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Abstract

In this paper we provide new axiomatizations of the Shapley value for
TU-games using axioms that are based on relational aspects in the inter-
actions among players. Some of these relational aspects, in particular the
economic or social interest of each player in cooperating with each other,
can be found embedded in the characteristic function. We define a particu-
lar relation among the players that it is based on mutual indifference. The
first new axiom expresses that the payoffs of two players who are not indif-
ferent to each other are affected in the same way if they become enemies
and do not cooperate with each other anymore. The second new axiom
expresses that the payoff of a player is not affected if players to whom it is
indifferent leave the game. We show that the Shapley value is character-
ized by these two axioms together with the well-known efficiency axiom.
Further, we show that another axiomatization of the Shapley value is ob-
tained if we replace the second axiom and efficiency by the axiom which
applies the efficiency condition to every class of indifferent players. Finally,
we extend the previous results to the case of weighted Shapley values.

Keywords TU-game, Shapley value, axiomatization, indifferent players,
weighted Shapley values.
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1 Introduction

A cooperative game with transferable utility (a TU-game) is a pair (N, v),
N ⊂ N being the finite set of players and v : 2N → R with v(∅) = 0, the
characteristic function of the game, that is a real valued map that assigns to
each coalition S ⊆ N the worth v(S) that its members can obtain by coop-
erating. The worth v(S) represents the economic possibilities of the coalition
S if it is formed. Shapley (1953a) introduced a point solution for this type of
games which is remarkable for its intuitive definition and also for its character-
ization in terms of a set of reasonable axioms. The relevance of the Shapley
value is even greater if we consider the difficulty to axiomatically construct a
unique solution from the very limited information about the players interactive
environment that is reflected by the characteristic function. From this starting
point, the importance and versatility of the value have always been increasing,
in part due to multiple approaches to it, from different angles, to obtain charac-
terizations that permit us to understand the value in a greater depth. Several
of these axiomatic characterizations (on the set of all TU-games) appear, for
example, in Myerson (1980), Young (1985,1994), Hart and Mas-Colell (1989),
Chun (1989), Hamiache (2001), van den Brink (2001) or Kongo et al. (2007).
Dubey (1975) characterized it in the important subclass of simple games, Ney-
man (1989) on the additive class spanned by a single game, Algaba et al. (2003)
on the class of TU-games defined on antimatroids, Grabish and Lange (2007) on
multichoice games and Khmelnitskaya and Yanovskaya (2007) on games with
coalition struture. Albizuri (2010) adapts the axiomatic characterization of the
Myerson value to define an extension of the Shapley value to cooperative games
with externalities.

Winter (2002) is a remarkable survey on the Shapley value, that focuses on
technical aspects, like axiomatization. Moretti and Patrone (2008) presents an
excellent collection of applications.

In this paper we propose two new axiomatic characterizations of the Shapley
value that try to emphasize the importance in this solution of relational aspects
in the interactions among players. Some of these relational aspects, in particular
the economic or social interest of each player in cooperating with each other,
can be found embedded in the characteristic function, if we act as a dog digging
up a bone. Even though a TU-game is by definition cooperative, the tendency
of players to form coalitions with other players in a given game can be variable.
For instance, players in a game are indifferent to cooperate with a dummy
player as this cooperation does not include an economic incentive. But even
further, suppose that for any coalition that contains players i and j it holds that
this coalition can be partitioned in two subcoalitions such that i and j are in
different elements of this partition, and the worth of the full coalition is equal
to the sum of the worths of the two subcoalitions. Then in some sense also i
and j are indifferent to each other’s cooperation. This indifference disappears
for a pair of players if, roughly speaking, at least in one union of two disjoint
coalitions, each of the two players belonging to a different one, this additivity
does not hold. Given a game we can, using this idea, classify each pair of players
as indifferent or not to the mutual cooperation.
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We consider two axioms concerning this indifference. The first one estab-
lishes an equity principle in the spirit of the fairness axioms of Myerson (1977)
and van den Brink (2001):

If two players that are not indifferent become enemies during their interaction
in the game, and consequently they decide not to cooperate, the resulting

payoff for both must be equally affected.

The second axiom points out another aspect that is frequently assumed in
social or economic relations:

If two persons are indifferent to cooperate in a certain game, each of them will
not be affected by the fact that the other leaves the game. In other words, the

contributions of indifferent players must be null (and thus balanced).

The main result of this paper is that, if efficiency and both previous princi-
ples are assumed, we must agree with the idea of sharing the value of the grand
coalition, v(N), among the players as proposed by the Shapley value.

We also propose another axiom which states that each maximal group of no
indifferent players exactly shares its own worth among its members (without
any externality). This axiom is related to component efficiency of solutions
for graph-games in Myerson (1977). Replacing efficiency and the second new
axiom mentioned above by this last axiom, we obtain another characterization
of the Shapley value.

Finally, we adapt these axiomatizations to the case of the weighted Shapley
values introduced by Shapley (1953b) and Kalai and Samet (1987).

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the notation and some preliminaries. Section 3 contains the main results,
the proposed characterizations of the Shapley value. In Section 4 we generalize
these characterizations to the case of weighted Shapley values. The last section
includes some final remarks, relating the properties used in these characteriza-
tions with corresponding ones that appear in other characterizations.

2 Preliminaries

When there is no ambiguity about the set of players, we will identify the game
(N, v) with its characteristic function v. By GN we denote the set of all TU-

games with players set N , and let G =
∞⋃
n=1

GN . GN is an 2n − 1 dimensional

real-vector space, where n = |N | denotes the cardinality of the set N . A
particularly useful basis of this space, the unanimity basis, is the family of
games {uS}∅6=S⊆N defined as follows: for all S ⊆ N,S 6= ∅, and all T ⊆ N ,

uS(T ) =

{
1, if S ⊆ T
0, otherwise.

As a consequence, every game in GN can be expressed as a linear combina-
tion of these unanimity games:
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v =
∑
∅6=S⊆N

∆v(S)uS ,

where the unanimity coefficients {∆v(S)}∅6=S⊆N are known as the Harsanyi

dividends (Harsanyi, 1959). For all S ⊆ N ,
∑
T⊆S

∆v(T ) = v(S) holds. Given a

game (N, v), we define the restriction of this game to the set of players S as a
new game (S, v|S) of which the characteristic function is given by v|S(T ) = v(T )
for all T ⊆ S.

An allocation rule on G is a function ψ that assigns to every (N, v) in G
a real n−dimensional vector ψ(N, v), ψi(N, v) representing the payoff outcome
for player i in the game. When there is no possibility of confusion, we will
write ψ(v) instead of ψ(N, v). An allocation rule is efficient if for every game it

exactly allocates the worth of the ”grand coalition”, i.e.:
∑
i∈N

ψi(N, v) = v(N)

for all (N, v) in G.
The Shapley value, ϕ(N, v), is a very popular allocation rule defined, for all

i ∈ N :

ϕi(N, v) =
∑

S⊆N\{i}

s!(n− s− 1)!

n!
[v(S ∪ i)− v(S)]

or, alternatively,

ϕi(N, v) =
∑

S⊆N,i∈S

∆v(S)

s
,

s being the cardinality of S.
In the literature various allocation rules known as weighted Shapley values

have been studied such as the ones introduced by Shapley (1953b) and Kalai
and Samet (1987). Weighted Shapley values are useful when one studies game
situations in which, besides their ‘roles’ in the game, players take asymmetric
positions in, for example, a network, such as a communication network or a
hierarchy. In Shapley (1953b), for exogenously given positive weights λi >
0, i ∈ N, the weighted Shapley value ϕλ(N, v) is given by1

ϕλi (N, v) =
∑
S⊆N

i∈S

(
λi∑
j∈S λj

)
∆v(S) for all i ∈ N.

If λi = λj for all i, j ∈ N then ϕλ(N, v) = ϕ(N, v) for all games (N, v), and
thus ϕλ is a generalization of the Shapley value ϕ.

Another type of weighted Shapley value has been considered in Kalai and
Samet (1987). Although they also consider a fixed player set N , we adapt
their solutions for a variable player set. We assume that, besides weights λi >
0, i ∈ N, the players are also ordered in the sense that there exists a labeling
function l : N → N, where l(i) denotes the ‘level’ of player i. For fixed N ⊂ N
the ordered partition ΣN

l = (S1, . . . , St) of N is given by i ∈ Sk, j ∈ Sp with

1We remark that Shapley (1953b) introduced this value for a fixed player set N .
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1 ≤ k ≤ p ≤ t if and only if l(i) ≤ l(j). For fixed N ⊂ N, the pair ω = (λN ,ΣN
l )

with λN ∈ RN++ given by λNi = λi, i ∈ N , is a weight system for player set
N ⊂ N as considered in Kalai and Samet (1987). For every S ⊆ N ⊂ N we

denote kNl (S) = max{k ∈ {1, . . . , t} | S ∩ Sk 6= ∅}, and KN
l (S) = S ∩ SkNl (S).

The KS-weighted Shapley value ϕ(λ,l)(N, v) is given by

ϕ
(λ,l)
i (N, v) =

∑
S⊆N

i∈KN
l (S)

(
λi∑

j∈KN
l (S) λj

)
∆v(S) for all i ∈ N.

If l(i) = l(j) for all i, j ∈ N (i.e. ΣN
l = (N)) then ϕ(λ,l)(N, v) = ϕλ(N, v)

for all games (N, v) on N and λi > 0, i ∈ N . Thus, ϕ(λ,l) is a generalization of
ϕλ (and thus also a generalization of ϕ).

3 New axiomatizations of the Shapley value

In this section we introduce two new characterizations of the Shapley value
using properties related to players indifferent to cooperate.

3.1 The axioms

We begin with defining what it means when players are indifferent to each other.

Definition 3.1 Given v ∈ GN and i, j ∈ N , we say that player i is indifferent
to cooperate with player j in the game v if there exists Si ⊂ N with i ∈ Si and
j /∈ Si such that for all S ⊆ N ,

v(S) = v(S ∩ Si) + v(S ∩ (N \ Si)).

As this property is obviously symmetrical, whenever it holds, we say that i
and j are indifferent to mutual cooperation, or indifferent players for short. A
direct consequence of the previous definition is that two players maintain their
indifference in a given game if some other players leave that game.

Proposition 3.1 Consider v ∈ GN and two players i, j ∈ N that are indiffer-
ent to cooperate with each other in v. Then, i and j are indifferent to cooperate
in the game (T, v|T ) for all T ⊆ N such that i, j ∈ T .

Proof As i, j are indifferent in (N, v), there exists Si ⊂ N with i ∈ Si and
j /∈ Si such that for all S ⊆ N ,

v(S) = v(S ∩ Si) + v(S ∩ (N \ Si)).

Thus, for R ⊆ T ,

v|T (R) = v(R) = v(R ∩ Si) + v(R ∩ (N \ Si))
= v(R ∩ T ∩ Si) + v(R ∩ T ∩ (N \ Si))

= v(R ∩ T ∩ Si) + v(R ∩ (T \ (Si ∩ T )))
= v|T (R ∩ (T ∩ Si)) + v|T (R ∩ (T \ (Si ∩ T ))), with i ∈ T ∩ Si and j 6∈ T ∩ Si.

�
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In the next definition we introduce the transformation of a game v ∈ GN if,
for any reason, two specific players i and j decide not to cooperate with each
other.

Definition 3.2 Given v ∈ GN and i, j ∈ N we will define the game vij ∈ GN
as:

vij =
∑

{i,j}*S⊆N

∆v(S)uS .

In the given expression for vij , we are assuming that, when two players decide
not to cooperate (for instance, because they become enemies), the dividends
∆v(S) of all subcoalitions of N to which i and j both belong cannot be realized,
and thus disappear when calculating the worth of these coalitions. Note that
the game is not modified when players i and j are indifferent, so in that case
vij = v. This emphasizes the idea that players who are indifferent in that game,
have no interest in cooperating. This result is not obvious from Definition 3.2,
but it is straightforward from Corollary 3.1 and Proposition 3.4.

An alternative expression for the characteristic function vij in terms of v is
given in the following proposition.

Proposition 3.2 Given v ∈ GN and i, j ∈ N , for all S ⊆ N,

vij(S) = v(S \ {i}) + v(S \ {j})− v(S \ {i, j}) (1)

Proof For S ⊆ N ,

vij(S) =
∑

{i,j}*T⊆N

∆v(T )uT (S)

=
∑

T⊆N\{i}

∆v(T )uT (S) +
∑

T⊆N\{j}

∆v(T )uT (S)−
∑

T⊆N\{i,j}

∆v(T )uT (S)

=
∑

T⊆S\{i}

∆v(T ) +
∑

T⊆S\{j}

∆v(T )−
∑

T⊆S\{i,j}

∆v(T )

= v(S \ {i}) + v(S \ {j})− v(S \ {i, j}).

�

This last result tells us that, when players i and j decide not to cooperate, the
others will interact with each of them separately, adding the obtained outcomes.
Obviously, the last term in (1) appears to avoid the duplication of the value
obtained by a coalition in which both i and j are excluded.

Next, we introduce a new property for allocation rules for TU-games, stating
that, when two players that are not indifferent become enemies, the effect on
their respective payoffs is the same.

Definition 3.3 An allocation rule ψ on G satisfies the enemy players property
if, for all (N, v) ∈ G and all pair of players i, j ∈ N which are not indifferent
in v, it holds:

ψi(v)− ψi(vij) = ψj(v)− ψj(vij).
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Remark 3.1 The restriction to pairs of no indifferent players in the previous
definition can be avoided and the property still holds because, if i and j are a pair
of indifferent players in v then, v and vij coincide, as previously established.

Remark 3.2 The enemy players property can be viewed as a weaker version
of the fairness property introduced by van den Brink (2001). An allocation rule
ψ on G satisfies the fairness property if, for all (N, v) ∈ G, all i, j ∈ N and
all (N,w) ∈ G in which i and j are symmetric players2, ψi(v + w) − ψi(v) =
ψj(v +w)− ψj(v). The enemy players property is obtained from fairness if we
restrict ourselves to pairs of players i and j that are not indifferent in v, and

the game that is added to v, is w = −
∑

{i,j}⊆S⊆N

∆v(S)uS. Note that i and j are

symmetric in w.

The second new property for allocation rules for TU-games states that, if one
player i is indifferent to cooperate with another player j, then he is even indif-
ferent to the fact that this player leaves the game.

Definition 3.4 An allocation rule ψ defined on G satisfies the null contribu-
tions for indifferent players property if, for all v ∈ GN and all pairs i, j of
indifferent players in v, it holds:

ψi(v)− ψi(v|N\{j}) = 0.

Remark 3.3 An allocation rule ψ on G satisfies the balanced contributions
property (Myerson, 1980) if, for all (N, v) ∈ G and all i, j ∈ N :

ψi(v)− ψi(v|N\{j}) = ψj(v)− ψj(v|N\{i}).

The null contributions for indifferent players property (see Definition 3.4) es-
tablishes that, for indifferent players, the contributions must be balanced and,
moreover, null. Therefore, in some sense it is more restrictive than balanced
contributions as it determines the value of the contributions, but in another
sense it is less demanding because it only restricts the contributions for pairs of
players that are indifferent.

This property can be extended to the case in which a given player is indif-
ferent to all the players in a group.

Proposition 3.3 Let (N, v) ∈ G and T ⊆ N . Suppose i ∈ N\T is indifferent
to each player in T . If ψ is an allocation rule defined on G satisfying the null
contributions for indifferent players property, then ψi(v) = ψi(v|N\T ).

Proof Suppose T = {j1, j2, ..., jt}. As ψ satisfies the null contributions for
indifferent players property, then, iteratively using Proposition 3.1, we have:

ψi(v) = ψi(v|N\{j1}) = ψi(v|N\{j1,j2}) = ... = ψi(v|N\{j1,j2,...,jt}).

�
2Two players i and j are symmetric in game v if v(S∪{i}) = v(S∪{j}) for all S ⊆ N \{i, j}.
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3.2 An equivalence relation

In order to prove the main result in this section, we introduce an equivalence
relation induced by each TU-game on its set of players. Moreover, we will prove
that this relation coincides with the non-indifference of players.

Definition 3.5 Given (N, v) ∈ GN , we will say that i, j ∈ N are related in
(N, v) if and only if i = j or there exists a family of subsets of N , {Tl}ml=1,
verifying

i) ∆v(Tl) 6= 0 for all l = 1, 2, ...,m.

ii) i ∈ T1, j ∈ Tm and Tl ∩ Tl+1 6= ∅ for l = 1, 2, ...,m− 1.

We will denote iRvj if i, j ∈ N are related in (N, v). It is easy to see that for
each TU-game (N, v), Rv is an equivalence relation on the players set N . The
obvious proof is omitted. Let N/v = {C1, C2, ..., Ck} be the quotient set of N
induced by the equivalence relation Rv. That is, two players i and j belong to
the same element Ct ∈ N/v if and only if iRvj. The next lemma states that all
the players belonging to a coalition having a nonzero dividend belong also to
the same element of the quotient set.

Lemma 3.1 Let (N, v) ∈ G and let N/v = {C1, C2, ..., Ck} be the quotient set
of N induced by the equivalence relation Rv. If T ⊆ N is such that ∆v(T ) 6= 0,
then there exists an l ∈ {1, 2, ..., k} such that T ⊆ Cl.

Proof Suppose T ⊆ N is such that ∆v(T ) 6= 0 and there exist l,m ∈
{1, 2, ..., k}, l 6= m, with T ∩ Cl 6= ∅ and T ∩ Cm 6= ∅. Consider i ∈ T ∩ Cl and
j ∈ T ∩Cm. As i, j ∈ T and ∆v(T ) 6= 0, iRvj holds. But this is a contradiction
with the fact that i and j are in different equivalence classes and so the result
is proved. �

As an immediate consequence of the previous lemma, we have:

Corollary 3.1 Let (N, v) ∈ G and let i, j ∈ N be such that they are not related
in (N, v). If T ⊆ N is such that i, j ∈ T , then ∆v(T ) = 0.

The next lemma states that the worth of any coalition can be calculated
componentwise.

Lemma 3.2 Let (N, v) ∈ G and N/v = {C1, C2, ..., Ck} be the quotient set

induced on N by the relation Rv. Then, for all S ⊆ N , v(S) =
k∑
l=1

v(S ∩ Cl).

Proof By Lemma 3.1, if T ⊆ N is such that ∆v(T ) 6= 0, then there exists
an l ∈ {1, 2, ..., k} such that T ⊆ Cl. As {C1, C2, ..., Ck} is a partition of N , we
have for all S ⊆ N :

v(S) =
∑
T⊆S

∆v(T ) =
k∑
l=1

∑
T⊆S∩Cl

∆v(T ) =
k∑
l=1

v(S ∩ Cl).

�
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Lemma 3.3 Let (N, v) ∈ G and i ∈ N . Suppose that Si ⊆ N is such that
i ∈ Si and, for all S ⊆ N , v(S) = v(S ∩ Si) + v(S ∩ (N \ Si)). Then, given
T ⊆ N with T ∩ Si 6= ∅ and T ∩ (N \ Si) 6= ∅, ∆v(T ) = 0 holds.

Proof Let T ⊆ N be such that T ∩ Si 6= ∅ and T ∩ (N \ Si) 6= ∅. By the
hypothesis, for all S ⊆ T , v(S) = v(S ∩ Si) + v(S ∩ (N \ Si)). On the other
hand, using the definition of the Harsanyi dividends and denoting t = |T | and
s = |S|,

∆v(T ) =
∑
S⊆T

(−1)t−sv(S) =
∑
S⊆T

(−1)t−s(v(S ∩ Si) + v(S ∩ (N \ Si)))

=
∑
S⊆T

(−1)t−sv(S ∩ Si) +
∑
S⊆T

(−1)t−sv(S ∩ (N \ Si)).

But
∑
S⊆T

(−1)t−sv(S∩Si) can be rewritten as
∑

R⊆T∩Si

α(R)v(R) where, if ti is the

cardinality of T∩(N \Si), for all R ⊆ T∩Si, we have α(R) =

ti∑
l=0

(−1)t−r−l(til ).

Thus, α(R) = (−1)t−r if ti = 0, but it is zero otherwise. Since by hypothesis

ti = 1,
∑
S⊆T

(−1)t−sv(S ∩ Si) = 0 holds.

We can analogously proof that
∑
S⊆T

(−1)t−sv(S ∩ (N \ Si)) = 0, completing

the proof. �

The next proposition states that the equivalence relation Rv is determined
by the indifference between players.

Proposition 3.4 Given (N, v) ∈ G and i, j ∈ N , iRvj if and only if i and j
are not indifferent players in v.

Proof Let us first prove that, if i and j are not indifferent players in v,
then iRvj. Let N/v = {C1, C2, ..., Ck}. Suppose, on the contrary, that i and
j are not indifferent players in v, and i and j are not Rv-related. Let C(i) be
the equivalence class to which i belongs, and therefore N \ C(i) = ∪Cl 6=C(i)Cl.
Obviously, j ∈ N \ C(i) since by hypothesis i and j are not Rv-related. By
Lemma 3.2, for all S ⊆ N ,

v(S) =
k∑
l=1

v(S ∩ Cl) = v(S ∩ C(i)) +
∑

Cl 6=C(i)

v(S ∩ Cl)

= v(S ∩ C(i)) + v(S ∩ (∪Cl 6=C(i)Cl))

and thus i and j are indifferent players in v, which gives a contradiction.
Reciprocally, in order to prove that the Rv-relation implies the non indif-

ference between players, suppose that i, j ∈ N are such that iRvj but they are
indifferent in (N, v). Then, there exists Si ⊆ N with i ∈ Si and j /∈ Si, such
that for all S ⊆ N :

v(S) = v(S ∩ Si) + v(S ∩ (N \ Si)).
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Since, by hypothesis, iRvj , there exists T1, T2, ..., Tm ⊆ N , with ∆v(Tl) 6= 0 for
all l = 1, 2, ...,m , and such that Tl ∩ Tl+1 6= ∅ for l = 1, 2, ...,m− 1. Moreover,
i ∈ T1 and j ∈ Tm. By Lemma 3.3, if T ⊆ N is such that ∆v(T ) 6= 0, then
T∩Si = ∅ or T∩(N \Si) = ∅ and thus, T ⊆ Si or T ⊆ N \Si. As a consequence,
since i ∈ T1 ∩ Si, T1 ⊆ Si and Tm ⊆ N \ Si. Finally, let l∗ ∈ {1, 2, ...,m} be
the first index such that Tl∗ ⊆ N \ Si. We have Tl∗−1 ∩ Tl∗ = ∅ which gives a
contradiction. �

3.3 The axiomatizations

Using the previous lemmas and propositions, we obtain the main result of this
section.

Theorem 3.1 The Shapley value, ϕ, is the unique allocation rule on G sat-
isfying efficiency, the enemy players property and the null contributions for
indifferent players property.

Proof It is well-known that the Shapley value satisfies efficiency. The enemy
players property follows from Remark 3.2. In order to prove null contributions
for indifferent players, suppose that (N, v) ∈ G and i, j ∈ N are two indifferent
players in that game. Then:

ϕi(v) =
∑

S⊆N, i∈S

∆v(S)

s
=

∑
S⊆N\{j}, i∈S

∆v(S)

s
= ϕi(v|N\{j}),

the second equality holding because of Proposition 3.4 and Corollary 3.1.
Thus, ϕ satisfies the null contributions for indifferent players property.

Reciprocally, let us prove the uniqueness. Consider an allocation rule ψ
defined on G and satisfying efficiency, the enemy players property and the null
contributions for indifferent players property. We must prove that

ψ(N, v) = ϕ(N, v)

for all (N, v) ∈ G. The proof uses induction on d(N, v) = |δ(N, v)|, where

δ(N, v) = {S ⊆ N | ∆v(S) 6= 0}.

If d(N, v) = 0, then v ≡ 0 (i.e. v(S) = 0 for all S ⊆ N), and thus every
i ∈ N is indifferent to each player in N\{i} (take Si = {i} in Definition 3.1).
Therefore, by Proposition 3.3, ψi(v) = ψi(v|{i}) for all i ∈ N . As v|{i} ≡ 0, by
efficiency, ψi(v) = ψi(v|{i}) = 0 , and thus ψ coincides with the Shapley value,
ϕ.

Suppose now, by the induction hypothesis, that ψ(N, v) = ϕ(N, v) for games
(N, v) ∈ G with d(N, v) = k, and consider a game (N, v) ∈ G with d(N, v) = k+
1. Let i ∈ N and let C(i) be the class in the quotient set N/v = {C1, C2, ..., Ck}
to which i belongs. If C(i) = {i}, then similar as in the case δ(N, v) = 0 above,
player i is also indifferent to each player in N\{i}, and using the same reasoning
as before, we have ψi(v) = ψi(v|{i}) = v({i}). But, as the Shapley value also
satisfies Proposition 3.3 and efficiency, we have ϕi(v) = ϕi(v|{i}) = v({i}) and
thus, for this player both allocation rules yield the same payoff.

10



Alternatively, suppose that i ∈ N is such that the cardinality of C(i) is
greater than one, and let j ∈ C(i), j 6= i. By the definition of Rv, there exists
a sequence of players i1 = i, i2, i3, ..., ir = j with il ∈ C(i) for l = 1, 2, ..., r and
such that, for each l = 1, 2, ..., r − 1, there is a Tl ⊆ N with {il, il+1} ⊆ Tl and
Tl ∈ δ(N, v). As ψ satisfies the enemy players property:

ψi1(v)− ψi1(vi1i2) = ψi2(v)− ψi2(vi1i2),

and thus:

ψi1(v)− ψi2(v) = ψi1(vi1i2)− ψi2(vi1i2).

As d(N, vi1i2) < d(N, v) = k + 1, using the induction hypothesis,

ψi1(vi1i2) = ϕi1(vi1i2) and ψi2(vi1i2) = ϕi2(vi1i2),

and therefore:

ψi1(v)− ψi2(v) = ψi1(vi1i2)− ψi2(vi1i2) = ϕi1(v)− ϕi2(v),

the last equality holding because the Shapley value satisfies the enemy players
property. As a consequence, ψi1(v) − ϕi1(v) = ψi2(v) − ϕi2(v). Using this
previous reasoning iteratively, ψi(v) − ϕi(v) = ψj(v) − ϕj(v) for j ∈ C(i).
Thus, there exists hC(i) ∈ R such that ψj(v)− ϕj(v) = hC(i) for all j ∈ C(i).

Finally, using Proposition 3.3. and the null contributions for indifferent
players property:

ψj(v) = ψj(v|C(i)) for all j ∈ C(i),

and thus:

|C(i)|hC(i) =
∑
j∈C(i)

[ψj(v)− ϕj(v)] =
∑
j∈C(i)

ψj(v)−
∑
j∈C(i)

ϕj(v)

=
∑
j∈C(i)

ψj(v|C(i))−
∑
j∈C(i)

ϕj(v|C(i)).

By efficiency of both rules ψ and ϕ, this last expression is equal to zero and
thus, hC(i) = 0. Therefore ψi(v) = ϕi(v), which completes the proof. �

The previous proof inspires another characterization of the Shapley value.
Let us introduce a variation in the efficiency property in order to include the
eventual indifference to cooperate of certain groups of players in a given game.

Definition 3.6 We say that an allocation rule ψ defined on G satisfies effi-
ciency in classes of no indifferent players if for all (N, v) ∈ G with N/v =

{C1, C2, ..., Ck},
∑
i∈Cl

ψi(v) = v(Cl) for all l = 1, 2, ..., k.

Note that this property implies efficiency and the null player property, the last
property meaning that null players (i.e., players whose marginal contribution
to any coalition is zero) earn a zero payoff. If this kind of efficiency in classes
is assumed, each maximal group of no indifferent players will share its worth
among its members without any transfer of utility to the remaining players.
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Theorem 3.2 The Shapley value ϕ, is the unique allocation rule on G sat-
isfying efficiency in classes of no indifferent players and the enemy players
property.

Proof It is already proved that ϕ satisfies the enemy players property. So, let
us prove that ϕ satisfies efficiency in classes of no indifferent players (shortly
called efficiency for indifferent classes). Effectively, given (N, v) ∈ G with
N/v = {C1, C2, ..., Ck}, for each l = 1, 2, ..., k we have:∑

i∈Cl

ϕi(v) =
∑
i∈Cl

∑
S⊆N, i∈S

∆v(S)

s
=
∑
i∈Cl

∑
S⊆Cl, i∈S

∆v(S)

s
=
∑
S⊆Cl

∆v(S) =

v(Cl),

the second equality holding because of Corollary 3.1. The proof of the unique-
ness follows similar lines of the corresponding one in Theorem 3.1, but using
efficiency in classes in each step of the induction. Therefore, it is omitted. �

Note that the axioms used in Theorem 3.2 do not use any variation in the player
set. Therefore, instead of on G this axiomatization could have been stated on
the class GN of all games with any fixed player set N . (Note that the proof
needs to be adapted).

4 Weighted Shapley values

It is well-known that the weighted Shapley values are efficient. Moreover, by
Corollary 3.1 it is straightforward to verify that they satisfy the stronger effi-
ciency in classes of no indifferent players and, with Proposition 3.4, also satisfy
null contributions for indifferent players. They also satisfy some kind of enemy
players property which takes account of the weights.

Definition 4.1 Let the weights λi > 0, i ∈ N, be given. We say that an
allocation rule ψ on G satisfies the λ-enemy players property if, for all (N, v) ∈
G and all pairs of players i, j ∈ N which are not indifferent in v, it holds:
ψi(N, v)− ψi(N, vij) = λi

λj

(
ψj(N, v)− ψj(N, vij)

)
.

Note that if λi = λj for all i, j ∈ N, this boils down to the standard enemy
players property of Section 3. In a similar way as Theorems 3.1 and 3.2, it
can be shown that the weighted Shapley value ϕλ(N, v) is characterized as
follows.3,4

Theorem 4.1 Let the weights λi > 0, i ∈ N, be given.

• (i) The weighted Shapley value, ϕλ, is the unique allocation rule on G
satisfying efficiency, the λ-enemy players property and null contributions
for indifferent players.

3Below, statement (ii) of Theorem 4.1 can simply be stated for games with a fixed player
set. Statement (i), however, uses null contributions for indifferent players and therefore only
holds for a variable player set.

4The full proof of Theorem 4.1 can be obtained from the authors on request.
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• (ii) The weighted Shapley value, ϕλ, is the unique allocation rule on G
satisfying efficiency in classes of no indifferent players and the λ-enemy
players property.

Considering now the case of the KS-weighted Shapley value, by Corollary
3.1 and Proposition 3.4, also this KS-weighted Shapley value satisfies efficiency
in classes of no indifferent players (and thus efficiency) and null contributions
for indifferent players. We need to adapt the enemy player property taking
account of both λ and ΣN

l as follows.

Definition 4.2 Let the weights λi > 0, i ∈ N, and labeling function l : N→ N
be given. We say that an allocation rule ψ on G satisfies the (λ, l)-enemy
players property if, for all (N, v) ∈ G and all pairs of players i ∈ Sk, j ∈ Sp
which are not indifferent in v, it holds:

• ψi(N, v)− ψi(N, vij) = λi
λj

(
ψj(N, v)− ψj(N, vij)

)
if k = p;

• ψi(N, v)− ψi(N, vij) = 0 if k < p.

In a similar way as before, we can show the following.

Theorem 4.2 Let the weights λi > 0, i ∈ N, and l : N→ N be given.

• (i) The KS-weighted Shapley value, ϕ(λ,l), is the unique allocation rule on
G satisfying efficiency, the (λ, l)-enemy players property and null contri-
butions for indifferent players.

• (ii) The KS-weighted Shapley value, ϕ(λ,l), is the unique allocation rule on
G satisfying efficiency in classes of no indifferent players and the (λ, l)-
enemy players property.

5 Final Remarks

This last section is devoted to analyze the relations between the proposed char-
acterizations of the Shapley value and several other ones in the literature. First,
it is known that the Shapley value is characterized by efficiency, the null player
property, symmetry and additivity. An allocation rule satisfying these last two
properties verifies fairness (van den Brink, 2001) and then also satisfies the en-
emy players property. Nevertheless, a rule satisfying the enemy players and null
contributions for indifferent players properties need not verify the null player
property, nor symmetry, nor additivity. This can be seen by considering the
rule γ defined on G by

γi(N, v) = 1 if i = 1 and 0 otherwise.5

5Note that all players get zero when 1 6∈ N .
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Second, comparing the present characterization with the one in Myerson (1980)
in terms of efficiency, symmetry and balanced contributions, we see that the
rule γ previously defined does not satisfy symmetry, and the rule γ′ defined
on G by γ′(N, v) = (n, n, ..., n) verifies symmetry and balanced contributions
but does not satisfy null contributions. Young (1985,1994) characterized the
Shapley value in terms of efficiency, symmetry and strong monotonicity. Again,
γ satisfies the enemy players and null contributions properties but does not
satisfy symmetry , and γ′ verifies symmetry and strong monotonicity but does
not verify null contributions. Finally, the rule defined on G by γ′′i (N, v) = 1 if
it exists j ∈ N, j 6= i, such that i and j are symmetric in (N, v) and γ′′i (N, v) =
ϕi(N, v), otherwise, satisfies symmetry but does not satisfy null contributions.

With respect to the problem of characterizing the Shapley value on sub-
classes of games, we must note that the present characterizations do not hold
in the important class of simple games. The notion of classes of indifferent
players permits us to additively decompose each given game. This fact can
be used to reduce the volume of calculations associated to the computation of
the Shapley value. In this spirit, the multilinear extension of Owen (1972) also
admits and additive decomposition.
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