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Networks and Collective Action

Abstract

This paper proposes a new measure for a group’s ability to lead society to adopt their

standard of behavior, which in particular takes account of the time the group takes to con-

vince the whole society to adopt their position. This notion of a group’s power to initiate

action is computed as the reciprocal of the resistance against it, which is in turn given by

the expected absorption time of a related finite state partial Markov chain that captures the

social dynamics. The measure is applicable and meaningful in a variety of models where

interaction between agents is formalized through (weighted) binary relations. Using Per-

colation Theory, it is shown that the group power is monotonic as a function of groups of

agents. We also explain the differences between our measure and those discussed in the

literature on Graph Theory, and illustrate all these concerns by a thorough analysis of two

particular cases: the Wolfe Primate Data and the 11S hijackers’ network.

Keywords: Collective action, Social networks, Influence and diffusion models, Network

intervention, Group centrality measures

1 Introduction

Collective action sometimes seems to appear over night, e.g., large protests against a particular

regime suddenly bring onto the streets thousands and thousands of people as happened in the

Arabic Spring in 2011. Given a social network, which individuals or groups of individuals are

able to ignite a chain-reaction and cause collective action on a large scale? Most importantly,

how quickly does the collective behavior arise? What kinds of ties of a network are most im-

portant for collective action and what features are especially relevant? Somewhat analogously,

which individuals in a network should we address if the aim is to prevent action of many when

the action is harmful (as e.g. terrorist activity)? This kind of questions arises in many different

areas, such as sociology and social psychology (e.g. [37], [27], [34]), epidemiology (e.g. [20],

[56]), economics (e.g. [3], [12], [36], [44], [49], [53], [58]), social choice (e.g. [16],[17]), computer

sciences (e.g. [23], [41], [47]) or systems reliability (e.g. [2]), covering the analysis of riot behav-

ior, innovation and rumor diffusion, propaganda, strikes, consumption, network externalities,

spread of fashions, migration, runs on banks, voting power, cascading failures in power sys-

tems, etc.

We select a model to describe how the action profile of a society evolves over time tak-

ing into account several elements that the systemic phenomena of collective behavior have in

common. As posed by the mathematical sociologist Coleman (1990): (i) they involve a large

number of people carrying out the same or similar actions at the same time; (ii) the system
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is dynamic and might eventually reach an equilibrium state; (iii) there is some kind of syn-

chronization of actions, so individuals do not act independently; and (iv) there is some degree

of unpredictability, sometimes leading to “explosive” results. Then, based on this kind of dy-

namical model, we propose two new indices of group power which carry the spirit of Coleman’s

(1971) power measures, i.e., the power to initiate action and the power to prevent action, respec-

tively. Here, the power to initiate action will be our main focus as the other measure naturally

follows from its definition. The power to initiate action quantifies a group’s ability to trigger

the society to adopt its behavior, and, if at all, how quickly individuals learn this mode of be-

havior. With this information, a social planner, a political party, or a firm’s management may be

able to actively address the most powerful individuals and thus help to prevent or to stimulate

action in a given context.1

It is worth noting that our proposal of group power to initiate action may also be interpreted

as a group centrality measure in the sense of Everett and Borgatti (1999), but its scope is wider

and not restricted to a graph-theoretic context. In addition to allowing asymmetric binary rela-

tions between agents, it also relates the strength of a tie to the time it takes to reach consensus at

the level of society. We will discuss the similarities and differences between graph-theoretical

notions and ours for cases in which comparison makes sense – see Sections 4 and 6.

In order to define a dynamical model of collective action it is crucial to understand the

role of the social structure in the sharing of information and the formation of opinions. We

will assume that the society members are connected through a social network which is the pri-

mary conduit of information, opinions, and behaviors. More precisely, we adopt the interactive

Markov chains (non-symmetric) model, in which an individual’s choice of actions may depend on

arbitrary neighborhoods of others. At each date, agents communicate with their neighbors in

the social network and copy one of their actions from the last period according to a (updated)

probabilistic rule. This approach agrees with the voter model, also called the invasion process,

and first introduced along with their dual process called coalescing random walks in Holley and

Liggett (1975), and also independently in Clifford and Sudbury (1973). Moreover, originally de-

veloped in the context of interacting stochastic processes, the voter model has been considered

as a model of social interaction, as for instance by Asavathiratham (2000) and Even-Dar and

Shapira (2007). Ni, Xie and Liu (2010) also consider an interactive Markov (non-symmetric)

chain based on a monotonic2 modification of the voter model, which they called the incremental

chance model.

Other social dynamics models which are related to our point or view are the following:

• Threshold models of diffusion of innovations, where individuals are assumed to have dif-

1See, e.g., Rogers (1995) on the important role of opinion leaders in the dissemination of information and their

influence on opinions and decisions in various environments like marketing, social programs, education, campaign-

ing, and others.
2In which it is assumed that once an agent has adopted an innovation he sticks with it.
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ferent thresholds that determine whether they will adopt an innovation as a function of

the number (or proportion) of others in the population who have already adopted it3.

Kempe, Kleinberg and Tardos (2005) generalize these models by introducing decreasing

cascade models, in which a behavior spreads in a cascading fashion according to a proba-

bilistic rule, beginning with a set of initially active agents, which are the individuals that

have adopted the innovation.

• Interactive Markov chains (symmetric) models, in which the next state of an individual de-

pends on his current state and on the current frequency distribution of the population

among the states modeling the different positions. The dynamics of these models where

first considered by Conlisk (1976), where it was introduced the concept of an interactive

Markov chain as a framework for stochastic flows when the effects on the decisions of in-

dividuals of imitation, fashion, popularity, contagion, and so on cannot be ignored. The

work of Stadje (1997) is a deep generalization of the Conlisk model. However, although

the symmetric case provides insight into broad patterns of social behavior, it does not

incorporate the micro-details of who interacts with whom. To incorporate networked

interactions, a richer non-symmetric structure is needed.

• Opinion formation models, also called social influence network models by Friedkin (2001),

which are models of information transmission, opinion formation, and consensus forma-

tion. Social influence network theory (Friedkin, 1991, 1998, 1999; Friedkin and Johnsen,

1990, 1997, 1999) includes, as special cases, French’s formal theory of social power (French,

1956; Harary, 1959) and the seminal DeGroot’s consensus formation model (DeGroot,

1974; Chatterjee and Seneta, 1977; Berger, 1981). The basic building block of these mod-

els is the fact that network influences are captured by a network effects model, in which

each individual’s attitude is influenced by his exposure, measured as a weighted average

of the attitudes of the other members. Network effects model goes back to Erbing and

Young (1979), with important contributions by Doreian (1982), and specially by Friedkin

and Johnsen (see the previously referenced papers), and more recently by Valente (2005).

In some sense, the dynamical process we adopt is also a network effects model, since

it is based on the notion of exposure. However, whereas all these models describe the

dynamics of opinions and are in fact deterministic, the voter model we have adopted de-

scribes the dynamics of actions4 and it is probabilistic in nature. The implications of this

difference over the power group measures we propose is analyzed in detail in Section 4.

The remainder of the paper is organized as follows. Section 2 is devoted to a general pre-

3The dynamics of these models were first studied by Schelling (1971) and Granovetter (1978). For more recent

work, see Valente (1995, 1996), Watts (2002), Dodds and Watts (2005), Lopez-Pintado and Watts (2008), and Young

(2009).
4That is, we calculate a person’s adoption status at each period of time, which is referred to (see Valente, 2010)

as event history analysis (Allison, 1984).
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sentation of the dynamic model we have adopted to describe how the propensity to act in a

society evolves over time; in the description of the model, we will follow the approach of Asa-

vathiratham (2000). In Section 3, based on this model, we propose two indices of group power

(power of a group to initiate action and power to prevent action). Section 4 is devoted to an-

alyze the relation of the group power to initiate action with other centrality measures, while

in Section 5 we prove that group power to initiate full action satisfies a compelling monotonic-

ity property, i.e., if a set of agents is expanded its power to initiate full action will (weakly)

increase. Finally, in Section 6 we apply the proposed measures to analyze some illustrative

examples in detail, namely the behavior of a population of primates and the structure of the hi-

jackers network in the 11S. In particular, we compare our power measure to standard centrality

scores.

2 The model: influence dynamics as a finite Markov chain

Assume that society consists of finitely many members, represented by the set N = {1, 2, . . . , n},

which are connected through a social network whose flow of available information is captured,

in some sense, by a weight matrix S. For instance, in a binary symmetric context, S can be the

adjacency matrix of the non-directed graph which models the connection between the agents.

In this case, this matrix is usually referred as the sociomatrix. Nevertheless, in a different de-

sign it can model other features of the network like relational, positional and central proper-

ties through which agents are interlinked. It may as well incorporate exogeneous information

which does not depend on the structure of the network. The reader is referred to Valente (2005,

2010) where a number of different ways of designing the weight matrix are proposed.

Based on the information contained in S, we derive the Influence Matrix, i.e., a stochastic5

matrix W whose elements are understood as influence parameters, wij being the weight that

agent i assigns to agent j. Influence can be asymmetric, as for example if they are one-sided

with wij > 0 while wji = 0. There are many ways to derive the matrix W from S, and usually

the former is defined in terms of some normalization process applied to the latter. As Friedkin

(2010) points out: “different measures of the accorded weights have been employed in the

operationalization (measurement models) of social influence network theory. The theory is

open with respect to the definition of these weights”. We discuss different constructions of the

influence matrix in Section 6.

From now on, assume that S and W are fixed. The influence matrix W defines a (weighted)

directed graph D(W) = (N, E, W) with agents as nodes and arcs (i, j) ∈ N × N: (i, j) ∈ E ⇔

wij > 0, and wij being the weight of arc (i, j). If wij > 0 then j directly influences i, and if there is

5A n× n matrix Q = (qij)
j
i is stochastic if qij ≥ 0 for all i, j = 1, 2, . . . , n, and ∑

n
j=1 qij = 1 for all i = 1, 2, . . . , n.
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a directed path P[i, j] from i to j in D(W)6, then j is under indirect influence of i. Note that D(W)

is not necessarily the directed weighted graph which defines the weight matrix S, although the

underlying structure of the graph (not the weights) is usually the same.

2.1 Markov Chain

In our context, the diffusion of information behaves like a stochastic process in discrete time,

which we model through the network effects model approach and, more concretely, the network

exposure models defined by Burt (1987) and Marsden-Friedkin (1993)7. The analysis of diffusion

phenomena in social influence through network exposure, and particularly influence matri-

ces, has attracted much attention because of its extreme flexibility. In the words of Valente,

“Virtually any theoretical mechanism of social influence can be modeled”. This study applies to a

wide range of collective behavior phenomena where agents have a binary choice: to take ac-

tion (being active) or not to take action (remain passive), characteristics indicated by 1 and 0,

respectively. From a dynamic point of view, we assume that the status of the agent may change

as time goes by (see the event history analysis in Allison (1984)). At each date, agents com-

municate with their neighbors in the social network and update their propensity to act. The

updating process is simple: an agent’s new propensity is determined by the weighted average

of his/her neighbors’ actions from the previous period. Then, at each date, the status of each

agent i ∈ N is determined by a probabilistic rule based on his personal network exposure, which

defines the probability of agent i taking action, given the previous decisions of his neighbors.

Formally, consider the following definitions, where W is the influence matrix.

States of a society: A state of the society (N, W) is a tuple xN ∈ σ(N) := {0, 1}n, xN
i ∈ {0, 1}

being the state of agent i, and i = 1, . . . , n, where n is the cardinality of N. Special states are

zN , eN ∈ σ(N), according to which respectively none or everyone in N take action. We will

unambiguously identify xN ∈ σ(N) with a vector in R
n. For xN ∈ σ(N), let A(xN) := {i ∈ N |

xN
i = 1} the set of active agents in N.

Influence dynamics: For each society (N, W), let p : σ(N) → [0, 1]n be the mapping defined

by

p(xN) = W · xN , for all xN ∈ σ(N).

Then for each state xN of society (N, W) the number pi(xN) represents the probability that

i takes action upon observing state xN of (N, W).

6A directed path P[i, j] from i to j in D(W) is a subgraph of (N, E) consisting of a sequence of nodes {i1, . . . , ir},

and arcs (i1, i2), (i2, i3), . . . , (ir−1, ir), where i1 = i and ir = j. Alternatively, we shall sometimes refer to a directed

path as a set of (sequence of) arcs (of nodes) without any explicit mention of the nodes (without explicit mention of

arcs).
7See Valente (2010) for a thorough treatment of this topic.
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Transition probabilities: Now, for xN , yN ∈ σ(N) we define mxNyN as the conditional proba-

bility of state xN turning into state yN , given by

mxNyN := P
{

Xt+1 = yN |Xt = xN
}
= ∏

i∈A(yN)

pi

(
xN
)

∏
j∈N\A(yN)

(
1− pj

(
xN
))

,

where XN
t = (XN

1t , . . . , XN
nt) is the random vector which describes the state of the society (N, W)

at time t ∈ {0, 1, 2, . . . }.

Markov chain: Then,M = {XN
t }t≥0 is a discrete time Markov chain with transition matrix M

given by
(

Mij

)
ij
=
(

msN
i sN

j

)

ij
, for all i, j = 1, 2, . . . , 2n, where the states are ordered according to

the lexicographical order. Then σ(N) = {sN
1 , sN

2 , . . . , sN
2n}, and sN

1 = zN , sN
2n = eN .

Unlike classical network measures we will not derive our group power measure from S nor

from W, but from the transition matrix M. This is in sharp contrast to the usual social influence

network models, in which the proposed scores are usually obtained by direct computations

with the weight matrix and/or the influence matrix.

2.2 Preliminaries: Partial Markov chain

The main goal is to measure the impact on the society when the members of a subsociety T ⊆ N

confine themselves to act. The remaining agents start in a passive state. How long does it

take until the active state of T spreads over to the whole society (collective action) - and will

this always happen eventually? In terms of our dynamic model the question is whether the

associated Markov chain is absorbing and, if it is, to determine the expected absorption time.

In order to address these questions in the following section we need to tailor the preceding

definitions to subsocieties.

The actions of non-members of T are governed by the above defined updating process.

Let sT ∈ σ(T) := {0, 1}t , where t = |T| is the cardinality of T, be the state of subsociety

T ⊆ N that describes the position of agents in T during the whole process, then the social

dynamics of the subsociety N \ T ⊆ N are described by the following partial Markov chain

M(sT) = {X
N\T
t (sT)}t≥0. Let us first adapt the previous definitions to this scenario.

Notation:. Each combination of sT ∈ σ(T) and xN\T ∈ σ(N\T) defines a state [sT , xN\T] ∈ σ(N)

by

[sT , xN\T]i =

{
sT

i , if i ∈ T,

x
N\T
i , if i ∈ N\T.

Influence dynamics on subsocieties: For each subsociety T ⊂ N, and for any given state

sT ∈ σ(T), let psT
: σ(N \ T)→ [0, 1]n−t be the mapping defined by

psT
(xN\T) = W · [sT , xN\T], for all xN\T ∈ σ(N \ T)
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Transition probabilities: As before, for each state xN\T of subsociety N \T the number psT

i (xN\T)

represents the probability that i ∈ N \T takes action upon observing state [sT , xN\T] of N. Now,

we define mxN\TyN\T(sT) as the conditional probability of state xN\T turning into state yN\T,

given by

mxN\TyN\T(sT) := P
{

Xt+1 = [sT , yN\T] |Xt = [sT , xN\T] and XT
t+1 = sT

}
=

= ∏
i∈A(yN\T)

psT

i

(
xN\T

)
∏

j∈N\(T∪A(yN\T))

(
1− psT

j

(
xN\T

))
.

Partial Markov chain: Then, M(sT) = {X
N\T
t (sT)}t≥0 is a discrete time Markov chain with

transition matrix M(sT) = (m
s

N\T
i s

N\T
j

(sT))ij, for all i, j = 1, 2, . . . , 2n−t, where the states are la-

beled according to the lexicographical order. Thus, σ(N \ T) = {s
N\T
1 , s

N\T
2 , . . . , s

N\T
2n−t }, with

s
N\T
1 = zN\T, s

N\T
2n−t = eN\T.

3 Power to initiate full action: definition and examples

The properties of the (partial) Markov chain will depend on the particular state sT, and the

particular influence matrix W structure. In order to propose a method to measure T’s power

to initiate (and to prevent) action we focus on two special but natural cases: when agents in T

confine themselves to take action (sT = eT), and the opposite one, when agents in N \ T confine

themselves to never take action (sT = zT).

We will refer to the active subsociety T ⊆ N as the hard core active group in the sense that

they are incapable of change. The chain M(eT ) starts with members outside the hard core

group in a passive state, s
N\T
1 = zN\T. The resistance of the society to T is then defined as the

expected total time spent in some of the transient states {s
N\T
1 , s

N\T
2 , . . . , s

N\T
2n−t−1} before reaching

the absorbing state s
N\T
2n−t = eN\T, if at all.

Definition 1. Given (N, W) and T  N, the resistance of the society to group T action is the number

r(T) ∈ N ∪ {∞} defined by

r(T) := E{t | X
N\T
t (eT) = eN\T and X

N\T
t−1 (eT) 6= eN\T}. (1)

For T = N, the resistance of the society to group N action is defined to be r(N) = 0.

In particular, the higher the expected time that a group needs to move society into the all ac-

tive absorbing state, the higher the resistance against this group. 8 Note that r(T) = ∞ applies

8This definition is extendable to other levels of collective action, say, when a majority of action is the level in

question. Here, the transition matrixM(eT ) can be adjusted by defining states as absorbing in which more than

50% of the society is active.
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when there is a group of agents C ⊆ N\T that is closed with respect to W, i.e., i ∈ C and wij > 0

implies j ∈ C. Then in this situation (inM)(eT) the state eN\T is not reachable from zN\T. If

there are no closed groups,M(eT) has two classes, namely T = {s
N\T
1 , s

N\T
2 , . . . , s

N\T
2n−t−1} and

R = {eN\T}, the first class being transient and the second recurrent. Here, the Markov chain

M(eT) is recurrent with an absorbing state, and we can use standard Markov Chain Theory

results to calculate 1 ≤ r(T) < ∞, in particular by means of the fundamental matrix D(eT) for

M(eT). This matrix is given by D(eT) = (I2n−t−1 −Q)−1, where Q(eT) is obtained from the

transition matrix M(eT) deleting its last row and its last column. The first row of the corre-

sponding fundamental matrix D(eT) gives the expected number of times that the process is in

a transient state if it is started in the transient state s1. In our setting this is the state in which

only the hard core is active. The resistance of the society to group T is therefore computed by

the sum of the first row of the fundamental matrix:

r(T) =
2n−t−1

∑
j=1

d1j(e
T).

Of course, we are aware of the difficulties in tracking the full joint distribution of the Markov

chainM(eT), which is defined by means of a 2n−t × 2n−t transition matrix. However, the re-

sistance to a group can be estimated by means of simulating the behavior of the corresponding

Markov chain. This is precisely the method we propose to deal with our proposal in Section 6.

Finally, we interpret the power of the group T to initiate full action as the inverse of the

resistance against it.

Definition 2. The power of T to initiate full action is defined as the reciprocal of r(T),

P(T) =

{
0, if r(T) = ∞,

1/r(T), if r(T) < ∞.

In analogy to Definition 2, the power to prevent action of group T ⊆ N refers to how quickly

individuals learn to become inactive when the group acts as a hard core passive group (they

remain forever inactive). Therefore, this power is given by the expected time it takes that none

is in an active state, given that all agents in T are passive all the time and the complementary

group starts with a pure action profile. According to our model, then, the positive influence of

every agent to push the remaining agents to take action equals the negative influence of every

agent to push the remaining agents to drop action, and both questions have the same answer:

the potential of actors to ignite a chain-reaction coincides with their potential to act as a firewall.

Remark 1. The absence of closed groups in N\T is equivalent to the property of W that each

agent is directly or indirectly influenced by some agent in T. Another way to put this is in

terms of the corresponding (weighted) directed graph D(W) = (N, E, W). Let us denote by

I(T) ⊆ N\T the set of agents that are directly or indirectly influenced by some agent in T, that

is,

I(T) = {i ∈ N\T | ∃ j ∈ T with P[i, j] in D(W) }.

8



Then, there exists a closed set C ⊆ N\T if, and only if, I(T) $ N\T. Therefore, in particular if

the social structure of the society is described by a strongly connected network (i.e., for all i, j ∈ N

there exists a directed path P[i, j] from i to j in D(W)), r(T) is finite for all T and P(T) > 0.

We would like to stress that, apart from the hard core group, we do not consider the dynam-

ics as a one-way process where agents do not leave an active state. This is in crucial distinction

to the traditional innovation literature where – once adopted – individual agents stick with

new innovations. We agree with Young (2003) when he asserts that: ”Yet the same feedback

mechanisms that cause innovations to be adopted also cause them to be abandoned . . . Thus, if

we want to know how long it takes, in expectation, for a ”new” behavior to replace an old one,

we must analyze the balance of forces pushing the adoption process forward (to become active

agents, in our setting) on the one hand, and those pushing it back (to remain passive agents)

on the other”.

Note that in the case of symmetric relations, unless there are separate connected compo-

nents, group T action must eventually dominate for every group ∅ 6= T ⊆ N. However,

it could take “too much time” in practice.9 Moreover, eventual domination of the hard core

group is no longer guaranteed when we consider asymmetric relations. This is illustrated in

the following example.

Example 1. let (N, W) be the society defined by N = {1, 2, 3, 4, 5} and influence matrix

W =




1 0 0 0 0

0.9 0.1 0 0 0

0 0.9 0 0.1 0

0 0 0.1 0.8 0.1

0.9 0 0 0.1 0




1

5

2

4

31

0.1

0.80.9

0.9

0.1

0.9

0.1

Since C = {1} is closed relative to W, then r(T) = ∞ (and therefore its power to initiate full

action is 0) for all T ⊆ N \ {1}. Otherwise, whenever 1 ∈ T, this effectively influences every

agent in N, so that r(T) is finite and the power of T to initiate full action is positive. One

may calculate r({1}) = 7.4252, r({1, 2}) = 6.8601, r({1, 2, 3}) = 5.8905, r({1, 2, 3, 4}) = 1,

r({1, 2, 4}) = 1, r({1, 2, 3, 5}) = 5, . . .

Now assume the social network changes to the following:

9As Even-Dar and Shapira (2007) point out, to convince society quickly is crucial to the early stages of introduc-

ing a new technology into the market.
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W =




0.8 0 0 0 0.2

0.9 0.1 0 0 0

0 0.9 0 0.1 0

0 0 0.1 0.8 0.1

0.1 0.9 0 0 0




1

5

2

4

30.8

0.9

0.1

0.8−→
0.2

←−
0.1

0.9

0.1

0.9

0.1

Here, C = {1, 2, 5} is a unique closed group relative to W and, therefore, r(T) = +∞ for all

T ⊆ {3, 4}. ♦

By nature, our idea of society resistance to full action is addressed to understand the dynam-

ics of connected networks10 . However, it may happen that we deal with fragmented societies,

made up of independent subsocieties {(N1, W1), . . . , (Nm, Wm)} that evolve independently. In

this case, it is mandatory that group T has some member of each subsociety in order to be able

to disseminate action across the whole society. At this point, society resistance to group T can

be also defined by (1), or we can adopt an alternative definition and calculate resistance as the

maximum of the resistance of the independent subsocieties. The first option may be adopted if

we are interested in measuring partial action 8 . However, if we are concerned with full action

and we want that the agents in each subsociety do not impose any externality over agents in

the remaining ones, then resistance must be calculated as the maximum resistance, i.e.,

r(T) = max{r(T1), . . . , r(Tm)}, (2)

where r(Tk) is the society resistance to group Tk = T ∩ Nk in the corresponding subsociety

(Nk, Wk), for all k = 1, . . . , m.

Example 2. Let (N, W) be the society defined by N = {1, 2, 3, 4, 5} and influence matrix

W =




0 1 0 0 0

0 0 1 0 0
1
2 0 1

2 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2




Then, r(T) = ∞ (and therefore its power to initiate full action is 0) for all T ⊆ {1, 2, 3} or

T ⊆ {4, 5}. Otherwise, T can influence every agent in N, and therefore r(T) can be calculated.

For instance: r({1, 4}) = 10
3 , r({1, 4, 5}) = 3 and r({1, 3, 5}) = 2, when applying definition

(1). However, in this example the society is actually divided into two independent subsocieties

(N1, W1) and (N2, W2), where N1 = {1, 2, 3}, N2 = {4, 5}, and

W1 =




0 1 0

0 0 1
1
2 0 1

2


 , W2 =

(
1
2

1
2

1
2

1
2

)
,

10We will say that two nodes i and j are connected in D(W) if the graph contains at least one path (not necessarily

directed) from node i to node j.
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that evolve independently. Thus, if we do not want that agents in T∩N1 impose any externality

over agents in T∩N2, and vice versa, then we must calculate r({1, 4}) = max{r1({1}), r2({4})} =

max{3, 2} = 3 <
10
3 , r({1, 4, 5}) = max{3, 0} = 3 and r({1, 3, 5}) = max{1, 2} = 2. ♦

4 Relation with centrality measures

Recall that our group power measure can also be interpreted as a group centrality measure (Ev-

erett and Borgatti, 1999). The aim of this section is to compare our measure to other centrality

measures. However, note that in contrast to resistance (a) not all standard network central-

ity measures can be used in signed and valued graphs, (b) not all of them can be extended to

groups without invoking the reduced graph approach (Everett and Borgatti, 1999)11 and, finally,

(c) not all of them are appropriate for influence type processes (Borgatti, 2005). Despite these

difficulties, Borgatti (2005) shows that a conceptual comparison can be made by interpreting

centrality measures as characteristics of flows through a network. Using this approach we

conclude that our proposal as individual measure is not comparable, i.e. not proportional, to

Freeman’s closeness or betweenness. Rather, it is more consistent with eigenvalue-like measures.

The canonical representation by Borgatti (2005) shows a characteristic of these measures: they

assume trajectories of flows that can not only be circuitous, but also revisit nodes and lines mul-

tiple times along the way. In order to establish their relationship, the following result due to

Stadje (1997) is crucial, since it allows us to interpret eigenvector-based centrality measures (Katz,

1953; Bonacich, 1972, 1987; and Brin and Page, 1998), and also the total effects centrality defined

in Friedkin (1991), as probabilities of reaching consensus in a stochastic dynamic model based

on the influence matrix W.

If we allow for a set T ⊆ N of initially active nodes to be deactivated during the process, then

we will always work with the general Markov chainM = {XN
t }t≥0 which is a recurrent chain

with two absorbing states, namely zN and eN , when the influence matrix W is irreducible. In

that case (see Stadje, 1997), the probability of absorption in eN , given the initial state is [eT , zN\T],

equals

πeN [eT , zN\T] = ∑
i∈T

ξi,

where (ξi)i∈N is the stationary distribution of the irreducible influence matrix W. If W is not

irreducible, then the society (N, W) is fragmented into independent subsocieties and the prob-

ability of absorption can be calculated as the product of the corresponding absorption proba-

bilities on each of the subsocieties. Therefore, from an individual point of view, eigenvalue-

like measures are closely related to the individual power to initiate action. The eigenvalue of

agent k gives the probability of the new behavior replacing the old one when agent k starts the

11Which replaces all members of a group by a single “super” vertex whose neighborhood is the union of the

neighborhoods of all group members.
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innovative behavior, and taking account that even himself could abandon the new behavior;

whereas his power to initiate action counts the time it takes to convince everybody else to adopt

the innovation when he will never abandon it.12 However, the eigenvalue approach does not

properly generalize to groups since it will result in an additive measure, which oversimplifies

the complex structure of the underlying non-linear network dynamics.

Example 3. Consider a society of four members, where relations are symmetric and binary, and

are described by the following graph, with adjacency matrix A:

4 3

2

1

A =




0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0




In order to derive an influence matrix we modify its diagonal to include each agent’s personal

attitude towards his own opinions. The diagonal elements are indicative for an agent’s inde-

pendence. Suppose that each agent regards his own opinion equally important as that of all

his direct relations (diagonal elements of 1). After normalization we arrive at the following

influence matrix:

W =




1/3 1/3 1/3 0

1/3 1/3 1/3 0

1/4 1/4 1/4 1/4

0 0 1/2 1/2




Intuitively, agent 3 should be the most powerful agent, whereas agent 4 should be the least

powerful one. Agents 1 and 2, who occupy a symmetric position in the society, should have an

intermediate strength.

Now, in order to calculate the power of agent 1, the state space of the partial Markov chain

M(e1), σ({2, 3, 4}), will be given by the matrix

σ({2, 3, 4}) =




0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1


 ,

where each column represents a state vector of {2, 3, 4}. In the first state no agent in N \ {1}

is active and the vector We1 indicates each agent’s probability to act in the following period

(apart from 1 who always stays active), in particular p2 = 1/3, p3 = 1/4 and p4 = 0. The

probability for the subsociety {2, 3, 4} to stay in the first state where only 1 is active is hence

12Which fits precisely the terrorist’s movements behavior. There is a hard-core of terrorist that are always pushing

their revolutionary behavior. It is also convenient in those cases in which, for instance, a group of people are paid

for wearing a specific clothing-brand.
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given by (M(e1))11 = (1− p2)(1− p3)(1− p4) = 1/2. The remaining elements of M(e1) are

computed analogously. We get

M(e1) =




1
2 0 1

6 0 1
4 0 1

12 0
1
6

1
6

1
6

1
6

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
6

1
6

1
6

1
6

0 1
12 0 1

4 0 1
6 0 1

2
1
6 0 1

6 0 1
3 0 1

3 0
1
24

1
24

1
8

1
8

1
12

1
12

1
4

1
4

0 0 0 0 1
8

1
8

3
8

3
8

0 0 0 0 0 0 0 1




The fundamental matrix of the absorbing system D(e1) = (I7 − Q(e1))
−1 turns to be:

D(e1) ≈




2.779 0.131 0.889 0.201 1.651 0.439 1.681

0.907 1.333 0.645 0.448 0.947 0.479 1.167

0.674 0.204 1.492 0.296 0.944 0.510 1.223

0.203 0.180 0.165 1.452 0.256 0.362 0.376

1.010 0.109 0.708 0.173 2.463 0.418 1.819

0.459 0.143 0.422 0.310 0.677 1.388 1.109

0.294 0.050 0.226 0.096 0.628 0.361 2.185




The expected time it takes until the action of agent 1 has triggered all others is the resistance of

the society to 1 and given by

7

∑
j=1

d(e1)1j ≈ 2.779 + 0.131 + 0.889 + 0.201 + 1.651 + 0.439 + 1.681 = 7.771.

Analogously, all group’s resistances and powers can be obtained. The following table compares

resistance and power to different group centrality measures. The group eigenvalue centrality

is obtained as the corresponding eigenvalue in the group reduced graph. In that case, the

internal structure of the group has no effect. The same occurs when group closeness based

on the minimum method13 and group degree measures are obtained. The group measure we

propose does not show this drawback. Note that group resistance is the only measure that

differentiates between all groups of two agents, up to symmetries of agents 1 and 2, whereas

the remaining measures only distinguish one of them, and moreover, all of them give the same

score for all groups of three agents.

♦

13In which the distance to a group in a graph is defined as the minimum distance to each of its members. We select

this method, rather than average or maximum group closeness since these are not monotonic measures. Moreover,

our measure is much more related to minimum closeness than to the other two (see the analysis of primate data

example in Section 6).
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GROUP {1} {3} {4} {1, 2} {1, 3} {1, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4}

RESISTANCE 7.77 4.17 15 5.33 2.3 3.12 3.86 2 1.33 1.5

POWER 0.128 0.240 0.067 0.188 0.435 0.321 0.259 0.500 0.752 0.667

DEGREE 2 3 1 1 2 2 2 1 1 1

EIGENVALUE 0.523 0.612 0.282 0.5 0.707 0.707 0.707 0.707 0.707 0.707

BETWEENNESS 0 2 0 0 1 0 0 – – –

MIN-CLOSENESS 4 3 5 3 2 2 2 1 1 1

DEGREE-NORM. 1.5 1 3 2 1 1 1 1 1 1

BET.-NORM. 0 1.5 0 0 2 0 0 – – –

M-CLOSE.-N . 0.75 1 0.6 0.667 1 1 1 1 1 1

Table 1: Example 3 group centrality measures.

Whereas centralities like degree and closeness14 are defined by the number of ties between

the agents, their generalizations to signed and valued graphs (see, e.g., Newman (2001), Bran-

des (2008)) mainly focus on tie weights instead. Our approach combines the two views in a

natural way as we will illustrate below. See Opshal et al. (2010), where generalizations combin-

ing both aspects are defined by means of a weighted bi-criteria approach.

Moreover, when applied to non-symmetric relations for these generalizations it is easy to

run into agents with infinite closeness, simply because some are out of reach. This is not a

problem in our context, but it is worthwhile to note that we are dealing with a group measure

and every agent, apart from the isolated ones, is always contained in a group that can actually

reach all of the agents in the complementary group.

Example 4. (Opsahl et al., 2010) Consider a society of five members, where relations are sym-

metric and valued as depicted by the following weighted undirected graph with adjacency

matrix A:

1 2

3

4 5

3

3

3

1

2 2

A =




0 1 2 3 0

1 0 2 0 3

2 2 0 0 0

3 0 0 0 3

0 3 0 3 0




Suppose an agent’s self-influence outweighs the average influence by the direct relations, we

14We will not discuss the relation to betweenness measures because the properties of our measure are radically

different.
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may take as W the normalization of A∗:

A∗ =




2 1 2 3 0

1 2 2 0 3

2 2 2 0 0

3 0 0 3 3

0 3 0 3 3




W =




1
4

1
8

1
4

3
8 0

1
8

1
4

1
4 0 3

8
1
3

1
3

1
3 0 0

1
3 0 0 1

3
1
3

0 1
3 0 1

3
1
3




.

In this case, the power to initiate action of agents 1 and 2 is close to that of agents 4 and 5, but

greater, reflecting the fact that agents 1 and 2 need less intermediary nodes in their geodesic

paths to the remaining agents than 4 and 5. However, the weighted closeness obtained by

inverting the tie weights (Newman, 2001; Brandes, 2001) stresses the weight dependency by

giving more centrality to agents 4 and 5. ♦

AGENT RESIST. POWER W-CLOSENESS

1 9.5829 0.1043 2.5

3 14.4813 0.069 2.6667

5 9.9126 0.1009 2.1667

Table 2: Calculated power and weighted-closeness for the Opsahl (2010) example.

5 Properties: monotonicity

As non-monotone group power measures should be used with extreme caution, the question

is whether the group measure we have defined is monotonic. We will state first some results

of Percolation Theory, which are the main tool for proving the monotonicity of the resistance,

as well as some notation. We refer the reader to Holley and Liggett (1975) for a thorough

introduction to this topic.

5.1 Percolation Theory

Fix a society (N, W). Given a subsociety S ⊆ N, let us define the weighted directed graph

D(WS) = (N, E, WS), with agents as nodes and arcs (k, j) ∈ N × N, such that wS(k, j) > 0,

where wS(k, j) = wkj, for all k /∈ S and j ∈ N, and wS(k, k) = 1, wS(k, j) = 0, for all k ∈

S and j 6= k. Then, the Markov process M(eS) defined by S can be described in terms of

an associated coalescing random walk (CRW) over D(WS), which is another stochastic process

defined as follows. At time 0, every node holds a black dot. At every time step, the dot on

node i hops to one of its neighbors with the probability given on the arc. All dots are hopping
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simultaneously. When two or more dots land at the same node, they coalesce into one, and

continue hopping.

We will adopt the alternative definition of the CRW process through the outcome matrix,

US = {y∗ = {(y∗1(t), . . . , y∗n(t))}t≥1 | y
∗
i (t) ∈ N, ∀i ∈ N, ∀t ≥ 1},

which describes the social dynamics by means of saying that at each time period, every agent

chooses a neighbor at random with a probability determined by WS, and then copies his/her

status. Note that at each time period, agent i decides who he/she wants to copy with the same

set of probabilities regardless of his/her current status or its neighbors’. Here, y∗i (t) ∈ N is the

neighbor that agent i has decided to copy in period t. For a given outcome matrix y∗, let pik(y
∗)

be the backward path originating from agent i at time k and terminating at some agent at time

0. Let ηik(y
∗) ∈ N be that agent.

Let us assume now that S  N, i0 /∈ S, and denote S′ = S ∪ {i0}, and by TS and TS′ the

random times to reach the revolutionary state eN when the initial states are zN\S and zN\S′ in

M(eS) andM(eS′), respectively. Moreover, let yN\S′ = {y
N\S′

t }t≥0 be a realization ofM(eS′)

for which TS′(y
N\S′) = t0 for a certain time t0, and let y∗ be any outcome matrix that reproduces

y = {[y
N\S′

t , 1S′ ]}t≥0. That is, yit = 0 if ηit(y
∗) /∈ S′, and yit = 1 if ηit(y

∗) ∈ S′, for all agent

i ∈ N, and for all t ≥ 1. Then, the n backward paths pit0
(y∗) of length t0 that reproduce the

adopting patterns from time t = t0 to the initial time t = 0 for every i ∈ N, end at some agent in

S′ (i.e., ηit0
(y∗) ∈ S′, for all i ∈ N). Moreover, t0 is the minimum time satisfying this condition.

Now, let us define the outcome matrix set Y∗ as the matrix composed by all the outcome

matrices y∗ that reproduce y, and let

Y∗(t0) =
⋃
{Y∗ | yN\S′ with TS′(y

N\S′) ≤ t0},

for each t0 ≥ 1. Then,

P{TS′ ≤ t0} = ∑
y∗∈Y∗(t0)

P{US′ = y∗} = ∑
y∗∈Y∗(t0)

gS′(y
∗, t(y)), (3)

where

gS′(y
∗, t(y)) = ∏

i/∈S′
∏{wS′(j, k) | (j, k) ∈ pit(y)(y

∗)},

and being t(y) the time it takes the society to reach the revolutionary state when it is evolving

according to y inM(eS′). That is, t(y) = TS′(y
N\S′). Note that for every i ∈ S′ (including i0),

and for every instant of time t, y∗i (t) = i.

Now, for any given outcome matrix y∗, we can define the set X∗y∗ whose elements are the

matrices x∗ whose elements are the outcome matrices for the partial Markov chainM(eS) such

that x∗i (t) = y∗i (t), for all i 6= i0, for all t ≥ 1. As abstract matrices, the elements of X∗y∗ differ

from y∗ only in the i-th row, whose entries can take different values in N.

16



For every x∗, we can of course define again:

gS(x
∗, t(x)) = ∏

i/∈S
∏{wS(j, k) | (j, k) ∈ pit(x)(x

∗)},

and the definition of X∗y∗ implies that

gS′(y
∗, t(y)) = ∑

x∗∈X∗
y∗

gS(x
∗, t(x)). (4)

Now we are ready to prove the desired result.

5.2 Proof of the monotonicity

Proposition 1. Let (N, W) be a given society, and let S and T two subsocieties with S ⊆ T. Then

r(T) ≤ r(S).

Proof. Let ∅ 6= S  N be a non-trivial subgroup of agents, and let i0 ∈ N \ S. Then, it is enough

to compare the resistance of the society to S to the one to S ∪ {i0}, and to check that the former

should be, as intuition suggests, greater than the latter. Four cases are possible:

(i) If S ∪ {i0} = N, then r(S) ≥ r(N) = 1, which is the smallest resistance.

(ii) If I(S ∪ {i0})  N \ (S ∪ {i0}) ⇒ I(S)  N \ S, and therefore r(S ∪ {i0}) = r(S) = ∞.

(iii) If I(S ∪ {i0}) = N \ (S ∪ {i0}), but I(S)  N \ S ⇒ r(S ∪ {i0}) < ∞ = r(S).

(iv) Otherwise, S ∪ {i0}  N, 1 ≤ r(S) < ∞, and 1 ≤ r(S ∪ {i0}) < ∞.

For the three first cases the result is clear, so let us analyze (iv) in detail. We will check that

P{TS ≤ t0} ≤ P{TS∪i0 ≤ t0}, ∀ t0 ≥ 1,

so that E(TS) ≥ E(TS∪i0).

The proof is based on the fact that the distribution of TS and TS∪i0 in both Markov chains,

M(eS) andM(eS∪i0), can be analyzed by means of their associated coalescing random walks,

as seen in the previous section. If we adopt the notation introduced there, with S′ = S∪ {i0} in

particular, we observe that X∗y∗ is disjoint from X∗
y′∗

for every two different realizations y∗ and

y′
∗

ofM(eS′), so it follows from (3) and (4), that:

P{TS′ ≤ t0} = ∑
y∗∈Y∗(t0)

gS′(y
∗, t(y)) = ∑

y∗∈Y∗(t0)
∑

x∗∈X∗
y∗

gS(x
∗, t(x)).
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The key point now is that every outcome matrix x∗ ∈ M(eS) such that t(x) ≤ t0 belongs

to exactly one set X∗y∗ , the corresponding to the matrix y∗ ∈ M(eS′) such that for every t ≤ 1,

y∗i0(t) = i0, and y∗i (t) = x∗i (t). According to the percolation structure, is is easy to realize that

t(y) ≤ t0, and the strict equality holds exactly when t(y) is determined by the copy inM(eS′)

of a node in S.

Hence we have the inequality

P{TS ≤ t0} = ∑
x∗∈X∗(t0)

gS(x
∗, t(x)) ≤ ∑

y∗∈Y∗(t0)
∑

x∗∈X∗
y∗

gS(x
∗, t(x)) = P{TS′ ≤ t0}.

Then r(S′) = E(TS′) ≤ E(TS) = r(S), and we are done with this case. Note that the inequality

will be usually strict, as in general not all the elements x∗ of X∗y∗ , for any given y, will be

absorbed in a time smaller than t0 inM(eS).

Note that if we adopt definition (2) to deal with fragmented societies, resistance remains

monotonic. Let (N, W) be a given society that is fragmented into m independent subsocieties

{(N1, W1), . . . , (Nm, Wm)}. Let S and S ∪ {i0} be two groups in N satisfying condition (iv),

and let k(i0) ∈ {1, . . . , m} be the subsociety which agent i0 belongs to. Then Sk = S ∩ Nk =

(S ∪ {i0}) ∩ Nk = (S ∪ {i0})k, for all k 6= k(i0), and (S ∪ {i0})k(i0) = Sk(i0) ∪ {i0}. Then, taking

into the previous general proof, it follows that

r(S) = max{r(S1), . . . , r(Sk(i0)), . . . , r(Sm)} ≥

≥ max{r(S1), . . . , r(Sk(i0) ∪ {i0}), . . . , r(Sm)} = r(S ∪ {i0})

6 Comparative analysis

In this section we present comparative statistics results concerning the choice of the weight

matrix S and self-influence in particular. We do this by discussing two illustrative examples,

that of Wolfe’s Primate network and the terrorist network 11S. The focus will be on the relation

of the group power measure with standard centrality scores (both individuals and for groups)

and in which sense the former is more general than the latter; the modeling of the self-influence

of an agent; the relationship with the network effects models and specially the wide range of

possibilities allowed in the context of network exposure, and the interpretation as a network

intervention, in the spirit of the key-player problem.

6.1 Self-Influence

The influence matrix W is the basic concept which not only defines relations between different

agents, but also an agent’s independence from his social environment; here the off-diagonal en-

tries serve to summarize the relations between agents whereas the diagonal entries represent
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independence. As illustrated by Example 4, social network data often come encoded as binary

(weighted) symmetric or asymmetric relations, leaving the diagonal entries blank. This im-

plies degrees of freedom in interpreting the respective self-influences. Below, we will describe

three ideas to add the information about self-influence when needed, and perform a sensitivity

analysis of the resistance of the society to each group relative to these choices. As an example,

we will describe the Wolfe’s primate data discussed in Everett and Borgatti (1999), which deals

with binary and weighted symmetric relations.

Let S be the weight matrix, which is the (weighted) adjacency matrix of the (weighted)

undirected graph. We consider the following models for the diagonal:

• Symmetric and independent self-influences: assume the same fixed value for every agent’s

self influence15. We define:

wii = δ ∈ [0, 1), and wij = (1− δ)
sij

∑
n
k=1 sik

, for all i, j. (5)

• Self-influences based on agent’s direct friends: assume that each agent gives to his own opin-

ion the same importance that he gives to his direct friends’ opinion. In that case, we

take:

wii =
si

si + ∑
n
k=1 sik

, and wij = (1− wii)
sij

∑
n
k=1 sik

, for all i, j, (6)

where si is the average influence that his direct friends exert over agent i, i.e., si =
∑j 6=i sij

δ(i) ,

δ(i) being the degree of node i in the corresponding undirected (weighted) graph defined

by S. See Example 3 for an application of this choice to a binary undirected graph, and

Example 4 for its application to a weighted undirected graph.

• Self-influences based on agent’s centrality in the social network: following Friedkin (2001), we

will assume that the structural measure of an agent’s susceptibility to influence, measured

by 1− wii, is based on the agent’s centrality in the social network. Moreover, similar to

that paper, we draw on the most elementary measure of centrality, the degree of the agent.

Hence we write:

wii = 1−

√
1−

1

1 + e−(δ(i)−2δ)
, and wij = (1− wii)

sij

∑
n
k=1 sik

, for all i, j, (7)

where δ is the average degree of the agents, when relations are symmetric and binary.

6.2 Wolfe Primate data: Self-Influence Sensitivity Analysis and Relation with group

centrality measures

In the sequel we undertake the analysis of the Wolfe primate data, which are given as a stan-

dard dataset in UCINET (Borgatti, Everett and Freeman, 2002). The data represent three months

15Since we do not have exogenous information to attach different values to different primates. We propose several

asymmetric actions later.
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of interactions between a troop of monkeys, observed in the wild by Linda Wolfe as they

sported by a river in Ocala, Florida. Joint presence at the river was coded as an interaction

and these were summed within all pairs. The dataset also contains information about the sex

and age of each animal. Everett and Borgatti (1999) consider six different groups to illustrate

their group centrality proposals. Four of the groups were formed by age, and two formed by

sex: (1) Age 14-16 (1,6,11,13,19); (2) Age 10-13 (2,3,8,12,16); (3) Age 7-9 (4,5,9,10,15,17); (4) Age

4-5 (7,14,18,20); (5) Male (1 to 5); and (6) Female (6 to 20). They dichotomized the data, formerly

symmetric and valued, by taking the presence of a tie if there were more than six interactions

over the time period (see Figure 1). We will analyze the binary case to develop a comparative

analysis, but also describe the valued case, to which our proposal can be properly applied.

As in [24], when dealing with the binary case, we have permanently deleted the isolate nodes

2,6,16,18,19 and 20.

Figure 1: Wolfe Primate binary social network

Table 3 shows the group centrality scores for the six groups, as well as the resistance of

the society to each one under the different scenarios we have considered: symmetric and inde-

pendent self-influences (denoted by Rdelta), with self-influence values from δ = 0 to δ = 0.9;

self-influences based on agent’s direct friends (denoted by Rmean), and self-influences based on

agent’s centrality in the social network (Rdegree). Note that it is possible to replace δ(i) by a

parameter incorporating other aspects of autonomy as e.g. the relative time each primate does

not encounter other primates or ethnologic knowledge to differentiate autonomy attitude ac-

cording to, for example, age. However, this would require additional information.
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Closeness Fixed self-influences

Group Degree Min. Average Max. Between. R0 R0.2 R0.4 R0.75 R0.9 Rmean Rdegree

Age 14-16 8 14 18 20 2.84 10.82 10.82 10.82 33.94 84.90 11.36 20.00

Age 10-13 11 11 15 21 43.5 4.50 5.63 5.63 18.82 47.83 5.76 4.56

Age 7-9 5 11 13.7 15 0 7.27 8.85 8.85 27.63 68.99 8.85 16.04

Age 4-5 5 19 20.5 22 0 15.58 18.57 18.57 56.07 139.14 19.25 31.33

Male 10 10 16 20 24.34 6.11 7.51 7.51 23.93 60.11 7.52 6.62

Female 4 4 6.4 7 0.5 2.16 2.88 2.88 10.30 26.36 2.96 9.39

Table 3: Group centrality and the resistance of the society for the Primate data. Absolute values.

Closeness Fixed self-influences

Group Degree Min. Average Max. Between. R0 R0.2 R0.4 R0.75 R0.9 Rmean Rdegree

Age 14-16 0.53 0.79 0.61 0.55 0.03 0.98 0.98 1.30 3.09 7.72 1.03 1.82

Age 10-13 0.73 1 0.73 0.52 0.41 0.41 0.51 0.69 1.71 4.35 0.52 0.41

Age 7-9 0.36 0.73 0.58 0.53 0 0.91 1.11 1.45 3.45 8.62 1.11 2.01

Age 4-5 0.31 0.63 0.59 0.55 0 1.30 1.55 2.00 4.67 11.60 1.60 2.61

Male 0.67 1 0.63 0.5 0.23 0.61 0.75 0.99 2.39 6.01 0.75 0.66

Female 0.8 1 0.63 0.57 0.05 0.54 0.72 1.00 2.57 6.59 0.74 2.35

Table 4: Group centrality and the resistance of the society for the Primate data. Normalized

values.

Group closeness depends on the definition of distance from the group to an outside node.

Everett and Borgatti (1999) considered (i) the minimum distance to each of the group’s nodes;

(ii) the average of the distances; and (iii) the maximum distance.

Table 4 gives the corresponding normalized values (see [24]), which have greater signif-

icance in this context since we compare groups of different sizes. Here, resistance has been

divided by the number of non-group members. This value can be interpreted as the average

expected time to convince a non-group agent to become active.

All group measures but group closeness with the maximum method rank groups of Male,

Female and Age 10-13 primates as the three best ones. Moreover, comparing group closeness

(with the minimum and average method), degree and resistance results, we see a broad agree-

ment between the measures. However, there are some interesting aspects in favor of resistance

that should be remarked. With respect to the relation between closeness and resistance, first

note that minimum and average closeness does not provide much sensitivity. All the three

aforementioned groups attain the maximal value with the minimum method, whereas the av-

erage method does not differentiate among Male and Female groups. This is not the case with

resistance. Given a group in active mode, which features of the network are relevant in order

to achieve full action as soon as possible? Resistance indicates a change in the relative ordering

among Male and Female groups with respect to different self-influence choices. When agents

are very sensitive to influence, see R0, R0.2 and Rmean (which is in between) results, the Fe-

male group is more powerful than the Male group. Note that the Male group contains primate

3, who is related with all female primates. With decreasing independence he is more easily

convinced, and reciprocally he becomes harder to convince with increasing independence (δ).

21



Note also that the relative largest difference among these two groups is obtained for Rdegree

(self-influences based on agent’s centrality in the social network). In that case primate 3 be-

comes very hard to convince (with w33 = 0.875), and therefore the resistance of the society to

the Female group rises drastically. Moreover, note that the Female group is considerably larger

in size (15) than the Males (5). This advantage, however, decreases as male primates become

less sensitive to influence. To sum up, for small values of δ the Female group is more powerful

than the Male group, which reproduces group degree and closeness relative order; whereas for

bigger values of δ the Male group is more powerful reflecting the relative order of betweenness.

Obviously agents are harder to influence with increasing δ, and therefore the resistance of

the society to every group increases. Analyzing those increments, we observe that the marginal

effects of increasing δ over resistance are bigger as δ approaches to one, and also are bigger for

less powerful groups than they are for more powerful ones.

The analysis so far was based on dichotomous data (by taking the presence of a tie to be

more than six interactions over the time period). We will now analyze the valued case. When

the number of interactions over the three months time period is taken into account, we obtain

a weighted undirected connected graph without isolated nodes. Table 5 shows the resistance

of the society to each of the considered groups and indicates a change in the ranking of a

group’s power to initiate action. In contrast to the dichotomous model, the primates’ group

of ages ranging from 10 to 13 is not among the most powerful, and is ranked fourth in almost

all scenarios. The Female group is now the most powerful group for all scenarios, except in

the extreme cases in which all primates are very independent, with self-influence values of

δ = 0.75 and δ = 0.9. Here, as before, the advantage of larger group size decreases as male

primates become less sensitive to influence, and Female group’s power falls from rank one to

the third position for δ = 0.75, and even to the fourth for δ = 0.9.

Let us consider next self-influences based on agent’s centrality in the social network. Re-

placing degree on (7) by weighted degree, the self-influences we obtain are zero for all primates

but primate 3, whose high level of independence prevents this effect (with w33 = 0.9992). As

a result, society resistance’s to all groups not containing primate 3 increases considerably, the

resistance to the Female group above all. If we obtain the self-influences through the degree16,

the Female group remains as the most powerful group, but the Male group loses some of its

power favoring the Age 7-9 group.

6.3 Selecting the Weight Matrix

In the previous example we analyzed the correlation of resistance with some well-known group

centrality measures. Moreover, according to different criteria, we proposed different choices of

16Then we must consider the difference δ(i)− δ, instead of δ(i)− 2δ, which turns all monkeys totally sensitive to

influence (wii = 0, for all i).
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Fixed self-influences

Group R0 R0.2 R0.4 R0.75 R0.9 Rmean Rw−degree Rdegree

Age 14-16 0.61 0.75 0.98 2.34 5.85 0.64 105.82 14.42

Age 10-13 0.55 0.68 0.89 2.14 5.37 0.58 0.55 12.94

Age 7-9 0.51 0.64 0.85 2.05 5.17 0.54 107.28 11.32

Age 4-5 0.80 0.97 1.26 2.95 7.32 0.84 114.34 19.32

Male 0.51 0.63 0.84 2.03 5.09 0.54 0.51 12.32

Female 0.41 0.57 0.81 2.11 5.43 0.45 249.76 3.92

Table 5: Normalized group centrality and the resistance of the society for the valued Primate

data.

the diagonal of the weight matrix, and explored the consequences of the respective definitions.

This subsection shows how to take a somewhat deeper profit of the freedom in the choice of

this matrix by adding information which not depend directly, as in the classical (symmetric)

case, on the the number of incident edges in each vertex. In the spirit of the network exposure

models, and according to the recommendations of Valente (see comments on Section 2 about

this point), we will consider different weight matrices to derive the influence matrix conducting

the dynamical process. As a result, computing the resistance of the society to each group in each

of the considered scenarios provides different group power measures which are not only based

on individual direct relations, but also include information derived from the total network

structure. Moreover, this approach allows to introduce exogeneous information which does

not depend on the structure of the network.

The forthcoming subsection applies these ideas to the terrorist network of the 11S, which

deals with binary symmetric relations. We will now describe the different influence matrices

to be considered. Assume the underlying graph is connected, and consider first the following

symmetric sociomatrices:

• The matrix S(1) is the adjacency matrix of the graph.

• The matrix S(2) is obtained by inverting the entries dij of the distance matrix D, for i 6= j.

Recall that the entry dij of this matrix is the geodesic distance between the node i and the

node j. For every i, we define S(2)ii = 0.

• The matrix S(3) is obtained squaring the entries of S(2).

• The matrix S(4) emerges from S(3) by setting all entries with aij < 1/9 equal to zero.

• If the elements of the matrix G = {g}ij count the number of geodesical paths between

each pair of nodes i and j, we define S(5) as the matrix of pondered geodesical paths,

whose entries are S(5)ij = gij/dij, if i 6= j, and zero otherwise.

The matrices S(2), S(3), S(4) and S(5) take the distance between nodes into account. In S(3)

the influence of the distance is weakened in comparison to S(2). In S(4) we do not consider

any relation between nodes which are separated by a distance bigger than three, while in S(5)
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the influence of distance is weighted by the number of geodesic paths connecting the nodes. It

is easy to imagine similar versions of these matrices.

Finally, we consider two different kinds of non-symmetric matrices:

• Assume that there exists a directed valued graph with more relational information be-

tween the agents in the social network, and call E the weight matrix. Define S(6) such

that S(6)ij = S(1)ij + Eij, for every i 6= j, and zero otherwise. In an analogous way, S(7)

is defined as S(7)ij = S(6)ij if S(1)ij 6= 0, and zero otherwise. Here, S(6) always takes

account of the weights. For S(7) this is only the case when there is an edge joining the

corresponding nodes in the original relational graph.

• Let C be any individual centrality measure, and let Ci be agent i’s centrality. Then S(k),

for k = 8, 9, 10, are matrices obtained when the influence of agent i over the remaining

agents is weighted according to its centrality score. In that case, S(k)ij = CjS(1)ij, for

all i, j. For k = 8, 9, 10, C will be respectively the normalized degree, the normalized

closeness or the normalized betweenness.

The above definitions represent different versions of the weight matrix, up to fixing the

own individual level of independence (i.e., up to fixing the diagonal of the S(·) matrices). In

this analysis, we have assigned a certain proportional weight to the influence that an agent

exerts to itself. As we explained in the previous section, this is not the only possible choice

for the elements of the diagonal; however, it is quite reasonable from the point of view of

the dynamical model we adopt, as it assumes that the number of times an agent adopts his

own previous action is an average of the number of times he adopts the action of those agents

influencing him. Now, we must derive the influence matrices in a reasonable way from the

defined sociomatrices. As we want to preserve the information as far as possible, we derive

the influence matrix W by means of a normalization process. In particular, if S is a matrix n× n,

then, according to (6), we define:

wij =
s̃ij

∑
n
k=1 s̃ik

, for all i, j,

where s̃ij = sij, for all i 6= j, sii =
∑j 6=i sij

δ+(i)
, and being δ+(i) the out-degree of node i in the

corresponding (directed) weighted graph defined by S.

We will describe the implications of the different choices of these matrices in the next ex-

ample.

6.4 The 11S network

In the sequel we undertake an analysis of the terrorist network of the 11S. Our starting point

is the version of the network in Figure 2, whose links come from terrorist that lived or learned
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together (black edges) as well as some temporary links that were only activated just before the

attack in order to coordinate the cells. See Krebs (2002) for further information.

Figure 2: 11S social network

We constructed the weight matrices derived from that graph and the corresponding influ-

ence matrices according to the definitions above.17 Note that the mere structure of the network

allows to construct all the matrices except for the cases S(6) and S(7) (see below), which re-

quire exogenous information in order to construct a valued graph. We have introduced extra

information corresponding to other discovered contacts between the hijackers, as for example

registration in the same hotels, renting the same car or share the same gym. As a result, the

value on an edge increases with reported contacts between the hijackers defining it. For each

choice, we have computed the resistance of the societys to each individual terrorist and de-

scribed the most influential group. The numerical method is an estimation of a group’s power

to initiate full action by means of stochastic simulation, and we adopt a natural greedy algo-

rithm to identify the 4-members18 leader group. The idea is to begin with the terrorist with

the smallest resistance, and proceed with an induction: given a group S of terrorists, select the

terrorist {i} who produces the biggest reduction in the resistance of the society when added to

17The dataset is available on request.
18As it is well known, the nineteen hijackers which prepared and executed the attack were distributed in four

cells, one for each plane that they planned to crash. Flight AA#11, crashed into WTC North, in green colour; Flight

AA#77, crashed into Pentagon, in red; Flight UA#11, crashed in Pennsylvania, in blue; and Flight UA#173, crashed

into WTC South, in pink.
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Hard core S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10)

1st to enter Al-Shehhi N. Al-Hazmi N. Al-Hazmi N. Al-Hazmi Al-Shehhi Atta Atta N. Al-Hazmi N. Al-Hazmi Atta

2nd to enter N. Al-Hazmi Al-Shehhi Al-Shehhi Al-Shehhi Jarrah N. Al-Hazmi Al-Shehhi Al-Shehri Al-Omari Al-Omari

3rd to enter Al-Shehri H. Al-Ghamdi H. Al-Ghamdi Atta Hanjour Al-Shehri H. Al-Ghamdi Al-Shehhi Al-Shehhi N. Al-Hazmi

4th to enter H. Al-Ghamdi Jarrah Al-Shehri H. Al-Ghamdi Al-Haznawi H. Al-Ghamdi Hanjour H. Al-Ghamdi W. Al-Shahri Al-Shehhi

Table 6: Determining the hard core

group S. We will refer to the sequentially selected terrorists as “the hard core”. The results of

the greedy algorithm are depicted in Table 6. In Table 7, in turn, we show the resistances to ev-

ery individual agent, as well as the individual degree, closeness, betweenness and eigenvalue

scores. Here, all centrality computations have been undertaken systematically with UCINET

(Borgatti et al., 2002).

Let us comment briefly the results. The most repeated components of the hard core are Mar-

wan Al-Shehhi, Nawaf Al-Hazmi, Mohamed Atta, Waleed Al-Shehri and Hamza Al-Ghamdi,

and hence all the cells are represented in this group. When running the algorithm, the first

three mentioned hijackers appeared frequently in the first or second iteration, which is not sur-

prising as Atta an al-Shehhi were reported to be leaders of the network, and Al-Hazmi had

contact with members of all the cells. Al-Shehri and Al-Ghamdi represent the unique tie of

some individuals to the rest of the network. Consequently, their presence in the hard core is

necessary in order to allow the information to diffuse to these individuals; in fact, these are the

only two nodes whose absence would disconnect the graph.

Observe that the resistances to Atta and Al-Shehhi are always very low and similar. Except

in one case, the resistance to Al-Shehhi is a little bit smaller than that to Atta in the cases where

the influence matrix depends exclusively on the distances of the graph, and this fact suggests a

certain structural advantage of the position of the former. Notice that this advantage cannot be

concluded from its closeness nor its betweeness, and in fact Atta becomes the main character

when in S(10) we introduce the betweenness in the model. This happens again when we

consider the exogenous information through models S(6) and S(7). It is also remarkable that,

except in one instance, Atta appearing in the hard core causes Al-Shehhi to not appear, and

viceversa. From this point of view the two terrorists share a great part of the influence.

Let us also comment some differences between the considered scenarios. We have al-

ready described how the weights drastically change the “leader” of the hard core. For S(1)

to S(5), the weight matrices depend on the distance between nodes. In S(1) and S(3) only

very short distances count, such that the hard core “requires” the presence of Waleed Al-Shehri

and Hamza Al-Ghamdi in order to reach the outskirts. On the other hand, in S(2) and S(4),

one of these is replaced by a more central node, namely Jarrah and Atta, as the time needed

to arrive to the more distant nodes is smaller. Another very different point of view is given by

S(5), where at least three of the hijackers score very high in degree and closeness in the selected
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S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10) Eig. Deg. Clos. Betw.

Mohamed Atta 43.568 30.163 28.745 27.935 31.843 53.693 32.731 48.330 32.309 14.061 0.361 0.263 0.068 0.119

Marwan Al-Shehhi 41.009 30.093 28.950 28.482 26.660 56.269 35.446 54.316 32.345 18.380 0.348 0.316 0.064 0.116

Said Jarrah 47.592 31.383 31.819 30.569 28.883 66.288 55.408 58.509 36.626 44.471 0.334 0.263 0.061 0.116

Khalid Al-Midhar 84.143 37.228 49.715 37.319 34.464 188.968 64.595 148.686 72.299 ∞ 0.173 0.105 0.051 0

Nawaf al-Hazmi 42.292 28.523 26.817 27.299 27.648 65.532 47.846 26.106 30.632 20.977 0.405 0.368 0.068 0.170

Abdulaziz Al-Omari 67.935 34.861 37.723 33.694 34.639 73.380 55.680 131.587 60.879 20.446 0.166 0.158 0.057 0.163

Waleed Al-Shehri 145.999 40.733 52.911 53.511 41.146 148.241 50.755 465.507 171.035 43.720 0.042 0.158 0.043 0.116

Wail Al-Shehri 201.605 49.194 67.583 88.248 49.823 184.932 52.427 822.615 301.641 ∞ 0.012 0.105 0.033 0

Majed Moqed 140.545 42.642 54.129 46.168 42.103 167.989 69.717 558.813 139.393 ∞ 0.083 0.053 0.044 0

Salem Al-Hazmi 62.853 33.936 34.749 33.134 32.655 109.774 57.885 87.155 49.717 194.906 0.241 0.158 0.058 0.008

Hami Hanjour 47.487 29.909 27.296 29.115 29.955 83.160 40.527 45.770 34.818 21.272 0.377 0.316 0.064 0.093

Ahmed Al-Haznawi 69.093 35.102 36.438 35.167 33.291 123.460 101.784 96.478 61.788 208.518 0.181 0.158 0.053 0.016

Satam Suqami 201.537 49.227 67.570 88.199 49.821 206.315 78.924 824.928 302.793 ∞ 0.012 0.105 0.033 0

Said Al-Ghamdi 64.864 33.702 33.625 33.788 37.118 143.069 78.350 41.136 55.330 300.037 0.230 0.211 0.054 0.006

Ahmed Al-Hami 72.898 35.660 37.492 35.795 35.027 155.917 90.238 29.623 64.174 ∞ 0.197 0.158 0.052 0

Fayed Ahmed 94.547 37.803 42.973 37.081 40.009 232.706 110.031 249.070 89.764 137.727 0.094 0.105 0.052 0.029

Mohand Al-Shahri 98.647 38.891 44.349 40.353 40.027 194.741 113.224 235.037 100.057 216.080 0.077 0.105 0.047 0.019

Hamza Al-Ghamdi 57.261 30.866 28.857 30.961 33.570 121.461 71.769 35.593 48.432 43.060 0.253 0.316 0.058 0.104

Ahmed Al-Ghamdi 148.728 43.749 55.943 48.911 46.906 327.979 131.802 543.072 169.172 ∞ 0.056 0.053 0.041 0

Table 7: Individual resistances and centralities

hard core. This is not surprising, as this weight matrix counts the number of geodesic paths. It

neither comes as a surprise that the values of betweenness are lower: if there are a lot of edges

“around” the hard core, there will always be alternative paths if a node is erased.

It is also interesting to observe that Al-Omari appears in the hard core only for two of the

measures that integrate in the model the individual centralities of the hijackers. In other words,

the relevance of this node is only perceived by these particular versions of the weight matrix,

as it happens with Atta for S(6), S(7) and S(10). From this facts it can be concluded that the

flexibility of the model allows to identify leadership which does not follow straight from the

graph structure.

This present approach allows to explore different features of the network in an unified way.

Conversely, next to the differences, one may also wonder about the similarities of the results

obtained according to the different models. After all, they are constructed following the same

basic scheme. In order to address this question we have computed the correlations between the

resistances (Table 8). Looking at them as individual measures of power, all of them that depend

on the distance -including closeness- are highly correlated, and the values of the correlations

descend drastically when we deal with S(6), S(7) and S(10). This is consistent with the fact

that we are introducing exogenous information, in the first two cases, and the independence of

betweenness and distance, in the latter.

For obvious reasons one has to be careful with these correlations. Firstly, the small sample

size affects their reliability, and secondly, the correlations do not take account for the fact that

we are interested in relative power instead of the actual values of the measure. These orders

show certain variations for the different measures (Table 9), which imply in turn significa-

tive changes in the outcomes of the greedy algorithm. Nevertheless, taking account of these
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S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10) Eig. Deg. Clos.

S(1)

S(2) 0.981

S(3) 0.975 0.987

S(4) 0.946 0.916 0.908

S(5) 0.954 0.961 0.929 0.871

S(6) 0.693 0.747 0.727 0.516 0.801

S(7) 0.302 0.403 0.331 0.134 0.481 0.799

S(8) 0.983 0.952 0.950 0.937 0.916 0.624 0.215

S(9) 0.981 0.950 0.942 0.988 0.919 0.602 0.211 0.973

S(10) 0.679 0.718 0.743 0.624 0.640 0.618 0.270 0.651 0.641

Eig. −0.882 −0.927 −0.903 −0.756 −0.919 −0.790 −0.563 −0.815 −0.813 −0.554

Deg. −0.716 −0.822 −0.803 −0.549 −0.786 −0.786 −0.614 −0.658 −0.610 −0.623 0.888

Clos. −0.954 −0.978 −0.960 −0.878 −0.949 −0.776 −0.479 −0.896 −0.913 −0.694 0.952 0.820

Bet. −0.478 −0.587 −0.546 −0.420 −0.550 −0.665 −0.587 −0.409 −0.422 −0.603 0.550 0.708 0.629

Table 8: Correlations between individual resistances and centralities

subtleties, we observe in Table 6 similarities of hard cores. The explanation is that measures

S(1)-S(4) are based on distance, S(6) and S(7) rest upon the same weights, and the last three

are constructed in a similar way taking account of the individual centralities. Same features of

the network are likely to produce similarities, although, as illustrated by S(1) and S(2), this is

not always the case.

As discussed in the previous section, however, the main focus of resistance is not individual

power, but diffusion time and group influence. There we showed that the relation between the

resistance of the society to groups and group centrality measures is not closed. The fact that

the models produce different hard cores therefore does not come as a surprise.

It is also interesting to compare our results with those obtained from different versions of

the key player algorithm of Borgatti (2006). Similar to our approach, this algorithm aims at

identifying an influential group, but unlike the resistance it focuses on the maximally con-

nected set of nodes (KPP-positive) or on the group of nodes whose deletion would cause a

major disruption (KPP-negative). The results of the application of the algorithm to some rel-

evant examples of the earlier defined influence matrices are depicted in table 10. There is a

significant similarity in the selected members of the core (3 out of 4), although for the two dif-

ferent versions of the algorithm the members are not the same. In any case, this is remarkable

because the key player power is usually highly related with betweenness, while the individual

resistance is in all versions correlated to closeness (see Table 8) but not to betweenness: in par-

ticular, the correlation between resistance and betweenness is −0.478, a non-meaningful value.

Theoretically, small values of betweenness may be compatible with small values of the resis-

tance of the society. This is the case if for some node there is a small distance to any other node

in the network, but every path that passes through the node can be avoided using another.

This suggests that the above coincidences may not be general, but merely a consequence of the

small diameter of the network combined with high connectivity.
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S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10) Eig. Deg. Clos. Betw.

Mohamed Atta 3 4 3 2 5 1 1 6 2 1 17 15 18 17

Marwan Al-Shehhi 1 3 5 3 1 2 2 7 3 2 16 17 16 16

Said Jarrah 5 6 6 5 3 4 7 8 5 8 15 14 15 12

Khalid Al-Midhar 12 12 14 13 9 15 10 12 12 15 9 7 7 1

Nawaf al-Hazmi 2 1 1 1 2 3 4 1 1 4 19 19 19 19

Abdulaziz Al-Omari 9 9 11 8 10 5 8 11 9 3 8 9 12 18

Waleed Al-Shehri 16 15 15 17 15 11 5 15 17 7 3 8 4 15

Wail Al-Shehri 19 18 19 19 19 14 6 18 18 18 2 4 2 2

Majed Moqed 15 16 16 15 16 13 11 17 15 16 6 2 5 3

Salem Al-Hazmi 7 8 8 7 6 7 9 9 7 10 13 12 13 8

Hami Hanjour 4 2 2 4 4 6 3 5 4 5 18 18 17 13

Ahmed Al-Haznawi 10 10 9 10 7 9 16 10 10 11 10 10 10 9

Satam Suqami 18 19 18 18 18 17 14 19 19 19 1 3 1 4

Said Al-Ghamdi 8 7 7 9 12 10 13 4 8 13 12 13 11 7

Ahmed Al-Hami 11 11 10 11 11 12 15 2 11 14 11 11 9 5

Fayed Ahmed 13 13 12 12 13 18 17 14 13 9 7 6 8 11

Mohand Al-Shahri 14 14 13 14 16 18 18 13 14 12 5 5 6 10

Hamza Al-Ghamdi 6 5 4 6 8 8 12 3 6 6 14 16 14 14

Ahmed Al-Ghamdi 17 17 17 16 17 19 19 16 16 17 4 1 3 6

Table 9: Orderings according to individual measures

KPP-Negative KPP-Positive

Al-Shehhi Al-Shehhi

Jarrah Al-Shehri

N. Al-Hazmi Hanjour

H. Al-Ghamdi H. Al-Ghamdi

Table 10: Results of the key player algorithm

Remark 2. Note that in Table 9 the ordering of the last four columns is approximately reversed

to the ordering of the rest, as power is conceptually inverse to resistance, and then the corre-

lations are usually negative. Moreover, in Table 7 there are some resistances for S(10) (respec-

tively betweenness) that are infinite (resp. zero), so in Table 9 the ordinal numbers 14-19 (resp.

1-6) are interchangeable.

7 Conclusions

This paper proposed a measure for a group’s ability to trigger collective action and discussed

the differences to other (centrality) measures. The Wolfe Primate Data and the data of the 11S

hijackers’ network illustrated how this measure comes to more detailed and different conclu-

sions than those discussed in the literature on Graph Theory. The setup of our model is flexible

to modifications when required by context and data. For example, in the context of revolutions

the interest is typically the expected time it takes until the majority of agents takes action. Also

in other contexts, as innovations, one might wonder about the most influential group in order
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to overturn a certain percentage q of the society. Next, it would be interesting to improve the

greedy heuristic used to find a powerful group, by means of an in-and-out procedure (as in

Borgatti’s key-player algorithm), a careful selection of the initial group, or taking account of

the concept of the efficiency (see Everett and Borgatti, 1999). In this sense, it would also be de-

sirable to find conditions which assure resistance’s supermodularity, i.e., decreasing marginal

effects, which are very important for a social planner who uses this analysis with respect for

example disease prevention. Moreover, a controlled random selection of the initial nodes could

allow to define a centralization measure. Finally, we intend to explore the consequences of in-

tegrating closely related nodes in a certain cluster, and relating the outcomes before and after

this operation. In some sense, the latter could also be interpreted in the framework of network

exposure as an exotic, but useful, way of defining the weight matrix.
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