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Abstract

We propose new forecast combination schemes for predicting turning points of

business cycles. The combination schemes deal with the forecasting performance of a

given set of models and possibly providing better turning point predictions. We consider

turning point predictions generated by autoregressive (AR) and Markov-Switching AR

models, which are commonly used for business cycle analysis. In order to account

for parameter uncertainty we consider a Bayesian approach to both estimation and

prediction and compare, in terms of statistical accuracy, the individual models and the

combined turning point predictions for the United States and Euro area business cycles.

JEL codes: C11, C15, C53, E37.

Keywords: Turning Points, Markov-switching, Forecast Combination, Bayesian Model

Averaging.

1 Introduction

In recent years, interest has increased in the ability of the business cycle models to forecast

economic growth rates and structural breaks in economic activity. The early contributions

in this stream of literature consider nonlinear models such as the Markov-switching (MS)

models (see for example Goldfeld and Quandt [1973] and Hamilton [1989]) and the threshold

autoregressive models (see Tong [1983] and Potter [1995]), both of which are able to capture
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the asymmetry and the turning points in business cycle dynamics. In this paper we focus

on the class of MS models. We take the model of Hamilton [1989] as point of departure. For

more recent data one needs an adequate business cycle model with more than two regimes

(see also Clements and Krolzig [1998]) and a time-varying error variance. For example,

Kim and Murray [2002] and Kim and Piger [2000] propose a three-regime (recession, high-

growth, and normal-growth) MS model while Krolzig [2000] suggests the use of a model

with regime-dependent volatility for the US GDP. In our paper we consider data on US and

Euro industrial production, for a period of time including the 2009 recession and find that

four regimes (high-recession, contraction, normal-growth, and high-growth) are necessary

to capture some important features of the US and EU cycle in the strong-recession phases.

As most of the forecast errors are due to shifts to the deterministic factors (see Krolzig

[2000]), we consider a model with shifts in the intercept and in the volatility.

The first contribution of this paper is to exploit the time-variations in the forecast

performances of linear and nonlinear models to potentially produce better forecasts. More

specifically, in some empirical investigations and simulation studies, it has been found that

the MS models are superior in in-sample fit, but not always in forecasting and that the

relative forecast performances of the MS models depend on the regime present at the time

the forecast is made (see Clements and Krolzig [1998]). Thus it seems possible to obtain

better forecasts by dynamically combining in a suitable fashion the various model forecasts.

The second main contribution of this paper is to study the relationship between forecast

combination and turning point extraction when many points forecasts are available from

different models for the same variable of interest. When many models are used for

forecasting turning points, one can then alternatively combine the forecasts from the models

and detect the turning points on the combined forecasts, or detect the turning points on

the model point forecasts and then combine the turning point indicators. We tackle this

problem and show that the turning point forecasts are not invariant with respect to the

order of the operations of forecast combination and turning point extraction, and that the

best combination should be evaluated in the specific case at hand. Our paper is related to

Stock and Watson [2010], who consider the issue of dating the turning point for a reference

cycle when many series are available. In this context, it is possible to detect clusters of

turning points that are cycle-specific, and the problem of aggregating them becomes crucial

to determine a reference cycle.

Another relevant contribution of the paper is to propose the use of Bayesian inference

to account for both model and parameter uncertainty in combining the turning point

forecasts. The combination of the turning point forecasts is based on a Bayesian model

averaging (BMA) procedure (see Grunwald et al. [1993] for a review) which accounts for
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the model forecast performances. The Bayesian approach proposed in this paper is based

on a numerical approximation algorithm (the Gibbs sampler) which is general enough to

include not only parameter uncertainty but also possible non-normality of the prediction

error, as well as nonlinearities of the process. Another advantage of the Gibbs sampling

procedures is that they naturally provide approximation of prediction density and forecast

intervals for the variable of interest.

Finally, we study different strategies for the specification of the combination weights.

More specifically. we compare in terms of forecast performances weighting schemes driven

by the prediction errors in predicting alternatively the level or the turning points of the

variable of interest.

The paper is structured as follows. Section 2 introduces the Markov-switching model

used in the analysis of the cycle. Section 3 presents the Bayesian approach to inference and

forecast combination. Section 4 provides a comparison between the forecasting methods for

the Euro area and the US business cycles. Section 5 concludes the paper.

2 Predicting with Markov-switching Models

Let yt, with t = 1, . . . , T , be a set of observations for a variable of interest. We assume that

yt follows a Gaussian autoregressive (AR) process of the order p with parameters driven

by an MS process with m regimes and denote the resulting process with MS-AR. More

specifically we say that yt follows an MS-AR if

yt = νst + φ1,styt−1 + . . .+ φp,styt−p + ut, ut ∼ N (0, σ2
st
) (1)

where νst is the intercept; φl,k, with l = 1, . . . , p, are the autoregressive coefficients; σst is the

volatility; and {st}t is a m-states ergodic and aperiodic Markov-chain process. This process

is unobservable (latent) and st represents the current phase, at time t, of the business cycle

(e.g. contraction or expansion). The latent process takes integer values, say st ∈ {1, . . . ,m},

and has transition probabilities P(st = j|st−1 = j) = pij, with i, j ∈ {1, . . . ,m}. The

transition matrix P of the chain is the collection of the transition probabilities; that is,

P =









p11 . . . p1m
...

...

pm1 . . . pmm









and has, as a special case, the one-forever-shift model that is widely used in structural-break

analysis.
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Clements and Krolzig [1998] found in an empirical study that most forecast errors are

due to the constant terms in the prediction models. They suggest considering, for example,

MS models with regime-dependent volatility. In the present analysis, we follow Krolzig

[2000] and Anas et al. [2008] and assume that both the constant term and the volatility

are driven by the regime-switching variable {st}t. We denote the resulting MS-intercept

and MS-heteroscedasticity model with MSIH(m)-AR(p). For inference purposes we follow

a data augmentation framework (see Tanner and Wong [1987]) and introduce the allocation

variable ξt = (ξ1t, . . . , ξmt), in which ξkt = I{k}(st) indicates the regime associated with the

current observation yt. We can write the random-coefficient dynamic regression model as

follows

yt =
m
∑

k=1

ξktνk + φ1yt−1 + . . . + φpyt−p + ut, ut ∼ N (0, γ2t ) (2)

in which γ2t =
∑m

k=1
ξktσ

2
k.

In order to apply a Bayesian approach to estimation we need to complete the description

of the model with the specification of the prior distributions of the parameters. We assume

uniform prior distributions for all the autoregressive coefficients, the intercept and the

precision parameters

(φ1, . . . , φp) ∝ IRp
(φ1, . . . , φp)

(νk, σ
2
k) ∝

1

σ2
k

IR(νk)IR+(σ2
k) k = 1, . . . ,m

and do not impose stationarity constrains for the autoregressive coefficients.

When estimating an MS model, which is a dynamic mixture model, one needs to

deal with the identification issue arising from the invariance of the likelihood function

and of the posterior distribution (which follows from the assumption of symmetric prior

distributions) to permutations of the allocation variables. Many different ways to solve

this problem are discussed, for example, in Frühwirth-Schnatter [2006]. We identify the

regimes by imposing some constraints on the parameters, as is standard in business cycle

analysis . We consider the following identification constraints on the intercept: ν1 < 0 and

ν1 < ν2 < . . . < νm, which allow us to interpret the first regime as the one associated with

the recession phase. As an alternative, one could introduce the constraints on the volatility

or on the transition probability. From a practical point of view, we find in our empirical

applications that volatility ordering works as well as the intercept ordering constraint for

the regime identification. The ordering on the transition probabilities is not strong enough

for the data to identify the regimes.

We assume standard conjugate prior distributions for the transition probabilities. These
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distributions are independent Dirichlet distributions, one for each row of the transition

matrix

(pi1, . . . , pim)′ ∼ D(δ1, . . . , δm)

with i = 1, . . . ,m.

Samples from the joint posterior distribution of the parameters and the allocation

variables are obtained by iterating a Gibbs sampling algorithm. The joint posterior

distribution and the full conditional distributions associated with the Gibbs sampler are

given in Krolzig [1997] together with the sampling procedure for the posterior of the

allocation variables (and the hidden states). In Krolzig [1997] the multi-move Gibbs sampler

(see Carter and Köhn [1994] and Shephard [1994]) is presented for Markov-switching vector

autoregressive models as an alternative to the single-move Gibbs sampler given, for example,

in Albert and Chib [1993]. The multi-move procedure is particularly useful in our context

because the Gibbs sampler makes use of two relevant quantities in order to sample from the

full conditional of the allocation variables: the filtering and the smoothing probabilities.

Let ys:t = (ys, . . . , yt)
′ be the vector of observation from time s up to time t, with s ≤ t.

The filtering probability at time t is then determined by iterating the prediction step

p(ξt = ιj|y1:t−1) =

m
∑

i=1

p(ξt = ιj|ξt−1 = ιi)p(ξt−1 = ιi|y1:t−1) (3)

and the updating step

p(ξt|y1:t) ∝ p(ξt|y1:t−1)p(yt|yt−1−p:t−1, ξt) (4)

where p(ξt = ιj |ξt−1 = ιi) = p(st = j|st−1 = i), with ιm the m-th column of the

identity matrix and p(yt|yt−p−1:t−1, ξt) the conditional distribution of the variable yt from

a MSIH(m)-AR(p).

The prediction step can be used at time T to evaluate the prediction density of ξT+1

p(ξT+1|y1:T ) ∝ P ′ p(ξT |y1:T ) (5)

and the one of yT+1

p(yT+1|y1:T ) =
m
∑

i=1

p(ξt = ιi|y1:T )p(yT+1|yT+1−p:T , ξT+1) (6)

which, for a Gaussian AR process, is a mixture of normal distributions.
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The smoothing probabilities given by

p(ξt = ιj|y1:T ) ∝
m
∑

i=1

p(ξt = ιj |ξt+1 = ιi,y1:T )p(ξt+1 = ιi|y1:T ) (7)

are evaluated recursively and backward in time for t = T, T − 1, . . . , 1. These quantities are

the posterior probabilities of the observation yt to be in one of the regimes a time t, given

all the information available from the full sample of data. The smoothing probabilities are

usually employed to detect the turning points. In this paper, we will not consider the cycle

generated by the smoothing probabilities and instead applied a non-parametric approach

(see the next section) to extract the turning points from the forecasting values of yt+h.

3 Combining Linear and Non-linear Models

In this section we describe the rules used for combining the forecasts from linear (the AR)

and non-linear (MS-AR) models and for predicting the turning points of the business cycle.

In both the model combination and turning point forecasts for the variable of interest xt

(e.g. the actual or the forecasted industrial production) we use the Bry and Boschan [1971]

(BB) rule and identify a trough (or downturn) at time t if xt−K < xt, . . . , xt−1 < xt and

xt > xt+1, . . . , xt > xt+K and a peak (or upturn) at time t if xt−K > xt, . . . , xt−1 > xt and

xt < xt, . . . , xt < xt+k. By applying this rule we get an indicator variable zt that is equal

to 1 in the expansion phases and 0 in the recession phases. This rule is a standard one in

business cycle analysis (see for example Chauvet and Piger [2008]) and is also used (with

some adjustments) by the NBER institute for building the reference cycle for the US. Our

analysis can be extended to include modifications of the BB rule (see for example Mönch

and Uhlig [2005]), which account for asymmetries and time-varying duration across business

cycle phases.

We propose combining the models through use of two alternative schemes. The first one

is a Bayesian Model Averaging (BMA) procedure based on the forecasting performance for

the variable of interest. The second one is based on the performance of the models in terms

of turning point forecasts.

The BMA procedure gives a combined point forecast ỹt for the value yt using the

information available up to time t− 1, from a set of models Mj , with j = 1, ...,M :

ỹt =
M
∑

j=1

ỹj,twjt (8)
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where wjt is the (0, 1)-valued weight given to model Mj computed at time t− 1 and ỹj,t is

the point forecast from the predictive density p(ỹj,t|y1:t−1,Mj), which is the density of ỹj,t

conditional on model Mj and on the information available up to time t− 1.

To assess the forecast accuracy of each model, we follow recent studies in using the

predictive likelihood of the model. Sources such as Geweke [1999] and Geweke and

Whiteman [2006] emphasize the close relationship between the predictive likelihood and

marginal likelihood, previously used in BMA and, more generally, as Bayesian evaluation

criterion. As stated in Geweke (1999, p.15), “... the marginal likelihood summarizes the

out-of-sample prediction record... as expressed in ... predictive likelihoods.” See Bjørnland

et al. [2009] and Hoogerheide et al. [2010] for similar recent applications.

The cumulative predictive-likelihood at time t associated to the j-th model is defined as

ηPL
jt =

t
∏

s=1

p(ỹj,s|y1:s−1,Mj) (9)

where p(ỹj,t|y1:t−1,Mj) is the (simulated) predictive density for yt obtained from the model

j. The point forecast ỹj,t is computed as the median of the density p(ỹj,t|y1:t−1,Mj). We

build the weights for the j-th model, as

wPL
jt =

ηPL
j,t−1

∑K
k=1

ηPL
j,t−1

(10)

with j = AR, MS-AR.

We also suggest combining the forecasts by applying some performance measures that

are usually employed in the analysis of the turning points.1 To take one example, we

evaluate through the concordance statistics the ability of the AR and MS-AR to predict

turning points with position and frequency similar to those of the turning points in the

reference cycle.

Let zjt be the phase indicator built with the forecast from the j-th model. The indicator

is built by applying the BB rule described above to the actual values of the variable of

interest up to time t and to the one-step-ahead forecast from the j-th model. Let zRt be the

indicator variable of the reference cycle and be determined by applying the rule described

above to the actual values of the variable of interest. Then the concordance statistics for

1See Clements and Harvey [2011] for a more general analysis on combinations of probability forecasts
that are not restricted to be 0 or 1.
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the j-th model is given by

ηCS
jt =

T
∑

t=1

((zjtzRt)− (1− zjt)(1− zRt)) (11)

These statistics are used to built a set of weights for the business cycle indicators from

the different models. The phase indicator variable that results from the combination must

be a binary variable. Therefore, we propose combining the phased indicators from the

different models by using weights that take value 0 or 1. More specifically the model with

the highest concordance with the reference cycle has a weight of 1, and the other models

have null weights. In formula we have

wCS
jt = I{k∗}(j) (12)

where k∗ = argmax
k∈{1,...,K}

{ηCS
jt , j = AR,MS-AR}.

4 Empirical Results

4.1 Data and Reference Cycle

In our study we consider the Industrial Production Index (IPI) from OECD at a monthly

frequency for United States (US), from February 1949 to January 2011, and for Euro Area

(EU), from January 1971 to January 2011. Data for both US and EU economies are

seasonally adjusted and working day adjusted. In order to obtain the IPI at the Euro zone

level a back-recalculation has been performed (see Anas et al. [2007a,b] and Caporin and

Sartore [2006] for details). Since Phillips-Perron and Dickey-Fuller stationarity tests point

out the non-stationarity of the IPI, we considered in our analysis the log-changes of the IPI

index. The resulting series (see Fig. 1) are then used to detect and forecast the turning

points.

Fig. 1 shows the reference cycle used in our analysis. The cycle is obtained by applying a

BB rule to the US and EU IPI series. For comparison purposes, we show for the US economy

the NBER official turning points, which are obtained by applying the BB rule with some

adjustments on the whole series. The application of this rule allows for detection of the

following contraction phases (from peak to trough) for the US economy since 1980M01:

• 1980 recession (1982M04-1982M12) which is within the NBER references dates;

• 1990 recession (1989M08-1991M01) which is within the NBER references dates;
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Figure 1: First and third chart: log-changes in the Industrial Production Index (IPI) for US
and EU at monthly frequency for the period: January 1980 to January 2010. Second and
fourth chart: the reference cycles (BB) for US and EU. Second chart: the NBER reference
cycle (light gray).
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• short contraction (2000M09-2002M02) which is not within the NBER dates;

• Internet bubble burst and 9/11 dates (2002M11-2002M12);

• Slaggish recovery of the US economy and EU industrial recession. This made

Greenspan and FED to keep rates very low (2003M03-2003M08);

• the 2007-2009 recession (2007M09-2009M08) which is within the NBER reference

dates.

Following the results of the BB algorithm, the Euro area has experienced the follow

contraction phases since January 1980M01:

• the second oil shock and US double dip recession (1980M09-1984M07);

• the 1986-87 recession (1986M06-1987M04);

• the 1992-94 recession (1992M05-1994M04);

• the Asian-crises related recession (1998M12-1999M07);

• the 2001 and 2003 industrial recessions (2001M09-2006M05);

• the 2007-09 recession (2008M09-2009M07).

4.2 Estimation and Forecasting

In the following we show the results of the sequential estimation and forecast of the AR and

MS-AR models. The estimation results are based on 10,000 Gibbs iterations. The number

of iterations has been chosen on the basis of both a graphical inspection of the Markov

Chain Monte Carlo averages and on the application of the convergence diagnostic (CD)

statistics proposed in Geweke [1992]. An initial set of 5,000 samples has been discarded to

loose the dependence on the initial conditions of the sampler and the remaining samples

were thinned down by a factor of 10 to have reasonably less-dependent posterior samples.

Tab. 1 shows the estimation results for the AR(p) based on the full sample. We use

the Bayesian information criteria for selecting the order of the autoregressive processes and

find that for the US IPI log-changes an AR(8) should be used while an AR(4) should be

considered for modelling the Euro area business cycle. For both of the cycles the AR(p)

has a positive intercept value that is statistically close to 0.1, which underestimates the

mean value of the IPI log-changes during an expansion phase and overestimate it during

a recession phases. The HPD region for the volatility is (1.124, 6.634) for the US and
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Country US EU
Sample Period 1949M1-2011M1 1971M1-2011M1

θ θ̂T q0.05 q0.95 θ̂T q0.05 q0.95

ν 0.111 0.042 0.181 0.074 -0.039 0.189

φ1 1.162 1.083 1.242 0.651 0.560 0.743
φ2 -0.105 -0.222 0.012 0.339 0.237 0.441
φ3 -0.692 -0.807 0.576 -0.415 -0.517 -0.313
φ4 0.795 0.670 0.920 0.187 0.096 0.278
φ5 -0.281 -0.405 0.156
φ6 -0.326 -0.441 0.211
φ7 0.459 0.343 0.575
φ8 -0.165 -0.240 0.089

σ 3.891 1.124 6.634 2.357 1.379 6.011

Table 1: Estimated parameters of the AR(p) model for the log-change of the US (with
p = 8) and EU (with p = 4) Industrial Production Indexes. For each country: parameter
estimates (first column) and the 0.05 and 0.95 quantiles (second and third columns).

(1.379, 6.011) for the EU which are quite high and tend to overestimate volatility during

the normal growth and the expansion periods.

We compare the AR(p) model with the MSIH(m)-AR(p) and as we expected the

MSIH(m)-AR(p) are able to give a better description of the features of the cycles and to

capture different phases in the IPI growth level and volatility. Tab. 2 shows the estimation

results for the MSIH(m)-AR(p) based on the whole sample period. We consider here a

flexible model by considering p = 4 lags as in Hamilton [1989] and Krolzig [2000] for the

US gross domestic product and m = 4 regimes, extending the three-regimes model used in

Krolzig [2000].

We find in our comparisons that the four-regimes model is necessary in order to capture

the last recession. The interpretation of two of the four regimes will be similar to the

one given in Krolzig [2000], i.e. normal growth and high growth, and two regimes are

used to describe the recession phases. Thus in our model the fourth regime characterizes

high-growth episodes, the third regime normal-growth phases, the second regime a normal

slowdown in economic activity. The first regime may indicate strong-recession periods. We

find evidence of the four regimes in both the US and the EU economies (see the first graph

in both the US and the EU panels of Fig. 1). The graphs in the rows from two to four

of Fig. 1 US and EU panels show the smoothing probabilities of the MSIH(m)-AR(p)

model estimated on the full sample. The smoothing probabilities for the first regime,

P (st = 1|y1:T ), show that some strong recession periods are present in the sample with
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a high probability. In particular, in the 1976 and 2009 crises for both the EU and US cycles

there are some periods where the smoothing probabilities of the first regime are greater

than the probabilities of the other regimes.

From Fig. 4 one can see that the regimes have different degrees of persistence. The

analysis of the transition probabilities brings us to the following conclusions. The first

regime is moderately persistent with transition probabilities p̂11 = 0.641 for the US and

p̂11 = 0.709 for the EU (see Tab. 2). It is less persistent than the third regime (normal

growth), which has estimated transition probabilities (see Tab. 2) p̂33 = 0.886 for US and

p̂33 = 0.775 for EU. The second regime (normal recession) is less persistent than the other

regimes, for US, with probability p̂22 = 0.675 to stay in the regime, and more persistent,

for EU, with transition p̂22 = 0.841. The fourth regime is more persistent than the first

regime, for the US, with probability p̂44 = 0.777 to stay in the regime, while the opposite

is the case for the EU, which has the probability of staying in a strong recession regime of

p̂44 = 0.676.

The four regimes have substantially different values for the intercept and scale

parameters (see Tab. 2). The differences between the constant terms in the first and

in the fourth regime are similar for the US and the EU, i.e. (ν̂4 − ν̂1) = 3.616 for the US

and (ν̂4 − ν̂1) = 3.996 for the EU. The volatility gap between the first and fourth regimes

is instead different in the two cycles: σ̂2
4 − σ̂2

1 = −1.836 for US and σ̂2
4 − σ̂2

1 = −0.967 for

the EU. More generally the volatility of the EU cycle associated with regimes of strong

recession and high growth is larger than the volatility of the US cycle. For both cycles the

MS model results show that volatility significantly changes across the four regimes. For this

reason, the use in this context of a AR model with constant volatility may be inappropriate.

Accordingly, one could expect that the MS-AR models have superior forecasting ability than

the AR models.

Fig. 4 shows the combination weights obtained from the sequential evaluation of the

forecasting abilities of the different models for the US and the EU IPI log-changes. From

the first and third chart in Fig. 4 it can be seen that the combination weights, wPL
MS−AR,US

and wPL
MS−AR,EU , increase in the last part of the sample, starting at September 2008. This

corresponds to an increase in the forecasting ability, in terms of predictive likelihood, of

the MS-AR with respect to the AR models. From our experiments we find that the good

performance of the MS-AR models in the last part of the sample cannot be obtained with

three regimes and that four-regime models are necessary to have an adequate description,

in terms of expected growth-rate and volatility, of both the US and EU cycles during a

strong recession phase.

The results for the performance abilities change if we consider the concordance with
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Country US EU
Sample Period 1949M1-2011M1 1971M1-2011M1

θ θ̂T q0.05 q0.95 θ̂T q0.05 q0.95

ν1 -2.436 -5.868 -0.539 -1.981 -4.225 -0.423
ν2 -0.524 -1.542 0.156 -0.152 -1.145 0.335
ν3 0.132 -0.290 0.511 0.482 -0.040 1.433
ν4 1.180 0.121 3.410 2.015 0.435 4.771

σ1 2.783 7.743 1.350 4.051 9.395 1.999
σ2 1.567 4.085 0.725 1.337 5.735 0.800
σ3 0.552 2.496 0.358 1.450 6.356 0.794
σ4 0.947 4.493 0.424 3.354 7.116 1.524

φ1 0.935 0.650 1.204 0.555 0.330 0.774
φ2 0.050 -0.311 0.404 0.331 0.099 0.562
φ3 -0.473 -0.815 -0.135 -0.374 -0.610 -0.140
φ4 0.271 0.033 0.516 0.185 -0.021 0.398

p11 0.641 0.429 0.832 0.709 0.519 0.870
p12 0.186 0.039 0.389 0.130 0.025 0.286
p13 0.082 0.004 0.240 0.079 0.004 0.223
p14 0.089 0.005 0.248 0.080 0.005 0.217

p21 0.041 0.002 0.136 0.032 0.001 0.130
p22 0.675 0.468 0.862 0.841 0.544 0.981
p23 0.165 0.031 0.359 0.090 0.005 0.281
p24 0.116 0.004 0.301 0.034 0.000 0.156

p31 0.014 0.000 0.048 0.051 0.000 0.207
p32 0.053 0.008 0.202 0.135 0.008 0.400
p33 0.886 0.596 0.976 0.775 0.414 0.980
p34 0.046 0.000 0.212 0.037 0.000 0.159

p41 0.033 0.000 0.139 0.096 0.005 0.272
p42 0.060 0.001 0.214 0.111 0.007 0.293
p43 0.128 0.005 0.319 0.115 0.008 0.288
p44 0.777 0.515 0.977 0.676 0.441 0.868

Table 2: Estimated parameters of the MSIH(4)-AR(4) model for the log-change of the
US and EU Industrial Production Indexes. For each country: parameter estimates (first
column) and the 0.05 and 0.95 quantiles (second and third columns).
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Figure 2: Hidden state estimates st|T and smoothing probabilities P (st|y1:T ), for t =
1, . . . , T , for US (upper panel) and EU (lower panel) data.
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Figure 3: Combination weights for the AR and MS-AR forecasts by using predictive-
likelihood (PL) and concordance statistics (CS) for US and EU data.
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Figure 4: Turning point forecasts for US and EU IPI obtained from different models (AR
and MS-AR) and their BMA combinations based on the predictive likelihood (PL) and the
concordance statistics (CS).
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a reference cycle as a performance measure (see the combination weights wCS
MS−AR,US and

wCS
MS−AR,EU in the second and fourth graph of Fig. 4). More specifically, for the US cycle

(second chart in Fig. 4) the MS-AR model is superior to the AR model starting at the

beginning of 1985. Conversely, the turning point forecast abilities of the MS-AR are worse

than those of the AR model for the EU cycle, starting at the beginning of 1985. These

results are all in line with the results in Clements and Krolzig [1998] about the time-varying

performance of the MS models. MS models behave in a different way depending on the

value of the regime present when the forecast performances are evaluated.

4.3 Sequential Turning Points Detection

Turning point prediction with different models (AR and MS-AR) and model combinations

(predictive likelihood BMA and concordance statistics BMA) are given in Fig. 4. Fig.

4 (charts 3 and 4) shows that the two combination strategies for the US cycle give two

sequences of turning point forecasts that exhibit substantial differences. Charts seven and

eight of the same figures show that the two strategies give similar turning points for the EU

cycle.

In order to evaluate, at the end of the sample period T , the forecast abilities of the two

combination strategies we consider the Mean Square Prediction Error (MSPE)

MSPE =
1

T

T
∑

t=1

(yt − ỹt+1)
2 (13)

and the Logarithmic Score (LS)

LS = −
1

T

T
∑

t=1

ln p(ỹt+1|y1:t) (14)

Tab. 3 shows that one of the two models performs better for both the US and EU, in terms

of MSPE, than the two combination strategies. When considering the LS, then the BMA

based on the concordance statistics that correspond to the combination of the turning point

indicators is the best strategy to use for the US cycle. For the EU cycle the BMA based

on predictive likelihood performs petter than the BMA based on concordance statistics.

This leads to the conclusion that, for the EU it is better to combine first the growth-rate

forecasts and then apply the BB rule for the detection of the turning points.
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AR MS-AR BMA-PL BMA-CS

US

MSPE 0.489 0.556 0.519 0.523
LS -1.200 -1.144 -1.209 -1.121

EU

MSPE 1.323 1.299 1.299 1.331
LS -1.683 -1.541 -1.552 -1.697

Table 3: Mean square prediction error (MSPE), Log-score (LS) for the AR(p), MSIH(m)-
AR(p) models and for the model combinations based on predictive likelihood (BMA-PL)
and on the concordance statistics (BMA-CS).

5 Conclusion

In this paper we analyze empirically the relationship between forecast combination and

turning point detection, when many forecast models are available for a variable of

interest. We propose a Bayesian inference approach to both model estimation and model

combination, which accounts for parameter and model uncertainty.

We consider linear (AR) and nonlinear (MS-AR) models and different combination

strategies to forecast the turning points. It should be noted that our analysis could be

extended up to include some generalisations of the model of Hamilton [1989] such as MS

latent factor models (Kim [1994] and Kim and Nelson [1999]), MS models with time-varying

transition probability (Sichel [1991], Watson [1994], Diebold and Rudebusch [1996], Durland

and McCurdy [1994], and Filardo [1994]), time-varying and stochastic duration models

(Billio and Casarin [2010], Billio and Casarin [2011] and Chib and Dueker [2004]), and

finally multivariate MS models (Diebold and Rudebusch [1996] and Krolzig [1997, 2004]).

We leave the analysis of the combination of predictions from these models as a topic for

further research.

We mainly find that the forecast abilities of the models change across different phases of

the cycle and that the performances of the different combination strategies are cycle-specific

and need to be evaluated for the problem at hand.
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