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Abstract. Standard Data Envelopment Analysis (DEA) is characterized by uniform proportional input reduction or output 
augmentation in calculating improvement projections. This paper develops a new Euclidean Distance Minimization model in 
the context of DEA in order to derive a more appropriate efficiency-improving projection model by means of a weighted 
projection function. The model is extended to the situation where some factor inputs are fixed, for instance, due to lumpiness 
or natural constraints. The extended DEA model is illustrated in the context of regional planning by using a data set on Italian 
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1 Tourism as a multi-dimensional economic challenge 
 
This study aims to present a new methodology for analyzing and presenting efficiency-improving opportunities for tourist 
regions. It is as such not directly concerned with regional tourism policy, but rather with the information needed to make a 
meaningful, operational and comparative assessment of the total performance of tourist areas and of ways to improve such 
performance. Thus, the emphasis is on theory and modelling, although empirical findings on tourist regions in Italy will be 
offered as an illustration.  

Tourism has become a major economic sector with potentially high revenues for attractive tourist destinations (Wall and 
Mathieson 2006). The modern tourist sector is nowadays operating on a competitive international market with a high degree 
of product variety that may meet the demands of a diversity of customers. Clearly, tourism is a multi-faceted and 
multi-purpose activity (e.g. beach tourism, cultural tourism, sports tourism, nature tourism, etc.) that has to operate within 
often strict limits of socially or ecologically sustainable development – or carrying capacity – of the local environment (see 
Ryan and Aicken 2005; Apostolopoulos and Gayle 2001; Coccossis and Mexa 2004; Fusco Girard and Nijkamp; Nelson et al. 
1993; Heath and Wall 1992). Awareness is currently growing that environmental degradation caused by tourism may erode 
the basis of tourism, so that tourism has to seek for long-range sustainable strategies in a globally competitive sector (see 
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Matias et al. 2007; Giaoutzi and Nijkamp 2006; Shaw and Williams 2002; Tisdell 2001). In the past decades Europe has 
become a major player in global tourism; it is at present attracting more than 50 percent of international tourist arrivals and 
may continue to be a major magnet for tourists in the future, depending on the development of income, leisure time, 
transportation means and local sustainability of tourist resources.  

It is noteworthy that competition between tourist destinations is rapidly rising, not only between Europe and the rest of 
the world, but also between individual countries in Europe, while we have also witnessed fierce competition between regional 
tourist destinations inside the same country. An important question is, therefore: Which regions have – in retrospect – been 
successful in attracting a major part of tourist flows and under which performance conditions? The present paper draws on 
previous research by Cracolici et al. (2008), in which DEA and stochastic production frontier methods were deployed to 
investigate the efficiency of 103 Italian tourist regions. In the latter study, also a literature survey was offered on the use of 
DEA approaches in tourist research, which will not be repeated in the present paper.  

Cracolici (2005) has argued that from an economic perspective each tourist destination has a region-specific tourist 
production function which may be characterized by a combination of different inputs (e.g. types of accommodation or tourist 
facilities) which altogether generate a set of tourist outputs (e.g. visitors, tourist revenues). If we assume that the tourist sector 
is a multi-product market with a variety of outputs, we may characterize the tourist production function as a vector-valued 

production function: y = f ( x ), where y  is a multidimensional set of tourist outputs, while x  is a vector of inputs. 

Similar formulations can be found in Morey and Dittman (1995) and Barros (2005). The successful combination of different 
inputs leads to a varied set of more or less efficient outputs. The question then is: Which actor (i.e. region) has been most 
efficient in generating various outputs by a smart combination of inputs, under given locational conditions, and is there 
sufficient scope for this actor to improve its performance? This question is essentially a vector optimization problem which 
may be specified as a multiple objective programming (MOP) problem (see Section 2), a method closely linked to DEA. 

Section 3 provides a brief description of DEA. A basic element of DEA is that the performance of each inefficient actor 
may be compared to an efficient alternative which may serve as a benchmark to determine which steps (in terms of excessive 
inputs to be removed, or outputs to be augmented) have to be made in order to make it efficient under ideal conditions. Section 
4 will then be devoted to the development of a new method to serve this purpose, based on calculating the Euclidean distance 
between actual outcomes of a production process and what is referred to as the ‘production possibility (or efficiency) frontier’. 
This is called the Euclidean Distance Minimization (EDM) approach, through which we are able to generate appropriate 
efficiency improvement projections that may be instrumental for regional tourist strategies. A realistic extension towards the 
situation of regionally fixed input factors is given in Section 5. This new modelling approach will then be applied empirically 
in Section 6 to a data set on Italian visitors’ flows to tourist destinations in Italy with the aim to identify the most efficiently 
operating tourist regions in Italy, as well as to derive an optimal quantitative efficiency improvement target for all input and 
output values on the basis of our EDM model. The paper will be concluded in Section 7 with a research agenda on promising 
pathways concerning regional tourist competition analysis. 

 
 

2 Tourist production as a MOP problem 
 

From a formal economic efficiency perspective, the tourist production function can be interpreted as a MOP problem where 
different variables act as key forces for the generation of different objective functions (output criteria) to be maximized. Such a 
multi-objective efficiency problem may formally be described as the following vector optimization problem (see, e.g., 
Nijkamp et al. 1990): 

( )zfw =max  , Zz∈ ,         (1) 
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where w  is a vector of different objective functions, z  a vector of instruments (or decision parameters) to be manipulated 

so as to achieve an overall maximum of the decision problem concerned, and Z a real-valued feasible decision space. Function 

f  is a vector-valued transformation function that links multiple instruments to multiple objectives. 

If the above MOP problem is formulated as a linear decision problem (MOLP), it can be written as follows: 
 

zVw =max  , { },0, ≥≤⇒∈ zszRzZz         (2) 

where w , z  and s  are real-valued vectors, and V and R are real-valued matrices (see, e.g., Goicoechea et al. 1992; 

Sawaragi et al. 1985; Steuer 1986). 
An important concept in a MOP model is the notion of an efficient (or non-dominated) solution, defined as follows for 

the MOP model (2): Zz ∈∗  is an efficient solution if (and only if) there is no other Zz∈ for which ∗≥ zVzV  and 

∗≠ zVzV . The set of all efficient solutions is usually called the ‘efficiency set’. 

The idea of MOP is to seek efficient solutions within a feasible decision space and to indicate projections for the 
improvement of inefficient points. The optimal direction of the projection depends on the weights (or trade-off parameters) 
attached by decision-making units (DMUs) to the respective objective functions. In the practice of decision theory, these MOP 
models are deployed as ex ante decision-making instruments by DMUs. Such models are particularly useful in the case of 
mutually conflicting objectives that cannot be reduced to a single one. For example, in the case of tourism planning, the 
objective functions might be: tourist revenues, bed-nights (for both domestic and international tourism), protection of cultural 
heritage, environmental sustainability, etc. (see also Giaoutzi and Nijkamp 1993). The decision variables (input factors) may 
also be manifold, such as: capital investments in tourism, cultural resources, quality of service, etc. In general, a typical 
tourism MOP problem in region r (r=1, …, R) may be represented as follows (see also Cracolici, 2005):   

         

 { }rtourist output  historico-cultural capital , human capital , natural capital, labour ,rf=        (3) 

 
where tourist output in region r may be regarded as a multidimensional vector representation of distinct output objectives. This 
ex ante MOP representation prompts the question whether an integration or combination with DEA (normally focused on ex 
post multidimensional efficiency analysis) is possible. This will be treated in the next section. 
 
 
3  Efficiency improvement projection in DEA 
   
DEA aims to investigate the relative efficiency of a DMU on the basis of various inputs and outputs. In one of the seminal 
publications on DEA, Charnes et al. (1978) developed a quantitative measure for assessing the relative efficiency of DMUs by 
using a frontier method that aims to determine the maximum possible volume of outputs, given a set of inputs. In this 
framework, it is possible to assess ex post the (in)efficiency of a DMU on the basis of the distance to the production frontier. 
DEA, which can be regarded as a form of non-parametric linear programming, has over the past decades become an 
operational tool for analysing efficiency problems in various industrial sectors, where (in)efficiency is interpreted as the 
relative distance from an actual situation to the production frontier function.  

In the Charnes et al. (1978) model (abbreviated hereafter as the CCR model), the efficiency of each DMU is measured 
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by comparing it with all the other DMUs, assuming constant returns to scale. Let us denote DMUo as the DMU to be 
evaluated, where 0 ranges from 1, 2, … to J.  The standard CCR formulation is in the form of a fractional programming 
problem (FPo) to obtain optimal values for the weights v and u associated with the inputs and outputs: 

  (FPo)  
uv,

max   
∑
∑

=

m
mom

s
sos

xv

yu
θ  

   s.t.    1≤
∑
∑

m
mjm

s
sjs

xv

yu
, ),,1( Jj =                           (4) 

    0≥mv , 0≥su , 

where θ  represents an objective variable (efficiency score) for each actor 0,  xmj  is the volume of input m (m=1,…, M) 
for DMU j (j=1,…, J), and ysj the output s (s=1,…, S) of DMU j, while vm and us are the weights given to input m and output s, 
respectively. 

The CCR model (4) can be shown to have the following equivalent linear programming (LPo) specification for any 
individual DMU0: 

  (LPo)   
uv,

max    ∑=
s

sos yuθ  

s.t.    1=∑
m

momxv                        (5) 

0≤+− ∑∑
s

sjs
m

mjm yuxv    (j=1,...,J) 

0≥mv , 0≥su . 

The advantage of (5) is not only that it allows the use of standard LP algorithms, but also that it leads to a dual formulation of 
(5), DLPo, that proves to be useful for the analysis of slacks in terms of inputs and outputs. We can formulate the dual problem 
as follows, where vector notation proves to be useful: 
 

(DLPo) 
λθ ,

min   θ  

    s.t.   0≥− λθ Xxo            (6) 

oyY ≥λ  

0≥λ ,        
    

where the transposed (T) expression ( )TJλλλ ,1= is a non-negative vector corresponding to the presence of 

slacks for each DMU;  X is an (M× J) input matrix and Y is an (S× J) input matrix.  

We may now define the input excesses mRs ∈− and the output shortfalls sRs ∈+  and identify them as ‘slack’ 

vectors in the following standard from of a DEA model: 
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λθ Xxs o −=−                        (7) 

oyYs −=+ λ .     

    
On the basis of these results we can now formulate the following two steps to compute for each DMU0  the corresponding 

efficiency score θ  and the slack variables ( )+− ss ,,λ : 

(1):  We solve DLPo. Let the optimal objective value be ∗θ ; based on the optimal weights (v*, u*), we get:  

∑
∑

∗

∗

∗ =

m
mo

s
so

xv

yu

m

s

θ  .              (8) 

(2):  Given the value of ∗θ , we solve the following LP model using ( )+− ss ,,λ  as slack variables: 

+− ss ,,
max
λ

 +− += esesω                     (9) 

s.t.   λθ Xxs o −= ∗−          (10) 

oyYs −=+ λ          (11) 

0,0,0 ≥≥≥ +− ssλ ,        (12) 

 
where ω  is a scalar objective variable, and e is a unit vector. 

The optimal values for ( )+− ss ,,λ  resulting from Step 2 will be denoted as ( )*,, +− ssλ . These slack 

values can be used to determine “improvement projections” for each alternative input variable or output variable with an 

efficiency score below 1. The improvement projection ( )ˆ ˆ,o ox y is a point on the efficient frontier that is linked to the 

input-output profile of a certain DMU in the following way:  

ˆo ox x sθ ∗ −∗= −         (13) 

ˆo oy y s+∗= + .           (14) 

 
These relations indicate that the efficiency of (xo, yo) for DMUo can be improved if the input values are reduced radially by the 
ratio ∗θ ; then the input excesses ∗−s  are removed. Similarly, the efficiency can be improved if the output values are 
enlarged by the output shortfall ∗+s . 

This standard formulation implies a uniform input reduction in the improvement projections as shown in Figure 1 (see 
∗θ =OC’/OC). The same holds for an output augmentation (see Figure 2). This is indeed a simple approach, but is it also the 

most appropriate method? Is a uniform approach not too restrictive for a DMU who may need flexible adjustment directions 
for his objectives or instruments? Clearly, in principle, there is an infinite number of improvement projections on the efficient 
frontier line. The improvement projection of the original DEA models is only one practical solution, based on a uniform input 
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reduction or a uniform output augmentation. To avoid the uniformity restriction, we will develop in our study an alternative 
improvement projection based on a new approach which is related to the actual data characteristics of each specific DMU. In 
Section 4, we therefore propose this new method that is geared towards an appropriate treatment of the existence of an infinite 
number of improvement projections on the efficient frontier line. 

 
FIGURES  1  AND 2  ABOUT HERE 
 
 
4 The Euclidean Distance Minimization (EDM) approach 

 
Where the standard DEA models have focused on a uniform input reduction or a uniform output augmentation function in the 
improvement projections, we present here a Euclidean Distance Minimization (EDM) model approach that offers a new 
contribution to efficiency enhancement by deploying a weighted projection function. At the same time, it serve to address both 
input reduction and output augmentation. Our EDM searches for the point on the efficient frontier that is as close as possible 
to the DMU’s input and output vector. And, the EDM model developed in the present study retains the advantage of the 
standard DEA approach that the measurement units of the different inputs and outputs need not be identical. An additional 
property of the EDM method is that the improvement projection does not need to incorporate a priori information. Our 
approach bears some resemblance to the directional distance function model developed by Chambers et al. (1996) in the 
context of production function analysis.  

The improvement solution in the original CCR-input model imposes the condition that the input values are reduced 
radially by a uniform ratio ∗θ  ( ∗θ =OD’/OD in Figure 2). That is to say, the improvement solution for any arbitrary 
inefficient DMUD  is D’ in Figure 2 (in cases where the input space is a non-weighted x-space). The general specification of a 
CCR model is frequently based on a normal x or y-space (non-weighted space) (see Figure 1), in contrast to Figures 2 and 3, 
which are based on weighted x or y-spaces. Weighted spaces can be investigated regarding the impact of distance functions on 
improvement projections for input and output variables in the following way (see Cooper et al. 2006). 

We take as a point of departure the efficiency score ∗θ defined in (9), based on the optimal weights (v*, u*) obtained for 

each DMUo.  (v*, u*) is the set of most favourable weights for DMUo in the sense of maximizing the respective ratio scales. 
vm

* is the optimal weight for input m, and its size indicates how much in relative terms the item contributes to the set of inputs. 

Similarly,  us
* does the same for the output s.  Furthermore, if we examine each item vm

* xmo in the total input: ∑ ∗

m
moxv

m
, 

we can derive the relative importance of each item with reference to the value of each vm
* xmo. The same holds for us

* yso,  
where us

* provides a measure of the relative contribution of yso to the sum of outputs.  
 
FIGURE 3  ABOUT HERE 
 
In this study we use the optimal weights us

* and vm
* from (5), and then develop our alternative improvement projection model, 

EDM. A visual presentation of this new approach is given in Figures 2 and 3. In this approach a generalized non-general 
distance function is deployed to assist a DMU in improving its efficiency by a movement towards the efficiency frontier 
surface. For this purpose we use the minimization of Euclidean distance in weighted spaces. A suitable form of 
multidimensional projection function serving to improve efficiency is given by a Multiple Objective Quadratic Programming 
(MOQP) model which aims to minimize the aggregated input reductions as well as the aggregated output augmentations.  

The EDM approach developed in our study consists now of five steps which will are now briefly presented. We start 
with the well-known CCR approach outlined in Section 3. 
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(1):  Solve DLPo in (6). Let the optimal objective value be ∗θ , and the obtained optimal weights us
* and vm

*. 

(2):  Using ∗θ , solve (9)-(12), so that we obtain ∗−s , ∗+s . Each DMU can then be categorized by ∗θ , ∗−s and ∗+s , 

as follows: 

 (1) When ∗θ =1, ∗−s = ∗+s = 0: this is a situation of an efficient DMU. 

 (2) When ∗θ =1, 0s−∗ ≠  or 0s+∗ ≠ : improvement solutions are generated by means of formulas (13) and 

(14). 

 (3) When θ ∗ ≠ 1, 0s−∗ ≠  or 0s+∗ ≠ : improvement solutions are generated by the next steps 3, 4 and 5.  

(3):  Introduce the Euclidean distance functions E and E by means of (15) and (16), as shown in Figures 2 and 3. And solve 

the following MOQP using x
mod (the reduction distance for xio) and y

sod  (the augmentation distance for yso) as 

variables: 

  min ( )2x
m mo m mo

m
E v x v d∗ ∗= −∑        (15) 

min ( )2y
s so s so

s
E u y u d∗ ∗= −∑        (16) 

 s.t.  ( ) ∗

∗
∗

+
=−∑ θ

θ
1
2

m

x
momom dxv          (17) 

( ) ∗

∗
∗

+
=+∑ θ

θ
1
2

s

y
sosos dyu           (18) 

0x
mo mox d− ≥          (19) 

0≥x
mod          (20) 

0≥y
sod ,         (21) 

where mox is the magnitude of input item m for an arbitrary inefficient DMUo; and soy  is the magnitude of output item s 

for an arbitrary inefficient DMUo. The constraint functions (17) and (18) refer to the target values of input reduction and 
output augmentation.  

An important question in the bi-modal approach (with both input reduction and output rise possibilities) is of course 
which of the two possibilities are most appropriate. In other words: is an optimal balance between these two options to be 
achieved? This problem of the balance between these contributions from the input and output side to achieve efficiency is 
dealt with as follows. The total efficiency gap to be covered by inputs and outputs is (1-θ*). The input and the output side 
contribute according to their initial levels 1 and θ*, implying shares θ*/(1+θ*) and 1/(1+θ*) in the improvement contribution. 
Hence the contributions from both sides equal (1-θ*)[θ*/(1+θ*)], and (1-θ*)[1/(1+θ*)].  

Therefore, we find for the input reduction targets and the output augmentation targets the following expressions:  
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Input reduction target: ( ) ( ) ( ) ∗

∗

∗
∗∗

+
=

+
×−−=−∑ θ

θ
θ

θ
1
2

1
111

m

x
momom dxv ;      (22) 

Output augmentation target: ( ) ( ) ( ) ∗

∗

∗

∗
∗∗∗

+
=

+
×−+=+∑ θ

θ
θ

θθθ
1
2

1
1

s

y
sosos dyu .     (23) 

An illustration is given in Figure 4.    
 
FIGURE 4.  ABOUT HERE 

 
The constraint function (19) refers to a limitation of input reduction, while constraint functions (20) and (21) express 
simultaneously the pressure of input reduction and output augmentation. It is now possible to calculate simultaneously the 

optimal distances ∗x
mod  and ∗y

sod  by using the above mentioned MOQP model (15)-(21), which can be solved by 

separately solving (15), (17), (19) and (20) for ∗x
mod  and (16), (18) and (21) for ∗y

sod .  

(4):  The distance minimization solution for an inefficient DMUo can then be expressed by means of formulas (24) and 
(25): 

∗∗ −= x
momomo dxx ;        (24) 

∗∗ += y
sososo dyy .        (25) 

(5):  In order to ascertain the presence and use of slacks for the input and output variables, we solve formula (3.3) and 

(3.6)-(3.9); by using ∗
mox , ∗

soy , we obtain θ ∗∗ , s−∗∗ , s+∗∗ . In this case, we are sure that θ ∗∗  is calculated as 1. 

An optimal solution for any inefficient DMUo can be now expressed by means of equations (26) and (27): 

     ∗∗−∗∗∗ −= sxx momo ;                (26) 

∗∗+∗∗∗ += syy soso .        (27) 

 
By means of this EDM model, it is now possible to present a new efficiency improvement solution based on the standard 
CCR projection, with a balance between inputs and outputs. It means an increase in the options for meaningful efficiency 
improvement solutions in DEA. The main advantage of the EDM model is that it yields an outcome on the efficient frontier 
that is as close as possible to the DMU’s actual input and output profile (see Figure 5).  
 
FIGURE 5. ABOUT HERE 
 
An additional advantage is that the EDM model retains the property of the standard DEA approach that the measurement units 
of the different inputs and outputs need not be identical, while the improvement projection in a EDM model does not need to 
incorporate a priori information. 
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5   Fixed factors in DEA 
 
5.1  Exogenous input and output research in DEA 
 
We will now analyse the case where inputs and/or outputs are not (entirely) a matter of free choice for a DMU, at least not in 
the planning or decision period that is considered as relevant. To cope with this problem, Banker and Morey (1986) proposed 
a model where some inputs or outputs are exogenously given. This model formulation is also known as a ‘fixed factor model’, 
or a model with ‘non-discretionary inputs’. It can be formulated in the following way: 

min!    







+− ∑ ∑

∈ =

+−

Dm

S

s
sm ss

1
εθ                 (28) 

s.t.  ∑
=

−+=
M

m
mjmjmo sxx

1
λθ , Dm∈         (29) 

∑
=

−+=
M

m
mjmjmo sxx

1
λ , NDm∈         (30) 

∑
=

+−=
S

s
sjsjso syy

1
λ  , Ss ,,1= ,       (31) 

where all variables are constrained to be non-negative (except θ ); the symbol Dm∈ refers to the set of ‘discretionary’ 
inputs; the symbol NDm∈  refers to the set of ‘fixed’ or ‘non-discretionary’ inputs; and ε  has a non-Archimedean 
infinitesimal value, implying that the above problem formulation is solved in two steps: first, ε is set equal to zero on the basis 
of which the optimal value for θ is determined; in the second step, the optimal values for the slack variables are determined, 
given the optimal value of θ. 

It should be noted from the constraints that the variable θ  is not included in (30) because the pertaining inputs are 
exogenously fixed. It is therefore not possible to vary them at the discretion or free choice of management. This is recognized 

by entering all mox , NDm∈  at their fixed value. Finally, we note that the pertaining slacks −
ms , NDm∈  are 

omitted from the objective function. Based on the fixed factor formulation in the above model, we will now develop in 
Subsection 5.2 an adjusted fixed factor model in our EDM approach. 
 
 
5.2  Development of a EDM model with fixed factors 
 
In this subsection we present a version of the EDM model that takes into account the presence of factor rigidity. The efficiency 
improvement projection incorporating a fixed factor (FF) in an EDM model is presented in (32)-(38): 

min ( )2x
m mo m mo

m D
E v x v d∗ ∗

∈

= −∑          (32) 

 

min ( )2y
s so s so

s D
E u y u d∗ ∗

∈

= −∑          (33) 
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s.t.   ( )
( )









−+








−









−−

−=+−

∑∑

∑
∑ ∑

∈

∗∗

∈

∗

∈

∗∗

∈ ∈

∗∗

NDs
sos

NDm
mom

NDm
mom

Dm NDm
mom

x
momom

yuxv

xv
xvdxv

θ

θ

1

11
1       (34) 

( )
( )









−+








−









−−

+=++

∑∑

∑
∑ ∑

∈

∗∗

∈

∗

∈

∗∗∗

∗

∈ ∈

∗∗

NDs
sos

NDm
mom

NDs
sos

Ds NDs
sos

y
sosos

yuxv

yu
yudyu

θ

θθ
θ

1

1
       (35) 

0>− x
momo dx          (36) 

0≥x
mod           (37) 

0≥y
sod ,           (38) 

where the symbol Ds∈ again refers to the set of ‘discretionary’ outputs; and the symbol NDs∈  refers to the set of 
‘non-discretionary’ outputs. 

The meaning of function E (32) and E in (33) is to consider only the gaps in discretionary inputs and outputs. The 
constraint functions (34) and (35) are incorporated in the non-discretionary factors for the efficiency gap. The target values for 
input reduction and output augmentation with a balanced share – as discussed above – depend on all total input-output scores 
and the relevant fixed factor cases as presented in Figure 6. The calculated result of (34) will then coincide with the calculated 
result of (35).  
 
FIGURE 6. ABOUT HERE 
 
Finally, the optimal solution for an inefficient DMUo can now be expressed by means of (39)-(42). 

 ∗∗−∗∗∗ −−= sdxx x
momomo , Dm∈          (39) 

  ∗∗+∗∗∗ ++= sdyy y
sososo , Ds∈         (40) 

  momo xx =∗∗ , NDm∈          (41) 

  soso yy =∗∗ , NDs∈          (42) 

The slacks ∗∗−s , NDm∈  and ∗∗+s , NDs∈  are not incorporated in (41) and (42), because these factors are 

evidently ‘fixed ’or ‘non-discretionary’ inputs and outputs, in a way similar to the Banker and Morey (1986) model outlined 
above. This approach will hereafter be described as the EDM-FF approach. So, we have a series of adjusted DEA models and 
their differences will be compared in our empirical application to Italian tourist areas. 
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6  Empirical analysis of tourism efficiency of Italian regions 
 
6 .1  Analysis framework 
 
In the introductory section we stressed the need for competitive tourism policies amongst tourist destinations. Tourist areas 
need – under competitive conditions – to obtain proper insight into their relative advantages and disadvantages, as measured 
by their relative output performance in relation to the use of their scarce resources. This means that DEA may be a strategic 
decision tool.  We now use the DEA and EDM approach described above to undertake a comparative study on possible 
efficiency improvements of Italian tourist regions. We have carried out an efficiency evaluation and efficiency improvement 
analysis, as shown in Figure 7. 

In Section 6.2, we will first present the efficiency evaluation results based on the CCR-input (CCR-I) model, and 
interpret the geographical characteristics of the results. Then, in Section 6.3, we present the efficiency improvement projection 
results based on the CCR-I and EDM approach, including the EDM-FF models, and compare these with the CCR-I and EDM 
projections. 

 
FIGURE 7.  ABOUT HERE 
 
6.2 Efficiency evaluation based on CCR-I 
 
In our empirical work, we have used the data set built by Cracolici et al. (2008). In their study an extensive data base was used 
on all 103 Italian regions. Several of these regions have a flourishing economy thanks to their tourist attractiveness, but others 
– despite a wealth of socio-cultural amenities for tourists – are lagging behind. Therefore, it is important to identify the 
backgrounds of differences in relative tourism performance among these regions. For this purpose, these authors applied a 
DEA model for these Italian provinces for the year 2001. The scale of these regions is sufficiently large to encapsulate the 
main tourist attractions in a given area, so that the spill-overs to other areas are rather modest. In their empirical analysis, the 
authors considered historico-cultural capital, human capital and labour as relevant input dimensions in equation (3). In their 
measurement the following proxies were used: regional state-owned cultural patrimony and heritage (CPH) (number of 
museums, monuments and archaeological sites) standardized for population, tourist school graduates divided by working age 
population (TSG), and labour units employed in the tourism sector divided by the total regional labour force (ULA) in a given 
region (for details on this data set, we refer to Cracolici 2005). On the output side two types of performance variables were 
deployed, viz: domestic bed-nights (DBN) and international bed-nights (IBN) relative to the population of a given region (or 
tourist destination)1

Furthermore, we have also included the length of the beaches per km2 (LOB) as an additional input. Given its climate 
conditions, this is an important attractor of tourism in Italy. The lengths were measured after applying an overlay of provincial 

. Clearly, these data are proxies, but seem to be reasonable proxies to encapsulate the rather extensive 
variation in the indicators that mirror the tourist performance in Italian regions. More detailed data (by sector, by region or by 
type of tourist amenity) are not available for the country as a whole. 

                                                   
1 Data on output have been obtained from ISTAT (National Statistics Institute) (2001a), while the data on inputs have been 
obtained from different sources: provincial state-owned cultural patrimony and heritage (number of museums, monuments 
and archaeological areas) from the Ministry of Cultural Heritage (2001); tourist school graduates from the Ministry of 
Education; and labour units (ULA) employed in the tourism sector from ISTAT (2001b). Because the statistics from the 
Ministry of Cultural Heritage do not supply the data of regions and provinces with special statute status (Sicily, Aosta, Trento 
and Bolzano), for these data we have used as a proxy for cultural heritage the region and province-owned cultural heritage 
(museums, monuments and archaeological areas) (2001) supplied by the Regional and Provincial Bureaus of Cultural 
Heritage. Finally, ULA includes the following economic sectors: commerce, repairs, hotels, restaurants, transport and 
communication.  
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boundaries on the Google Earth system for Italy. Also beaches of Italy’s large lakes have been taken into account; they are 
found among others in the popular tourism regions in Northern Italy. 

As we indicated in the preceding section, some inputs or outputs may have a fixed character, implying that they cannot 
be changed in immediate effective strategies to improve efficiency. This is an element that has to be taken into account in our 
efficiency analysis. In the present context, the length of the beaches factor may be interpreted as such a fixed factor. Certainly, 
in the short run, this factor cannot be changed. 

A complete overview of the efficiency evaluation results for the 103 Italian tourist regions based on the CCR model 
using the EDM approach is given in Figure 8, which demonstrates indeed a striking variation. We notice that efficient DMU’s 
(score=1.000) are in particular: Verbano-Cusio-Ossola, Novara, Bolzano-Bozen, Trento, Verona, Vicenza, Belluno, Venezia, 
Pordenone, Gorizia, Savona, Rimini, Siena, Teramo, Isernia. Most of these regions are indeed flourishing tourist areas.  
 
FIGURE 8.  ABOUT HERE 
 
To take account of the geographical characteristics impacting on the free choice of DMUs, the DMUs are categorized by 
means of efficiency scores according to five distinct levels: (1.000), (0.999 to 0.750), (0.749 to 0.500), (0.499 to 0.250), and 
(0.249 to 0.000). These results are shown in Figures 9 -13. It should be noted that these results are only based on an 
intra-regional efficiency analysis, so that some statistical variations might also partly be due to edge effects, national tourist 
policy constraints or historical attitudinal effects (such as destination life cycles in tourist behaviour). It may be recognized that 
the choice of variables is mainly instigated by empirical availability, while in some cases additional variables might seem 
plausible (such as the quality of beaches in coastal areas). However, we will present the results here for this limited set of 
variables.  
 
FIGURES 9-13.  ABOUT HERE 
 
From Figure 9, it is clear that the majority of the eminently efficient provinces (score = 1.000) is found in the northern part of 
Italy. And, from Figures 10 and 11, it turns out that highly and reasonably performing provinces (with scores 0.999 to 0.500) 
are most often found in the northern and central part of Italy. Next, from Figure 12, it appears that moderately efficient 
provinces (with scores 0.499 to 0.250) are observed more in the central part of Italy. Finally, from Figure 13, we observe that 
low-efficiency provinces (with scores 0.249 to 0.000) are relatively concentrated in the northern and southern part of Italy. It is 
striking that the perpetual North-South dichotomy in Italian regions is also reflected in the overall problem of relative tourism 
performance.  
 
 
6.3 A comparison of the efficiency improvement projection of the CCR-I, EDM and EDM-FF models 
 
We have already noticed that the EDM model has four projection types depending on the existence of slacks: non-slack type; 
input-slack type; output-slack type; and input-output-slack type. We will interpret now the results for a typical region for each 
of these four categories. The efficiency improvement projection results based on the CCR-I, EDM and EDM-FF approach for 
representative regions in Italy depend on slack patterns presented in Figures 14 -17 and Table 1. It should be noted here that 
LOB (length of the beaches) is again interpreted in this application as a fixed factor in a EDM-FF model. 

In Table 1 we provide the empirical outcomes for 4 typical Italian tourist regions. We will start with Lucca as an 
example of a non-slack projection type. This type of projection is illustrated in Figure 14. Other regions in this category of the 
non-slack projection type can be found in Appendix A. In Table 1 for Lucca, it appears that the EDM projection involves both 
input reduction and output augmentation, and, clearly, the EDM projection does not involve a uniform ratio. Note that the 
change ratios in the EDM model are smaller than those in the CCR model, as is also suggested in Figure 14. This illustrates 
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that the direction of the steps to be taken to improve the efficiency of the tourist sector in this region is less extreme than in the 
CCR case.  
 
TABLE 1.  ABOUT HERE 
FIGURE 14.  ABOUT HERE 

 
Next, in Table 1 we give the outcomes for Ferrara as an illustration of the input-slack projection type. This type of projection is 
illustrated in Figure 15. Other regions in this category of the input-slack projection type can again be found in Table A1 
(Appendix). 
 
FIGURE 15.  ABOUT HERE 
 
Padova is next presented in Table 1 as an an example of the output-slack projection type. The mapping of this specific 
projection is next illustrated in Figure 16. In addition, we have included the other regions in this category of the output-slack 
projection type in Table A1. 
 
FIGURE 16.  ABOUT HERE 

 
Finally, Firenze is presented in Table 1 as an example of the input/output slack projection type. The specific characteristics of 
this projection is illustrated in Figure 17. Clearly, there are several other regions that fall in this specific category of the 
input/output slack projection type and these can be found in Table A1 in Appendix A. 
 
FIGURE 17.  ABOUT HERE 
 
 
7  Conclusion 

 
In this study we have developed a flexible alternative to a conventional DEA by introducing an EDM model as an alternative 
option to the CCR model. The difference concerns the direction of the efficiency improvement, which is in our approach 
based on the actual input and output data features.  In addition, in this paper we have extended the idea of distance 
minimization towards the case of fixed factors, an important issue in many domains of efficiency analysis, since inputs and 
outputs tend to have varying degrees of flexibility. We have applied these methods as tools for a comparative study of the 
efficiency of 103 Italian tourist regions.  

The results of our DEA experiments are noteworthy. First, they show some similarity to previous investigations 
undertaken by Cracolici et al. (2008). All these findings suggest that the performance of many Italian tourist regions can be 
improved considerably. There may, of course, be various reasons for such inefficiencies, such as overinvestment in the (highly 
cyclical) tourist sector, insufficient marketing of the tourist products in a  given area, significant differences in tourist 
attractiveness factors due to variation in physical geography (e.g., coastal areas) or in historically-determined cultural facilities. 
Consequently, tourist areas are largely subject to the phenomenon of monopolistic competition and have to find their own 
competitive destination niche in the market (see also Crouch and Ritchie, 1999). 

Our findings turn out to be promising. Our comparative analysis has shown that the standard way of projecting 
inefficient DMUs on the efficient frontier is just one of the many ways to do this, and that the EDM method in most cases 
leads to less extreme adjustments in inputs and/or outputs in order for an inefficient DMU to reach a better alternative on the 
efficient frontier. A great challenge for future research will be to link the findings from our modeling experiments to 
operational strategies and policy measures of individual regions to bridge their efficiency gap.  
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There is still a large research agenda ahead of us. Future research may address in particular: the integration of the EDM 
model with other types of DEA models (for example, the BCC model or the Ranking DEA model); the simultaneous and 
integrated treatment of input and output orientation in EDM models with fixed factors; the introduction of different degrees of 
rigidity in the fixed factor approach; the inclusion of transaction costs in efficiency-improving strategies; and the incorporation 
of public policy handles (e.g., pricing measures) which also impact on the demand side of tourism. The present study provides 
no doubt a basis for further future research. Finally, it ought to be recognized that this approach – like any other DEA approach 
– has its limitations. Efficiency differences among regions are summarized in a restricted set of indicators; there might be 
alternative variables that may offer a complementary explanation for interregional efficiency variations. Nevertheless, the 
power of this approach is that it offers a clear-cut comparative study of the tourist performance of regions, so that regions are 
in a position to identity the critical success factors for tourist policy from a benchmark perspective.  

 
Acknowledgment: The authors wish to recognize the great support of Francesca Cracolici in creating the data base and 
giving constructive comments. 
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Table 1.  A comparison of efficiency improvement projection results of CCR, EDM and EDM -FF (examples: Lucca, 
Ferrara, Padova and Firenze) 

No. DMU

Projection Difference % Projection Difference % Projection Difference %

d mo
x* s -** x mo

** -d mo
x* -s -** d mo

x* s -** x mo
** -d mo

x* -s -**

d so
y* s +** y so

** d so
y* +s +** d so

y* s +** y so
** d so

y* +s +**

48 Lucca 

(IN)LOB 0.0120 0.0051 -0.0069 -57.44% -0.0015 0.0 0.0105 -0.0015 -12.56% 0.0000 0.0 0.0120 0.0000 0.00%

(I)CPH 0.0005 0.0002 -0.0003 -57.44% 0.0000 0.0 0.0005 0.0000 0.00% 0.0000 0.0 0.0005 0.0000 0.00%

(I)TSG 0.1554 0.0431 -0.1123 -72.27% 0.0000 0.0 0.1554 0.0000 0.00% 0.0000 0.0 0.1554 0.0000 0.00%

(I)ULA 30.7116 13.0709 -17.6407 -57.44% -18.3356 0.0 12.3760 -18.3356 -59.70% -17.9881 0.0 12.7235 -17.9881 -58.57%

(O)NBN 521.3915 521.3915 0.0000 0.00% 0.0000 0.0 521.3915 0.0000 0.00% 0.0000 0.0 521.3915 0.0000 0.00%

(O)IBN 382.1615 382.1615 0.0000 0.00% 185.3755 0.0 567.5370 185.3755 48.51% 231.3970 0.0 613.5586 231.3970 60.55%

43 Ferrara 

(IN)LOB 0.0135 0.0039 -0.0097 -71.57% -0.0070 0.0 0.0066 -0.0070 -51.46% 0.0000 0.0 0.0135 0.0000 0.00%

(I)CPH 0.0017 0.0005 -0.0012 -71.57% -0.0009 0.0 0.0009 -0.0009 -49.09% -0.0010 0.0 0.0007 -0.0010 -58.68%

(I)TSG 0.0947 0.0249 -0.0698 -73.72% 0.0000 -0.0662 0.0285 -0.0662 -69.88% 0.0000 0.0 0.0947 0.0000 0.00%

(I)ULA 26.1184 7.4260 -18.6924 -71.57% -16.1514 0.0 9.9670 -16.1514 -61.84% -20.1759 0.0 5.9425 -20.1759 -77.25%

(O)NBN 354.1839 354.1839 0.0000 0.00% 0.0000 0.0 354.1839 0.0000 0.00% 26.2171 0.0 380.4010 26.2171 7.40%

(O)IBN 303.5767 303.5767 0.0000 0.00% 201.0186 0.0 504.5953 201.0186 66.22% 250.6472 0.0 554.2238 250.6472 82.56%

28 Padova 

(IN)LOB 0.0038 0.0033 -0.0005 -13.25% -0.0005 0.0000 0.0033 -0.0005 -13.65% 0.0000 0 0.0038 0.0000 0.00%

(I)CPH 0.0001 0.0001 0.0000 -13.25% 0.0000 0.0000 0.0001 0.0000 0.00% 0.0000 0 0.0001 0.0000 -13.08%

(I)TSG 0.0602 0.0522 -0.0080 -13.25% 0.0000 0.0000 0.0602 0.0000 0.00% -0.0024 0 0.0578 -0.0024 -3.95%
(I)ULA 26.5910 23.0690 -3.5220 -13.25% 0.0000 0.0000 26.5910 0.0000 0.00% -3.0146 0 23.5764 -3.0146 -11.34%
(O)NBN 268.8692 492.3251 223.4559 83.11% 0.0000 320.3049 589.1741 320.3049 119.13% 0.0000 0 268.8692 0.0000 0.00%

(O)IBN 310.5585 310.5585 0.0000 0.00% 22.0258 0.0000 332.5843 22.0258 7.09% 30.5141 0 341.0727 30.5141 9.83%

50 Firenze 

(IN)LOB 0.0000 0.0000 0.0000 0.00% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(I)CPH 0.0030 0.0021 -0.0009 -30.35% -0.0011 0.0000 0.0019 -0.0011 -35.75% -0.0005 0.0000 0.0025 -0.0005 -17.96%

(I)TSG 0.0708 0.0460 -0.0248 -35.06% 0.0000 -0.0099 0.0609 -0.0099 -13.95% 0.0000 -0.0166 0.0542 -0.0166 -23.40%

(I)ULA 28.6136 19.9291 -8.6846 -30.35% 0.0000 0.0000 28.6136 0.0000 0.00% -5.0986 0.0000 23.5150 -5.0986 -17.82%

(O)NBN 323.8327 627.6552 303.8225 93.82% 0.0000 514.8683 838.7010 514.8683 158.99% 0.0000 416.5102 740.3428 416.5102 128.62%

(O)IBN 747.1086 747.1086 0.0000 0.00% 133.6620 0.0000 880.7706 133.6620 17.89% 133.6620 0.0000 880.7706 133.6620 17.89%

0.8675 1.0000 1.0000

0.6965 1.0000 1.0000

0.4256 1.0000 1.0000

0.2843 1.0000 1.0000

 I/O Data

Score(θ*) Score(θ**) Score(θ**)

CCR-I projection EDM projection EDM-FF projection

 
Note: See Section 6.2 for an explanation of abbreviations 
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Fig. 1. Illustration of original DEA projection in Input space 
 
 
 
 
 

 
Fig. 2. Illustration of EDM approach (Input- vi

*xi space) 
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Fig. 3. Illustration of EDM approach (Output - ur

*yr space) 

 

 

 

Fig. 4. Presentation of balanced allocation for the total efficiency gap 1- ∗θ  
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Fig. 5. Degree of improvement of EDM-projection and CCR-projection in weighted-input space 

 

 

 

Fig. 6. The distribution of total efficiency gap 1- ∗θ  

 

 

 

1 

Target value 

∗θ

fixed 

fixed 

( )









−+








−









−−

∑∑

∑

∈

∗∗

∈

∗

∈

∗∗∗

NDs
sos

NDm
mom

NDs
sos

yuxv

yu

θ

θθ

1

1 ( )









−+








−









−−

∑∑

∑

∈

∗∗

∈

∗

∈

∗∗

NDs
sos

NDm
mom

NDm
mom

yuxv

xv

θ

θ

1

11

∗∗ =∑ θ
s

sos yu 1=∑ ∗

m
mom xv

∑
∈

∗

NDs
sos yu

∑
∈

∗

NDm
momxv

O 

ACCR 
CCR-Projection  

A 

ADFM 

DFM-Projection  

Weighted 
Input 2 
(v2

*x2) 

Weighted Input 1 (v1
*x1) 



 

Papers in Regional Science, Volume.., Number.., 2010 

19 

 

 
Fig. 7. Analytical framework of CCR-I, EDM and EDM-FF model 
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Fig. 8. Efficiency evaluation result of CCR model 
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Fig. 9. Provinces with score 1.000              Fig. 10. Provinces with score 0.999 to 0.750    
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Fig. 14.  Illustration of Non-slack projection type 
 

 
Fig. 15. Illustration of Input-slack projection type 
 

 

 
Fig. 16.  Illustration of Output-slack projection type 
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Fig. 17. Illustration of Input/Output-slack projection type 
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Table A1. EDM model slack projection type for all DMUs1 

No. DMU 
Type of 
Slack 

 No. DMU 
Type of 
Slack 

 No. DMU 
Type of 
Slack 

1 Torino  OS  36 Genova  IS  70 Pescara  NS 

2 Vercelli  IOS  37 La Spezia  NS  71 Chieti  NS 

3 Biella  OS  38 Piacenza  NS  72 Isernia  EFI 

4 Verbano-Cusio-Ossola  EFI  39 Parma  NS  73 Campobasso  NS 

5 Novara  EFI  40 Reggio nell'Emilia  NS  74 Caserta  NS 

6 Cuneo  IOS  41 Modena  NS  75 Benevento  IOS 

7 Asti  OS  42 Bologna  OS  76 Napoli  IS 

8 Alessandria  IS  43 Ferrara  IS  77 Avellino  NS 

9 Aosta  IS  44 Ravenna  NS  78 Salerno  NS 

10 Varese  NS  45 Forli'-Cesena  NS  79 Foggia  NS 

11 Como  IOS  46 Rimini  EFI  80 Bari  NS 

12 Lecco  NS  47 Massa-Carrara  NS  81 Taranto  IOS 

13 Sondrio  NS  48 Lucca  NS  82 Brindisi  NS 

14 Milano  OS  49 Pistoia  IOS  83 Lecce  NS 

15 Bergamo  NS  50 Firenze  IOS  84 Potenza  IOS 

16 Brescia  NS  51 Prato  IOS  85 Matera  NS 

17 Pavia  NS  52 Livorno  NS  86 Cosenza  NS 

18 Lodi  OS  53 Pisa  NS  87 Crotone  IOS 

19 Cremona  NS  54 Arezzo  NS  88 Catanzaro  IOS 

20 Mantova  OS  55 Siena  EFI  89 Vibo Valentia  NS 

21 Bolzano-Bozen  EFI  56 Grosseto  NS  90 Reggio di Calabria  IOS 

22 Trento  EFI  57 Perugia  NS  91 Trapani  NS 

23 Verona  EFI  58 Terni  NS  92 Palermo  NS 

24 Vicenza  EFI  59 Pesaro e Urbino  NS  93 Messina  IS 

25 Belluno  EFI  60 Ancona  NS  94 Agrigento  NS 

26 Treviso  IOS  61 Macerata  IOS  95 Caltanissetta  IOS 

27 Venezia  EFI  62 Ascoli Piceno  NS  96 Enna  NS 

28 Padova  OS  63 Viterbo  NS  97 Catania  NS 

29 Rovigo  NS  64 Rieti  IOS  98 Ragusa  NS 

30 Pordenone  EFI  65 Roma  NS  99 Siracusa  IS 

31 Udine  NS  66 Latina  NS  100 Sassari  NS 

32 Gorizia  EFI  67 Frosinone  NS  101 Nuoro  NS 

33 Trieste  IS  68 L'Aquila  NS  102 Oristano  IS 

34 Imperia  IS  69 Teramo  EFI  103 Cagliari  NS 

35 Savona  EFI         
 
 
Note 1:   NS = Non-slack projection type 
    IS = Input-slack projection type 
    OS = Output-slack projection type 

IOS = Input/Output-slack projection type 
EFI = Efficient DMU 
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