koopman, and Lucas (2012) argue that it is useful to scale the score by some function

of the local curvature of the log-density in order to enhance model stability. Under the current

parameterization, however, we obtain

st = −1

2
− 1

2

q′(h
−1/2
t ξt)

q(h
−1/2
t ξt)

· ξt

h
1/2
t

,

with q′(·) denoting the derivative of q(·), such that

Et−1
[
s2t
]

=
1

4
Et−1

[(
1 +

εt · q′(εt)
q(εt)

)2
]
, (5)

where Et−1[·] denotes a conditional expection given all the data up to time t−1. As Et−1[st] = 0

for a correctly specified model, (5) equals the Fisher information matrix. Equation (5) then

shows that the information is static and only depends on the (standardized) error density q(·).
As a result, under the log parameterization ft = log(ht), information on the time-varying

parameter is constant over time and scaling by (a function of) the Fisher information can be

omitted or assumed to be included in the parameter α̃.

Parameter estimation for the GAS model is straightforward. Given the observation driven

nature of the GAS model, the likelihood can be expressed in closed form and can be com-

puted efficiently through a prediction error decomposition. In particular, we obtain parameter

estimates by maximizing the function

L =
n∑

t=1

−1

2
log ht + log q

(
(yt − µ)/h

1/2
t

)
, (6)
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where ht is defined recursively through (2′). If the error density is assumed to be of a certain

parametric form such as the standard normal or (skewed) Student’s t distribution, we obtain a

parametric model as in Creal, Koopman, and Lucas (2011). However, to avoid the introduction

an incorrect parametric specification, we estimate q(·) nonparametrically using a kernel density

estimator as in Drost and Klaassen (1997) and Sun and Stengos (2006). To do so, we first

estimate the model’s parameters by assuming a specific parametric family for q(·) and interpret

the estimator based on (6) as a Quasi Maximum Likelihood estimator (QMLE). The QMLE

allows us to compute standardized residuals ε̂t = (yt − µ̂)/ĥ
1/2
t , which are the input of a kernel

density estimator to estimate q(·). In particular, we use a standard kernel density estimator

q̂(x) =
1

n · bn

n∑
i=1

k

(
ε̂t − x
bn

)
, (7)

where n is the sample size, bn is a bandwidth or smoothing parameter, and k(·) is a kernel

function. We use the standard normal kernel

k(v) =
1√
2π
e

1
2
v2 , −∞ < v <∞. (8)

We rescale and relocate q̂(·) such that it has mean zero and unit variance and use it in (6)

to estimate the parameters (µ, ω, α, β). The resulting estimator is labeled the Semiparametric

Maximum Likelihood Estimator (SMLE) for the semiparametric GAS volatility model. It is

denoted as SMLE(1).

Once SMLE(1) is obtained, we can recalculate the standardized residuals and obtain a new

kernel density estimate of q(·) to be used in (6). Maximizing this new loglikelihood function

we get new estimates, which are denoted as SMLE(2). Similarly, SMLE(i) can be obtained

for i = 3, 4, . . . , by repeating this process. In our simulation study below, we restrict out

attention to i = 1, 2, 3. Further iterations typically did not produce valuable improvements in

performance.

3 Monte carlo evidence

To study the model’s behavior, we carry out two sets of simulation experiments. In the first

set of simulation experiments, we use the model in Section 2.2 as the data generating process

(DGP). We simulate return series and investigate the estimation efficiency and volatility forecast

accuracy of the semiparametric approach compared to the MLE and the (Gaussian) QMLE

model. In the second set of simulation experiments, we allow the model to be mis-specified by
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simulating return series with deterministic as well as stochastic volatility patterns. This allows

us to investigate whether the model’s performance is also robust. The reported simulation

results are a subset of a more elaborate set of (unreported) simulation experiments, the output

of which is available as an online companion appendix to this paper.

3.1 Results under correct specification

We use the DGP (1)–(2′) for four different choices of q(·), namely the standard normal, the

Student’s t distribution with ν = 3 and ν = 5 degrees of freedom, and a mixture of normals.

The mixture of normals is chosen such that it is close (in a Kulback-Leibler sense) to a chi-

squared distribution with 6 degrees of freedom, thus exhibiting substantial skewness. Each of

the above densities is rescaled and relocated to have zero mean and unit variance. For each

DGP, we simulate B = 100 return series of length n = 2000. The first 1000 observations are

labeled the in-sample observations and are used to estimate the model’s parameters. The last

1000 observations are called out-of-sample. We set µ = 0, ω̃ = 2, α̃ = 0.3, and β̃ = 0.9.

Reasonable changes of the parameter values do not alter the conclusions below. Note that β̃

takes the role of α + β from the familar GARCH model. It is therefore not a problem that

α̃ + β̃ > 1, see also (Blasques, Koopman, and Lucas 2012).

For each simulated sample, we compute the parameter estimates using four different sta-

tistical models: MLE, QMLE, QMLE-t(ν) and SMLE(1). We also iterate the semiparametric

approach to obtain SMLE(2) and SMLE(3). As the simulation results for SMLE(2)-(3) are

comparable to those of SMLE(1), we do not report them here. QMLE uses the normal distri-

bution as a quasi-likelihood, while QMLE-t(ν) uses the Student’s t density with ν degrees of

freedom as a quasi-likelihood, where ν is estimated together with the other parameters.

The semiparametric estimators require the choice of the bandwitdth parameter bn. In our

current setting, we use bn = 0.5 as in Drost and Klaassen (1997). Other reasonable choices

0.3 ≤ bn ≤ 0.8 do not alter our conclusions. Note that the choice of the (quasi)-density does

not only matter for the likelihood, but also for the volatility dynamics in (2′).

The simulations allow us to investigate two dimensions of performance of the different sta-

tistical models and estimators. First, we evaluate the small-sample properties of the estimators

for the parameters (µ, ω̃, α̃, β̃). We are particularly intestested to see which parameters are

adaptively estimable in the sense that their finite-sample behavior in terms of bias and root

mean squared error (RMSE) resembles that of the MLE. Second, we can evaluate and compare

the forecast accuracy of the different models by comparing the simulated value of h
1/2
t with its
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fitted value ĥ
1/2
t . The RMSE for the volatility estimate can be used to distinguish the fore-

casting performance of the different models. We can do this in-sample based on the first 1000

simulated observations, as well as out-of-sample using the last 1000 observations.

For the semiparametric estimator SMLE(1), we use the QMLE-t(ν) estimate as our starting

value. We do not use the MLE estimate, as ML estimation is not feasible in practice. Table 1

reports the results.

We concentrate our discussion on α̃ and β̃, as µ̃ and ω̃ cannot be estimated adaptively,

see Drost and Klaassen (1997). The RMSE obtained with the MLE serves as our efficiency

bound for each parameter. For the normal distribution (N), the MLE equals the QMLE. The

RMSE values for the (Q)MLE are close to those of the QMLE-t(ν) estimator. The largest

(relative) efficiency loss appears for α̃ and equals 10% relative to a benchmark RMSE of 0.046

for (Q)MLE. The relative RMSE of SMLE(1) for β̃ is also small. A larger increase in relative

RMSE is seen for α̃. We also note that though the relative increase of RMSE for SMLE(1) for

α̃ appears substantial, this relative increase is with respect to a low absolute level of the RMSE

for the QMLE in this case. The RMSEs of the QMLE for the non-Gaussian distributions that

are discussed next are considerably higher and show an advantage of the SMLE(1) compared

to the QMLE.

For the fat-tailed distributions t(3) and t(5), the (Gaussian) QMLE performs poorly in

terms of RMSE compared to the MLE. For β̃, the RMSE of the QMLE is about 6 and 3 times

as high as that of the MLE for the t(3) and t(5) case, respectively. For α̃ the factors are 3

and 2, respectively. The Student’s t based QMLE does considerably better and almost attains

the same level of efficiency as the MLE. The SMLE(1) also performs well. Though it is not as

efficient as the MLE, it performs considerably better than the Gaussian QMLE. In particular,

a large part of the RMSE increase in the QMLE compared to the MLE is recovered by the use

of SMLE(1). The inferior performance of the QMLE should not come as a surprise: the QMLE

model is doubly mis-specified in our case. Not only does it impose the incorrect conditionally

Gaussian distributional assumption on εt. It also assumes the incorrect specification for the

volatility dynamics in (2′). In particular, large values of (yt − µ)2 receive a higher impact in

the QMLE model than warranted under the true data generating process as specified by the

volatility dynamics (4).

The simulation results for the mixture of normals is interesting due to the distribution’s

substantial skewness. The QMLE is inferior to the MLE for both α̃ and β̃. Compared to the

QMLE-t(ν) and SMLE(1), the results are mixed. The RMSEs for β̃ of the QMLE are higher,

while those for α̃ are lower.
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We shed some more light on the differences between the different models by comparing their

forecast accuraries. Except for the normal density, we see that the SMLE reduces part of the

efficiency loss incurred by the QMLE compared to the MLE. The reductions in efficiency loss

of the SMLE(1) compared to the QMLE range from around 55% for t(3) and MN(χ2(6)) to

around 80% for t(5). Similar improvements are seen in-sample and out-of-sample.

3.2 Results under mis-specification: deterministic volatility

In Section 3.1, the set of statistical models embedded the true Data Generating Process (DGP).

In reality, however, we do not know whether the statistical model encompasses the DGP. To

see how the different models perform if the DGP lies outside the set of all statistical models

considered, we conduct a second simulation experiment similar to Engle (2002). We choose a

number of deterministic volatility patterns and estimate each of the statistical models discussed

earlier. As our performance metric, we only choose the in-sample and out-of-sample RMSEs of

the volatility. The RMSEs of the parameters are less useful here, as the statistical model never

encompasses the DGP. The specific deterministic volatility patterns are presented in Figure 1.

They include slowly moving paterns of volatility (sine), long-lived and short-lived structural

changes in volatility, and regular bursts of volatility that gradually taper off.

The simulation results are presented in Table 2. We normalize each RMSE with respect to

the in-sample RMSE of QMLE. Also note that even the MLE entry is mis-specified here: though

it uses the correct distributional assumptions, the volatility dynamics in (2′) are incorrect uder

the deterministic volatility patters in Figure 1.

The general picture emerging from Table 2 is that for each density and most volatility pat-

terns, the RMSEs of SMLE(1) are close to those of MLE. This reveals that in terms of in-sample

fit and out-of-sample forecast accuracy, SMLE performs well. We particularly note that if the

difference between QMLE and MLE is large, then SMLE(1) also performs considerably better

than QMLE. Examples of this are provided by the fat-tailed t(3) and t(5) distributions. We

conclude that the SMLE also performs well under possible model mis-specification: volatilities

are estimated and forecast more accurately than using the standard QMLE approach for a

variety of deterministic volatility patterns and error distributions.

3.3 Results under mis-specification: stochastic volatility

To conclude our simulations, we investigate the performance of the semiparametric GAS model

if the data is generated by a stochastic volatility process. This may appear more reasonable
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Figure 1: Deterministic volatility patterns
The specifications are as follows. Sine: σt = 2.5 + cos(2πt/200). Long regimes last 500 days and have σt =

1.5, 3.5. Short regimes have the same values for σt but last 200 days. Burst: σt = 1.5 for 150 days, then grows

linearly to σt = 3.5 over 5 days, and then linearly decreases to σt = 1.5 over the next 95 days. Then the burst

pattern restarts.

than the deterministic volatility patterns form Section 3.2. In addition, we benchmark the

performance of the semiparametric GAS model to that of the semiparametric GARCH model.

This allows us to obtain a better perspective on the value-added of the altered dynamics of

volatility in equation (2′).

The stochastic volatility (SV) DGP is specified as yt ∼ p(0, σ2
t ) with σ2

t = exp(αt) and

αt = 0.01 + 0.98αt−1 + ηt, where ηt ∼ N(0, 0.12), for t = 1, · · ·, n. The distribution p can be

any of the four distributions used in 3.1. We also performed simulations with a less persistent

SV process, but the results are qualitatively similar and not reported here. They are available

in the online appendix.

The results are reported in Table 3. For each distribution and estimator, we compute a test

statistic to see whether over the 100 Monte Carlo simulations the average RMSE of the GAS

specification is significantly lower than that of the GARCH specification. Note that even under

the normal distribution the GAS and GARCH specifications do not coincide, as the former

parameterizes the log volatility, whereas the latter parameterizes the variance itself.
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The table shows that for the normal distribution, the performance of QMLE, MLE, and

SMLE(1) are very similar, both in-sample and out-of-sample. Also the performance of the

different dynamic specifications for the volatility does not seem to matter much. The GAS and

GARCH models behave similarly. In particular, looking at the test whether GAS significantly

outperforms GARCH, we see that none of the p-values indicate a rejection of the null that the

two specifications have equal performance.

The picture changes substantially if we consider the fat-tailed distributions t(3) and t(5).

We see that the QMLE-t(ν) and SMLE(1) improve upon QMLE for the GAS specification,

but not so much for the GARCH specification. This is due to the fact that under the SV

specification, the volatility is a smoothly evolving Gaussian process. The data, however, are

drawn from a fat-tailed distribution. This implies that from time to time a large value is

drawn, even though the volatility has not changed considerably. The volatility in the GARCH

specification directly reacts to this through its dependence on squared lagged observations.

This explains the limited improvement of the forecast accuracy for the GARCH specification.

The GAS model, by contrast, accounts for the fat-tailed nature of the observation density and

results in more moderate changes in the variance. This results in a better overall performance

in-sample and out-of-sample compared to the QMLE. The improvement in RMSE is significant

for both the QMLE-t(ν) and SMLE, as can be seen from the reported p-values.

A similar result is seen for the mixture of normals, particularly for SMLE. Though the semi-

parametric GARCH model improves on the QMLE here, the improvement is more substantial

for the GAS SMLE. The reason for this is that the GAS SMLE exploits the fact that left and

right-hand tail observations convey different information about the changes in volatility. The

GARCH approach, however, exploits the asymmetric density properties for the likelihood, but

not for the volatility dynamics. The latter still only depend on squared lagged observations.

The result is a significant difference in in-sample and out-of-sample fit of the semiparametric

GAS and GARCH specifications.

We conclude that our semiparametric volatility model also performs well under stochastic

volatility DGPs: volatilities are still estimated comparatively well compared to the competing

semiparametric GARCH models. The results are further corroborated in an (unreported) more

comprehensive set of simulation experiments with more densities: if the true underlying density

has fatter tails or more skewness, and if the underlying stochastic volatility process is more

persistent, the gains of the semiparametric GAS specification over the semiparametric GARCH

model are larger.

12



-.25

-.20

-.15

-.10

-.05

.00

.05

.10

.15

86 88 90 92 94 96 98 00 02 04 06 08 10

in-sample out-of-sample

Figure 2: Daily IBM Returns

IBM returns, 01/02/1986 - 12/31/2010. In-sample period is 01/02/1986 - 12/30/2005. Out-of-sample period is

01/03/2006 - 12/30/2011.

4 Empirical application and density forecast evaluation

4.1 Estimation results

We apply the new semiparametric GAS volatility model to IBM daily returns from Jan 2, 1986

to Dec 30, 2011. We split the sample into an in-sample estimation period containing the data

up to Dec 31, 2005 and a subsequent out-of-sample forecasting period. The latter is used for

density forecast evaluation. The in-sample and out-of-sample periods period contain 5047 and

1511 observations, respectively. Figure 2 presents the data.

The estimation results are presented in Table 4. We report the resuls for the score driven

GAS models as well as for a number of GARCH models. For comparison, we report the

results in terms of persistence parameter β̃ of the GAS specification and α+ β of the GARCH

specification; see also Creal, Koopman, and Lucas (2011).

The volatility is highly persistent across all specifications. All values of β̃ and α + β are

close to one. The estimate of ω̃ for the GAS models is the result of a slight reparameterization:

we estimate the model by replacing ω̃ by ω̃(1 − β̃), such that ω̃ is 2 times the unconditional

expectation of the log daily volatility. A value of ω̃ ≈ −8 then corresponds to annualized
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volatility levels of around 28%.

The degrees of freedom parameter for the QMLE-t(ν) is estimated at about ν = 5, indi-

cating a substantial degree of (conditional) fat-tailedness of the returns. The small value of

ν have a double impact: it changes the likelihood, and it changes the impact of incidental

large observations on the volatility dynamics through equation (2′). As a result, the likelihood

value increases by more than 424 points from QMLE-normal to QMLE-t(ν). To decompose

this effect into its two components, we also estimate the model QMLE∗ − t(ν). This model

has the Student’s t likelihood, but the volatility dynamics from the QMLE-normal model. We

see that the biggest effect (more than 369 points) is due to the change of the likelihood. A

substantial part (of about 55 points), however, is due to the altered volatility dynamics. In

terms of likelihood value, the switch from t(ν) to a non-parametrically estimated density is

relatively small (about 6 points). Interestingly, however, the likelihood values of both QMLE-

t(ν) and SMLE(1) are substantially higher than their GARCH counterparts GARCH-t(ν) and

and semiparametric-GARCH, respectively, the differences being around 23 to 25 points. As the

models are non-nested, however, a strict likelihood comparison is unwarranted.

Table 4 only presents the estimates for the parametric part of the model. In particular, the

estimate q̂(·) of the error density is not shown. Note that in contrast to the semiparametric

GARCH model, the error density is not a nuisance parameter in the GAS model any more.

Rather, it is a crucial part of the model through its impact on the volatility dynamics in (2′).

A different estimate of the error density results in a different news impact curve, i.e., a different

functional relationship between values of εt and values of ft+1. To obtain some more insight,

we plot the estimated score functions. The results are presented in Figure 3.

Figure 3 shows that for the QMLE the impact has its familiar quadratic shape. Large

positive and negative standardized residuals result in an identically large increase in the (log)

volatility level ft. For the QMLE-t(ν), the score function has an entirely different shape; see

also Creal, Koopman, and Lucas (2011). In particular, large positive and negative standardized

residuals have a bounded impact on future log volatility levels. This is due to the downweighting

effect for the Student’s t distribution in (4) as explained earlier.

The curves for the SMLE estimator look more like those of the Student’t t than those of the

Gaussian distribution. For standardized residuals between -2.5 and 2.5, the score functions be-

have like that of QMLE-t(ν). For larger absolute values of the standardized residuals, however,

the values of the score functions remain at a finite level or even decrease. This means that large

absolute innovations in the semiparametric model are more likely to be attributed to a draw

from the tail area rather than to an increase in volatility. It is also interesting to see that the
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Figure 3: Plots of Score Functions

Plots of the score steps st in equations (2′) and (3) as a function of ε̂t = (yt − µ̂)/σ̂t.

news impact curve decreases in |εt| for large negative εt, whereas it appears to level off for large

positive values. This indicates that the semiparametric approach recognizes the error density

to be left-skewed. As a result, the volatility dynamics attribute less of the left-tail observations

to local volatility increases and more to the skewed nature of the error distribution.

4.2 Density forecast evaluation

So far, we have concentrated on the models’ performance in-sample. We now proceed to eval-

uate the performance of the different models out-of-sample. Our main tool to compare the

different methods is the density forecast evaluation methods as proposed by Diebold, Gunther,

and Tay (1998). Assume we have series of true densities {p(yt|ht)}mt=1 as well as density fore-

casts {p̂(yt|ht)}mt=1, where m is the number of observations used in the evaluation. Although

{p(yt|ht)}mt=1 is never observed, Diebold, Gunther, and Tay (1998) show that we can evaluate

density forecasts by assessing the probability integral transforms zt, with

zt =

∫ yt

−∞
p̂(u|ht)du. (9)
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They prove that if a sequence of density forecasts {p̂(yt|ht)}mt=1 coincides with {p(yt|ht)}mt=1,

then under usual mild conditions the sequence of probability integral transforms zt is indepen-

dently and identically distributed (i.i.d.), each zt being standard uniform between 0 and 1, i.e.,

zt
i.i.d.∼ U[0, 1]. We can thus evaluate a density forecast by assessing whether the probability

integral transforms zt are i.i.d. U[0, 1]. Diebold, Gunther, and Tay (1998) suggest to test this

using a histogram plot with confidence bounds for each of the bins underlying the histogram.

They also suggest the use of correlograms of (zt − z̄)i for i = 1, . . . , 4, where z̄ is the time-

series average of zt. Diebold, Gunther, and Tay (1998) argue that these values of i suffice to

reveal dependence through the conditional mean, conditional variance, conditional skewness,

or conditional kurtosis.

Figure 4 presents the histograms of {zt}mt=1 and Figure 5 presents the correlograms of (z−z̄)2

based on the out-of-sample part of the data only. We do not present correlograms of (z− z̄)i for

i = 1, 3, because there is almost no significant serial correlation in both (z− z̄) and (z− z̄)3 for

any of the models considered, whereas the correlograms for (z− z̄)4 look very much like those of

(z− z̄)2. We present the results for QMLE-normal, QMLE-t(ν), SMLE(1) and semiparametric-

GARCH.

For the Gaussian model, the upper-left panel in Figure 4 shows that the histogram of the

probability integral transforms has a distinct, nonuniform ‘butterfly’ shape. There is a hump in

the middle and a lower region in each tail. This indicates that too many of the realizations fall

in the middle of the distribution and the tails of the model are relatively too thin compared to

the realized data. This is exactly what we expect for financial returns. The horizontal lines in

the histogram indicate the approximate 95% confidence intervals for the individual bin heights

under the null that zt is i.i.d. U[0, 1].

The upper-left graph of Figure 5 shows the correlogram of (z − z̄)2. The dashed lines are

Bartlett’s approximate 95% confidence intervals under the null that zt is i.i.d. There is some

small but significant serial correlation in (z − z̄)2 for QMLE-normal. This means that the

Gaussian GAS model does not succeed in capturing the second order dynamics of the data, or

that the volatility dynamics might still be mis-specified.

The upper-right graph of Figure 4 shows the histogram for the Student’s t based model.

The histogram in this case is much closer to the uniform distribution, except for a slight peak

in the right tail. In particular, the butterfly pattern has disappeared because we allow for fat

tails and leptokurtosis. The peak in the right tail signals that the symmetric Student’s t model

assigns too much tail mass to the right-hand tail. Put differently, the left tail should be fatter

than the right-hand tail, which is commensurate with the left skew found in the impact curves
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Figure 4: Density Forecast Evaluation: densities of zt

The different panels plot the density estimates of the probabilitity integral transforms zt for four different statis-

tical models: QMLE-normal(upper left), QMLE-t(ν)(upper right), SMLE(1)(lower left), and semiparametric-

GARCH(lower right).

shown earlier. The upper-right graph of Figure 5 shows the correlogram for the Student’s

t based model. Interestingly, the correlogram of (zt − z̄)2 no longer shows any evidence of

mis-specification in the volatility dynamics after accounting for the reduced impact of large

observations on volatility levels through equation (4).

For the semiparametric model, the lower-left graph in Figure 4 reveals that the histogram of

the probability integral transform remains entirely inside the pointwise confidence 95% band.

As the nonparametric estimate of the error density accommodates both the fat tails and the

skewness prevalent in the empirical data, we no longer detect any mis-specification here. Also

the lower-left graph in Figure 5 shows no evidence of mis-specified conditional volatility dy-

namics.

For the semiparametric GARCH model, the lower-right graph in Figure 4 shows that the

density of the probability integral transforms is close to the uniform distribution, except for a

small peak in the middle. We expect some violations in the center of the distribution for the

semiparametric-GARCH model under fat-tailed innovations. Due to the GARCH dynamics,

a large observation increases volatility for a few periods, while such observations are from
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Figure 5: Density Forecast Evaluation: correlogram of (zt − z̄)2

The figure plots the autocorrelation functions of the squares of the demeanded probabilitity integral transforms

zt. The different panels are for four different statistical models: QMLE-normal(upper left), QMLE-t(ν)(upper

right), SMLE(1)(lower left), and Semi-GARCH(lower right).

time to time due to the fat-tailedness rather than to local increases in volatility. As a result,

the volatility will be too large for a few periods, resulting in an (unduely) higher number of

probability integral transforms zt near the center. This is corroborated by the lower-right

graph in Figure 5, which is similar to that of QMLE-normal. There is small but significant

correlation in (zt − z̄)2, resulting from the volatility dynamics. We therefore conclude that

the semiparametric volatility model proposed in this paper provides an improvement over the

QMLE method as well as over the semiparametric-GARCH model, both in terms of in-sample

model fit and out-of-sample density forcast evaluation.

5 Conclusion

We have proposed a new semiparametric observation-driven volatility model. As in the standard

semiparametric GARCH models, we use kernel density estmation methods to estimate the error

density. Unlike the semiparametric GARCH models, however, the density estimate also enters
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the volatility dynamics directly via a Generalized Autoregressive Score (GAS) structure of

the model. As a result, the volatility dynamics in the new model are much less sensitive to

incidental influential observations and outliers.

We showed that it is easy to estimate the model by standard maximum likelihood meth-

ods. We conducted three simulation experiments. In the first one, we showed that the model

regains parts of the estimation inefficiency of the standard (Gaussian) QMLE. In the second

and third experiment, we used deterministic and stochastic volatility dynamics, respectively, to

investigate the effect of model mis-specification on the performance of the different statistical

models. We demonstrated that the new model gives in-sample estimation and out-of-sample

forecasts of volatility levels of similar accuracy as when we would know the true error density.

For stochastic volatilities, we also made a comparison of our model with the semiparametric-

GARCH model. This revealed that our model outperforms the semiparametric-GARCH model

when the density is fat-tailed and/or skewed.

In our empirical example, we illustrated the performance of the new model for stock re-

turn data. By plotting the score function, we saw that the new model has moderate increase

in volatility following large absolute innovations. Volatility levels also reacted differently to

large positive versus large negative innovations due to the estimated skewness of the distribu-

tion. When evaluating the model using density forecast evaluation, we showed that the model

performs better than its competitors, both in terms of in-sample model fit and out-of-sample

density forecast evaluation.

The new semiparametric volatility model with generalized autoregressive score dynamics

thus performs well both in-sample and out-of-sample, and both for empirical and simulated

data. It provides a useful alternative to standard semiparametric GARCH models. Moreover,

the model is also easily extended to allow for more complicated dynamics, such as higher order

or even fractional dynamics in either the mean or the volatility specification.
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Table 1: Simulation results: generalized autoregressive score dynamics

This table presents the relative Root Mean Square Error (RMSE) of parameter estimates with respect to

QMLE and the relative median Root Mean Square Error of in-sample volatility estimates (RMSE in) and out-

of-sample volatility forecasts (RMSE out) with respect to the in-sample RMSE of volatitity estimates for the

QMLE. Results are based on 100 Monte Carlo replications of time series of 2,000 observations (1,000 in-sample

and 1,000 out-of-sample). The underlying data generating process is given by equations (1)–(2′). We consider

four distributions: the standard normal (N), Student’s t(3), t(5), and a mixture of normals resembling a χ2(6)

distribution (MN(χ2(6))). The statistical models are the based on the true distribution (MLE), the normal

distribution (QMLE), the Student’s t distribution with estimated degrees of freedom (QMLE-t(ν)), and on the

semiparametric approach (SMLE(1)). The SMLE(1) approach is initialized using thte QMLE-t(ν) estimates.

µ ω̃ α̃ β̃ RMSE in RMSE out

N MLE 1.000 1.000 1.000 1.000 1.000 1.025

QMLE 1.000 1.000 1.000 1.000 1.000 1.025

QMLE-t(ν) 1.001 0.998 1.104 0.998 1.022 1.033

SMLE(1) 1.029 1.197 1.434 1.023 1.803 1.994

t(3) MLE 0.666 0.616 0.361 0.161 0.274 0.295

QMLE 1.000 1.000 1.000 1.000 1.000 1.147

QMLE-t(ν) 0.668 1.018 0.357 0.165 0.410 0.411

SMLE(1) 0.873 1.154 0.400 0.209 0.599 0.648

t(5) MLE 0.764 0.852 0.448 0.335 0.298 0.294

QMLE 1.000 1.000 1.000 1.000 1.000 1.021

QMLE-t(ν) 0.767 0.971 0.462 0.334 0.319 0.327

SMLE(1) 0.942 1.137 0.499 0.480 0.443 0.519

MN(χ2(6)) MLE 0.585 0.977 0.744 0.748 0.279 0.274

QMLE 1.000 1.000 1.000 1.000 1.000 1.014

QMLE-t(ν) 1.592 1.008 1.612 1.010 0.981 0.986

SMLE(1) 0.751 1.115 1.367 0.776 0.589 0.587
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Table 2: Simulation results: deterministic volatility patterns

This table presents the relative median of Root Mean Square Error of in-sample volatility estimates (RMSE

in) and out-of-sample volatility forecasts (RMSE out) with respect to in-sample RMSE of the QMLE estimates

over 100 Monte Carlo replications and 2,000 time series observations (1,000 in-sample and 1,000 out-of-sample).

There are four distributions: normal, Student’s t(3), t(5), and a mixture of normals MN(χ2(6)). The initial

starting values for SMLE(1) are the QMLE estimates.

sin short regime long regime burst(1)

in out in out in out in out

N MLE 1.000 0.986 1.000 1.029 1.000 1.081 1.000 1.001

QMLE 1.000 0.986 1.000 1.029 1.000 1.081 1.000 1.001

QMLE-t(ν) 0.981 0.965 0.994 1.009 0.984 1.082 1.010 1.024

SMLE(1) 0.984 0.978 0.986 1.003 0.924 1.132 1.067 1.100

t(3) MLE 0.683 0.680 0.586 0.574 0.595 0.714 0.778 0.779

QMLE 1.000 1.038 1.000 1.046 1.000 1.283 1.000 1.023

QMLE-t(ν) 0.754 0.767 0.703 0.702 0.702 0.775 0.725 0.831

SMLE(1) 0.778 0.799 0.670 0.647 0.754 0.979 0.887 0.911

t(5) MLE 0.796 0.791 0.752 0.738 0.764 0.912 0.856 0.857

QMLE 1.000 0.984 1.000 0.937 1.000 1.091 1.000 0.969

QMLE-t(ν) 0.815 0.820 0.776 0.779 0.812 0.955 0.875 0.888

SMLE(1) 0.820 0.823 0.746 0.764 0.756 0.982 0.901 0.932

MN(χ2(6)) MLE 0.885 0.874 0.895 0.933 0.896 0.995 0.910 0.916

QMLE 1.000 0.973 1.000 1.015 1.000 1.092 1.000 1.021

QMLE-t(ν) 0.990 0.953 0.998 0.998 1.016 1.113 1.049 1.049

SMLE(1) 0.882 0.868 0.882 0.900 0.856 1.062 0.980 0.999
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Table 3: Simulation results: stochastic volatility

This table presents the relative median of the Root Mean Square Error (RMSE) of in-sample volatility estimates

(RMSE in) and out-of-sample volatility forecasts (RMSE out) with respect to the GAS model’s in-sample

RMSE of QMLE. For each density we use 100 Monte Carlo replications and 2,000 time series observations

(1,000 in-sample and 1,000 out-of-sample). The stochastic volatility DGP SV is specified as yt ∼ p(0, σ2
t ) with

σ2
t = exp(αt) and αt = 0.01 + 0.98αt−1 + ηt, where ηt ∼ N(0, 0.12), for t = 1, . . . , n. Four distributions are used

to generate yt: normal, Student’s t(3), t(5), and a mixture of normals MN(χ2(6)). The estimation methods

are QMLE, QMLE-t(v) and SMLE(1) for both GAS and GARCH specifications of the volatility dynamics, see

equations (2) and (2′). A one-side test is carried out for the average RMSE for the GAS model being smaller

than that of the GARCH specification using the 100 simulations. The p-values are reported. Significance is

denoted as ∗∗∗ (1%), ∗∗ (5%), and ∗ (10%).

SV p-value

GAS GARCH one-side test

in out in out in out

N QMLE 1.000 1.092 1.001 1.078 0.458 0.526

QMLE-t(ν) 0.982 1.055 0.995 1.078 0.409 0.395

SMLE(1) 1.002 1.091 1.008 1.083 0.717 0.742

t(3) QMLE 1.000 1.197 1.033 1.153 0.766 0.996

QMLE-t(ν) 0.873 0.913 0.996 1.142 0.001∗∗∗ 0.000∗∗∗

SMLE(1) 0.953 1.053 1.018 1.142 0.000∗∗∗ 0.002∗∗∗

t(5) QMLE 1.000 1.115 0.981 1.058 0.849 0.993

QMLE-t(ν) 0.900 0.971 0.986 1.071 0.000∗∗∗ 0.000∗∗∗

SMLE(1) 0.942 1.006 0.974 1.058 0.011∗∗ 0.170

χ2(6) QMLE 1.000 1.036 0.995 1.042 0.517 0.634

QMLE-t(ν) 1.002 1.029 1.026 1.076 0.057∗ 0.155

SMLE(1) 0.938 0.974 0.985 1.024 0.029∗∗ 0.021∗∗
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Table 4: Empirical Estimation Results

Empirical results based on IBM daily stock return series between January 1986 and December 2011. We

estimate seven different models: QMLE-norm(al), QMLE-t(ν), QMLE∗-t(ν), SMLE(1), GARCH, GARCH-t(ν)

and semi(parametric)-GARCH. The model QMLE∗− t(ν) has the same likelihood as QMLE-t(ν), but the same

volatility dynamics as QMLE-normal to isolate the effect of a change in likelihood and a change in volatility

dynamics. The starting values for SMLE(1) and semiparametric-GARCH are QMLE-t(ν) and GARCH-t(ν),

respectively.

QMLE QMLE∗ QMLE SMLE(1) GARCH GARCH GARCH

normal t(ν) t(ν) semi normal t(ν) semi

µ 0.001 0.000 0.000 0.000 µ 0.001 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) ( 0.000)

ω̃ -8.098 -8.239 -8.182 -7.897 ω 0.001 0.000 0.000

(0.059) (0.112) (0.176) (0.149) (0.000) (0.000) (0.000)

α̃ 0.059 0.016 0.131 0.142 α 0.078 0.033 0.046

(0.007) (0.002) (0.019) (0.010) (0.009) (0.006) (0.006)

β̃ 0.985 0.993 0.994 0.991 α+ β 0.993 0.995 0.994

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

ν 4.743 5.174 ν 4.992

(0.300) (0.345) (0.302)

log-lik 13241.5 13610.9 13665.6 13671.5 13324.5 13642.5 13644.9
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Appendix: additional simulation resuls
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Table A1: Simulation results(QMLE as the initial starting value for SMLE(1))

This table presents the average parameter estimates (Mean), the Root Mean Square Error (RMSE) of parameter
estimates and the median of Root Mean Square Error of in-sample volatility estimation (RMSE in) and out-
of-sample volatility forecast (RMSE out) over 100 Monte Carlo replications and 2,000 time series observations
(1,000 in-sample and 1,000 out-of-sample) for seven distributions and six different estimation methods. The
distributions used are standard normal, a balanced mixture of two standard normals with means 2 and -2,
Student’s t(3), t(5), t(8), χ2(6) and χ2(12). The estimation methods are QMLE, QMLE-t(ν), MLE, SMLE(1)-
(3). The initial starting values for SMLE(1) are QMLE-t(ν) estimates. The boldface numbers in column (µ),
(ω), (α), (β) show the model with smaller RMSE between QMLE and SMLE(1). The boldface numbers in the
last two columns show the model with smaller RMSE in and RMSE out between QMLE and SMLE(1).

µ ω α β RMSE in RMSE out
0.000 2.000 0.300 0.900

N QMLE Mean -0.012 1.997 0.304 0.889 0.108 0.111
RMSE 0.075 0.096 0.046 0.035

QMLE-t(ν) Mean -0.012 1.997 0.312 0.889 0.109 0.110
RMSE 0.075 0.096 0.051 0.035

SMLE(1) Mean -0.009 2.038 0.326 0.888 0.198 0.214
RMSE 0.077 0.115 0.065 0.036

SMLE(2) Mean -0.010 2.034 0.327 0.887 0.189 0.212
RMSE 0.077 0.109 0.065 0.035

SMLE(3) Mean -0.010 2.033 0.326 0.888 0.192 0.213
RMSE 0.077 0.109 0.064 0.035

MN QMLE Mean 0.000 2.001 0.832 0.894 0.219 0.222
RMSE 0.053 0.148 0.535 0.019

QMLE-t(ν) Mean 0.000 2.003 0.836 0.894 0.223 0.227
RMSE 0.053 0.148 0.539 0.019

MLE Mean -0.001 1.996 0.300 0.894 0.079 0.080
RMSE 0.030 0.148 0.018 0.018

SMLE(1) Mean 0.000 1.969 0.489 0.893 0.184 0.183
RMSE 0.058 0.166 0.192 0.018

SMLE(2) Mean 0.000 1.969 0.475 0.894 0.181 0.182
RMSE 0.059 0.166 0.179 0.018

SMLE(3) Mean 0.000 1.971 0.476 0.894 0.181 0.182
RMSE 0.059 0.172 0.179 0.018

t(3) QMLE Mean -0.003 1.966 0.094 0.632 0.553 0.649
RMSE 0.094 0.227 0.278 0.482

QMLE-t(ν) Mean -0.003 1.994 0.299 0.877 0.221 0.224
RMSE 0.062 0.207 0.095 0.073

MLE Mean -0.003 1.994 0.300 0.878 0.147 0.157
RMSE 0.062 0.121 0.096 0.070

SMLE(1) Mean -0.002 1.995 0.245 0.739 0.366 0.381
RMSE 0.084 0.284 0.192 0.406

SMLE(2) Mean -0.005 2.035 0.259 0.738 0.336 0.370
RMSE 0.082 0.303 0.181 0.431

SMLE(3) Mean -0.006 2.042 0.271 0.741 0.345 0.367
RMSE 0.083 0.320 0.170 0.429

t(5) QMLE Mean -0.011 2.013 0.153 0.833 0.440 0.450
RMSE 0.098 0.131 0.158 0.167
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Table A1: Simulation results(QMLE as the initial starting value for SMLE(1))(continue)

µ ω α β RMSE in RMSE out
0.000 2.000 0.300 0.900

t(5) QMLE-t(ν) Mean -0.008 1.998 0.302 0.882 0.140 0.144
RMSE 0.075 0.127 0.073 0.056

MLE Mean -0.007 1.996 0.302 0.882 0.131 0.130
RMSE 0.075 0.111 0.071 0.056

SMLE(1) Mean -0.005 2.035 0.282 0.856 0.218 0.241
RMSE 0.091 0.148 0.091 0.151

SMLE(2) Mean -0.006 2.044 0.288 0.855 0.199 0.239
RMSE 0.092 0.151 0.083 0.160

SMLE(3) Mean -0.006 2.044 0.290 0.855 0.195 0.240
RMSE 0.092 0.154 0.083 0.161

t(8) QMLE Mean -0.006 1.989 0.191 0.887 0.285 0.320
RMSE 0.082 0.120 0.120 0.049

QMLE-t(ν) Mean -0.008 1.981 0.290 0.896 0.129 0.124
RMSE 0.079 0.117 0.061 0.037

MLE Mean -0.008 1.981 0.291 0.895 0.117 0.115
RMSE 0.079 0.110 0.062 0.038

SMLE(1) Mean -0.006 2.021 0.281 0.893 0.191 0.213
RMSE 0.080 0.125 0.065 0.041

SMLE(2) Mean -0.005 2.023 0.283 0.892 0.192 0.217
RMSE 0.080 0.127 0.062 0.041

SMLE(3) Mean -0.005 2.023 0.284 0.892 0.189 0.217
RMSE 0.081 0.129 0.062 0.041

χ2(6) QMLE Mean 0.085 2.007 0.275 0.886 0.416 0.421
RMSE 0.123 0.134 0.054 0.042

QMLE-t(ν) Mean -0.142 2.020 0.352 0.888 0.408 0.410
RMSE 0.196 0.135 0.087 0.043

MLE Mean -0.013 1.981 0.301 0.894 0.116 0.114
RMSE 0.072 0.131 0.040 0.032

SMLE(1) Mean -0.011 1.968 0.348 0.893 0.246 0.247
RMSE 0.092 0.153 0.073 0.032

SMLE(2) Mean 0.012 1.984 0.344 0.892 0.231 0.237
RMSE 0.089 0.149 0.069 0.033

SMLE(3) Mean 0.012 1.982 0.343 0.892 0.230 0.238
RMSE 0.089 0.146 0.067 0.032

χ2(12) QMLE Mean 0.062 2.000 0.280 0.886 0.342 0.345
RMSE 0.106 0.130 0.054 0.042

QMLE-t(ν) Mean -0.058 2.002 0.333 0.887 0.332 0.334
RMSE 0.123 0.130 0.074 0.043

MLE Mean -0.011 1.985 0.303 0.892 0.120 0.113
RMSE 0.080 0.128 0.044 0.035

SMLE(1) Mean -0.006 1.999 0.338 0.891 0.228 0.228
RMSE 0.089 0.145 0.072 0.036

SMLE(2) Mean 0.006 2.005 0.336 0.890 0.221 0.230
RMSE 0.088 0.149 0.071 0.036

SMLE(3) Mean 0.006 2.004 0.336 0.890 0.220 0.224
RMSE 0.087 0.143 0.069 0.036
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Table A2: Simulation results(QMLE-t(ν) as the initial starting value for SMLE(1))

This table presents the average parameter estimates (Mean), the Root Mean Square Error (RMSE) of parameter
estimates and the median of Root Mean Square Error of in-sample volatility estimation (RMSE in) and out-
of-sample volatility forecast (RMSE out) over 100 Monte Carlo replications and 2,000 time series observations
(1,000 in-sample and 1,000 out-of-sample) for seven distributions and six different estimation methods. The
distributions used are standard normal, a balanced mixture of two standard normals with means 2 and -2,
Student’s t(3), t(5), t(8), χ2(6) and χ2(12). The estimation methods are QMLE, QMLE-t(ν), MLE, SMLE(1)-
(3). The initial starting values for SMLE(1) are QMLE-t(ν) estimates. The boldface numbers in column (µ),
(ω), (α), (β) show the model with smaller RMSE between QMLE and SMLE(1). The boldface numbers in the
last two columns show the model with smaller RMSE in and RMSE out between QMLE and SMLE(1).

µ ω α β RMSE in RMSE out
0.000 2.000 0.300 0.900

N QMLE Mean -0.012 1.997 0.304 0.889 0.108 0.111
RMSE 0.075 0.096 0.046 0.035

QMLE-t(ν) Mean -0.012 1.997 0.312 0.889 0.109 0.110
RMSE 0.075 0.096 0.051 0.035

SMLE(1) Mean -0.009 2.038 0.326 0.888 0.198 0.214
RMSE 0.077 0.115 0.066 0.036

SMLE(2) Mean -0.010 2.034 0.327 0.887 0.189 0.212
RMSE 0.077 0.109 0.065 0.035

SMLE(3) Mean -0.010 2.033 0.326 0.888 0.192 0.213
RMSE 0.077 0.109 0.064 0.035

MN QMLE Mean 0.000 2.001 0.832 0.894 0.219 0.222
RMSE 0.053 0.148 0.535 0.019

QMLE-t(ν) Mean 0.000 2.003 0.836 0.894 0.223 0.227
RMSE 0.053 0.148 0.539 0.019

MLE Mean -0.001 1.996 0.300 0.894 0.079 0.080
RMSE 0.030 0.148 0.018 0.018

SMLE(1) Mean 0.000 1.969 0.490 0.893 0.184 0.183
RMSE 0.058 0.167 0.193 0.018

SMLE(2) Mean 0.000 1.969 0.475 0.894 0.181 0.182
RMSE 0.059 0.166 0.179 0.018

SMLE(3) Mean 0.000 1.972 0.476 0.894 0.181 0.182
RMSE 0.059 0.172 0.179 0.018

t(3) QMLE Mean -0.003 1.966 0.094 0.632 0.553 0.629
RMSE 0.094 0.227 0.278 0.482

QMLE-t(ν) Mean -0.003 1.994 0.299 0.877 0.221 0.224
RMSE 0.062 0.207 0.095 0.073

MLE Mean -0.003 1.994 0.300 0.878 0.147 0.157
RMSE 0.062 0.121 0.096 0.070

SMLE(1) Mean -0.006 1.999 0.263 0.868 0.326 0.349
RMSE 0.081 0.244 0.110 0.097

SMLE(2) Mean -0.008 2.035 0.264 0.867 0.315 0.344
RMSE 0.079 0.283 0.116 0.104

SMLE(3) Mean -0.008 2.048 0.268 0.867 0.320 0.342
RMSE 0.081 0.310 0.122 0.105

t(5) QMLE Mean -0.011 2.013 0.153 0.833 0.440 0.450
RMSE 0.098 0.131 0.158 0.167
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Table A2: Simulation results(QMLE-t(ν) as the initial starting value for SMLE(1))(continue)

µ ω α β RMSE in RMSE out
0.000 2.000 0.300 0.900

t(5) QMLE-t(ν) Mean -0.008 1.998 0.302 0.882 0.140 0.144
RMSE 0.075 0.127 0.073 0.056

MLE Mean -0.007 1.996 0.302 0.882 0.131 0.130
RMSE 0.075 0.111 0.071 0.056

SMLE(1) Mean -0.007 2.040 0.291 0.874 0.195 0.229
RMSE 0.092 0.149 0.079 0.080

SMLE(2) Mean -0.007 2.044 0.292 0.871 0.196 0.233
RMSE 0.091 0.153 0.081 0.088

SMLE(3) Mean -0.007 2.044 0.293 0.871 0.197 0.235
RMSE 0.091 0.155 0.082 0.091

t(8) QMLE Mean -0.006 1.989 0.191 0.887 0.285 0.320
RMSE 0.082 0.120 0.120 0.049

QMLE-t(ν) Mean -0.008 1.981 0.290 0.896 0.129 0.124
RMSE 0.079 0.117 0.061 0.037

MLE Mean -0.008 1.981 0.291 0.895 0.117 0.115
RMSE 0.079 0.110 0.062 0.038

SMLE(1) Mean -0.005 2.021 0.285 0.892 0.188 0.214
RMSE 0.080 0.124 0.062 0.041

SMLE(2) Mean -0.005 2.023 0.285 0.892 0.190 0.217
RMSE 0.080 0.128 0.062 0.041

SMLE(3) Mean -0.005 2.024 0.285 0.892 0.190 0.217
RMSE 0.081 0.128 0.062 0.041

χ2(6) QMLE Mean 0.085 2.007 0.275 0.886 0.416 0.421
RMSE 0.123 0.134 0.054 0.042

QMLE-t(ν) Mean -0.142 2.020 0.352 0.888 0.408 0.410
RMSE 0.196 0.135 0.087 0.043

MLE Mean -0.013 1.981 0.301 0.894 0.116 0.114
RMSE 0.072 0.131 0.040 0.032

SMLE(1) Mean -0.013 1.967 0.351 0.893 0.245 0.244
RMSE 0.092 0.150 0.074 0.033

SMLE(2) Mean 0.007 1.977 0.343 0.893 0.232 0.237
RMSE 0.089 0.143 0.067 0.032

SMLE(3) Mean 0.008 1.977 0.342 0.893 0.229 0.239
RMSE 0.090 0.143 0.066 0.032

χ2(6) QMLE Mean 0.062 2.000 0.280 0.886 0.342 0.345
RMSE 0.106 0.130 0.054 0.042

QMLE-t(ν) Mean -0.058 2.002 0.333 0.887 0.332 0.334
RMSE 0.123 0.130 0.074 0.043

MLE Mean -0.011 1.985 0.303 0.892 0.120 0.113
RMSE 0.080 0.128 0.044 0.035

SMLE(1) Mean -0.008 1.997 0.340 0.892 0.225 0.238
RMSE 0.091 0.142 0.072 0.037

SMLE(2) Mean 0.004 2.001 0.337 0.891 0.221 0.230
RMSE 0.088 0.139 0.070 0.036

SMLE(3) Mean 0.004 2.002 0.337 0.891 0.220 0.230
RMSE 0.087 0.139 0.071 0.036
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Table A3: Simulation results: deterministic volatility patterns

This table presents the median of Root Mean Square Error of in-sample volatility estimation (RMSE in) and out-
of-sample volatility forecast (RMSE out) over 100 Monte Carlo replications and 2,000 time series observations
(1,000 in-sample and 1,000 out-of-sample) for seven distributions and six different estimation methods. The
distributions used are normal, a balanced mixture of two standard normals with means 2 and -2, Student’s t(3),
t(5), t(8), χ2(6) and χ2(12). The estimation methods are QMLE, QMLE-t(ν), MLE, and SMLE(1)-(3). The
initial starting values for SMLE(1) are QMLE estimates.

Sin short regime long regime
RMSE in out in out in out

N MLE(QMLE) 0.437 0.431 0.538 0.554 0.396 0.429
QMLE-t(ν) 0.429 0.422 0.535 0.543 0.390 0.429

SMLE(1) 0.430 0.428 0.530 0.540 0.366 0.449
SMLE(2) 0.429 0.427 0.530 0.542 0.366 0.449
SMLE(3) 0.430 0.427 0.530 0.541 0.366 0.449

MN QMLE 0.328 0.318 0.406 0.422 0.298 0.329
QMLE-t(ν) 0.329 0.318 0.408 0.422 0.298 0.331

MLE 0.334 0.327 0.421 0.453 0.317 0.346
SMLE(1) 0.321 0.315 0.413 0.425 0.296 0.357
SMLE(2) 0.321 0.315 0.412 0.425 0.296 0.357
SMLE(3) 0.321 0.315 0.412 0.425 0.296 0.357

t(3) QMLE 0.721 0.749 0.996 1.042 0.703 0.902
QMLE-t(ν) 0.544 0.553 0.700 0.699 0.494 0.545

MLE 0.493 0.491 0.584 0.571 0.418 0.502
SMLE(1) 0.561 0.577 0.668 0.644 0.530 0.688
SMLE(2) 0.553 0.565 0.658 0.635 0.499 0.682
SMLE(3) 0.555 0.571 0.649 0.624 0.496 0.671

t(5) QMLE 0.588 0.578 0.763 0.715 0.525 0.572
QMLE-t(ν) 0.479 0.482 0.592 0595 0.426 0.501

MLE 0.468 0.465 0.574 0.564 0.401 0.479
SMLE(1) 0.482 0.484 0.569 0.583 0.397 0.515
SMLE(2) 0.483 0.482 0.571 0.578 0.388 0.516
SMLE(3) 0.484 0.481 0.574 0.577 0.390 0.515

t(8) QMLE 0.514 0.514 0.638 0.631 0.462 0.497
QMLE-t(ν) 0.472 0.455 0.561 0.566 0.409 0.468

MLE 0.462 0.449 0.547 0.541 0.398 0.458
SMLE(1) 0.469 0.464 0.555 0.560 0.371 0.476
SMLE(2) 0.470 0.463 0.553 0.558 0.374 0.477
SMLE(3) 0.469 0.464 0.555 0.560 0.374 0.478

χ2(6) QMLE 0.471 0.458 0.570 0.578 0.418 0.456
QMLE-t(ν) 0.466 0.448 0.569 0.571 0.424 0.465

MLE 0.416 0.411 0.510 0.532 0.375 0.416
SMLE(1) 0.415 0.409 0.503 0.513 0.358 0.444
SMLE(2) 0.415 0.407 0.501 0.512 0.358 0.439
SMLE(3) 0.415 0.407 0.500 0.512 0.358 0.440

χ2(12) QMLE 0.460 0.451 0.561 0.578 0.408 0.448
QMLE-t(ν) 0.449 0.436 0.551 0.555 0.401 0.452

MLE 0.456 0.450 0.562 0.585 0.431 0.466
SMLE(1) 0.425 0.414 0.511 0.531 0.357 0.451
SMLE(2) 0.422 0.416 0.509 0.531 0.359 0.451
SMLE(3) 0.421 0.416 0.509 0.532 0.359 0.451
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Table A3: Simulation results: deterministic volatility patterns(continue)

burst(1) burst(2) burst(3)
RMSE in out in out in out

N MLE(QMLE) 0.376 0.377 0.353 0.355 0.355 0.352
QMLE-t(ν) 0.380 0.385 0.358 0.359 0.358 0.349

SMLE(1) 0.401 0.414 0.376 0.378 0.366 0.365
SMLE(2) 0.401 0.413 0.374 0.377 0.365 0.364
SMLE(3) 0.400 0.413 0.375 0.378 0.366 0.364

MN QMLE 0.293 0.289 0.273 0.269 0.264 0.264
QMLE-t(ν) 0.294 0.290 0.275 0.270 0.265 0.264

MLE 0.286 0.284 0.266 0.266 0.260 0.262
SMLE(1) 0.307 0.313 0.280 0.278 0.272 0.270
SMLE(2) 0.307 0.313 0.280 0.277 0.272 0.270
SMLE(3) 0.307 0.313 0.280 0.277 0.272 0.270

t(3) QMLE 0.592 0.606 0.588 0.603 0.588 0.627
QMLE-t(ν) 0.429 0.492 0.476 0.472 0.467 0.462

MLE 0.461 0.461 0.433 0.437 0.424 0.425
SMLE(1) 0.525 0.539 0.508 0.534 0.500 0.517
SMLE(2) 0.520 0.534 0.490 0.519 0.483 0.507
SMLE(3) 0.513 0.523 0.486 0.513 0.482 0.501

t(5) QMLE 0.505 0.490 0.485 0.475 0.485 0.465
QMLE-t(ν) 0.442 0.449 0.416 0.423 0.407 0.412

MLE 0.433 0.433 0.408 0.411 0.404 0.405
SMLE(1) 0.455 0.471 0.428 0.441 0.428 0.432
SMLE(2) 0.450 0.471 0.426 0.440 0.422 0.430
SMLE(3) 0.450 0.470 0.428 0.438 0.420 0.429

t(8) QMLE 0.442 0.442 0.422 0.426 0.414 0.413
QMLE-t(ν) 0.422 0.417 0.401 0.386 0.388 0.381

MLE 0.417 0.412 0.397 0.384 0.386 0.375
SMLE(1) 0.439 0.439 0.411 0.410 0.397 0.400
SMLE(2) 0.434 0.440 0.410 0.409 0.397 0.398
SMLE(3) 0.434 0.439 0.409 0.409 0.398 0.398

χ2(6) QMLE 0.400 0.408 0.380 0.381 0.375 0.377
QMLE-t(ν) 0.419 0.419 0.390 0.391 0.384 0.378

MLE 0.363 0.366 0.344 0.343 0.336 0.339
SMLE(1) 0.392 0.399 0.362 0.364 0.356 0.358
SMLE(2) 0.390 0.396 0.361 0.363 0.354 0.356
SMLE(3) 0.391 0.399 0.359 0.362 0.353 0.356

χ2(12) QMLE 0.395 0.404 0.374 0.375 0.368 0.372
QMLE-t(ν) 0.406 0.404 0.381 0.378 0.369 0.369

MLE 0.389 0.394 0.370 0.368 0.357 0.366
SMLE(1) 0.398 0.409 0.368 0.371 0.357 0.361
SMLE(2) 0.396 0.407 0.369 0.369 0.357 0.361
SMLE(3) 0.396 0.407 0.369 0.368 0.357 0.360
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Table A4: Simulation results: stochastic volatility

This table presents the median of Root Mean Square Error of in-sample volatility estimation (RMSE in) and out-
of-sample volatility forecast (RMSE out) over 100 Monte Carlo replications and 2,000 time series observations
(1,000 in-sample and 1,000 out-of-sample) for two stochastic volatility models. The first stochastic volatility
DGP SV(1) is specified as: yt ∼ p(0, σ2

t ) with σ2
t = exp(αt) and αt = 0.01+0.98αt−1+ηt, where ηt ∼ N(0, 0.12),

for t = 1, · · ·, n. The second stochastic volatility DGP SV(2) is specified as: yt ∼ p(0, σ2
t ) with σ2

t = exp(αt)
and αt = 0.05 + 0.9αt−1 + ηt, where ηt ∼ N(0, 0.12), for t = 1, · · ·, n. For both models, seven distributions
are used to generate yt. They are normal, a balanced mixture of two standard normals with means 2 and -2,
Student’s t(3), t(5), t(8), χ2(6) and χ2(12). The estimation methods are QMLE, QMLE-t(v) and SMLE(1)-(3)
for both GAS and GARCH models, respectively. The initial starting values for SMLE(1) are QMLE estimates.
A one-side test is carried out and p-values are given. The H0 is RMSEGAS ≥ RMSEGARCH . ∗ ∗ ∗ means the
null is rejected at 95% significance level; and ∗∗ means the null is rejected at 90% significance level.

SV(1) p-value
GAS GARCH one-side test

RMSE in out in out in out
N QMLE 0.221 0.241 0.221 0.238 0.458 0.526

QMLE-t(ν) 0.217 0.233 0.220 0.238 0.409 0.395
SMLE(1) 0.221 0.241 0.223 0.239 0.717 0.742
SMLE(2) 0.221 0.241 0.223 0.240 0.712 0.748
SMLE(3) 0.221 0.242 0.223 0.240 0.710 0.749

MN QMLE 0.184 0.190 0.187 0.190 0.206 0.531
QMLE-t(ν) 0.185 0.188 0.187 0.190 0.431 0.520

SMLE(1) 0.185 0.189 0.187 0.192 0.233 0.700
SMLE(2) 0.186 0.189 0.187 0.192 0.231 0.697
SMLE(3) 0.186 0.189 0.187 0.192 0.231 0.697

t(3) QMLE 0.310 0.371 0.320 0.357 0.766 0.996
QMLE-t(ν) 0.271 0.283 0.309 0.354 0.001∗∗∗ 0.000∗∗∗

SMLE(1) 0.295 0.326 0.315 0.354 0.000∗∗∗ 0.002∗∗∗

SMLE(2) 0.288 0.318 0.314 0.352 0.000∗∗∗ 0.002∗∗∗

SMLE(3) 0.289 0.318 0.313 0.352 0.000∗∗∗ 0.001∗∗∗

t(5) QMLE 0.265 0.296 0.260 0.280 0.849 0.993
QMLE-t(ν) 0.239 0.257 0.261 0.284 0.000∗∗∗ 0.000∗∗∗

SMLE(1) 0.250 0.266 0.258 0.280 0.011∗∗∗ 0.170
SMLE(2) 0.250 0.268 0.258 0.280 0.009∗∗∗ 0.171
SMLE(3) 0.250 0.266 0.258 0.280 0.008∗∗∗ 0.160

t(8) QMLE 0.247 0.267 0.246 0.259 0.732 0.975
QMLE-t(ν) 0.234 0.247 0.237 0.255 0.059∗∗ 0.031∗∗∗

SMLE(1) 0.234 0.259 0.246 0.260 0.018∗∗∗ 0.263
SMLE(2) 0.235 0.258 0.246 0.260 0.016∗∗∗ 0.246
SMLE(3) 0.235 0.258 0.246 0.260 0.017∗∗∗ 0.245

χ2(6) QMLE 0.237 0.246 0.236 0.247 0.517 0.634
QMLE-t(ν) 0.238 0.244 0.243 0.255 0.057∗∗ 0.155

SMLE(1) 0.223 0.231 0.234 0.243 0.029∗∗∗ 0.021∗∗∗

SMLE(2) 0.223 0.232 0.234 0.243 0.016∗∗∗ 0.016∗∗∗

SMLE(3) 0.223 0.232 0.234 0.243 0.017∗∗∗ 0.015∗∗∗

χ2(12) QMLE 0.233 0.242 0.231 0.244 0.557 0.646
QMLE-t(v) 0.229 0.238 0.235 0.247 0.139 0.189

SMLE(1) 0.225 0.234 0.232 0.240 0.198 0.145
SMLE(2) 0.224 0.234 0.232 0.240 0.156 0.129
SMLE(3) 0.224 0.234 0.232 0.241 0.157 0.127
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Table A4: Simulation results: stochastic volatility(continue)

SV(2) p-value
GAS GARCH one-side test

RMSE in out in out in out
N QMLE 0.144 0.150 0.144 0.150 0.650 0.407

QMLE-t(v) 0.145 0.150 0.147 0.150 0.258 0.484
SMLE(1) 0.144 0.148 0.145 0.149 0.739 0.461
SMLE(2) 0.144 0.148 0.145 0.149 0.748 0.464
SMLE(3) 0.144 0.148 0.145 0.149 0.748 0.464

MN QMLE 0.134 0.137 0.135 0.138 0.210 0.614
QMLE-t(v) 0.136 0.137 0.136 0.137 0.722 0.638

SMLE(1) 0.139 0.141 0.140 0.139 0.225 0.775
SMLE(2) 0.138 0.141 0.139 0.139 0.225 0.772
SMLE(3) 0.138 0.141 0.139 0.139 0.225 0.772

t(3) QMLE 0.180 0.193 0.198 0.206 0.843 0.856
QMLE-t(v) 0.168 0.171 0.174 0.181 0.093∗∗ 0.033∗∗∗

SMLE(1) 0.177 0.189 0.208 0.205 0.004∗∗∗ 0.021∗∗∗

SMLE(2) 0.175 0.186 0.207 0.200 0.001∗∗∗ 0.004∗∗∗

SMLE(3) 0.176 0.186 0.207 0.200 0.003∗∗∗ 0.016∗∗∗

t(5) QMLE 0.154 0.160 0.161 0.165 0.265 0.095∗∗

QMLE-t(v) 0.153 0.159 0.154 0.161 0.112 0.076∗∗

SMLE(1) 0.152 0.157 0.159 0.165 0.008∗∗∗ 0.019∗∗∗

SMLE(2) 0.153 0.158 0.158 0.165 0.011∗∗∗ 0.031∗∗∗

SMLE(3) 0.153 0.158 0.158 0.165 0.013∗∗∗ 0.040∗∗∗

t(8) QMLE 0.151 0.157 0.149 0.155 0.699 0.868
QMLE-t(v) 0.150 0.156 0.152 0.153 0.664 0.708

SMLE(1) 0.151 0.156 0.150 0.154 0.407 0.428
SMLE(2) 0.151 0.156 0.151 0.155 0.431 0.444
SMLE(3) 0.151 0.156 0.151 0.155 0.442 0.448

χ2(6) QMLE 0.148 0.151 0.147 0.150 0.394 0.645
QMLE-t(v) 0.153 0.155 0.151 0.152 0.661 0.606

SMLE(1) 0.150 0.150 0.151 0.151 0.288 0.504
SMLE(2) 0.150 0.150 0.151 0.150 0.298 0.516
SMLE(3) 0.150 0.150 0.151 0.150 0.301 0.518

χ2(12) QMLE 0.147 0.151 0.147 0.149 0.435 0.666
QMLE-t(v) 0.152 0.153 0.146 0.150 0.770 0.798

SMLE(1) 0.147 0.149 0.147 0.148 0.338 0.550
SMLE(2) 0.147 0.149 0.147 0.148 0.348 0.563
SMLE(3) 0.146 0.149 0.147 0.148 0.348 0.564
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Table A5: Empirical Estimation Results

Empirical results based on IBM daily stock return series between January 1986 and December 2011. We estimate
the new model by eleven different estimation methods, QMLE-normal, EGARCH-t(ν), QMLE-t(ν), SMLE(1),
SMLE(2), SMLE(3), GARCH, GARCH-t(ν), Semi-GARCH, EGARCH, Semi-EGARCH. The initial starting
values for SMLE(1) are QMLE-t(ν) estimates. The initial starting values for Semi-GARCH are GARCH-t(ν)
estimates. The initial starting values for Semi-EGARCH are EGARCH-t(ν) estimates.

QMLE-normal EGARCH-t(ν) QMLE-t(ν) SMLE(1) SMLE(2) SMLE(3) GARCH
µ 0.001 0.000 0.000 0.000 0.000 0.000 0.001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ω -8.098 -8.239 -8.182 -7.897 -7.878 -7.836 0.001

(0.059) (0.112) (0.176) (0.149) (0.144) (0.150) (0.000)
α 0.059 0.016 0.131 0.142 0.169 0.172 0.078

(0.007) (0.002) (0.019) (0.010) (0.013) (0.016) (0.009)
β 0.985 0.993 0.994 0.991 0.988 0.989 0.993

(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002)
ν 4.743 5.174

(0.300) (0.345)
log-lik 13241.5 13610.9 13665.6 13671.5 13669.5 13666.2 13324.5

GARCH-t(ν) Semi-GARCH EGARCH Semi-EGARCH
µ 0.000 0.000 0.001 0.000

(0.000) (0.000) (0.000) (0.000)
ω 0.000 0.000 -8.098 -8.173

(0.000) (0.000) (0.059) (0.063)
α 0.033 0.046 0.030 0.020

(0.006) (0.006) (0.003) (0.002)
β 0.995 0.994 0.985 0.990

(0.002) (0.002) (0.002) (0.002)
ν 4.992

(0.302)
log-lik 13642.5 13644.9 13241.5 13609.0
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