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Abstract

In this paper we introduce and characterize two new values for transferable utility games

with graph restricted communication and a priori unions. Both values are obtained by

applying the Shapley value to an associated TU-game. The graph-partition restricted TU-

game is obtained by taking the Myerson graph restricted game and of that the Kamijo

partition restricted game. In this game the dividend of any coalition that is neither a

subset of a union nor a union of unions is zero. The partition-graph restricted TU-game

is obtained by taking the partition restricted game and of that the graph restricted game.

In this game the dividend of any coalition that is not connected in the graph is zero. We

apply the values to an economic example in which the players in a union represent the

cities in a country and the graph represents a network of natural gas pipelines between the

cities.

Keywords: Cooperative games, coalition structures, graphs, Shapley value.
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1 Introduction

A cooperative game with transferable utility in characteristic function form, or simply

a TU-game, is a rudimentary model of cooperation among (economic) agents. TU-games

were introduced by von Neumann and Morgenstern (1944) and have since become a central

object of study in the field of cooperative game theory. An important objective in this

field is the determination of a value for each agent, referred to as player, in a TU-game.1

Unlike strategic solution concepts, values are usually defined axiomatically. Some desirable

properties are stated and it is shown that there exists a unique value that satisfies these

properties. For instance, the Shapley value (Shapley, 1953), one of the principal values

in cooperative game theory, is the unique value that satisfies the axioms of ‘symmetry’,

‘carrier’ and ‘additivity’.

Aumann and Drèze (1974) were one of the first to consider restrictions on cooperation

possibilities of players in a TU-game by partitioning the set of players in a number of a

priori unions (elements of the partition). Nowadays, TU-games with a partition of the

set of players are known as TU-games with coalition structure, or TU-games with a priori

unions. To obtain a value for a TU-game with coalition structure, Aumann and Drèze

(1974) assumed that the players in the game are only allowed to cooperate within their

own union. They applied, for each union, the Shapley value to the subgame within the

union.

Owen (1977) proposed a different value for TU-games with coalition structure. He

considered the situation in which all players in the game are allowed to cooperate, but a

subset of players within a union can only cooperate with complete other unions. The Owen

value for TU-games with coalition structure can be obtained by applying the Shapley value

twice. First, to a game between the unions, assigning a value to each union, and then to

a game within the union, distributing the value of a union among its players.

Recently, Kamijo (2011) has introduced a new value for TU-games with coalition struc-

ture. The main difference between this value and the Owen value is that unions are only

allowed to cooperate when all players in the unions agree (i.e., only complete unions can

cooperate). Kamijo’s new approach provides a so-called restricted TU-game in which the

worth of an arbitrary coalition of players is equal to the worth of the union of all complete

unions within the coalition, plus the sum of the worths of all remaining parts of the coali-

tion that are not complete unions. We call this restricted game the partition restricted

game. The value proposed by Kamijo (2011) assigns to every game in coalition structure

the Shapley value of the partition restricted game. Kamijo (2011) showed that his value

is the unique value that satisfies the axioms of ‘efficiency’, ‘balanced contributions’ and

1Shapley (1953) describes a value as providing for each player an a priori assessment of the utility of

becoming involved in a game.
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‘collective balanced contributions’.

A different form of restrictions on TU-games was considered by Myerson (1977). In

his model the restrictions in the game are not given by a partition of the set of players

but by the links in an undirected (communication) graph. Players are only allowed to

cooperate in a coalition when they are connected in a graph, thus, when there exists a

set of links (edges) in the graph that connects the cooperating players. TU-games with

this kind of restrictions are known as TU-games with graph structure, or TU-games with

graph restricted communication. The approach of Myerson (1977) gives a different kind

of restricted game than the partition restricted game. The Myerson, or graph, restricted

game is the TU-game in which the worth of a coalition is equal to the sum of the worths

of its maximally connected subsets. The Myerson value is defined as the Shapley value of

the graph restricted game. Myerson (1977) showed that his value is the unique value that

satisfies the axioms of ‘component efficiency’ and ‘fairness’.

Vázquez-Brage, Garćıa-Jurado and Carreras (1996) combined the ideas of Aumann

and Drèze (1974) and Myerson (1977) in TU-games with coalition and graph structure, or

TU-games with graph restricted communication and a priori unions. As a value for such

games they proposed the Owen value (the value taking into account the partition into a

priori unions) of the Myerson restricted game (the game taking into account the graph on

the set of players). Alonso-Meijide, Álvarez-Mozos and Fiestras-Janeiro (2009) suggested

two other values for TU-games with coalition and graph structure. They applied Banzhaf

(1965) type modifications of the Owen value to the Myerson restricted game.

In this paper we propose two new values for TU-games with coalition and graph struc-

ture. They are obtained by applying the Shapley value to two restricted games associated

with a TU-game with coalition and graph structure. The two restricted games combine

the ideas of Myerson (1977) and Kamijo (2011). The first is called the graph-partition

restricted game and is the partition restricted game of the graph restricted game. That

is, first the graph structure is taken into account to obtain the graph restricted game, and

then the partition structure is taken into account by taking the partition restricted game

of the graph restricted game. The second is called the partition-graph restricted game

and is obtained the other way around: it is the graph restricted game of the partition

restricted game. It follows from Owen (1986) that for a partition-graph restricted game

the (Harsanyi) dividend of any coalition that is not connected in the graph is zero.2 For

a graph-partition restricted game it is shown that the dividend of every coalition that is

neither a subset of a union, nor a union of unions is zero. This implies that, in general,

2The (Harsanyi) dividend of a coalition is the additional contribution of cooperation among the players

in a coalition, that they did not already realize by cooperating in smaller coalitions, see Harsanyi (1963).
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the graph-partition restricted game is not equal to the partition-graph restricted game.

The two new values are defined as the Shapley values of the two types of restricted

game. We show that the Shapley value of the graph-partition restricted game is character-

ized by the axioms of ‘graph efficiency’, ‘balanced contributions’ and ‘collective balanced

contributions’. The Shapley value of the partition-graph restricted game is characterized

by the axioms of ‘partition component efficiency’ and ‘fairness’.

To assess the usefulness of our two new values we apply them to an economic example.

In this example the players can be viewed as cities that cooperate together within countries,

being the a priori unions of the coalition structure, and the graph between the players can

be viewed as a network of natural gas (or oil) pipelines between the cities.

The paper is organized as follows. In Section 2 we recall TU-games, TU-games with

graph structure and TU-games with coalition structure. In Section 3 we introduce the two

restricted games associated to a game with coalition and graph structure. In Section 4

we consider the two solutions that are obtained by applying the Shapley value to the two

restricted games, and provide axiomatic characterizations. We also compare the charac-

terizing sets of axioms with the axioms for the Myerson value (only taking into account

the graph structure) and the value proposed in Kamijo (2011) (only taking into account

the coalition structure). In Section 5 we apply the new values to an economic example and

compare the outcomes to other values. Finally, we conclude in Section 6.

2 Cooperative games

2.1 TU-games

A cooperative game with transferable utility in characteristic function form, or TU-game,

is a pair (N, v), where N ⊂ IN is a finite set of n = |N | ≥ 2 players (agents) and v : 2N → IR

is a characteristic function on N such that v(∅) = 0. We denote the collection of all TU-

games by G. A subset S ⊆ N , S 6= ∅, is called a coalition. For any coalition S, v(S)

displays the worth of that coalition. The worth of a coalition can be interpreted as the

wealth, measured in units of transferable utility, which the members of coalition S are able

to divide among themselves when they decide to cooperate. For S ⊂ N , the game (S, vS)

denotes the subgame restricted to S with characteristic function vS(T ) = v(T ) for every

T ⊆ S. For arbitrary K ⊂ IN, we denote IRK as the |K|-dimensional Euclidean space with

elements x ∈ IRK having components xi, i ∈ K.

A special class of TU-games is the class of unanimity games. For each nonempty

T ⊆ N , the unanimity game (N, uT ) is given by the player set N and characteristic function

uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise. It is known that for every (N, v) ∈ G,

the characteristic function v can be written as a linear combination of the characteristic
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functions of the unanimity games (N, uT ) in a unique way: v =
∑

T∈2N\{∅}∆v(T )uT , where

∆v(T ), T ∈ 2N \ {∅}, are the (Harsanyi) dividends, see Harsanyi (1963). By definition

of the unanimity games it follows that v(S) =
∑

T⊆S ∆v(T ), i.e., the worth v(S) is equal

to the dividend of S plus the sum of the dividends of all its proper subcoalitions. The

dividend of S thus can be interpreted as the additional contribution of cooperation among

the players in S, that they did not already realize by cooperating in smaller coalitions.

Using the Möbius transform it follows that

∆v(T ) =
∑
S⊆T

(−1)|T |−|S|v(S), T ∈ 2N\{∅}.

A value f on G assigns a unique payoff vector f(N, v) ∈ IRN to every TU-game (N, v) ∈
G. A value is efficient if it distributes v(N), thus, if

∑
i∈N fi(N, v) = v(N) for every

(N, v) ∈ G. The best-known efficient value is the Shapley value (Shapley, 1953). This value,

denoted by Sh, equally distributes the dividends among the players in the corresponding

coalitions: for every TU-game (N, v) ∈ G,

Shi(N, v) =
∑

{T⊆N | i∈T}

∆v(T )

|T |
, i ∈ N.

2.2 TU-games with graph structure

A graph is a pair (N,L) where N is a set of nodes and L ⊆ {{i, j}|i, j ∈ N, i 6= j} is a set

of unordered pairs of distinct elements of N . In this paper the nodes represent the players

in a game (N, v). We therefore refer to them as players. The elements of L are called links

or edges. If there is no confusion about the player set N , we will write a graph (N,L)

just by its set of links L. We denote the set of all graphs on N by LN . For S ⊆ N , the

graph (S, L(S)) with L(S) = {{i, j} ∈ L|i, j ∈ S} is called the subgraph of L on S. Given

L ∈ LN , a sequence of k different players (i1, ..., ik) is a path in L(S) if {il, il+1} ∈ L(S) for

l = 1, ..., k − 1. Two players i, j ∈ S are called connected in L(S) if i = j or there exists a

path (i1, ..., ik) in L(S) with i1 = i and ik = j. A coalition S ⊆ N is said to be a connected

coalition (or connected in L) if every two players in S are connected in L(S). A coalition

K ⊆ N is a component of (N,L) if and only if (i) K is connected in L, and (ii) K ∪ {i} is

not connected in L for every i ∈ N\K. The set of components of (S, L(S)) is denoted by

CL(S). Note that every player in S ⊆ N that is not linked with any other player in S is a

(singleton) component in (S, L(S)).

A TU-game with graph structure is a triple (N, v, L) with (N, v) ∈ G and L ∈ LN

a graph on N . We denote the collection of all TU-games with graph structure (N, v, L)

by GG. Following Myerson (1977), in a game with graph structure (N, v, L) ∈ GG, a

coalition S is only able to realize its worth v(S) if S is connected in L. When S is not
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connected in L, the players in S can realize the sum of the worths of the components of

the subgraph (S, L(S)). Given a TU-game (N, v) ∈ G and a graph L ∈ LN , the Myerson

or graph restricted game induced by L is the TU-game (N, vL) ∈ G with player set N and

characteristic function

vL(S) =
∑

T∈CL(S)

v(T ) for all S ⊆ N.

A value f on GG assigns a unique payoff vector f(N, v, L) ∈ IRN to every (N, v, L) ∈ GG.

The Myerson value (Myerson, 1977) of a TU-game with graph structure, denoted by My,

is defined as the value that assigns to every (N, v, L) ∈ GG the Shapley value of the

corresponding graph restricted game (N, vL). That is, for every (N, v, L) ∈ GG the Myerson

value is defined as My(N, v, L) = Sh(N, vL). Myerson (1977) axiomatized this value for

games with graph structure by ‘component efficiency’ and ‘fairness’.

2.3 TU-games with coalition structure

Let PN be the set of partitions of N . So, for some m ≤ |N |, P = {P1, ..., Pm} ∈ PN if

and only if (i)
⋃m

i=1 Pi = N , (ii) Pk 6= ∅ for all k ∈ {1, . . . ,m}, and (iii) Pk ∩ Pl = ∅ for

all k, l ∈ {1, . . . ,m} with k 6= l. For a given P = {P1, ..., Pm} ∈ PN , let M = {1, ...,m}.
Then P = {Pj|j ∈ M} is called a coalition structure, or a system of a priori unions, and

any element Pj, j ∈ M , is called a union of P . A TU-game with coalition structure is a

triple (N, v, P ) with (N, v) ∈ G and P ∈ PN a partition of N . We denote the collection

of all TU-games with coalition structure by GC . A value f on GC assigns a unique payoff

vector f(N, v, P ) ∈ IRN to every TU-game with coalition structure (N, v, P ) ∈ GC .

Aumann and Drèze (1974) assume that every union in P acts as a stand-alone coalition.

One can obtain the Aumann-Drèze value by applying to every Pj, j ∈M , the Shapley value

to the subgame (Pj, vPj
). By efficiency of the Shapley value, the total payoff assigned to the

players in Pj is equal to v(Pj). Since in general
∑

j∈M v(Pj) 6= v(N), the Aumann-Dréze

value is not efficient.

The best-known efficient value for games with coalition structure is the Owen value,

Owen (1977). One can obtain the Owen value of a TU-game with coalition structure by

applying the Shapley value twice.3 To do so, first define the quotient game of (N, v, P ) as

the game (M, vP ) with player set M and characteristic function vP (Q) = v(∪h∈Q Ph) for

every Q ⊆ M . Then, consider the TU-game (Pk, v
k) with player set Pk and characteristic

function vk which is obtained by assigning to every coalition S ⊆ Pk the Shapley value

3See also van den Brink and van der Laan (2005) in which Owen-type values for the class of games with

coalition structures are given that determine the individual payoff shares as the multiplicative product of

two shares in the total payoff.
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payoff of player k ∈ M in a modified quotient game in which Pk is replaced by S ⊆ Pk.

Next, for each k ∈M , the Shapley value is applied to the game (Pk, v
k) to obtain the Owen

payoffs of the players i ∈ Pk: Owi(N, v, P ) = Shi(Pk, v
k), i ∈ Pk, k ∈M . The Owen value

is efficient, because by efficiency of the Shapley value we have that
∑

i∈Pk
Owi(N, v, P ) =

vk(Pk) = Shk(M, vP ) and
∑

k∈M Shk(M, vP ) = v(N).

In this paper we follow the approach of Kamijo (2011) by assuming that individual

players are able to cooperate within their union, but need their full union in order to

cooperate with players from outside their union. Thus, given a partition P ∈ PN , players

in any coalition S ⊆ Pj ∈ P can cooperate with each other and obtain the worth of the

coalition v(S). In addition, there is the possibility of cooperation among players in different

unions, but only if all players in these unions cooperate. Let S ⊂ Pj ∈ P and Pk ∈ P ,

Pk 6= Pj. While Pj and Pk can obtain their worth v(Pj∪Pk) when they decide to cooperate,

S and Pk can obtain only v(S) + v(Pk) because all players in Pj and Pk are necessary in

establishing cooperation between these unions.

Given P = {Pj | j ∈M} ∈ PN , for all S ⊆ N , S 6= ∅, denote

S/P = {∪{k∈M |S∩Pk=Pk} Pk} ∪ {S ∩ Pk | S ∩ Pk 6= Pk, k ∈M}.

Hence, S/P is a collection of disjunct sets with as elements the union of all complete

unions Pk that are contained in S, and the sets S ∩ Pk, for every union that contains

players outside S. Given a TU-game (N, v) ∈ G and a partition P ∈ PN , the partition

restricted game induced by coalition structure P is the TU-game (N, v|P ) with player set

N and characteristic function

v|P (S) =
∑

T∈S/P

v(T ), for all S ⊆ N.

The value for TU-games with coalition structure proposed by Kamijo (2011), called the

collective value and denoted by Ka, assigns to every TU-game with coalition structure

(N, v, P ) the Shapley value of the corresponding partition restricted game (N, v|P ). Thus,

for every (N, v, P ) ∈ GC the collective value is defined by Ka(N, v, P ) = Sh(N, v|P ).

Kamijo (2011) axiomatized this value by ‘efficiency’, ‘balanced contributions’ and ‘collective

balanced contributions’.

3 The graph-partition and partition-graph restricted

games

A TU-game with coalition and graph structure is a quadruple (N, v, L, P ) with (N, v) ∈ G
a TU-game, L ∈ LN a graph and P ∈ PN a partition of N . We denote the collection of

all TU-games with coalition and graph structure by GCG.
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Figure 1: N = {1, 2, 3, 4}, L = {{1, 3}, {2, 3}}, P = {{1, 2}, {3, 4}}

With each TU-game with coalition and graph structure we associate two restricted TU-

games. These restricted games take into account both the cooperation restrictions arising

from the partition as well as those arising from the graph. First, we define the graph-

partition restricted game induced by L and P . This game associates to every (N, v, L, P ) ∈
GCG the corresponding TU-game (N, vL|P ). So, given (N, v, L, P ) ∈ GCG, the graph-

partition restricted game is obtained by first taking the graph restricted game vL of (N, v, L)

and then the partition restricted game of (N, vL, P ). Second, the partition-graph restricted

game is defined the other way around and associates to every (N, v, L, P ) ∈ GCG the

corresponding TU-game (N, (v|P )L). So, given (N, v, L, P ) ∈ GCG, the partition-graph

restricted game is obtained by first taking the partition restricted game v|P of (N, v, P )

and then the graph restricted game of (N, v|P , L).

In general, the game (N, vL|P ) can differ from the game (N, (v|P )L), and thus the order

in which we apply the cooperation restrictions matters. This is illustrated in the next

example.

Example 3.1 Let (N, v, L, P ) ∈ GCG be such that N = {1, 2, 3, 4}, L = {{1, 3}, {2, 3}}
and P = {{1, 2}, {3, 4}}, as displayed in Figure 1. Then vL|P (S) and (v|P )L(S), S ⊆ N ,

are as given in Tables 3.2 and 3.3. In the last column of both tables the dividends are

given. For readability, in the tables we write v({i, . . . , j}) as v(i, . . . , j). 2

7



S vL(S) vL|P (S) ∆vL|P (S)

∅ v(∅) vL(∅) = v(∅) 0

1 v(1) vL(1) = v(1) v(1)

2 v(2) vL(2) = v(2) v(2)

3 v(3) vL(3) = v(3) v(3)

4 v(4) vL(4) = v(4) v(4)

1, 2 v(1) + v(2) vL(1, 2) = v(1) + v(2) 0

1, 3 v(1, 3) vL(1) + vL(3) = v(1) + v(3) 0

1, 4 v(1) + v(4) vL(1) + vL(4) = v(1) + v(4) 0

2, 3 v(2, 3) vL(2) + vL(3) = v(2) + v(3) 0

2, 4 v(2) + v(4) vL(2) + vL(4) = v(2) + v(4) 0

3, 4 v(3) + v(4) vL(3, 4) = v(3) + v(4) 0

1, 2, 3 v(1, 2, 3) vL(1, 2) + vL(3) = v(1) + v(2) + v(3) 0

1, 2, 4 v(1) + v(2) + v(4) vL(1, 2) + vL(4) = v(1) + v(2) + v(4) 0

1, 3, 4 v(1, 3) + v(4) vL(1) + vL(3, 4) = v(1) + v(3) + v(4) 0

2, 3, 4 v(2, 3) + v(4) vL(2) + vL(3, 4) = v(2) + v(3) + v(4) 0

N v(1, 2, 3) + v(4) vL(N) = v(1, 2, 3) + v(4) v(1, 2, 3)− v(1)

−v(2)− v(3)

Table 3.2 Characteristic function and dividends of vL|P .

S v|P (S) (v|P )L(S) ∆(v|P )L(S)

∅ v(∅) v|P (∅) = v(∅) 0

1 v(1) v|P (1) = v(1) v(1)

2 v(2) v|P (2) = v(2) v(2)

3 v(3) v|P (3) = v(3) v(3)

4 v(4) v|P (4) = v(4) v(4)

1, 2 v(1, 2) v|P (1) + v|P (2) = v(1) + v(2) 0

1, 3 v(1) + v(3) v|P (1, 3) = v(1) + v(3) 0

1, 4 v(1) + v(4) v|P (1) + v|P (4) = v(1) + v(4) 0

2, 3 v(2) + v(3) v|P (2, 3) = v(2) + v(3) 0

2, 4 v(2) + v(4) v|P (2) + v|P (4) = v(2) + v(4) 0

3, 4 v(3, 4) v|P (3) + v|P (4) = v(3) + v(4) 0

1, 2, 3 v(1, 2) + v(3) v|P (1, 2, 3) = v(1, 2) + v(3) v(1, 2)

−v(1)− v(2)

1, 2, 4 v(1, 2) + v(4) v|P (1) + v|P (2) + v|P (4) = v(1) + v(2) + v(4) 0

1, 3, 4 v(1) + v(3, 4) v|P (1, 3) + v|P (4) = v(1) + v(3) + v(4) 0

2, 3, 4 v(2) + v(3, 4) v|P (2, 3) + v|P (4) = v(2) + v(3) + v(4) 0

N v(N) v|P (1, 2, 3) + v|P (4) = v(1, 2) + v(3) + v(4) 0

Table 3.3 Characteristic function and dividends of (v|P )L.
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Given a game with graph structure (N, v, L) ∈ GG, Owen (1986) has shown that for

the corresponding graph restricted game (N, vL) the dividend ∆vL(S) is equal to zero for

any coalition S that is not connected in L. Since the partition-graph restricted game is

defined as the graph restricted game of the partition restricted game, we have that in a

partition-graph restricted game the dividend of any coalition that is not connected in the

graph is zero.

Corollary 3.4 For every (N, v, L, P ) ∈ GCG and S ∈ 2N\{∅}, if S is not connected in L

then ∆(v|P )L(S) = 0.

The corollary does not hold for the graph-partition restricted game (N, vL|P ). For in-

stance, in Example 3.1 we have that S = N is not connected, but ∆vL|P (N) = v({1, 2, 3})−
v({1}) − v({2}) − v({3}). To find the counterpart of Corollary 3.4 for (N, vL|P ), we first

consider games with coalition structure (N, v, P ) ∈ GC . For a fixed player set N , let GN

denote the collection of all TU-games on N . Then, for P = {Pj | j ∈ M} ∈ PN , define

the mapping ZP : GN → GN by

ZP (v) = v|P .

So, ZP maps each characteristic function v ∈ GN to characteristic function v|P ∈ GN .

Because the elements of the collection S/P are fixed, ZP is a linear mapping. In order

to investigate the behavior of the mapping ZP we consider the images of the unanimity

games (N, uT ). It is not hard to see that if there is a j ∈ M with T ⊆ Pj, or there is a

Q ⊆ M such that T = ∪q∈Q Pq, then ZP (uT ) = uT . But, if T is not of this form, then

we have uT |P (S) =
∑

R∈S/P uT (R) =
∑
{R∈S/P |T⊆R} u

T (R) for all S ∈ 2N\{∅}. Hence,

ZP (uT ) = dT , where dT is the game given by

dT (S) =

{
1 if there is an R ∈ S/P such that T ⊆ R ⊆ S,

0 otherwise.

Since v =
∑

S∈2N\{∅}∆v(S) uS for any game (N, v) ∈ G, it holds that

dT =
∑

S∈2N\{∅}

∆dT (S)uS.

Note that ∆dT (S) = 0 unless T ⊆ S. In addition we have the next proposition.

Proposition 3.5 Let P = {Pj|j ∈ M} be a partition of N and S ⊆ N . If there is no

j ∈ M with S ⊆ Pj, and there is no Q ⊆ M such that S =
⋃

q∈Q Pq, then ∆dT (S) = 0 for

all T ∈ 2N\{∅}.

9



Proof. The proof proceeds along the same lines as the proof of Theorem 2 in Owen (1986).

Let S ∈ 2N\{∅} be such that there is no j ∈M with S ⊆ Pj, and there is no Q ⊆M with

S =
⋃

q∈Q Pq. Let T ∈ 2N\{∅} be arbitrary.

If T 6⊆ S, then dT (H) = 0 for all H ⊆ S. So, ∆dT (S) = 0. Also, if T ⊆ S but there is

no R ∈ S/P with T ⊆ R ⊆ S, then dT (H) = 0 for all H ⊆ S. Again, ∆dT (S) = 0.

Next, suppose that T ⊆ S and there is R ∈ S/P with T ⊆ R ⊆ S. For H ⊆ S, write

H = H1 ∪H2 with H1 ⊆ R and H2 ⊆ S\R. It is not difficult to see that dT (H) = dT (H1).

Then,

∆dT (S) =
∑
H⊆S

(−1)|S|−|H|dT (H)

=
∑
H1⊆R

∑
H2⊆S\R

(−1)|R|−|H1|(−1)|S|−|R|−|H2|dT (H1)

=
∑
H1⊆R

(−1)|R|−|H1|dT (H1)
[ ∑
H2⊆S\R

(−1)|S|−|R|−|H2|
]

=
∑
H1⊆R

(−1)|R|−|H1|dT (H1)
[|S|−|R|∑

r2=0

(−1)|S|−|R|−r2
(
|S| − |R|

r2

)]
, (3.1)

where the last equality follows because S\R has
(|S|−|R|

r2

)
subsets of cardinality r2. A lemma

in Owen (1986), that follows directly from the binomial expansion of (−1+1)n, states that

for any integer n ≥ 0,

n∑
k=0

(−1)n−k
(
n

k

)
=

{
0 if n ≥ 1,

1 if n = 0.
(3.2)

Because there is no j ∈ M with S ⊆ Pj, and there is no Q ⊆ M with S =
⋃

q∈Q Pq, and

R ∈ S/P (so that there is a j ∈ M with R ⊆ Pj, or there is a Q ⊆ M with R =
⋃

q∈Q Pq)

it holds that S\R 6= ∅, and thus |S| − |R| ≥ 1. It then follows from (3.2) that the last

bracket in equation (3.1) is zero. It can be concluded that ∆dT (S) = 0. 2

Let S be defined by

S = {S ⊆ N | S ⊆ Pj for some j ∈M} ∪ {S ⊆ N | S = ∪q∈Q Pq for some Q ⊆M}.

Then Proposition 3.5 leads to the next theorem.

Theorem 3.6 Let P = {Pj|j ∈ M} be a partition of N . Then the unanimity games uS,

S ∈ S, form a basis for the image of ZP .

Proof. It follows from Proposition 3.5 that the image ZP (uT ) of any unanimity game uT

is a linear combination of unanimity games uS, S ∈ S. Additionally, if S ∈ S, then uS is
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its own image. This implies that the uS, S ∈ S, span the image space and, because they

are independent, form a basis for it. 2

It follows from Theorem 3.6 that ∆v|P (S) = 0 for any coalition S such that there is

no j ∈ M with S ⊆ Pj, and there is no Q ⊆ M such that S =
⋃

q∈Q Pq. That is, any

coalition that is neither a subset of a union, nor a union of unions has a zero dividend in the

partition-restricted TU-game. Since the graph-partition restricted game is defined as the

partition restricted game of the graph restricted game, we have that in a graph-partition

restricted game the dividend of any coalition that is neither a subset of a union, nor a

union of unions is zero.

Corollary 3.7 For every (N, v, L, P ) ∈ GCG and S ∈ 2N\{∅}, if there is no j ∈ M with

S ⊆ Pj, and there is no Q ⊆M such that S =
⋃

q∈Q Pq, then ∆vL|P (S) = 0.

This corollary does not hold for the partition-graph restricted game (N, (v|P )L). For

instance, in Example 3.1 we have that S = {1, 2, 3} is not a subset of any Pj and S 6=⋃
q∈Q Pq for all Q ⊆M . However, ∆(v|P )L({1, 2, 3}) = v({1, 2})− v({1})− v({2}).

4 Two values for TU-games with coalition and graph

structure

A value f on GCG assigns a unique payoff vector f(N, v, L, P ) ∈ IRn to every TU-game

with coalition and graph structure (N, v, L, P ) ∈ GCG. We introduce two new values for

TU-games with coalition and graph structure by applying the Shapley value to the two

restricted games defined in the previous section.

Definition 4.1

1. The graph-partition value on the class of TU-games with coalition and graph structure

is the value φ assigning to every (N, v, L, P ) ∈ GCG the payoff vector φ(N, v, L, P ) =

Sh(N, vL|P ).

2. The partition-graph value on the class of TU-games with coalition and graph structure

is the value ψ assigning to every (N, v, L, P ) ∈ GCG the payoff vector ψ(N, v, L, P ) =

Sh(N, (v|P )L).

Note that φ(N, v, L, P ) = Ka(N, vL, P ) and that ψ(N, v, L, P ) = My(N, v|P , L). Be-

cause vL|P does not have to be equal to (v|P )L, in general φ(N, v, L, P ) is not equal to

ψ(N, v, L, P ).
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Example 4.2 Let (N, v, L, P ) ∈ GCG be as in Example 3.1. From the dividends derived

in that example it follows straightforwardly that the graph-partition value is given by

φi(N, v, L, P ) = v({i}) +
1

4
[v({1, 2, 3})− v({1})− v({2})− v({3})], i = 1, 2, 3, 4

and that the partition-graph value is given by

ψj(N, v, L, P ) = v({j}) +
1

3
[v({1, 2})− v({1})− v({2})], j = 1, 2, 3,

and ψ4(N, v, L, P ) = v({4}). 2

It is obvious that for special structures we obtain the Myerson value or Kamijo’s col-

lective value. By definition, the Myerson value only takes into account the graph structure

and ignores the coalition structure. Therefore the graph-partition value is equal to the

Myerson value when P = {N}.

Proposition 4.3 Let (N, v, L, P ) ∈ GCG. If P = {N} then φ(N, v, L, P ) = My(N, v, L).

The collective value of Kamijo (2011) only takes into account the coalition structure and

ignores the graph structure. Therefore the partition-graph value is equal to the collective

value when L is the complete graph.

Proposition 4.4 Let (N, v, L, P ) ∈ GCG. If L = {{i, j} | i, j ∈ N, i 6= j} then

ψ(N, v, L, P ) = Ka(N, v, P ).

The two values defined above for games with coalition and graph structure are based on

two different restricted games. Both restricted games are obtained by applying the methods

of Myerson (1977) and Kamijo (2011), but in different orders. To characterize these two

values we generalize the axiomatizations of the Myerson value for graph restricted games

(Myerson, 1977) and the collective value for partition restricted games (Kamijo, 2011) to

the class of TU-games with coalition and graph structure.

4.1 Characterization of the graph-partition value

The efficiency property as implicitly used in Kamijo (2011) states that players in N dis-

tribute the worth v(N) among themselves. Here we formulate this axiom in the context of

games with coalition and graph structure.

Axiom 4.5 Efficiency

A value f on the class of TU-games with coalition and graph structure GCG is efficient if

for any (N, v, L, P ) ∈ GCG it holds that
∑

i∈N fi(N, v, L, P ) = v(N).
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The graph-partition value does not satisfy this axiom in general. However, it satisfies

a weaker version stating that the players in N distribute the sum of the worths of the

connected components of L among themselves. This takes into account that in a game

with graph structure players can only cooperate when they are connected in the graph.

Axiom 4.6 Graph efficiency

A value f on the class of TU-games with coalition and graph structure GCG is graph efficient

if for any (N, v, L, P ) ∈ GCG it holds that
∑

i∈N fi(N, v, L, P ) =
∑

K∈CL(N) v(K).

Clearly, when N is connected in L, then for every solution f satisfying graph efficiency it

holds that
∑

i∈N fi(N, v, L, P ) = v(N).

Next we generalize the balanced contributions axiom for TU-games with coalition struc-

ture used in Kamijo (2011) to the setting of TU-games with coalition and graph structure.

It states that, given that the coalition structure is given by P = {N}, the loss in value

that player i ∈ N experiences when player j ∈ N leaves the game is equal to the loss that

player j experiences when player i leaves the game.4 For convenience, for every j ∈ N we

denote N−j = N \ {j}, v−j = vN\{j} and L−j = L(N \ {j}).

Axiom 4.7 Balanced contributions

A value f on the class of TU-games with coalition and graph structure GCG satisfies balanced

contributions if for any (N, v, L, {N}) ∈ GCG it holds that

fi(N, v, L, {N})−fi(N−j, v−j, L−j, {N−j}) = fj(N, v, L, {N})−fj(N−i, v−i, L−i, {N−i}),

for all i, j ∈ N .

The following collective balanced contributions axiom is a generalization to the setting

of TU-games with coalition and graph structure of the collective balanced contributions

axiom for TU-games with coalition structure of Kamijo (2011). It states that, given two

different unions Pk and Ph in P , for every i ∈ Pk and j ∈ Ph, the loss in value that player i

experiences when union Ph ∈ P leaves the game is equal to the loss in value that player j

experiences when union Pk ∈ P leaves the game.5 Again for convenience, for every h ∈M
we denote N−Ph

= N \ Ph, v−Ph
= vN\Ph

, L−Ph
= L(N \ Ph) and P−Ph

= P\{Ph}.
4Note that Myerson (1980) defined balanced contributions for conference structures on a fixed player

set. In his model, instead of a player leaving the game, all feasible coalitions containing this player are no

longer feasible but, by definition, the player stays connected as a singleton.
5Although it is easy to formulate balanced contributions for a fixed player set, it is more difficult to

state collective balanced contributions on a fixed player set since we need to specify how the players in Ph

‘stay’ in the game. Therefore, these axioms are more different than their name might suggest.
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Axiom 4.8 Collective balanced contributions

A value f on the class of TU-games with coalition and graph structure GCG satisfies col-

lective balanced contributions if for any (N, v, L, P ) ∈ GCG with |P | ≥ 2 it holds that

fi(N, v, L, P )−fi(N−Ph
, v−Ph

, L−Ph
, P−Ph

) = fj(N, v, L, P )−fj(N−Pk
, v−Pk

, L−Pk
, P−Pk

)

for every two different unions Pk and Ph in P , and all i ∈ Pk ∈ P , and all j ∈ Ph ∈ P .

The axioms 4.6-4.8 characterize the graph-partition value.

Theorem 4.9 A value f on the class of TU-games with coalition and graph structure GCG

satisfies graph efficiency, balanced contributions and collective balanced contributions if and

only if f(N, v, L, P ) = φ(N, v, L, P ) for every (N, v, L, P ) ∈ GCG.

Proof. First, we show that φ satisfies graph efficiency, balanced contributions and collec-

tive balanced contributions. Graph efficiency follows from∑
i∈N

φi(N, v, L, P ) =
∑
i∈N

Shi(N, v
L|P ) =

∑
i∈N

∑
{S⊆N |i∈S}

∆vL|P (S)

|S|
=

∑
S⊆N

∆vL|P (S) = vL|P (N) =
∑

S∈N/P

vL(S) = vL(N) =
∑

K∈CL(N)

v(K),

where the first, second, fifth and seventh equalities follow by definition, the third by re-

arranging terms, the fourth by the expression for the dividends and the sixth because

N/P = N .

Next, for every pair i, j ∈ N it holds that

φi(N, v, L, {N})− φi(N−j, v−j, L−j, {N−j}) =

Shi(N, v
L|{N})− Shi(N−j, (v−j)L−j |{N−j}) = Shi(N, v

L)− Shi(N−j, (v−j)L−j) =

Myi(N, v, L)−Myi(N−j, v−j, L−j) = Myj(N, v, L)−Myj(N−i, v−i, L−i) =

Shj(N, v
L)− Shj(N−i, (v−i)L−i) = Shj(N, v

L|{N})− Shj(N−i, (v−i)L−i |{N−i}) =

φj(N, v, L, {N})− φj(N−i, v−i, L−i, {N−i}),

where the fourth equality follows because the value of Myerson (1977) satisfies balanced

contributions for TU-games with graph structure6 and all the others follow by definition.

Hence, φ satisfies balanced contributions.

6This follows similar as shown in Myerson (1980) for a fixed player set.
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Finally, given L ∈ LN and Pj ∈ P ∈ PN consider the TU-games (N−Pj
, (v−Pj

)L−Pj ) and

(N−Pj
, (vL)−Pj

). Because for all S ⊆ N \ Pj it holds that

(v−Pj
)L−Pj (S) =

∑
T∈C

L−Pj (S)

v−Pj
(T ) =

∑
T∈C

L−Pj (S)

v(T ) = vL−Pj (S) = vL(S) = (vL)−Pj
(S),

these games are equal. Now consider any (N, v, L, P ) ∈ GCG with |P | ≥ 2 and take any

i ∈ Pk ∈ P and any j ∈ Pl ∈ P , Pk 6= Pl. Then,

φi(N, v, L, P )− φi(N−Pl
, v−Pl

, L−Pl
, P−Pl

) =

Kai(N, v
L, P )−Kai(N−Pl

, (v−Pl
)L−Pl , P−Pl

) = Kai(N, v
L, P )−Kai(N−Pl

, (vL)−Pl
, P−Pl

) =

Kaj(N, v
L, P )−Kaj(N−Pk

, (vL)−Pk
, P−Pk

) = Kaj(N, v
L, P )−Kaj(N−Pk

, (v−Pk
)L−Pk , P−Pk

) =

φj(N, v, L, P )− φj(N−Pk
, v−Pk

, L−Pk
, P−Pk

),

where the first and last equality follow by definition, the second and fourth because the

TU-games in the expressions are equal and the third because the value of Kamijo (2011) sat-

isfies collective balanced contributions for TU-games with coalition structure (see Kamijo

(2011)). Hence, φ satisfies collective balanced contributions.

Second, we show that there can be at most one value that satisfies graph efficiency, bal-

anced contributions and collective balanced contributions. Suppose that f satisfies these

axioms and consider first all games (N, v, L, P ) ∈ GCG with P = {N}. We uniquely deter-

mine f(N, v, L, P ) for these games by induction on the number of players n. When n = 1 it

follows directly from graph efficiency that fi({i}, v, L, {{i}}) = v({i}) = φi({i}, v, L, {{i}}),
i ∈ N . Next, suppose that f has been uniquely determined for all games (K, v, L, P ) ∈ GCG

with P = {K} and |K| ≤ n− 1. Then applying the balanced contributions property to f

for (N, v, L, P ) ∈ GCG with P = {N} and |N | = n gives

fi(N, v, L, {N})−fi(N−j, v−j, L−j, {N−j}) = fj(N, v, L, {N})−fj(N−i, v−i, L−i, {N−i})

for all i, j ∈ N . Notice that for all i, j ∈ N , the values fi(N−j, v−j, L−j, {N−j}) and

fj(N−i, v−i, L−i, {N−i}) are known by the induction hypothesis. For some particular i ∈ N ,

say i = i0, there are n− 1 equations of this type with i = i0. Together with the efficiency

equation∑
i∈N

fi(N, v, L, {N}) = v(N)

these form a system of (n−1)+1 = n linearly independent equations and so these equations

uniquely determine fi(N, v, L, {N}), i ∈ N .
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Finally, consider all games (N, v, L, P ) ∈ GCG with |P | ≥ 2. Suppose that there

are two different values f 1 and f 2 that both satisfy graph efficiency, balanced contribu-

tions and collective balanced contributions. Let P be a partition with a minimum num-

ber of unions (elements of P ) such that f 1(N, v, L, P ) 6= f 2(N, v, L, P ). It follows by

the minimality of P that if Ph is any element of P , then f 1(N−Ph
, v−Ph

, L−Ph
, P−Ph

) =

f 2(N−Ph
, v−Ph

, L−Ph
, P−Ph

). Now, by collective balanced contributions (and rearranging

terms) we have for all i ∈ Pk ∈ P and all j ∈ Pl ∈ P , Pk 6= Pl, that

f 1
i (N, v, L, P )− f 1

j (N, v, L, P ) = f 1
i (N−Pl

, v−Pl
, L−Pl

, P−Pl
)− f 1

j (N−Pk
, v−Pk

, L−Pk
, P−Pk

) =

f 2
i (N−Pl

, v−Pl
, L−Pl

, P−Pl
)−f 2

j (N−Pk
, v−Pk

, L−Pk
, P−Pk

) = f 2
i (N, v, L, P )−f 2

j (N, v, L, P ).

Hence, f 1
i (N, v, L, P )− f 2

i (N, v, L, P ) = f 1
j (N, v, L, P )− f 2

j (N, v, L, P ) for any i ∈ Pk ∈ P
and j ∈ Pl ∈ P , Pk 6= Pl. This, in turn, implies that there exists an α ∈ IR such that

f 1
i (N, v, L, P ) − f 2

i (N, v, L, P ) = α, for all i ∈ N . It follows from graph efficiency that∑
i∈N f

1
i (N, v, L, P ) =

∑
K∈CL(N) v(K) =

∑
i∈N f

2
i (N, v, L, P ) so that

0 =
∑
i∈N

(
f 1
i (N, v, L, P )− f 2

i (N, v, L, P )
)

= |N |α.

Since |N | > 0 this means that α = 0, so that f 1(N, v, L, P ) = f 2(N, v, L, P ), a contradic-

tion. 2

Replacing graph efficiency by efficiency, it can be shown in a similar way as in Kamijo

(2011) that we obtain a characterization of the collective value on the class of games with

coalition and graph structure. Since graph efficiency takes into account that the players

in N can only realize the sum of the worths of the components of the graph L, the value

φ can be seen as a modification of Kamijo’s collective value defined on the class of games

with only a coalition structure to the class of games with coalition and graph structure.

Proposition 4.10 A value f on the class of TU-games with coalition and graph structure

GCG satisfies efficiency, balanced contributions and collective balanced contributions if and

only if f(N, v, L, P ) = Ka(N, v, P ) for all i ∈ N and every (N, v, L, P ) ∈ GCG.

4.2 Characterization of the partition-graph value

The partition-graph value can be characterized by axioms similar to those that characterize

the Myerson value for graph games. First, recall that component efficiency of Myerson

(1977) for graph games states that players in one component of the graph share exactly

the worth of their component. This axiom is stated in terms of games with coalition and
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graph structure in Vázquez-Brage et al. (1996) and implies that for every component K

in CL(N) the players of K distribute the worth v(K) among themselves.7

Axiom 4.11 Component efficiency

A value f on the class of TU-games with coalition and graph structure GCG is component

efficient if for any (N, v, L, P ) ∈ GCG it holds that
∑

i∈K fi(N, v, L, P ) = v(K), for all

K ∈ CL(N).

The partition-graph value does not satisfy this axiom in general, because it takes into

account that within a component K of L players can only realize the sum of the worths of

the coalitions T in K/P . However, it satisfies that the players in every component K of

L distribute the worths of the coalitions in K/P among themselves, as stated in the next

axiom.

Axiom 4.12 Partition component efficiency

A value f on the class of TU-games with coalition and graph structure GCG is parti-

tion component efficient if for any (N, v, L, P ) ∈ GCG it holds that
∑

i∈K fi(N, v, L, P ) =∑
T∈K/P v(T ), for all K ∈ CL(N).

When L is connected, then N is the unique component of L and also the unique element

of N/P . In this case partition component efficiency implies efficiency.

Next, Myerson (1977)’s fairness for TU-games with graph structure is translated to

the setting of TU-games with coalition and graph structure. We require that, given two

players i and j that are linked in the graph L (i.e. {i, j} ∈ L), both their values change by

the same amount when the link between them is severed. To simplify notation we write

L \ {i, j} instead of L \ {{i, j}}.

Axiom 4.13 Fairness

A value f on the class of TU-games with coalition and graph structure GCG is fair if for

any (N, v, L, P ) ∈ GCG it holds that

fi(N, v, L, P )− fi(N, v, L\{i, j}, P ) = fj(N, v, L, P )− fj(N, v, L\{i, j}, P )

for all i, j ∈ N such that {i, j} ∈ L.

The axioms 4.12 and 4.13 characterize the partition-graph value.

Theorem 4.14 A value f on the class of TU-games with coalition and graph structure

GCG satisfies partition component efficiency and fairness if and only if f(N, v, L, P ) =

ψ(N, v, L, P ) for every (N, v, L, P ) ∈ GCG.

7Note that any solution for TU-games with graph and coalition structure that satisfies component

efficiency, also satisfies graph efficiency.
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Proof. First, we show that ψ satisfies partition component efficiency and fairness. For

every K ∈ CL(N) we have∑
i∈K

ψi(N, v, L, P ) =
∑
i∈K

Shi(N, (v|P )L) =
∑
i∈K

∑
{S⊆N |i∈S}

∆(v|P )L(S)

|S|
=

∑
S⊆K

∆(v|P )L(S) = (v|P )L(K) =
∑

S∈CL(K)

v|P (S) = v|P (K) =
∑

T∈K/P

v(T ),

where the first two equalities follow by definition, the third by rearranging terms, the

fourth by the expression for the dividends and the last three again by definition. Hence,

ψ satisfies partition component efficiency.

Next, for every pair i, j ∈ N such that {i, j} ∈ L we have

ψi(N, v, L, P )− ψi(N, v, L\{i, j}, P ) = Myi(N, v|P , L)−Myi(N, v|P , L\{i, j}) =

Myj(N, v|P , L)−Myj(N, v|P , L\{i, j}) = ψj(N, v, L, P )− ψj(N, v, L\{i, j}, P ),

where the first and the last equality follow by definition and the second because the value of

Myerson (1977) satisfies fairness for TU-games with graph structure (see Myerson (1977)).

So, ψ satisfies fairness.

Second, we show that there can be at most one value that satisfies partition component

efficiency and fairness. This proceeds along the same lines as the first part of the proof

of the Theorem in Myerson (1977). If i ∈ K ∈ CL(N) with |K| = 1, then partition

component efficiency determines that fi(N, v, L, P ) = ψi(N, v, L, P ).

Next, suppose that there are two different values f 1 and f 2 that both satisfy parti-

tion component efficiency and fairness. Let L be a graph with a minimum number of

links (elements of L) such that f 1(N, v, L, P ) 6= f 2(N, v, L, P ) (note that |L| > 0 in

this case.) If {i, j} ∈ L is a given link of L then it follows by the minimality of L

that f 1(N, v, L\{i, j}, P ) = f 2(N, v, L\{i, j}, P ). By the fairness axiom (and rearranging

terms) we therefore have that

f 1
i (N, v, L, P )− f 1

j (N, v, L, P ) = f 1
i (N, v, L\{i, j}, P )− f 1

j (N, v, L\{i, j}, P ) =

f 2
i (N, v, L\{i, j}, P )− f 2

j (N, v, L\{i, j}, P ) = f 2
i (N, v, L, P )− f 2

j (N, v, L, P ).

Since this holds for any {i, j} ∈ L it also holds for all i, j ∈ K ∈ CL(N). Hence there

exists an αK(L) ∈ IR such that

f 1
i (N, v, L, P )− f 2

i (N, v, L, P ) = αK(L)

for all i ∈ K ∈ CL(N). Note that αK(L) depends only on K and L but not on i. It

follows from partition component efficiency that
∑

i∈K f 1
i (N, v, L, P ) =

∑
T∈K/P v(T ) =
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∑
i∈K f 2

i (N, v, L, P ) so that

0 =
∑
i∈K

(
f 1
i (N, v, L, P )− f 2

i (N, v, L, P )
)

= |K|αK(L).

Since |K| > 1 this implies that αK(L) = 0, so that f 1(N, v, L, P ) = f 2(N, v, L, P ), a

contradiction. 2

Replacing partition component efficiency by component efficiency, it can be shown in a

similar way as in Myerson (1977) that we obtain a characterization of the Myerson value on

the class of games with coalition and graph structure. Since partition component efficiency

takes into account that the players of a component K of L can only realize the sum of the

worths of the elements of K/P , the value ψ can be seen as a modification of the Myerson

value defined on the class of games with only a graph structure to the class of games with

coalition and graph structure.

Proposition 4.15 A value f on the class of TU-games with coalition and graph structure

GCG satisfies component efficiency and fairness if and only if f(N, v, L, P ) = My(N, v, L)

for every (N, v, L, P ) ∈ GCG.

5 An economic example

In this section we give an economic example of TU-games with coalition and graph structure.8

Consider an international network of natural gas pipelines. Such a network can be rep-

resented by a graph, where the nodes in the graph correspond to cities and the links in

the graph to pipelines between the cities. The international aspect of the network can be

captured by the coalition structure where cities that are located in the same country are

elements of the same union in the coalition structure.

As an illustration, suppose that there are five cities N = {1, 2, 3, 4, 5}. City 1 supplies

natural gas and cities 2, 4 and 5 have demand for it. The cities are only able to trade

the natural gas through the negotiation of (binding) bi- or multilateral contracts so that

we can represent this situation by a TU-game. When city 1 sells its natural gas to city 2

this creates a surplus of 3, but when it sells it to city 4 or 5 it creates a surplus of 10. In

terms of a TU-game this would mean that v({1, 2}) = 3, v({1, 4}) = 10, v({1, 5}) = 10.

When city 3 would join the coalition of city 1 and 2, city 1 and 4 or city 1 and 5 this would

have no effect on the worth of the coalition because city 3 has no demand for natural gas.

8Political applications are given in Vázquez-Brage et al. (1996) and in Alonso-Meijide et al. (2009).

They applied their values to situations of political power in parliaments with coalition and graph structured

relations between its members.
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Figure 2: International network of natural gas pipelines.

Hence, v({1, 2, 3}) = 3, v({1, 3, 4}) = 10 and v({1, 3, 5}) = 10. However, when city 1, 2

and 4, city 1,2 and 5 or city 1,4 and 5 decide to cooperate, city 1 supplies some natural

gas to both of the cities that have demand for it so that v({1, 2, 4}) = 11, v({1, 2, 5}) = 11

and v({1, 4, 5}) = 11. Also now, when city 3 joins this has no effect: v({1, 2, 3, 4}) = 11,

v({1, 2, 3, 5}) = 11, v({1, 3, 4, 5}) = 11. Finally, when city 1 cooperates with cities 2, 4 and

5 or with all cities this creates a surplus of 12, v({1, 2, 4, 5}) = 12, v({1, 2, 3, 4, 5}) = 12.

When we let v(S) be zero for any other coalition S we obtain a TU-game.

In this TU-game city 1 is able to supply natural gas to the other cities without any

restrictions. In reality, though, the delivery of natural gas to a city requires a system of

pipelines. Suppose that there is such a system of pipelines between the cities and that this

system can be represented by the graph L = {{1, 2}, {2, 3}, {3, 4}, {3, 5}}. This network

of natural gas pipelines is displayed in Figure 2. What is interesting about this network

is that, although city 3 has no demand for natural gas, it is in between city 1, 4 and 5 so

that it is necessary in establishing cooperation between any of the coalitions involving at

least two of these cities.

As a last step we introduce the countries in which the five cities are located. Cities 1

and 2 are located in country 1, P1 = {1, 2}, city 3 is located in country 2, P2 = {3} and

cities 4 and 5 are located in country 3, P3 = {4, 5}, so that P = {{1, 2}, {3}, {4, 5}}. This

coalition structure implies that cities can cooperate within their country and that countries

can cooperate (and when they do so force all their constituent cities to cooperate). For

example, city 1 is able to cooperate with city 2 because they are located in the same

country, but city 1, 2, 3 and 4 are not able to cooperate in a coalition because this would

require the approval of city 5 (which is in the same country as city 4).
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We now have a TU-game with coalition and graph structure (N, v, L, P ) that represents

the cooperation possibilities of the cities that are able to trade natural gas using an inter-

national network of pipelines. A question that we can now ask ourselves is the following:

what is the payoff that a city can expect facing the situation described above. Or, in the

words of Shapley: what is the a priori assessment of the utility of becoming involved in the

TU-game with coalition and graph structure (N, v, L, P ) for each city? Different values

provide different answers to this question, as can be seen in Table 5.1.

Player Sh My Ka V GC φ ψ

1 72
3

4 1
10

33
4

3 3 3
10

3 3
10

2 2
3

4 1
10

33
4

3 3 3
10

3 3
10

3 0 23
5

0 3 14
5

14
5

4 15
6

3
5

21
4

11
2

14
5

14
5

5 15
6

3
5

21
4

11
2

14
5

14
5

Table 5.1 Comparison between various values.

In Table 5.1, Sh represents the value that assigns to every TU-game with coalition and

graph structure the Shapley value of the unrestricted game, i.e. Shi(N, v, L, P ) = Shi(N, v)

for all i ∈ N . Similarly, My(N, v, L, P ) = My(N, v, L) and Ka(N, v, L, P ) = Ka(N, v, P ).

The V GC value is the value for TU-games with coalition and graph structure proposed

in Vázquez-Brage et al. (1996) and the values φ and ψ are the graph-partition value,

respectively the partition-graph value.9

What is interesting, but not surprising, about these values is that the Shapley value

and the collective value assign a value of zero to city 3. The reason for this is that these

values do not take into account the role that city 3 plays in the network of natural gas

pipelines. The Myerson value does take this into account, but does not consider the fact

that the cities are located in several countries. This explains why the Myerson value gives

a relatively low value to city 4 and 5, that are located in the same country. Further, it

seems that the VCG value overestimates the role of city 3. The two new values φ and

ψ, which happen to be equivalent in this example, are therefore, in our opinion, the most

reasonable payoff expectations for the cities in this example.

9Since the values of Alonso-Meijide et al. (2009) are not efficient, these values are not included in the

table.
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6 Concluding remarks

In this paper we introduced two new values for TU-games with coalition and graph struc-

ture. The first is the Shapley value of the graph-partition restricted TU-game, a game

in which the dividend of any coalition that is neither a subset of a union nor a union of

unions is zero. The second is the Shapley value of the partition-graph restricted TU-game,

a game in which the dividend of any coalition that is not connected in the graph is zero.

We showed that the Shapley value of the graph-partition restricted TU-game can be char-

acterized by the axioms of graph efficiency, balanced contributions and collective balanced

contributions, and that the Shapley value of the partition-graph restricted TU-game can

be characterized by the axioms of partition component efficiency and fairness. Finally, we

applied our values to an economic example of cities, located in several countries, trading

natural gas through a network of pipelines. In future research we plan to investigate when,

and how, the two values that we introduced in this paper differ and which value is the

more appropriate one to apply in specific situations.

Finally, we would like to remark that the axioms characterizing the two new values in

Theorem 4.9, respectively 4.14 are logically independent. In addition, the partition-graph

value ψ also satisfies balanced contributions, which follows immediately from the fact that

this property is also satisfied by the Myerson value. In contrast, the graph-partition value

φ does not satisfy fairness. However, we could separate the fairness axiom by distinguishing

the deletion of links between players in the same union from the deletion of links between

players from different unions.

Axiom 6.1 Internal fairness

A value f on the class of TU-games with coalition and graph structure GCG satisfies internal

fairness if for any (N, v, L, P ) ∈ GCG it holds that

fi(N, v, L, P )− fi(N, v, L\{i, j}, P ) = fj(N, v, L, P )− fj(N, v, L\{i, j}, P )

for all i, j ∈ N such that {i, j} ∈ L and {i, j} ⊆ Pk for some k ∈M .

Axiom 6.2 External fairness

A value f on the class of TU-games with coalition and graph structure GCG satisfies external

fairness if for any (N, v, L, P ) ∈ GCG it holds that

fi(N, v, L, P )− fi(N, v, L\{i, j}, P ) = fj(N, v, L, P )− fj(N, v, L\{i, j}, P )

for all i, j ∈ N such that {i, j} ∈ L, i ∈ Pk, j ∈ Pq for k, q ∈M, k 6= q.

Now, it can be shown that the graph-partition value φ satisfies internal fairness, but

does not satisfy external fairness. In fact, ‘combining’ the uniqueness parts of the proofs
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of Theorems 4.9 and 4.14, it can be shown that there is at most one value satisfying graph

efficiency, internal fairness and collective balanced contributions, showing that these ax-

ioms characterize the graph-partition value φ. Comparing this last axiomatization of the

graph-partition value φ with the given axiomatization of the partition-graph value ψ, we

see that both are characterized by an internal axiom (they both satisfy internal fairness

as well as balanced contributions), an external axiom (collective balanced contributions,

respectively, external fairness) and an efficiency axiom (graph efficiency, respectively, par-

tition component efficiency). We summarize the properties in Table 6.3.

My Ka φ ψ

efficiency +

graph efficiency + +

component efficiency +

partition component efficiency +

balanced contributions + + + +

collective balanced contributions + +

fairness + + +

internal fairness + + + +

external fairness + + +

Table 6.3 Table of axioms satisfied by the values.
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