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Abstract

In classical Bayesian inference the prior is treated as fixed, it is asymptotically negligible,
thus any information contained in the prior is ignored from the asymptotic first order result.
However, in practice often an informative prior is summarized from previous similar or the same
kind of studies, which contains non-negligible information for the current study. Here, different
from traditional Bayesian point of view, we treat such prior to be non-fixed. In particular,
we give the data sizes used in previous studies for the prior the same status as the size of the
current dataset, viewing both sample sizes as increasing to infinity in the asymptotic study.
Thus the prior is asymptotically non-negligible, and its original effects are ressumed under this
view. Consequently, Bayesian inference using such prior is more efficient, as it should be, than
that regarded under the existing setting. We study some basic properties of Bayesian estimators
using such priors under convex losses and the 0—1 loss, and illustrate the method by an example
via simulation.

AMS 2000 subject classification: 62C10, 62C12
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1 Introduction

In classical Bayesian inference, the prior is treated as fixed. Although it is known that if we have a

‘good’ informative prior, the Bayes estimate has small sample advantage over the frequentist MLE

or over Bayes estimate with a non-informative prior, its role is ignored as the data sample size

increases, since the prior is asymptotically negligible, in the first order, by the existing Bayesian

theory. Although all admissible procedures to a decision problem, including the MLE, can be

formulated as Bayesian, or limit of Bayesian procedures (Wald, 1950), in practice the main stream

statistical tool is still frequentist. Efron (2005) summarized the main reasons for this as the ease

of use, modeling, computation and objectivity of the latter. Especially, when one does not have

‘good’ prior information, often various forms of non-informative priors (Jeffreys, 1961; Bernardo,

1979) or objective priors (Welch and Peers, 1963; Mukerjee and Ghosh, 1997) are used in Bayesian

inference, to avoid possible misleading small sample effects of using a ‘bad’ subjective prior. But

then the motivation of doing a Bayesian analysis is not clear, paying the price for more modeling

and computational complexity with no apparent advantage. In our opinion, we use a method

with increased complexity only if it has some advantage over other methods. Indeed, such cases for

Bayesian modeling do exists, such as with an informative prior, it can have small sample advantage.

It potentially can also have asymptotic advantage, but unfortunately such effects are ignored [I don’t

understand this; perhaps words are missing; should it "have been ignored" or "will be ignored", and

should "only" be removed from the text] under the existing point of view, since the prior is treated

as fixed thus vanished in the asymptotic results. We intend to give a different view on this case,

and justify that an informative prior can have non-negligible asymptotic effects. Suppose there are

a number of k = k(m) studies of the same problem by different investigators in the past, resulted in

k estimates of the same parameter θ, each study has a sample size of mj = mj(m) (j = 1, . . . , k).

These results can be summarized into a prior density qm for the parameter, apparently this prior

is very informative. Now we have a current dataset of size n, and want to perform a Bayesian

analysis using the prior qm, as in many cases we have no access to the previous original data.

In classical Bayes theory qm is treated as fixed, while asymptotic results with respect to n are

used in the analysis, and all the information contained in the prior is vanished asymptotically. In

practice, often the data size n may be in the hundreds or thousands and treated as ‘valid’ for the

asymptotics, while the data size m in previous studies may also be in the hundreds or thousands

but is treated as fixed, thus its effects is ignored by the asymptotic results. This is inappropriate for
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qm and the information contained in it, when m is relatively large. Here, different from traditional

Bayesian philosophy, we treat such prior to be non-fixed. In particular, we give the data sizes in the

previous studies for the prior the same status as that of the current data, viewing both sample sizes

increase without bound in the asymptotic study. Thus the prior is asymptotically non-negligible.

Intuitively, when qm contains increasingly accurate information for θ as m tends to infinity at

certain rates along with n, the asymptotic distribution of the posterior will concentrate on the true

parameter value at a rate faster than that under the classical Bayes theory, and consequently, the

inference is more efficient than that regarded under the classical Bayesian setting or the frequentist

method based on the likelihood alone. In other words, the efficiency of Bayesian analysis with such

informative prior is underevaluated by the classical Bayesian ideology. Here we give a new point of

view for informative priors and attempt to recover their role in Bayesian asymptotics: they are not

only useful for small sample size, they are asymptotically informative. We study Bayes estimator

of parameters using such priors under convex losses and 0—1 loss.

In Section 2, we introduce the relevant notations and describe our point of view. The asymptotic

results are studied in Section 3, and Section 4 illustrates its use with a simulation study and compare

the results with those of the frequentist MLE. Relevant technical proofs are put in the Appendix.

2 The method

Let Xn = (X1, . . . ,Xn) be the observed data, our interest is the estimation of a parameter θ ∈ Θ ⊂
Rd, with a density function f(·|θ) and we have a prior density qm(·) for θ, with respect to some
common dominating measure. In practice, qm(·) is constructed using existing inference results based
on datasets generated from the parameter(s), but not on the current observed data Xn which is also

generated from the parameter(s). Often we have no access to the data sets in the previous studies

but that of the prior qm(·). Let w(·, ·) be the loss function. Denote f(Xn|θ) = Qn
i=1 f(Xi|θ),

hm(θ) = log qm(θ), l(θ|Xn) =
Pn

i=1 log f(Xi|θ) as the log-likelihood, and L(θ|Xn) = l(θ|Xn) +

hm(θ) the adjusted log-likelihood using the informative prior qm(·).
For k = 0, 1, 2, let l(k)(θ|Xn) be the array of k-th partial derivatives of l(θ|Xn) with respect to

θ, similarly for the notations L(k)(θ|Xn), h(k)m (θ) and f (k)(x|θ) (k = 0, 1, 2). Let I(θ) be the Fisher
information for θ under f(·|θ), θ0 be the true parameter generating the data, and denote D→ for

convergence in distribution.

Definition. qm(θ) is an asymptotically informative prior (AIP), if h
(2)
m (·) exists for all m, and as
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m→∞,

1

m
h(1)m (θ0)

a.s.→ 0, m−1/2h(1)m (θ0)
D→ N(0, J(θ0)), and

1

m
h(2)m (θ)

a.s.→ −J(θ)

for some d× d matrix J(θ) which is non-negative definite and componentwise continuous on some

compact set.

Remark 1. i) In the above we defined AIP in terms of qm(·) and m. In some cases, the AIP

constructed from existing independent parameter estimates by a general density estimator may not

be explicitly associated with some integer m, as the one given in Section 4.1. In this case we can

simply modify the above definition as: let h(θ) = log q(θ). q(·) is an AIP, if

1

n
h(1)(θ0)

a.s.→ 0, n−1/2h(1)(θ0)
D→ N(0, cJ(θ0)), and

1

n
h(2)(θ)

a.s.→ −cJ(θ)

for some 0 ≤ c <∞ and some d× d matrix J(θ) which is non-negative definite and componentwise

continuous on some compact set. This second definition includes the first one by setting c =

limnm/n, and including any fixed prior by c = 0. But we are mainly interested in the case c 6= 0.
We keep the first definition as it is more intuitive.

ii) In many cases, qm(·) can be formulated as a multivariate exponential family: qm(θ) =

exp{m[θ̄0mT (θ)+B(θ)+C(θ̄m)]} for some known differentiable functions T (·), B(·) and some known
function C(·), where θ̄m is a consistent estimator of θ0 constructed from past estimators and is

asymptotically normal, i.e.
√
m(θ̄m−θ0) D→ N(0, J−1(θ0)), with T (·) and B(·) satisfying T (1)(θ0) =

J(θ0) + o(1) and B(1)(θ0) = −θ00T (1)(θ0) + o(1). Here θ̄m can be viewed as a hyperparameter.

For example, if θ̄m is a consistent and asymptotical normal estimator of θ0 constructed from

existing results, with asymptotical variance matrix J−1(θ0). Then qm(θ) = (2π)−d/2md/2|J(θ̄m)|1/2

exp{−m
2 (θ− θ̄m)0J(θ̄m)(θ− θ̄m)} is an AIP and an exponential family with T (θ) = J(θ̄m)θ, B(θ) =

−θ0J(θ̄m)θ/2 and C(θ̄m) = −θ̄0mJ(θ̄m)θ̄m/2 + d
2m log

m
2π +

1
2m log |J(θ̄m)|.

As another example, we have independent estimates θ̄1, . . . , θ̄k of θ0, with sample sizem1, . . . ,mk

respectively, qm(θ) be a twice differentiable density estimator based on the θ̄j ’s. When min{mj :

j = 1, . . . , k} and k is large, each θ̄j = θ0 + o(1) and V ar(θ̄j) = O(1/mj), thus qm(θ) will have a

mode at θ0 + o(1) and is an AIP for some m.

Here qm(·) differs from the prior in the classical Bayesian setting in that it changes along with

m, and the latter can be viewed as a special case of the former in which the rate is zero at which
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qm(·) concentrates toward θ0 ∈ Θ. Bayesian inference is based on the posterior

qm(θ|Xn) =
f(Xn|θ)qm(θ)

gm(Xn)
, with gm(X

n) =

Z
f(Xn|θ)qm(θ)dθ.

3 Main results

Below we study some basic asymptotic behavior of qm(θ|Xn) and the corresponding Bayes esti-

mators of θ under some commonly used losses. It is known that for fixed prior, the posterior

will asymptotically concentrate on the true parameter (Strasser, 1981) generating the data and

the scaled posterior will be asymptotically normal (LeCam, 1958; Walker, 1969). Intuitively, with

the fixed prior replaced by the AIP, these properties will be kept but with faster rate. Denote

Qm(·|Xn) for the posterior distribution/measure of the density qm(θ|Xn), and Pθ the probability

measure corresponding to f(·|θ). We list the following conditions, in which the first six are used in
Strasser (1981).

(A1) The metric space (Θ, d) is separable, where d(θ, η) = ||Pθ − Pη||.
(A2) The functions {l(θ|Xn)/n}θ∈Θ, n ∈ N , are separable and measurable.

(A3) f(·|θ), θ ∈ Θ, are lower semicontinuous, that is, lim supn→∞ f(·|θn) ≤ f(·|θ) (a.e.) if
d(θn, θ)→ 0.

(A4) For every θ, η ∈ Θ, there is an open neighborhood Uθ,η of η such that Eθ(infθ0∈Uθ,η l(θ
0|Xn))/n

> −∞ for at least one n.

(A5) There is a prior distribution Q0 (with density q0) such that, for every θ ∈ Θ and � > 0,

Q0(η ∈ Θ : Eθl(η|X) < Eθl(θ|X) + �) > 0.

(A6) ∀ θ ∈ Θ, ∃ nθ such that Pn
θ (X

n :
R Qn

i=1 f(Xi|η)Q0(dη) <∞) = 1 if n ≥ nθ.

(A7) 0 ≤ c = limnm/n <∞.
(A8) I(·) is non-singular on some compact set and is continuous in a neighborhood of θ0.
(A9) ∂

R
f(x|θ)dx/∂θ = R ∂f(x|θ)/∂θdx.

(A10) w(d, θ) = w(k d− θ k) ≥ 0, w(0) = 0, is non-decreasing in kθk on Θ, is strictly increasing in
kθk in a neighborhood of 0, and is bounded on Θ.

Theorem 1. Under(A1)-(A7), for any compact set M 3 θ0, we have

Pθ0(limn
inf Qm(M |Xn) = 1) = 1.
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Let q̃m(·|Xn) be the posterior density of α =
√
n(θ − θ̂n) (θ̂n is the Bayes estimate of θ under

the prior qm(·) and 0—1 loss, as in Theorem 3), and φ(·|B) be the density of N(0, B).

Theorem 2. Under (A1)-(A9), as n→∞, for finite [a, b] ⊂ Rd, we haveZ b

a
q̃m(α|Xn)dα→

Z b

a
φ(α|(I(θ0) + cJ(θ0))

−1)dα. a.s.

Remark 2. When m→∞ but c = limm/n = 0 (for example m = logn, m = na with 0 < a < 1,

etc.), we can still use Theorem 2(ii) to approximate the asymptotic distribution of Q̃m asZ b

a
q̃m(α|Xn)dα ≈

Z b

a
φ(α|(I(θ0) + m

n
J(θ0))

−1)dα.

We refer to this as a small sample asymptotic result, which still gives better accuracy (smaller

variance than the inverse Fisher information) than estimators not using AIP, and is very practical

to use (as in practice, often n ranges from tens to thousands, but not infinity in the real sense).

This remark also applies to Theorem 3(ii) and Theorem 5.

It is known that under the quadratic, absolute error and 0—1 losses, the Bayes estimator of θ

is the posterior mean, median and mode of qm(θ|Xn) respectively. Doob (1949) gave very simple

conditions for the a.s. consistency of Bayes estimate under the quadratic loss. LeCam (1958)

and Bickel and Yahav (1969) studied the consistency and asymptotic normality of Bayes estimates

under general losses (not including the 0—1 loss). We will study these corresponding results with

the asymptotically informative prior. We also study the case of 0—1 loss, due to its connection to

the MLE, its simplicity for computation, and as a discrete loss function, it is not covered by the

conditions for many other commonly used losses.

The 0—1 loss. Let, w(δ, θ) = 0 if ||δ − θ|| < � and = 1 otherwise, for some small � > 0. The

Bayes estimate under this loss is or can be arbitrarily close to the posterior mode for small �. In

particular the posterior mode is the limit of the Bayes estimates for �→ 0, and hence we regard it

a generalized Bayes estimate under the 0—1 loss, and will be of special interest. Alternatively, we

can define the 0—1 loss as w(δ, θ) = 0 if δ = θ and = 1 otherwise. Under this loss we define the

Bayes estimate θ̂n of θ as the posterior mode

θ̂n = arg sup
θ∈Θ

qm(θ|Xn) = arg sup
θ∈Θ
[f(Xn|θ)qm(θ)] = arg sup

θ∈Θ
L(θ|Xn).
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Theorem 3. Assume (A7)-(A9), that there is a convex set A such that infθ∈A |I(θ)| > 0, θ0 ∈ A

and θ̂n ∈ A for all large n. Then under the 0—1 loss, we have

(i) θ̂n → θ0 (a.s.)

(ii)
√
n(θ̂n−θ0) D→ N(0, [I(θ0)+cJ(θ0)]

−1).

Remark 3. The above asymptotical normality result includes the classical Bayes estimator in

which c = 0. When c > 0, since J(·) is non-negative definite, [I(θ0) + cJ(θ0)]
−1 ≤ I−1(θ0) in

the matrix non-negative definite sense, and I−1(θ0) is the asymptotical variance matrix for the

classical Bayesian estimator and MLE based on the likelihood only. Thus Bayes estimate with

asymptotically informative prior can be more efficient than that regarded by the classical Bayes

point of view and than the MLE based only on l(·|Xn).

Let θn be the Bayes estimator of θ under loss w(·, ·) and the prior qm(·).

Theorem 4. Under (A1)-(A7) and (A10), we have

θn → θ0, (a.s.).

In Theorem 3 (ii) we get asymptotic normality of the Bayes estimator with AIP under the 0—1

loss. Next we will have the result for Bayes estimators under the quadratic and absolute error

losses, then we get the asymptotic normality results with AIP for the three most commonly used

losses. Results with more general losses should be parallel, using the methods in Bickel and Yahav

(1969) or in Gusev (1975) for example, we leave them here to avoid unnecessary technicalities.

Theorem 5. Under (A1)-(A9), and assume infθ∈Θ |I(θ) + cJ(θ)| > 0, then with the quadratic or

absolute error loss, we have

√
n(θn − θ0)

D→ N(0, [I(θ0) + cJ(θ0)]
−1).

4 Numerical illustration

4.1 Preamble

In this section, we present the results of several Monte Carlo experiments to show the reduction in

asymptotic variance of the Bayes estimate θ̂n of θ vis-à-vis the asymptotic variance of the classical
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MLE. The general setup is as follows. Suppose that the data X1, . . . ,Xn are i.i.d. distributed from

a d-dimensional continuous distribution f(x|θ) with unknown mean vector θ and known variance
matrix. The frequentist MLE of θ is θ̂ = arg supθ∈Θ{

Pn
i=1 log f(xi|θ)} with I−1(θ̂) the asymptotic

variance matrix of this estimator.

To represent a large number of independent studies of the same problem, assume that there are

available k random draws Y1, . . . , Ymj (j = 1, . . . , k) of sizesm1, . . . ,mk from the same distribution

as given above. Now, adopting the AIP qm(·) requires k estimates θ̃j of θ. Note, however, that
in the construction of qm(·) there is no need to know whether the θ̃j ’s are Bayesian or frequentist
MLEs, all that is needed is that they are independent consistent and asymptotical normal estimates

of θ. Hence, to make things simpler, for each j the MLE of θ can be computed as follows θ̃j =

arg supθ∈Θ{
Pmj

i=1 log f(yij |θ)}.
To construct qm(·) from the θ̃j ’s adopt the following weighting method. Let m̄ =

Pk
j=1mj/k,

m =
Pk

j=1mj , θ̄ =
Pk

j=1(mj/m)θ̃j , assume θ̃j has asymptotical variance matrix of J−1j (θ0). Let

J−1(θ0) =
Pk

j=1(mj/m)J
−1
j (θ0). Then for large mj ’s and k vary along with n, it is reasonable to

set qm(·) = φ(θ̄, J−1(θ̄)/m̄). Since the 0—1 loss is used, the Bayes estimator of θ can be viewed

as the MLE under the adjusted log-likelihood L(θ|Xn). In this way the computation is as simple

as the MLE, the information in the AIP qm(·) is used as the prior density, and the interpretation
is intuitive. Especially, when J−1j (θ) = I−1(θ), we have J−1(θ) = I−1(θ). Given qm(·) above,
θ̂n = arg supθ∈Θ{

Pn
i=1 log f(xi|θ) + log qm(θ)}. The asymptotic variance matrix of this estimator

is given in Theorem 3.

Remark 4. When m1 ≈ · · · ≈ mk, qm(·) can be constructed from the θ̃j ’s in a more objective

way by a commonly used density estimator, such as the kernel estimator, treating the θ̃j ’s as

approximately i.i.d. In this case, although we may not knowm, by the relationship I(θ0)+cJ(θ0) ≈
I(θ0) + (m/n)(h(2)(θn)/m), the asymptotic variance matrix of

√
n(θ̂n − θ0) in Theorems 3 and 5

can be consistently estimated by (I(θ̂n) + n−1h(2)(θ̂n))−1.

4.2 Example

Let y = (y1, . . . , yn)0 be an i.i.d. sample from a normal multiple linear regression model where the

d×1 vector of regression coefficients, θ, is unknown and the variance matrix is known. Specifically, y
satisfies y = Xθ+ε where X is an n×d nonstochastic (design) matrix with rank d and with ith row

denoted by (xi1, . . . , xid). Furthermore, ε is an n×1 random error vector, and we assume that ε|X ∼
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Table 1: Averaged (over 10000 replications) ML-estimates and, in parentheses, averaged Bayesian

estimates with, in the last two bottom lines, values of the geometric means of the estimated variances

corresponding to the above estimates; n = 1000.

θ d = 1, θ̂ (θ̂n) d = 3, θ̂ (θ̂n) d = 5, θ̂ (θ̂n) d = 7, θ̂ (θ̂n)

θ1 7.9990 (7.9990) 7.9998 (7.9997) 7.9994 (7.9993) 7.9981 (7.9980) 8.000

θ2 2.4158 (2.4156) 2.4150 (2.4148) 2.4185 (2.4184) 2.415

θ3 -3.8056 (-3.8053) -3.8058 (-3.8055) -3.8095 (-3.8092) -3.806

θ4 2.1184 (2.1183) 2.1238 (2.1237) 2.119

θ5 -0.9961 (-0.9960) -1.0054 (-1.0054) -0.997

θ6 0.5447 (0.5447) 0.545

θ7 1.0543 (1.0542) 1.069

Geometric means of estimated variances of θ̂ (θ̂n)

1.1147×10−2 7.0728×10−3 3.0094×10−3 1.8698×10−3

(1.000×10−3) (1.5905×10−3) (1.7480×10−3) (1.8610×10−3)

N(0, σ20In) with σ
2
0 known. The frequentist MLE of θ and σ

2
0 are respectively θ̂ = (X

0X)−1X 0y and

s2 = n−1(y − Xθ̂)0(y − Xθ̂). The inverse Fisher information matrix of θ̂ is given by s2(X 0X)−1.

Proceeding in the same fashion as before, we obtain k mj×1 vectors of i.i.d. observations z1, . . . , zk
randomly drawn from the multivariate normal distribution specified above. Then the j MLEs of

θ and σ20 are respectively θ̃j = (X
0
jXj)

−1X 0
jzj and s2j = (mj)

−1(zj −Xj θ̃j)
0(zj − Xj θ̃j) where Xj

is an mj × d submatrix of X. Consequently, the AIP qm(θ) for θ is a d-dimensional multivariate

normal distribution with prior mean vector θ̄ =
Pk

j=1(mj/m)θ̃j and prior variance matrix Σ̂ =

m̄−1J−1(θ̄) = m̄−1
Pk

j=1(mj/m)(s
2
j/mj)Id. Then it is easy to verify that the posterior distributionQn

i=1 f(yi|θ)× qm(θ) of θ, up to a normalizing constant, is multivariate normally distributed with

hyperparameters

E(θ|y,X, Σ̂) =
³
Σ̂−1 + σ20(X

0X)
´−1³

Σ̂−1θ̄ + σ20(X
0X)θ̂

´
, V ar(θ|y,X, Σ̂) =

³
Σ̂−1 + σ20(X

0X)
´−1

.

Note that E(θ|y,X, Σ̂) ≡ θ̂n. Hence, with h(2)(θ) = Σ̂−1, the asymptotic variance matrix of
√
n(θ̂n − θ) can be readily estimated.

For the actual simulations we specialize the above regression model to the case

E(yi|xi1, . . . , xiP ) = θ1 + 2
PX
p=1

[θ2p sin(2pπxip) + θ2p+1 cos(2pπxip)], (i = 1, . . . , n),
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Figure 1. Values of the geometric means of the estimated variances for θ̂ (solid line) and θ̂n (medium

dashed line), averaged over 10000 replications; d = 1, 3, 5, 7 and n = 1000, 1500, . . . , 5000.

where P is a non-negative integer, and θ = (θ1, . . . , θd)
0 are real constants with d = 2P + 1.

We consider the performance of the frequentist MLE and the Bayesian estimator of θ and their

associated estimated asymptotic variances for models with successively increasing number of ex-

planatory variables. The value of the true parameter θ0 is shown in the rightmost column in Table

1. Throughout all simulations the xip’s are drawn from a uniform (0,1) distribution, with sample

sizes n = 1000, 1500, . . . , 5000. Moreover, in all experiments we set σ20 = 1, k = 101, d = 1, 3, 5, 7,

and mj = 100 + (j − 1)× w with w = b(n− 100)/(k − 1)c and j = 1, . . . , k.

Table 1 shows averaged (over 10000 replications) ML-estimates θ̂ = (θ̂1, . . . , θ̂d)0 and, in paren-

theses, averaged Bayesian estimates θ̂n for n = 1000. The table also shows, on the last two bottom

lines, values of the geometric means of the estimated variances corresponding to respectively θ̂ and

θ̂n. We see that both estimators perform very well. However, according to the geometric mean of

the estimated variances, the Bayesian estimator θ̂n is notably more efficient than the MLE θ̂. This

observation is typical for other sample sizes.

Figure 1 shows values of the geometric means of the estimated variances for sample sizes

n = 1000, 1500, . . . , 5000. Clearly, the same picture emerges as above. However, as expected,

for increasing values of n the difference in efficiency between both estimators diminishes. In addi-

tion we see that, for fixed n, the MLE estimator θ̂ has nearly the same, but still higher, asymptotic
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efficiency than the Bayesian estimator when d increases. These results are in agreement with the-

ory, i.e. the asymptotic variance of the Bayesian estimator with AIP is always smaller than that of

the MLE.

5 Appendix

Proof of Theorem 1. Let M c be the complement of M , and θ̂m be the mode of qm(·). Similarly
as in the proof of Theorem 3, we have θ̂m → θ0 (a.s.) as m→∞. Thus for large m, θ̂m ∈M . Then

Qm(M |Xn) =

R
M f(Xn|θ)qm(θ)dθR

M f(Xn|θ)qm(θ)dθ +
R
Mc f(Xn|θ)qm(θ)dθ

=

R
M

f(Xn|θ)
f(Xn|θ0)

qm(θ)

qm(θ̂m)
dθR

M
f(Xn|θ)
f(Xn|θ0)

qm(θ)

qm(θ̂m)
dθ +

R
Mc

f(Xn|θ)
f(Xn|θ0)

qm(θ)

qm(θ̂m)
dθ

.

For any fixed prior q0 with posterior distribution Q0(·|Xn), by Theorem 2.5 in Strasser (1981)

lim
n
inf Q0(M |Xn)→ 1 (a.s.).

This is equivalent to R
Mc

f(Xn|θ)
f(Xn|θ0)q0(θ)dθR

M
f(Xn|θ)
f(Xn|θ0)q0(θ)dθ

→ 0 (a.s.). (A.1)

We now consider qm with m→∞ as n→∞. Note h(1)m (θ̂m) = 0, so by the definition of hm(·),
qm(θ)

qm(θ̂m)
= exp(hm(θ)− hm(θ̂m)) = exp(−m

2
(θ − θ̂m)

0−h(2)m (θ̇)

m
(θ − θ̂m))

≈ exp(−m
2
(θ − θ̂m)

0J(θ̇)(θ − θ̂m)) ≥ exp(−m
2
(θ − θ̂m)

0J(θ̄m)(θ − θ̂m))

where θ̇ is between θ and θ̂m. We have, for large m,Z
M

f(Xn|θ)
f(Xn|θ0)

qm(θ)

qm(θ̂m)
dθ ≈

Z
M

f(Xn|θ)
f(Xn|θ0) exp(−

m

2
(θ − θ̂m)

0J(θ̇)(θ − θ̂m))dθ

≥
Z
M

f(Xn|θ)
f(Xn|θ0) exp(−

m

2
(θ − θ̂m)

0J(θ)(θ − θ̂m))dθ

= (
2π

m
)d/2|J(θ)|−1/2

Z
M

f(Xn|θ)
f(Xn|θ0)φ(θ − θ̂m|J−1(θ)/m)dθ,

where

θ = θm = arg inf
α∈Θ

Z
M

f(Xn|θ)
f(Xn|θ0) exp(−

m

2
(θ − θ̂m)

0J(α)(θ − θ̂m))dθ.

Similarly,Z
Mc

f(Xn|θ)
f(Xn|θ0)

qm(θ)

qm(θ̂m)
dθ ≤ (2π

m
)d/2|J(θ̄)|−1/2

Z
Mc

f(Xn|θ)
f(Xn|θ0)φ(θ − θ̂m|J−1(θ̄)/m)dθ,

10



where

θ̄ = θ̄m = arg sup
α∈Θ

Z
M

f(Xn|θ)
f(Xn|θ0) exp(−

m

2
(θ − θ̂m)

0J(α)(θ − θ̂m))dθ.

Since θ̂m → θ0 (a.s.), both f(Xn|θ)/f(Xn|θ0) and φ(θ − θ̂m|J−1(θ̄)/m) become more and more
concentrated around θ0 as n and m increase. Both φ(θ − θ̂m|J−1(θ̄)/m) and q0(θ) are density

functions, but the former is more concordant with f(Xn|θ)/f(Xn|θ0) than the latter. Thus, for
large n and m, Z

M

f(Xn|θ)
f(Xn|θ0)φ(θ − θ̂m|J−1(θ)/m)dθ ≥

Z
M

f(Xn|θ)
f(Xn|θ0)q0(θ)dθ

and Z
Mc

f(Xn|θ)
f(Xn|θ0)φ(θ − θ̂m|J−1(θ̄)/m)dθ ≤

Z
Mc

f(Xn|θ)
f(Xn|θ0)q0(θ)dθ.

These giveR
Mc

f(Xn|θ)
f(Xn|θ0)qm(θ)dθR

M
f(Xn|θ)
f(Xn|θ0)qm(θ)dθ

=

R
Mc

f(Xn|θ)
f(Xn|θ0)

qm(θ)

qm(θ̂m)
dθR

M
f(Xn|θ)
f(Xn|θ0)

qm(θ)

qm(θ̂m)
dθ

≤
(2πm )

d/2|J(θ̄)|−1/2 RMc
f(Xn|θ)
f(Xn|θ0)φ(θ − θ̂m|J−1(θ̄)/m)dθ

(2πm )
d/2|J(θ)|−1/2 RM f(Xn|θ)

f(Xn|θ0)φ(θ − θ̂m|J−1(θ)/m)dθ

≤ |J(θ)|1/2
|J(θ̄)|1/2

R
Mc

f(Xn|θ)
f(Xn|θ0)q0(θ)dθR

M
f(Xn|θ)
f(Xn|θ0)q0(θ)dθ

→ 0 (a.s.)

by (A.1), and the above is equivalent to limn inf Qm(M |Xn) = 1 (a.s.).

Proof of Theorem 2. Use the definition of θ̂n as given before in Theorem 3, we have

Qm([n
−1/2a+ θ̂n, n

−1/2b+ θ̂n]|Xn) =

R n−1/2b+θ̂n
n−1/2a+θ̂n

f(Xn|θ)qm(θ)dθR
Θ f(Xn|θ)qm(θ)dθ

=

R n−1/2b+θ̂n
n−1/2a+θ̂n

exp{L(θ|Xn)− L(θ̂n|Xn)}dθR
Θ exp{L(θ|Xn)− L(θ̂n|Xn)}dθ

=

R n−1/2b+θ̂n
n−1/2a+θ̂n

exp{−n
2 (θ − θ̂n)

0−L(2)(θ̇|Xn)
n (θ − θ̂n)}dθR

Θ exp{−n
2 (θ − θ̂n)0−L

(2)(θ̇|Xn)
n (θ − θ̂n)}dθ

,

where θ̇ is between θ and θ̂n. Since by Theorem 3 (i), θ̂n → θ0 (a.s.), and a and b are finite, for

the θ̇ in the numerator, we have θ̇ → θ0 (a.s.). As −l(2)(θ0)/n → I(θ0) (a.s.), and by definition of

hm(·) and condition (A7),

−L
(2)(θ0|Xn)

n
= − 1

n
l(2)(θ0|Xn)− m

n

h
(2)
m (θ0)

m
→ I(θ0) + cJ(θ0) (a.s.).

11



Also, I(·) and J(·) are continuous in a neighborhood of θ0, we get

−L
(2)(θ̇|Xn)

n
→ I(θ0) + cJ(θ0) (a.s.).

For the denominator, transform the integration with respect to α =
√
n(θ − θ̂n), we will see that

the integration is finite as |I(θ̇) + cJ(θ̇)| is bounded away from zero. Thus for any � > 0, we can

choose [a0, b0] ⊃ [a, b] such that (a.s.)R
[n−1/2a0+θ̂n,n−1/2b0+θ̂n]c exp{−n

2 (θ − θ̂n)
0−L(2)(θ̇|Xn)

n (θ − θ̂n)}dθR
[n−1/2a0+θ̂n,n−1/2b0+θ̂n] exp{−n

2 (θ − θ̂n)0−L
(2)(θ̇|Xn)
n (θ − θ̂n)}dθ

≤ �,

and similarly for θ ∈ [n−1/2a0 + θ̂n, n
−1/2b0 + θ̂n],

−L
(2)(θ̇|Xn)

n
→ I(θ0) + cJ(θ0) (a.s.).

Thus, since � > 0 is arbitrary, for a0 and b0 large enough in norm, we have (a.s.),R n−1/2b+θ̂n
n−1/2a+θ̂n

exp{−n
2 (θ − θ̂n)

0−L(2)(θ̇|Xn)
n (θ − θ̂n)}dθR

Θ exp{−n
2 (θ − θ̂n)0

−L(2)(θ̇|Xn)
n (θ − θ̂n)}dθ

=

R n−1/2b+θ̂n
n−1/2a+θ̂n

exp{−n
2 (θ − θ̂n)

0−L(2)(θ̇|Xn)
n (θ − θ̂n)}dθR n−1/2b0+θ̂n

n−1/2a0+θ̂n
exp{−n

2 (θ − θ̂n)0
−L(2)(θ̇|Xn)

n (θ − θ̂n)}dθ
+ o(1)

=

R n−1/2b+θ̂n
n−1/2a+θ̂n

exp{−n
2 (θ − θ̂n)

0(I(θ0) + cJ(θ0))(θ − θ̂n)}dθR n−1/2b0+θ̂n
n−1/2a0+θ̂n

exp{−n
2 (θ − θ̂n)0(I(θ0) + cJ(θ0))(θ − θ̂n)}dθ

+ o(1)

=

R n−1/2b+θ̂n
n−1/2a+θ̂n

exp{−n
2 (θ − θ̂n)

0(I(θ0) + cJ(θ0))(θ − θ̂n)}dθR
Θ exp{−n

2 (θ − θ̂n)0(I(θ0) + cJ(θ0))(θ − θ̂n)}dθ
+ o(1).

From the above, set α =
√
n(θ − θ̂n), we get (a.s.)

Q̃m([a, b]|Xn) =

R b
a exp{−12α0(I(θ0) + cJ(θ0))α}dαR
Θ exp{−12α0(I(θ0) + cJ(θ0))α}dα

+ o(1)

→
|I(θ0)+cJ(θ0)1/2|

(2π)d/2

R b
a exp{−12α0(I(θ0) + cJ(θ0))α}dα

|I(θ0)+cJ(θ0)1/2|
(2π)d/2

R
Θ exp{−12α0(I(θ0) + cJ(θ0))α}dα

=

Z b

a
φ(θ|I(θ0) + cJ(θ0))dθ.

Proof of Theorem 3. (i) By definition of θ̂n, L(1)(θ̂n|Xn) = 0, so we have

−L(1)(θ0|Xn) = L(1)(θ̂n|Xn)− L(1)(θ0|Xn) = L(2)(θ̇|Xn)(θ̂n − θ0),
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where θ̇ is between θ̂n and θ0. By the given condition, θ̇ ∈ A, and so for large n and m,

− 1n l(2)(θ̇|Xn) ≈ I(θ̇) (a.s.), which is non-singular by assumption, and − 1
mh

(2)
m (θ̇) ≈ J(θ̇). Thus

− 1
n
L(2)(θ̇|Xn) = − 1

n
l(2)(θ̇|Xn)− m

n

1

m
h(2)m (θ̇) = I(θ̇) + cJ(θ̇) + o(1), (a.s.)

i.e., − 1nL(2)(θ̇|Xn) ≈ I(θ̇) + cJ(θ̇) is non-singular (a.s.) for all large n. Thus, for large n, a.s.

θ̂n − θ0 = (− 1
n
L(2)(θ̇|Xn))−1(

1

n
L(1)(θ0|Xn)).

Similarly,
1

n
L(1)(θ0|Xn) =

1

n
l(1)(θ0|Xn) +

m

n

1

m
h(1)m (θ0) =

1

n
l(1)(θ0|Xn) + o(1).

Since
1

n
l(1)(θ0|Xn)

a.s.→ E

µ
f (1)(X|θ0)
f(X|θ0)

¶
=

∂

∂θ0

Z
f(x|θ0)dx = 0,

we have

θ̂n − θ0 = (− 1
n
L(2)(θ̇|Xn))−1(

1

n
l(1)(θ0|Xn) + o(1))→ 0, (a.s.)

or θ̂n → θ0 (a.s.).

(ii). By (i), we get θ̇ → θ0 (a.s.). Since I(·) is continuous at θ0, so− 1nL(2)(θ̇|Xn) = − 1n l(2)(θ̇|Xn)−
m
n
1
mh

(2)
m (θ̇) → I(θ0) + cJ(θ0) (a.s.). Also, since n−1/2l(1)(θ0|Xn)

D→ N(0, I(θ0)), m−1/2h
(1)
m (θ0)

D→
N(0, J(θ0)), and l(1)(θ0|Xn) and h(1)m (θ0) are independent, so n−1/2l(1)(θ0|Xn)+

p
m
nm

−1/2h(1)m (θ0)
D→

N(0, I(θ0) + cJ(θ0)), and we get

√
n(θ̂n − θ0) = (−n−1L(2)(θ̇|Xn))−1[n−1/2L(1)(θ0|Xn)]

= (−n−1L(2)(θ̇|Xn))−1
µ
n−1/2l(1)(θ0|Xn) +

r
m

n
m−1/2h(1)m (θ0)

¶
D→ N(0, [I(θ0) + cJ(θ0)]

−1)

by Slutzky’s theorem.

Proof of Theorem 4. By (A10), for � > 0, there is a δ > 0 such that w(θ, θ0) ≤ �/2 as long as

k θ − θ0 k≤ δ. Let M ⊂ Rd be the closed ball with center θ0 and radius δ. Since θn is the Bayes

estimator, i.e. θn = argmind
R
Θw(d, θ)πm(θ|Xn)dθ, so the Bayes risk

Rn =

Z
Θ
w(θn, θ)πm(θ|Xn)dθ ≤

Z
Θ
w(θ0, θ)πm(θ|Xn)dθ

=

Z
M
w(θ0, θ)πm(θ|Xn)dθ +

Z
Mc

w(θ0, θ)πm(θ|Xn)dθ ≤ �/2 +

Z
Mc

w(θ0, θ)πm(θ|Xn)dθ.

By (A10), there is a constant 0 < C < ∞ such that supθ∈Mc w(θ0, θ) ≤ C. Also, by Theorem 1,

πm(M
c|Xn)→ 0 (a.s.), thus for large n we have πm(M c|Xn) ≤ �/(2C) (a.s.), and

lim
n
sup

Z
Mc

w(θ0, θ)πm(θ|Xn)dθ ≤ Cπm(M
c|Xn) ≤ �/2. (a.s.).
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Since � > 0 is arbitrary, we get Rn → 0 (a.s.).

On the other hand, since w(θ) = 0 and is strictly increasing in kθk and non-decreasing, if
θn 9 θ0 (a.s.), then there is a sub-sequence θnk

a.s.→ θ1 6= θ0 (nk →∞) and a compact M 3 θ0, such

that

lim
nk
inf inf

θ∈M
w(θnk , θ) ≥ w(θ1, θ0)/2 > 0. (a.s.).

The above argument can be easily understood by drawing a picture (assume θ be 1-dimensional for

simplicity). Also, by Theorem 1, πm(M |Xnk)→ 1 (a.s.), thus

lim
n
supRn ≥ lim

nk
inf

Z
M
w(θnk , θ)πm(θ|Xnk)dθ

≥ lim
nk
inf inf

θ∈M
w(θnk , θ)πm(M |Xnk) ≥ w(θ1, θ0)/2 > 0, (a.s.)

a contradiction. So we must have θn → θ0 (a.s.).

Proof of Theorem 5. In view of Theorem 3 (ii), we only need to show, in componentwise sense,

√
n(θn − θ̂n) = oP (1).

We first consider the quadratic loss. Then w(δ, θ) =
Pd

j=1 cj(δj − θj)
2 for some 0 ≤ cj < ∞. Let

w(1)(δ, θ) = (∂w(δ, θ)/∂δ1, . . . , ∂w(δ, θ)/∂δd)
0 = 2

Pd
j=1 cj(δj − θj). We only prove the result for

the first component, and without loss of generality we assume θ is 1-dimensional and c1 = 1. By

definition of θn, we have

0 =

Z
w(1)(θn − θ) exp{L(θ|Xn)}dθ =

Z
w(1)(θn − θ) exp{L(θ|Xn)− L(θ̂n|Xn)}dθ

=

Z
w(1)(θn − θ) exp{−n

2
(θ − θ̂n)

0−L(2)(θ̇)
n

(θ − θ̂n)}dθ.

Let α =
√
n(θ − θ̂n), and note w(1)(θn − θ) = 2(θn − θ), the above is

0 =

Z
[
√
n(θn − θ̂n)− α] exp{−1

2
α0
−L(2)(θ̇)

n
α}dα

or
√
n(θn − θ̂n)

Z
exp{−1

2
α0
−L(2)(θ̇)

n
α}dα =

Z
α exp{−1

2
α0
−L(2)(θ̇)

n
α}dα.

As in the proof of Theorem 3, for each fixed θ̇, −L(2)(θ̇)/n→ I(θ̇)+cJ(θ̇) (a.s.), and I(·)+cJ(·) > 0
by assumption. So there are {ηn} and {ζn} independent of α such that

lim
n
inf

Z
exp{−1

2
α0
−L(2)(θ̇)

n
α}dα ≥ lim

n
inf

Z
exp{−1

2
α0(I(ηn) + cJ(ηn))α}dα > 0

14



andZ
α exp{−1

2
α0
−L(2)(θ̇)

n
α}dα =

Z
α exp{−1

2
α0(I(ζn) + cJ(ζn))α}dα+ o(1) = o(1), (a.s.).

This gives
√
n(θn − θ̂n) = op(1).

For the absolute error loss, θ̂n is the posterior median, so we haveZ
θ<θ̂n

exp{L(θ|Xn)}dθ =
Z
θ≥θ̂n

exp{L(θ|Xn)}dθ,

or, similarly as before,Z
θ<θ̂n

exp{−n
2
(θ − θ̂n)

0−L(2)(θ̇)
n

(θ − θ̂n)}dθ =
Z
θ≥θ̂n

exp{−n
2
(θ − θ̂n)

0−L(2)(θ̇)
n

(θ − θ̂n)}dθ,

or Z
α<
√
n(θn−θ̂n)

exp{−1
2
α0
−L(2)(θ̇)

n
α}dα =

Z
α≥√n(θn−θ̂n)

exp{−1
2
α0
−L(2)(θ̇)

n
α}dα. (A.2)

Let Φ(·) be the distribution function of the standard normal. For � > 0, there is 0 < M <∞ such

that Z
α<−M

exp{−1
2
α0
−L(2)(θ̇)

n
α}dα < �/4,

Z
α>M

exp{−1
2
α0
−L(2)(θ̇)

n
α}dα < �/4,

and Φ(−M) < �/4. Also, for α ∈ [−M,
√
n(θn − θ̂n)), or θ ∈ [−n−1/2M + θ̂n, θn), we have

θ̇ ∈ [−n−1/2M + θ̂n, θn). Since θ̂n → θ0 (a.s.) by Theorem 3(i) and θn → θ0 (a.s.) by Theorem 4,

we get θ̇→ θ0 (a.s.). This gives, by dominated convergence,Z
[−M,

√
n(θn−θ̂n))

exp{−1
2
α0
−L(2)(θ̇)

n
α}dα

=

Z
[−M,

√
n(θn−θ̂n))

exp{−1
2
α0(I(θ0) + cJ(θ0))α}dα+ oP (1) = Φ(

√
n(θn − θ̂n))− Φ(−M) + oP (1).

Similarly, Z
[
√
n(θn−θ̂n),M)

exp{−1
2
α0
−L(2)(θ̇)

n
α}dα

=

Z
[
√
n(θn−θ̂n),M)

exp{−1
2
α0(I(θ0) + cJ(θ0))α}dα+ oP (1) = Φ(M)− Φ(

√
n(θn − θ̂n)) + oP (1).

Now from (A.2) and the above results for large n we have, since Φ(M) ≥ 1− �,

|1− 2Φ(√n(θn − θ̂n))| ≤ �.

Since � > 0 is arbitrary, the above is possible only if Φ(
√
n(θn− θ̂n))→ 1/2 or

√
n(θn− θ̂n) = op(1).
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