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Monte Carlo Maximum Likelihood Estimation for

Generalized Long-Memory Time Series Models

Geert Mesters, Siem Jan Koopman and Marius Ooms

Abstract

An exact maximum likelihood method is developed for the estimation of parameters in

a non-Gaussian nonlinear density function that depends on a latent Gaussian dynamic

process with long-memory properties. Our method relies on the method of importance

sampling and on a linear Gaussian approximating model from which the latent process

can be simulated. Given the presence of a latent long-memory process, we require a

modification of the importance sampling technique. In particular, the long-memory

process needs to be approximated by a finite dynamic linear process. Two possible

approximations are discussed and are compared with each other. We show that an

autoregression obtained from minimizing mean squared prediction errors leads to an

effective and feasible method. In our empirical study we analyze ten log-return series

from the S&P 500 stock index by univariate and multivariate long-memory stochastic

volatility models.

Some Keywords : Fractional Integration; Importance Sampling; Kalman Filter;

Latent Factors; Stochastic Volatility.

1 Introduction

In this paper we develop a maximum likelihood estimation method for the class of generalized

long-memory time series models that is proposed by Brockwell (2007). The long-memory

stochastic volatility model as in Breidt, Crato & De Lima (1998) and Wright (1999), and

the long-memory censored Gaussian model as in Brockwell & Chan (2006) belong to this

class of models. The generalized long-memory model consists of a latent autoregressive

fractionally integrated moving average (ARFIMA) process with Gaussian innovations and

an arbitrary observation density that is conditional on the latent ARFIMA process. A further

development presented in this paper is the extension towards the simultaneous analysis of

multiple time series which allows the treatment of generalized long-memory dynamic factor

models.

The presence of long-memory in an observed time series becomes apparent when its

autocovariance function decays slower than an exponential decay. The time series is then

said to be subject to long-range dependence. Such time series appear in many fields including

finance, meteorology and computer science. The modeling of long-memory time series has

received much interest since the seminal paper of Mandelbrot (1969). Surveys on specification

and parameter estimation for long-memory models are given by Robinson (1994) and Baillie

(1996). A recent textbook treatment of theory and methods for long-range dependent data

is given by Palma (2007). We consider the ARFIMA model with Gaussian innovations for
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the long-memory latent variable. This model was independently introduced by Granger &

Joyeux (1980) and Hosking (1981). Beran (1994) discusses inference but also forecasting

for ARFIMA models. In practice, parameter estimation for ARFIMA models is based on

approximate maximum likelihood methods. Sowell (1992) has shown that exact maximum

likelihood estimation is feasible via the direct calculation of the full autocovariance function

and by means of the prediction error decomposition and the Durbin-Levinson algorithm, see

Durbin (1960). Computational refinements of this method are proposed in Doornik & Ooms

(2003).

The main motivation to consider the generalized class of latent long-memory models is

its member, the long-memory stochastic volatility (LMSV) model which we discuss in detail

in sections 5 en 6 below. Another example is the long-memory censored Gaussian model

of Brockwell & Chan (2006). Brockwell (2007) has developed a general Bayesian procedure

based on the Markov chain Monte Carlo method for the estimation of the parameters in

models of this class. We propose a maximum likelihood procedure based on importance

sampling methods such as those developed by Shephard & Pitt (1997) and Durbin & Koop-

man (1997). The difficulties in estimation are two-fold. First, the latent Gaussian ARFIMA

process is unobserved such that the likelihood function becomes an integral over all possible

latent time paths. Second, the ARFIMA process cannot be written in state space form with

a finite state vector. The importance sampling method evaluates the likelihood via Monte

Carlo integration based on simulating latent paths from an adequate approximation of the

model of interest. For this purpose, we develop a linear Gaussian state space model that

approximates both the possibly non-Gaussian nonlinear features of the observations and the

dynamic long-memory features of the model.

In our general framework we can also consider vectors of time series that are subject to

long-memory dynamics. When the number of long-memory processes (or factors) are limited

to one or two, the methodology can still be carried out as an exact maximum likelihood

estimation procedure. We will argue that the number of time series in the observation

density is not relevant in this respect as the method remains exact. However, when the

number of factors become larger, the numerical challenge becomes very high for an exact

method and we may need to resort to approximating methods. We explore the feasibility of

our approach in detail.

The remainder of the paper is organized as follows. In the next section we present

the generalized latent long-memory time series model. In section 3 we describe the general

procedure of importance sampling to evaluate the exact likelihood function. Our importance

sampling method for models with latent long-memory time series processes is developed in

section 4. All developments are presented for the general multivariate framework. In section

5 we show the effectiveness of our approach for univariate long-memory stochastic volatility

models. We present Monte Carlo evidence for the small-sample properties of our estimation

procedure and we provide an empirical illustration analyzing the volatility underlying the

log-returns of ten constituents of the S&P 500 stock index. This illustration is extended in

section 6 where we examine a multivariate long-memory stochastic volatility model. In the

final section 7 we summarize and present some directions for further research.
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2 Modeling framework

Consider a vector time series Yt, for t = 1, . . . , n, that is subject to nonlinear, non-Gaussian

and long-memory characteristics. A general modeling framework is provided by the decom-

position model

Y ∼ p(Y |Z), (1)

with Y = (Y ′

1 , . . . , Y
′

n)
′ and where p(Y |Z) can be any density function for Y given the latent

vector Z = (Z ′

1, . . . , Z
′

n)
′, which is often referred to as the signal. In this paper, we assume

that the latent process for vector Zt can be represented by a sum of linear Gaussian dynamic

processes of which a selection can have long-memory properties. In particular, we have

Zt = AXt + BUt, (2)

where Ut is a vector of independent short-memory dynamic processes and Xt is a vector of

independent long-memory processes. The matrices A and B have appropriate dimensions

and can be regarded as fixed selection or weight matrices which may depend on an unknown

coefficient vector. The dimensions of the vectors Xt and Ut can be determined for each given

model. Although our proposed methodology can be used under more general conditions, for

presentational purposes we assume that the short- and long-memory variables are modeled

as linear dynamic processes with Gaussian innovations. In particular, we will assume that

the ith element of Xt can be represented by the autoregressive fractional integrated moving

average (ARFIMA) process as given by

φi(B) (1− B)di Xit = θi(B)εit, εit ∼ N(0, σ2
i ), (3)

for given i, where B is the backshift operator for time index t with BmXit = Xi,t−m for any

integer m, the autoregressive φi(B) and moving average θi(B) are finite backshift polynomial

functions, di is the fractional integration coefficient and εit is a serially uncorrelated and

normally distributed sequence with zero mean and variance σ2
i , which will be restricted in

multivariate settings such that Var(Xit) = 1. The disturbances εit are mutually and serially

uncorrelated at all time periods t and for all i. The backshift polynomials are given by

φi(B) = 1− φi,1B − . . .− φi,pB
p, θi(B) = 1 + θi,1B + . . .+ θi,qB

q, (4)

for known non-negative integer values p and q, unknown autoregressive coefficients φi,j and

unknown moving average coefficients θi,k with i = 1, . . . , p and k = 1, . . . , q, for each i,

where p and q can be chosen differently for a different i. We assume that the roots of the

polynomials φi(B) and θi(B) lie strictly outside the unit circle and that these polynomials

have no common roots for each i. The fractional integration part can be expressed as the

binomial expansion given by

(1−B)di =

∞
∑

k=0

Γ(di + 1)

Γ(k + 1)Γ(di − k + 1)
(−1)kBk,
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where the parameter di is a real valued constant in the range of −1 < di < 0.5. The

assumptions ensure that for each i, the process Xit is stationary, invertible and causal; see

Palma (2007, Theorem 3.4) for a proof. The dynamic process (3) and its assumptions also

apply to elements of Ut but with the additional assumption that each process has di = 0 in

(3). We obtain the autoregressive moving average (ARMA) process

φ∗

j(B)Ujt = θ∗j (B)ηjt, ηjt ∼ N(0, σ∗ 2
j ), (5)

for given j, where φ∗

j (B) and θ∗j (B) are defined as φj(B) and θj(B) in (4), respectively. The

disturbance sequence ηjt is similarly defined as εit and they are uncorrelated for all i and j.

A particular element of Ut can represent a white noise sequence. It requires φ∗

j(B) = 1 and

θ∗j (B) = 1 in (5) to obtain Ujt = ηjt.

3 Likelihood evaluation and signal extraction

When we observe a realization z of Z directly, likelihood evaluation can take place via the

multiplicative representation of one-step ahead predictive densities. For the weak stationary

Gaussian process Zt, the predictive density is

Zt|Zt−1, . . . , Z1 ∼ N(Ẑt, Vt), t = 1, . . . , n, (6)

where

Ẑ1 = 0, Ẑt =
∑t−1

j=1Ct−1,jZt−j, (7)

with Vt = E[(Zt−Ẑt)(Zt−Ẑt)
′|Zt−1, . . . , Z1] and with the coefficient matrices Ci,j determined

by the Durbin-Levinson algorithm for a given autocovariance function of Z; see Durbin (1960,

Appendix 1). The density p(Z) can then be expressed as

p(Z) = p(Z1)
n
∏

t=2

p(Zt|Zt−1, . . . , Z1) =
n
∏

t=1

1
√

2π|Vt|
exp[(Zt − Ẑt)

′V −1
t (Zt − Ẑt)], (8)

which can be computed for any realization Z = z. However, Z is not observed but is treated

as a latent vector. We observe Y that is dependent of Z. Given the model Y ∼ p(Y |Z) and
Z ∼ p(Z), the density for Y is given by

p(Y ) =

∫

p(Y, Z)dZ =

∫

p(Y |Z)p(Z)dZ. (9)

For a realization y of Y , the likelihood function is defined as ℓ(ψ) = p(y) where ψ is a vector

of fixed unknown coefficients and typically contains the ARFIMA parameters. An analytical

expression for p(Y ) is in most cases not available because we consider p(Y |Z) as nonlinear
and/or non-Gaussian. Therefore we rely on numerical methods. Given the potentially
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high dimension of the integral in (9), we rely on Monte Carlo methods for its evaluation.

In particular, we generate M samples of Z, denoted by {z(1), . . . , z(M)}, from p(Z) and

compute the average M−1
∑M

i=1 p(y|z(i)) to obtain a Monte Carlo estimate of the likelihood

function. The estimate is however inefficient since most unconditional samples from p(Z)

will not resemble the observational process of Y . A more efficient approach is obtained by

importance sampling, see Ripley (1987). It is based on an importance density g(Z|Y ) with
properties (i) g(Z|Y ) > 0 whenever p(Y, Z) > 0, (ii) it is close in proportionality to p(Y, Z),

(iii) it is easy to sample from, and (iv) it is easy to compute. In practice we therefore choose

the importance density from the Gaussian family and adjust its mean and variance to get it

close in proportionality to p(Y, Z). The likelihood function is then based on

p(Y ) =

∫

p(Y |Z)p(Z)
g(Z|Y ) g(Z|Y )dZ = g(Y )

∫

p(Y |Z)
g(Y |Z)g(Z|Y )dZ, (10)

since p(Z) = g(Z) is a Gaussian density. Also, since g(Y, Z) = g(Y |Z)p(Z) represents a

Gaussian density, an analytic expression for g(Y ) is available and can be computed easily.

A Monte Carlo estimate of the likelihood function is then given by

ℓ̂(ψ) = g(y)M−1

M
∑

i=1

p(y|z(i))
g(y|z(i)) , (11)

where the samples {z(1), . . . , z(M)} are drawn from the importance density g(Z|Y ) for the

realisation Y = y. The quality of the Monte Carlo estimator (11) depends on how well

g(Z|Y ) approximates p(Y, Z). The choice of an appropriate importance density is taken on

a case by case basis. We discuss the choice for our model in the next section.

For any choice of importance density, Kolmogorovs strong law of large numbers implies

that ℓ̂(ψ) → ℓ(ψ) as M → ∞. To guarantee a
√
M rate of convergence, we can rely on

the Lindeberg-Levy central limit theorem for which a necessary condition is the existence

of a variance for the importance weights p(Y |Z) / g(Y |Z), for Y = y, see Geweke (1989).

Diagnostic statistics for checking the existence of the variance of the importance weights can

be based on the application of extreme value theory, see Monahan (2001) and Koopman,

Shephard & Creal (2009). We will present a selection of these diagnostic statistics when

we study our choice of importance densities for long-memory stochastic volatility models in

section 5.

4 Importance sampling for long-memory processes

Next we construct a linear Gaussian state space model for our importance density g(Y, Z)

which will satisfy properties (iii) and (iv). The effectiveness of the model depends on how

well density g(Z|Y ) will approximate p(Y, Z), for realisation Y = y. Once the importance

density is established, a computationally efficient method is required to sample from g(Z|y).
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4.1 Basic approximation

While keeping the long-memory properties of Z, we linearize the observation density p(Y |Z)
and contrast its mean and variance with those of the linear Gaussian density. In effect,

we want to modify the mean and variance of the Gaussian density such that its mode

is equal to the mode of the original observation density. Such a strategy is followed by

Shephard & Pitt (1997) and Durbin & Koopman (1997, 2000). So (2003) and Jungbacker

& Koopman (2007) argue that this strategy can be implemented by numerically maximizing

log p(Z|Y ) = log p(Y |Z) + log p(Z)− log p(Y ) with respect to Z. The instrumental basis is

the linear Gaussian model

Yt = ct + Zt + ut, ut ∼ N(0, Dt), t = 1, . . . , n, (12)

where ct and Dt are known and the stochastic variables Zt and us are mutually uncorrelated

and ut is serially uncorrelated, for all time indices t, s = 1, . . . , n. It follows that

g(Y |Z) =
n
∏

t=1

g(Yt|Zt), g(Yt|Zt) ≡ N(ct + Zt, Dt). (13)

The maximization of log p(Z|Y ) with respect to Z can be carried out via the Newton-

Raphson method and reduces to the following iterative procedure. At each step, we consider

(12) where fixed mean vector ct and variance matrix Dt are determined from the output of

the previous iteration, for t = 1, . . . , n. We summarize the procedure as follows.

Algorithm A

(i) Choose a value z∗ as a guess of Z;

(ii) Given the set of two equations

∂ log p(Yt|Zt)

∂Zt

=
∂ log g(Yt|Zt)

∂Zt

,
∂2 log p(Yt|Zt)

∂Zt∂Z ′

t

=
∂2 log g(Yt|Zt)

∂Zt∂Z ′

t

,

for t = 1, . . . , n, where p(Yt|Zt) is the observation model and g(Yt|Zt) is given by (13),

we can deduct expressions for ct and Dt as functions of Z, and compute ct = c∗t and

Dt = D∗

t for Z = z∗;

(iii) Compute Ẑ = Eg(Z|Y ) from the resulting model (12) with ct = c∗t and Dt = D∗

t ;

(iv) Replace z∗ by z∗ = Ẑ;

(v) Iterate between (ii), (iii) and (iv) until convergence.

The Algorithm A can be compared with the Gauss-Newton regression (GNR) method as

described in Davidson & MacKinnon (2004) although Algorithm A is based on a second-

order Taylor expansion. The computations can be carried out for any realisation Y = y.
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4.2 Long-memory approximation

When A = 0 in (2), the approximation method can be implemented as described in detail

by Jungbacker & Koopman (2007). The short-memory process Ut is then formulated in a

linear state space form and the computations in Algorithm A, specifically in step (iii), can be

carried out using the Kalman filter and smoothing methods; see Anderson & Moore (1979)

and Durbin & Koopman (2001, Chapter 4). However, in our general model with A 6= 0, the

long-memory process cannot be formulated in state space form with a finite state vector, see

the discussion in Chan & Palma (1998). The approximating model g(Y, Z) in (12) is linear

and Gaussian nonetheless and a standard lemma insists that

Eg(Z|Y ) = Eg(Z) + Covg(Z, Y )Varg(Y )
−1[Y − Eg(Y )].

When variance matrix Varg(Y ) has a convenient structure, the computations can exploit the

structure and calculating Eg(Z|Y ) is still feasible. For example, a variance matrix with a

Toeplitz structure as implied by the ARFIMA model (3) can rely on the computationally

efficient Durbin-Levinson algorithm; see Sowell (1992) and Doornik & Ooms (2003). The

model (12) implies however a variance matrix Varg(Y ) that is equal to the sum of a Toeplitz

and a block-diagonal matrix. A computationally efficient algorithm for computing Eg(Z|Y )
is unfortunately not available when Varg(Y ) has this structure. The same arguments apply

to sampling from g(Z|Y ) when computing (11), an appropriate algorithm is not available

when Z is subject to long-memory dynamics.

We therefore need to introduce an additional approximation of formulating a short-

memory dynamic model for a long-memory process. For this purpose, we propose the

following two approximation methods.

4.2.1 Yule-Walker approximation

Define the mth order backshift polynomial δ(B) = 1−δ1B− . . .−δmBm. The autoregressive

model of order m, the AR(m) model, is defined as (3) with di = 0, φi(B) = δ(B) and

θi(B) = 1. We consider the AR(m) model with autoregressive polynomial δ(m) as an

approximation to the ARFIMA model (3). The coefficients δ1, . . . , δm are set equal to the

corresponding coefficients of the partial autocorrelation function (PACF) which are obtained

from solving a sequence of m Yule-Walker equations. The Yule-Walker equations are based

on the autocovariance function of the given model (2). The resulting coefficients have a

minimum mean square prediction error property for a given finite order m. A convenient

property of the PACF coefficients is their rapid convergence to zero as the backshift order

increases. A treshold value for the decaying PACF coefficients can determine the order m.

By a set of simulation exercises for a range of ARFIMA specifications, we have set the

order fixed at m = 10 which appears adequate in most cases and leads to a computationally

feasible method.
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4.2.2 ARMA model approximation

The autocovariance function of the ARFIMA model (3) can also be approximated by a

rational ARMA process as defined by (3) with di = 0. The approximation can be established

by minimizing the mean square error directly, similar to Tiao & Tsay (1994), as follows.

Both the ARFIMA and ARMA models can be represented as infinite moving averages with

coefficients, say, θ∗arfima,j and θ∗arma,j, respectively, for j = 1, 2, . . .. Given a set of ARFIMA

model coefficients, we can obtain the ARMA coefficients by minimizing
∑

∞

j=1(θ
∗

arfima,j −
θ∗arma,j)

2. In practice, we truncate the infinite sum at 1, 000. This minimization problem

is nonlinear and need to be carried out for each ARFIMA specification and for each set

of parameter values. A similar approach is discussed by Hsu & Breidt (2003) where they

recommend an ARMA approximation based on the polynomials in (4) of orders p = 3 and

q = 2.

4.3 Sampling from the importance density

Once the ARFIMA approximation is obtained, we can obtain the full approximating model

in a similar as described by Algorithm A. This approach is summarized in Algorithm B.

Algorithm B

(i) Approximate the ARFIMA model for Xt in (2) using one of the methods described in

Sections 4.2.1 and 4.2.2. Consider Zt of (2) where Xt is modelled by its short-memory

approximation.

(ii) Carry out the steps of Algorithm A. Step (iii) of Algorithm A can be carried by Kalman

filter and smoothing methods since we have a short-memory process Zt.

The linear Gaussian approximating model obtained from Algorithm B is the result

of two approximations: (a) the second-order Taylor expansion for treating the nonlinear

non-Gaussian observation equation, and (b) the short-memory approximation for the long-

memory process Xt. This can be made explicit by having the expression in (10) changed to

p(Y ) = g(Y )

∫

p(Y |Z)
g(Y |Z)

g(Z|Y )
gs(Z|Y )

gs(Z|Y )dZ = gs(Y )

∫

p(Y |Z)
g(Y |Z)

g(Z)

gs(Z)
gs(Z|Y )dZ, (14)

where gs() refers to the approximating model (12) where the long-memory process Xt in Zt

of (2) is substituted by its short-memory approximation. The second equality in (14) follows

since g(Y |Z) = gs(Y |Z). The ratio g(Z) / gs(Z) can be regarded as the error due to the

short-memory approximation of the long-memory process Xt. For a given realization of Z,

we can compute both g(Z) and gs(Z) via the Durbin-Levinson algorithm.

For realisation Y = y, the Monte Carlo estimate of the likelihood function is given by

ℓ̃(ψ) = gs(y)M
−1

M
∑

i=1

p(y|z(i))
g(y|z(i))

g(z(i))

gs(z(i))
, (15)
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where the samples {z(1), . . . , z(M)} are drawn from the importance density gs(Z|y) that

is obtained from Algorithm B. Since gs() is the approximating model (12) where Zt has

short-memory, we can represent equations (12) and (2) as a linear Gaussian state space

model. Hence, simulation from gs(Z|Y ) can be based on the simulation smoother methods

of Frühwirth-Schnatter (1994), Carter & Kohn (1994), de Jong & Shephard (1995) and

Durbin & Koopman (2002). The convergence of the estimator ℓ̃(ψ) → ℓ(ψ) as M → ∞
depends on the existence of the variance of the importance weights w(Y, Z) as given by

w(Y, Z) =
p(Y |Z)
g(Y |Z)

g(Z)

gs(Z)
. (16)

4.4 Parameter estimation

Given a particular model specification for (1) and (2), together with a realisation of the time

series Y and a particular value for the parameter vector ψ, we can compute the Monte Carlo

estimate of the likelihood function via (14). The method of maximum likelihood relies on the

direct numerical optimization of (14) with respect to ψ. A change of the parameter vector ψ

leads to a different value of likelihood function when the parameters are properly identified.

The value of ψ that maximizes (14) is the Monte Carlo maximum likelihood estimate and

can be found recursively. Quasi-Newton methods can be used effectively to maximize the

estimate ℓ̃(ψ) with respect to the parameter vector ψ. In the simulation exercises and in the

empirical studies below, we make use of the BFGS algorithm, see Nocedal & Wright (1999).

However, the likelihood estimate (14) is subject to Monte Carlo error. A different set of

random values leads to a numerically different value for the likelihood estimate. During the

estimation process of ψ, the same set of random values is therefore used for each likelihood

evaluation.

Elements of ψ are restricted to their stationary regions within the optimization algorithm,

for example −1 < d < 0.5. Let ψ̃ denote the estimated parameters, obtained by maximizing

ℓ̃(ψ). Standard errors for elements of estimates ψ̃ are computed by inverting the Hessian

matrix at ℓ̃(ψ̃) as

Σ̃ = −
{

∂2 log ℓ̃(ψ̃)

∂ψ∂ψ

}

−1

,

which is an asymptotic estimate of the variance matrix of ψ̃. It can be calculated numerically

from values ψ around ψ̃. The standard errors of elements of ψ are given by the square root

of the diagonal elements of Σ̃.

4.5 Signal Extraction

Given parameter vector ψ the location of a general function of latent vector Z, denoted by

h(Z) can be determined using importance sampling. For the original model, as specified by
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equations (1) and (2), it can be shown that

Ep(h(Z)|Y ) =
∫

h(Z) · p(Y, Z)dZ =

∫

h(Z)w(Y, Z)gs(Z|Y )dZ
∫

w(Y, Z)gs(Z|Y )dZ
, (17)

where w(Y, Z) is given by (16). The estimation of Ep(h(Z)|Y ) by importance sampling, for

a realisation Y = y, can be achieved by

h(Z̃) =

∑M

i=1wi h(z
(i))

∑M

i=1wi

, (18)

where wi = w(Y = y, Z = z(i)) in (16) with the simulated value z(i) drawn from gs(Z|y).

5 Univariate long-memory stochastic volatility

We illustrate the methods developed in the previous sections to the univariate long-memory

stochastic volatility model. We provide a large Monte Carlo study to evaluate the finite-

sample properties of the estimation procedure. Finally, we present an empirical study to ten

daily log-return time series from constituents of the S&P 500 stock index.

5.1 Model specification

Consider a time series of speculative asset log-returns yt that is assumed to have constant zero

mean and time-varying variance exp(Xt). The observations are sampled at daily intervals.

The general class of stochastic volatility models has a stochastically time-varying process for

the log-variance Xt. Here we take Xt as a long-memory process and specifically treat the

stochastic volatility for yt as given by

yt = exp(Xt/2)ξt, ξt ∼ N(0, σ2
ξ ), t = 1, . . . , n, (19)

where Xt is modeled as the ARFIMA process (3). The assumption of a normal density

for the disturbances ξt can be replaced by the assumption of a Student’s t-density. The

resulting models are referred to as the LMSV model, with Gaussian disturbances ξt, and the

LMSV-t model, with Student’s t disturbances ξt. The parameters of the models are collected

in vectors ψ and ψt respectively. The LMSV model is introduced by Breidt et al. (1998)

and Harvey (1998). Their estimation methods for ψ are based on quasi-maximum likelihood

methods. Wright (1999) also considers the LMSV model and proposes to estimate ψ via the

general method of moments based on the estimated log-periodogram of Geweke & Porter-

Hudak (1983). A comparison of the different estimation methods for the LMSV model is

provided by Deo, Hurvich & Lu (2006) where also an enhanced quasi-maximum likelihood

method is proposed. Bayesian estimation methods for the LMSV model are considered by

So (2002), Hsu & Breidt (2003) and Jensen (1983).
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Table 1: Parameter vectors used for simulating observations
in the Monte Carlo study

ψ ψ(1) ψ(2) ψ(3) ψ(4) ψ(5) ψ(6) ψ(7) ψ(8)

d 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

φ − − − − 0.9 0.9 0.9 0.9

σ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

ψt ψ(1t) ψ(2t) ψ(3t) ψ(4t) ψ(5t) ψ(6t) ψ(7t) ψ(8t)

d 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

φ − − − − 0.9 0.9 0.9 0.9

σ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

ν 10 10 10 10 10 10 10 10

5.2 Simulation design

In our simulation study we generate univariate observations yt from the model (19) with the

univariate ARFIMA process Xt = X1,t specified as in (3) with autoregressive polynomial of

order p = p1 = 1 and moving average polynomial of order q = q1 = 0 in (4). We take the

scale of the observations equal to unity, that is σ2
ξ = 1. In the Gaussian case, we obtain

parameter vector ψ = (d , φ , σ) where d = d1, φ = φ1,1 and σ
2 = σ2

1. In the Student’s t case,

we have ψt = (d , φ , σ , ν), where ν is the degrees of freedom for the Student’s t-density.

Our Monte Carlo study is based on generating n = 2000 observations from the model (19)

with the log-variance Xt specified as the ARFIMA process (3). We have adopted eight

different parameter vectors as given in Table 1. We have kept the scaling of the volatility σ

similar at 0.2 in all sets of simulations since results are not much affected by different choices

of the scaling parameter. The more interesting variations in parameter values are related

to the intensity of the fractional integration parameter, d = 0.1, 0.2, 0.3, 0.4, in combination

with either none or high stationary persistence , φ = 0.0 or φ = 0.9. The case where φ = 0.0

corresponds to the ARFIMA model with p = 0 and q = 0, which has been used for describing

log-variance Xt in Bollerslev & Jubinski (1999) and Ray & Tsay (2000). When simulating

observations from the Student’s t-density, we consider only ν = 10 since other values for ν

have shown to produce similar results.

5.3 Importance sampling diagnostics

To assess whether the use of importance sampling methods is effective for the Monte Carlo

evaluation of the likelihood function, we discuss a set of diagnostics proposed by Koopman

et al. (2009). These diagnostic statistics are based on testing the null hypothesis of the

existence of a variance in a sequence of importance weights, see the discussion at the end of

Section 3.

The diagnostic statistics are computed as follows. We simulate a time series yt from

model (19) of length n = 2000 and with a particular value of ψ or ψt from Table 1. Next we

11



estimate the parameters using the Monte Carlo maximum likelihood methods of Section 4.4.

The parameter vector is then replaced by its resulting estimate and we generate 100, 000

importance sampling weights w(Y, Z) in (16) with Y set equal to the simulated time series.

For a given threshold wmin, we only consider the weights that are larger than the threshold.

These, say r, exceedence values x1, . . . , xr are assumed to come from the generalized Pareto

distribution with logdensity function f(a, b) = − log b − (1 + a−1) log (1 + ab−1xi) for i =

1, . . . , r, where unknown parameters a and b determine the shape and scale of the density,

respectively. For an appropriately chosen threshold and when a ≤ 0.5, the variance of the

importance sampling weights exists. We estimate a and b by maximum likelihood, denoted

by â and b̂, respectively, and compute the t-test statistic tw = b̂−1
√

r / 3(â − 0.5) for the

null hypothesis H0 : a = 0.5. As n → ∞ and under the null hypothesis, the distribution of

the test-statistic converges to the standard normal. We reject the null hypothesis when the

statistic is positive and significantly different from zero, that is, when it is larger than 1.96

with 95% confidence.

Since the test statistics depend on the choice of the threshold wmin, we compute the

statistics for different threshold values. In Figure 1, we report the test statistics based on

the importance weights from the Yule-Walker and ARMA approximations, for the parameter

values ψ(i) and ψ(it) from Table 1, for i = 1, . . . , 8. In the ARMA approximation case, the

test statistics are sufficiently large, especially when considering parameter vectors for which

d > 0.2, to reject the null hypothesis. Many test statistics diverge exponentially to infinity

as the threshold wmin decreases, note that the portion of weights included than increases.

We therefore regard this importance sampler as less reliable. When using the Yule-Walker

approximation, the test statistics are overall smaller and in the majority of cases sufficiently

small or negative. These results have been the motivation to opt for an importance density

based on the Yule-Walker approximation. The Student’s t LMSV model produces overall

much better statistics compared to the Gaussian model. The simulation results confirm

earlier findings that the importance weights are more likely to have a variance when the

serial dependence in the time series is weak, say for the combinations where d + φ < 1.1.

Furthermore, we present strong evidence that the importance weights have a variance for

the LMSV model where the disturbances come from the Student’s t density in comparison

to the Gaussian density.

5.4 Simulation results

For the simulation study we consider the LMSV model (19) with different parameter settings.

We set ν = 0 to obtain the Gaussian LMSV model, while with ν > 2 we obtain the model

with Student’s t disturbances. For each parameter vector value from Table 1, we simulate

100 time series of length n = 2000 and we estimate the parameter vector for each simulated

time series, which is then treated as the observed time series. The estimation procedures

are implemented as described in Section 4.4, and by using the Yule-Walker long-memory

approximation with 10 lags as described in Section 4.2. In this way we obtain 100 estimates

of vector ψ. For each element in ψ, we report the average estimation bias and standard

12



Figure 1: Importance sampling diagnostics for parameters ψ(i) and ψ(it), for i = 1, . . . , 8,
based on 100, 000 simulations of weights w(Y, Z) defined in (16). In each panel the solid
line represents the estimated test statistics tw based on the Yule-Walker approximation and
the dashed line represents the test statistics from the ARMA approximation. The test
statistics are computed for different thresholds wmin, by procedures explained in section 5.3.
Thresholds are based on the number of exceedence values x1, . . . , xr included. We have taken
0.01 = r/100000, 0.025 = r/100000, 0.05 = r/100000, until 0.5 = r/100000.
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Table 2: Descriptive statistics of estimated parameters from the simulation study. For
each parameter vector the average estimation bias and standard deviation (as subscript) is
computed as follows. We sample 100 time-series of length n = 2000 from the univariate
long-memory stochastic volatility model as defined by equations (19) and (3) for different
parameter vectors from Table 1. Each simulated time-series is treated as observed and
estimated using procedures from section 4.4, the Yule-Walker approximation with 10 lags
andM = 400 importance simulations. From the 100 estimated parameter vectors we present
their average bias, with respect to the corresponding parameter vector from Table 1, and
standard deviation. This is repeated for each parameter vector considered.

ψ ψ(1) ψ(2) ψ(3) ψ(4)

d -0.039 0.153 -0.018 0.111 -0.019 0.098 -0.033 0.107

φ − − − −
σ 0.001 0.080 -0.002 0.048 0.008 0.032 -0.011 0.064

ψ ψ(5) ψ(6) ψ(7) ψ(8)

d -0.018 0.125 -0.022 0.145 -0.036 0.109 -0.032 0.106

φ -0.001 0.035 -0.009 0.065 0.000 0.045 0.002 0.047

σ 0.031 0.052 0.024 0.051 0.011 0.043 0.017 0.042

ψ ψ(1t) ψ(2t) ψ(3t) ψ(4t)

d -0.031 0.123 -0.004 0.135 -0.016 0.111 -0.012 0.101

φ − − − −
σ 0.021 0.061 0.008 0.072 0.031 0.034 0.001 0.059

ν 0.461 3.169 0.215 4.126 0.345 3.059 0.826 2.180

ψ ψ(5t) ψ(6t) ψ(7t) ψ(8t)

d -0.009 0.102 -0.012 0.122 -0.029 0.102 -0.024 0.098

φ 0.003 0.047 0.002 0.050 0.004 0.040 0.002 0.038

σ 0.013 0.062 -0.004 0.041 0.005 0.042 0.003 0.033

ν 1.226 4.543 1.920 4.586 0.850 2.981 -0.150 2.485

deviation in Table 2. To make a comparison with the standard SV model, we also consider

the settings d = 0 and ν = 0 to obtain the Gaussian SV model and d = 0 and ν > 2 to

obtain the Student’s t SV model. For the parameter vectors ψ(8) and ψ(8t), we present the

resulting sample histograms in Figure 2. When the estimation method is successful, the

average estimation bias should be close to zero and the sample standard deviation should be

relatively small. The results of our Monte Carlo study convincingly show that the estimation

procedure is successful. All parameter estimates center around their “true” values for all

different models and parameter values. The sample variation in the set of estimates appears

to be smallest for the LMSV-t model.
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Figure 2: Sample densities of estimated parameters in the Monte Carlo study. We present a
4× 4 matrix of density plots from a sample of 100 estimates of parameters in the SV model
(19). The four columns are associated with parameters d, φ, σ2 and ν, respectively. The
four rows are associated with the LMSV model with ν = 0 (LMSV Gaussian), ν > 2 (LMSV
Student’s t), d = 0, ν = 0 (SV Gaussian) and d = 0, ν > 2 (SV Student’s t), respectively.
The simulations are based on parameter vectors ψ(8): d = 0.4, φ = 0.9, σ = 0.2 and ψ(8t):
d = 0.4, φ = 0.9, σ = 0.2, ν = 10.
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5.5 Empirical evidence for ten S&P 500 stocks

The presence of long-memory in the volatility of the S&P 500 stock index is documented in

Ding, Granger & Engle (1993) and further analyzed for different components of the index

by Ray & Tsay (2000). In our empirical study we consider the top-ten constituents of this

index. The included stocks are selected by their market capitalization as of 06-12-2010:

the largest ten are listed in Table 3. For each stock we create a sample of daily adjusted

closing prices between 01-01-2004 and 06-12-2010. In Figures 3.a and 3.b we present, for

t = 1, . . . , n = 1745, the adjusted daily closing prices Pt, the inflated daily differences of the

log adjusted closing prices yt = 100 log(Pt / Pt−1), and the sample autocorrelation functions

of log y2t . The sample autocorrelation function of log y2t can be regarded as an indicator of the

autocorrelation function of log-variance Xt, see the discussion in So & Kwok (2006). Most of

the sample autocorrelation functions for log y2t show hyperbolic decays which may indicate

a presence of long-memory in the volatility of the series. The series with autocorrelations

close to zero may have been affected by outliers which can be due to unexpected returns.

Before the estimation procedure is started, we remove the sample mean n−1
∑n

t=1 yt from

the returns yt to avoid taking logs of zero return values. Monte Carlo maximum likelihood

estimation is carried as described in section 3. Univariate estimation results, based on

the Yule-Walker approximation and M = 400 simulations from the importance density for

likelihood evaluation, are presented in Tables 4.a and 4.b. We consider the unrestricted

LMSV model, the LMSV model with restriction d = 0 and the LMSV model with restriction

φ = 0. The three LMSV models are also considered with the Gausian density for ξt replaced

by the Student’s t density (denoted by LMSV-t).

For all time series the log-likelihood value is highest for the LMSV-t model where no

restrictions are placed on d or φ. The well-known Akaike information criterion (AIC) confirms

the superior in-sample performance of this model for most of the time series. All estimates

of the fractional differencing parameter are significant and often around 0.45, confirming

the presence of long-memory in the log volatility of the components of the S&P 500 stock

index. In addition for most stocks, high levels of stationary persistence φ are estimated. The

LMSV-t model estimates show the advantage of using fat tails to describe the distribution

of the log-returns. Estimated degrees of freedom ν are often low indicating substantially

larger tails compared to the Gaussian distribution. In Figure 4 we present the estimates of

the time-varying volatility paths exp(Xt) for the LMSV-t model estimates. The estimated

time-varying volatilities are computed for the maximum likelihood estimate of the parameter

vector, ψ̃, as presented in Tables 4.a and 4.b. The computations are given by (18) and based

on M = 400 simulations from the importance density. Many of the estimated log-volatilities

in Figure 4 have similar patterns. We may therefore consider the reduction of the number of

volatility components underlying the daily price differences. In other words, the volatilities

in the ten constituents of the S&P500 index may depend on a small number of common

components. We investigate this further in the next section.
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Table 3: Top-ten companies from the S&P 500 index (by market capitalization, 06-12-2010)

Symbol Constituent GICS Sector
XOM Exxon Mobil Corp Energy
AAPL Apple Inc Information Technology
MSFT Microsoft Corp Information Technology
IBM Intl. Business Machines Corp Information Technology
GE General Electric Corp Industrials
PG Procter & Gamble Consumer Staples
JNJ Johnson & Johnson Health Care
CVX Chevron Corp Energy
T AT&T Technology
JPM JP Morgan Chase Financial

Figure 3.a: Data descriptives on constituents 1 to 5 by market cap of the S&P 500 stock
index. Each series contains n = 1745 trading days between 01-01-2004 and 06-12-2010.
The columns show adjusted daily closing prices, Pt; the daily differences of the log adjusted
closing prices, yt; and the sample autocorrelation function of the squared daily differences of
the log adjusted closing prices, log y2t .
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Figure 3.b: Data descriptives on constituents 6 to 10 by market cap of the S&P 500 stock
index. Each series contains n = 1745 trading days between 01-01-2004 and 06-12-2010.
The columns show adjusted daily closing prices, Pt; the daily differences of the log adjusted
closing prices, yt; and the sample autocorrelation function of the squared daily differences of
the log adjusted closing prices, log y2t .
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Table 4.a: Estimated parameters for univariate LMSV and LMSV-t models using log-returns
from constituents 1 to 5 by market cap of the S&P 500 index, for days from 01-01-2004
to 6-12-2010 (n = 1745 trading days). The standard errors of the estimates are given
as subscripts. The method of Monte Carlo maximum likelihood is based on importance
sampling using the Yule-Walker approximation with ten lags and usingM = 400 importance
simulations. The Akaike information criterion is computed as AIC = 2P − 2 log ℓ̃(ψ̃) where
P denotes the number of elements in ψ̃.

d φ σ ν log ℓ̃(ψ̃) AIC
XOM

LMSV 0.371 0.111 0.934 0.034 0.079 0.021 - -4677.8 9361.6
LMSV (φ = 0) 0.496 0.006 - 0.505 0.032 - -4691.4 9386.8
LMSV (d = 0) - 0.989 0.004 0.141 0.020 - -4679.2 9362.4
LMSV-t 0.379 0.108 0.942 0.029 0.069 0.019 20.183 9.740 -4675.5 9359.0

LMSV-t (φ = 0) 0.496 0.006 - 0.505 0.032 1887.96 4.296 -4691.4 9388.8
LMSV-t (d = 0) - 0.991 0.004 0.130 0.019 21.588 10.147 -4677.3 9360.6

AAPL
LMSV 0.489 0.016 0.664 0.167 0.226 0.099 - -5560.6 11127.2
LMSV (φ = 0) 0.498 0.003 - 0.596 0.030 - -5572.8 11149.6
LMSV (d = 0) - 0.996 0.002 0.146 0.024 - -5567.4 11138.8
LMSV-t 0.475 0.032 0.943 0.026 0.041 0.017 7.019 1.227 -5544.2 11096.4

LMSV-t (φ = 0) 0.498 0.003 - 0.594 0.031 12.360 3.519 -5567.5 11141.0
LMSV-t (d = 0) - 0.998 0.001 0.082 0.017 6.880 1.157 -5545.8 11097.6

MSFT
LMSV 0.490 0.013 -0.040 0.157 0.602 0.069 - -4643.6 9293.2
LMSV (φ = 0) 0.492 0.010 - 0.595 0.036 - -4644.4 9292.8
LMSV (d = 0) - 0.978 0.007 0.242 0.028 - -4656.9 9317.8
LMSV-t 0.428 0.085 0.938 0.033 0.062 0.019 6.011 0.853 -4626.7 9261.4

LMSV-t (φ = 0) 0.495 0.006 - 0.553 0.040 10.100 2.896 -4640.1 9286.2
LMSV-t (d = 0) - 0.995 0.003 0.115 0.021 5.925 0.824 -4627.7 9261.4

IBM
LMSV 0.486 0.020 0.152 0.334 0.471 0.143 - -4378.5 8763.0
LMSV (φ = 0) 0.490 0.013 - 0.541 0.037 - -4378.9 8761.8
LMSV (d = 0) - 0.972 0.009 0.208 0.028 - -4382.4 8768.9
LMSV-t 0.414 0.097 0.894 0.061 0.093 0.032 9.481 2.391 -4371.5 8750.9
LMSV-t (φ = 0) 0.492 0.011 - 0.531 0.037 43.394 3.330 -4378.2 8762.4
LMSV-t (d = 0) - 0.989 0.005 0.126 0.026 8.822 1.946 -4372.0 8750.0

GE
LMSV 0.493 0.010 0.341 0.181 0.415 0.097 - -4678.2 9362.4
LMSV (φ = 0) 0.497 0.004 - 0.581 0.032 - -4680.8 9365.7
LMSV (d = 0) - 0.992 0.004 0.164 0.027 - -4682.2 9368.4
LMSV-t 0.455 0.065 0.998 0.125 0.157 0.042 8.134 2.168 -4662.0 9332.0
LMSV-t (φ = 0) 0.497 0.004 - 0.572 0.034 21.164 5.176 -4679.3 9364.6
LMSV-t (d = 0) - 0.997 0.002 0.098 0.017 7.681 1.341 -4662.3 9330.6
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Table 4.b: Estimated parameters for univariate LMSV and LMSV-t models using log-returns
from constituents 6 to 10 by market cap of the S&P 500 index, for days from 01-01-2004
to 6-12-2010 (n = 1745 trading days). The standard errors of the estimates are given
as subscripts. The method of Monte Carlo maximum likelihood is based on importance
sampling using the Yule-Walker approximation with ten lags and usingM = 400 importance
simulations. The Akaike information criterion is computed as AIC = 2P − 2 log ℓ̃(ψ̃) where
P denotes the number of elements in ψ̃.

d φ σ ν log ℓ̃(ψ̃) AIC
PG

LMSV 0.462 0.037 0.008 0.201 0.612 0.087 - -4073.8 8153.6
LMSV (φ = 0) 0.461 0.038 - 0.623 0.054 - -4070.6 8145.2
LMSV (d = 0) - 0.947 0.014 0.287 0.037 - -4085.9 8175.9
LMSV-t 0.442 0.068 0.731 0.223 0.193 0.130 7.809 3.269 -4069.5 8147.0
LMSV-t (φ = 0) 0.476 0.028 - 0.577 0.055 18.832 1.756 -4069.5 8145.0

LMSV-t (d = 0) - 0.986 0.007 0.128 0.032 6.062 0.0989 -4070.4 8146.8
JNJ

LMSV 0.484 0.020 0.201 0.179 0.464 0.081 - -4373.1 8752.2
LMSV (φ = 0) 0.492 0.010 - 0.546 0.035 - -4373.6 8751.1
LMSV (d = 0) - 0.981 0.007 0.199 0.028 - -4384.9 8773.8
LMSV-t 0.462 0.050 0.892 0.071 0.076 0.038 8.107 1.686 -4368.3 8744.6
LMSV-t (φ = 0) 0.494 0.009 - 0.534 0.036 29.192 8.126 -4372.9 8751.8
LMSV-t (d = 0) - 0.996 0.003 0.091 0.022 7.212 1.235 -4368.5 8743.0

CVX
LMSV 0.409 0.090 0.948 0.023 0.053 0.014 - -4774.1 9554.2
LMSV (φ = 0) 0.497 0.004 - 0.455 0.029 - -4805.1 9614.2
LMSV (d = 0) - 0.994 0.003 0.110 0.015 - -4776.5 9557.0
LMSV-t 0.425 0.003 0.944 0.015 0.054 0.013 236.500 3.567 -4774.0 9556.0

LMSV-t (φ = 0) 0.498 0.004 - 0.455 0.029 529.130 4.145 -4805.1 9616.2
LMSV-t (d = 0) - 0.994 0.003 0.110 0.015 341.200 1.941 -4776.5 9559.0

T
LMSV 0.405 0.136 0.942 0.047 0.060 0.020 - -4480.0 8966.0
LMSV (φ = 0) 0.495 0.007 - 0.494 0.034 - -4486.4 8976.8
LMSV (d = 0) - 0.993 0.004 0.113 0.019 - -4479.2 8962.4
LMSV-t 0.343 0.098 0.970 0.088 0.047 0.054 17.141 1.180 -4476.4 8960.8
LMSV-t (φ = 0) 0.495 0.007 - 0.494 0.034 911.448 21.378 -4486.4 8978.8
LMSV-t (d = 0) - 0.995 0.003 0.097 0.018 17.840 8.987 -4477.0 8960.0

JPM
LMSV 0.488 0.017 0.775 0.089 0.173 0.057 - -5045.1 10096.2
LMSV (φ = 0) 0.498 0.003 - 0.612 0.031 - -5057.8 10119.6
LMSV (d = 0) - 0.996 0.002 0.151 0.023 - -5045.6 10095.2
LMSV-t 0.465 0.070 0.948 0.084 0.056 0.049 9.672 1.214 -5037.2 10082.4

LMSV-t (φ = 0) 0.498 0.003 - 0.613 0.032 29.559 3.582 -5056.9 10119.8
LMSV-t (d = 0) - 0.997 0.002 0.118 0.019 9.911 2.471 -5039.0 10084.0
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Figure 4: Estimated volatility paths exp(X̃t) of constituents 1 to 10 by market cap of the
S&P 500 stock index. Log-variance Xt follows the ARFIMA process of equation (3) with
p = 1 and q = 0. Log-returns yt are modelled by equation (19) where ξt follows the Student’s
t distribution. We present an estimates for each trading day between 01-01-2004 and 6-12-
2010, that is n = 1745. Estimates are computed as described in section 4.5 based on the
estimated parameters from Tables 4.a and 4.b andM = 400 simulations from the importance
density.
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6 Multivariate long-memory stochastic volatility

Different specifications for a multivariate extension of the stochastic volatility model can be

considered, see, for example, Asai, McAleer & Yu (2006). We illustrate the multivariate

capabilities of our estimation methodology by means of a long-memory stochastic volatility

model where the log-volatility depends on a small set of multiplicative factors that are

modeled independently.

In general, we consider time series of k asset daily log-returns, denoted by the k × 1

vector yt = (y1t, . . . , ykt)
′ for t = 1, . . . , n. We assume that yt has mean zero and a time-

varying variance matrix depending on a small number of ARFIMA processes with Gaussian

innovations. The model for yt is given by

yt = Ztξt, ξt ∼ N(0,Σξ), t = 1, . . . , n, (20)

where Zt is a k×k diagonal matrix with elements exp(Zit/2), for i = 1, . . . , k, on the diagonal.

Latent k × 1 vector Zt, as given in equation (2), allows for the variance to depend on l × 1

vector Xt of independent long-memory processes, where holds l << k. We restrict B = 0

since our main interest is in long-memory components. The k × 1 disturbance vector ξt has

its variance matrix equal to the unity matrix, that is Σξ = Ik. The l components follow either

normal or Student’s t distributions. We consider models with l = 1 and l = 2 long-memory

volatility factors. Models with more than two factors become numerically more challenging as

for each long-memory factor a short-memory process need to be found for its approximation.

The state vector increases rapildly when the Yule-Walker approximation requires, say, ten

lags. The dimension of the approximating linear Gaussian state space model increases rapidly

and likelihood evaluation via importance sampling becomes computationally demanding.

The number of observed time series k is much less relevant for computational efficiency.

The matrix A in (2) becomes a factor loading matrix and is constrained for identification

purposes, see Geweke & Zhou (1996). For example, in our illustration below, we have k = 10

and l = 2, and specify the loading matrix as

A =















1 0

0 1

a3,1 a3,2
...

...

a10,1 a10,2















The unrestricted elements ai,j of matrix A are estimated together with the other parameters.

We further restrict Var(Xit) = 1 for i = 1, . . . , l. This can be done using the exact auto

covariance formulas as presented in Sowell (1992). A one factor version of this model, with

φ1(B) = 1 and θ1(B) = 1, is proposed by Ray & Tsay (2000). The estimation of the

parameters is based on quasi-maximum likelihood and spectral regression methods, see also

So & Kwok (2006).

We continue our study with the ten volatility series from the S&P500 index. We study
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Figure 5: Estimated long-memory factors exp(X̃1t) and exp(X̃2t) underlying the volatility of
the log-returns of ten constituents by market cap of the S&P 500 stock index from 01-01-2004
until 6-12-2010 (n = 1745). Log-variances Xit are specified by equation (3), with p = 1 and
q = 0. The log-returns vector yt is modelled by equation (20) using Student’s t distributions
for ξt. Estimates are computed as described in section 4.5 using optimized parameters from
Table 5 and M = 400 simulations from the importance density.
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the 10× 1 vector yt = (y1t, . . . , y10,t)
′ simultaneously with yit = 100 log(Pi,t / logPi,t−1) and

Pit is the daily adjusted closing price of stock i. The stocks are ordered as in Table 3. We

implement one and two factor versions of the model and for each Xit we set pi = 1 and

qi = 0, with i = 1, 2.

The parameter estimates for the multivariate LMSV and LMSV-t models, for ξt normally

and Student’s t distributed, respectively, are presented in Table 5. The estimated factors

appear to have strong long-memory features together with either slight negative or high

positive stationary persistence. The log-likelihood value of the LMSV-t model with two

factors is given by −46, 430 and is significantly higher than the sum of all univariate log-

likelihood estimates which is given by −46, 605. The estimated factors of our two-factor

LMSV-t model are presented in Figure 5. The first factor is clearly more noisy while the

other factor may represent more long-term changes in volatility.
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Table 5: Multivariate long-memory estimation results for the log-returns of k = 10 stocks
of the S&P 500 index from 01-01-2004 until 6-12-2010 (n = 1745). Estimation results are
presented for the multivariate LMSV and LMSV-tmodels with l = 1, 2 factors. The standard
errors of the estimates are given as subscripts. The method of Monte Carlo maximum
likelihood is based on importance sampling using the Yule-Walker approximation with ten
lags, for each long-memory component. The number of importance simulations for likelihood
evaluation is M = 400. The Akaike information criterion is compute as AIC = 2P −
2 log ℓ̃(ψ̃), where P denotes the number of elements in ψ̃.

LMSV LMSV-t
l = 1 l = 2 l = 1 l = 2

d1 0.462 0.031 0.452 0.034 0.463 0.032 0.461 0.036

d2 - 0.376 0.045 - 0.454 0.105

φ1 -0.266 0.060 -0.206 0.076 -0.251 0.074 -0.209 0.083

φ2 - 0.823 0.122 - 0.943 0.192

ν - - 5.943 0.268 10.511 1.161

a1,1 1 1 1 1
a2,1 1.785 0.057 0 1.564 0.047 0
a3,1 1.103 0.042 1.186 0.056 1.037 0.039 1.236 0.115

a4,1 0.834 0.037 1.067 0.052 0.824 0.037 1.122 0.063

a5,1 1.318 0.045 1.450 0.056 1.235 0.041 1.563 0.042

a6,1 0.607 0.034 1.098 0.053 0.575 0.032 1.108 0.083

a7,1 0.825 0.043 -0.158 0.054 0.512 0.032 1.090 0.055

a8,1 1.052 0.039 0.860 0.043 1.084 0.041 0.897 0.038

a9,1 0.886 0.038 0.945 0.051 0.882 0.038 0.993 0.054

a10,1 1.710 0.052 1.505 0.063 1.627 0.049 1.671 0.036

a1,2 - 0 - 0
a2,2 - 1 - 1
a3,2 - -0.026 0.042 - -0.110 0.052

a4,2 - -0.147 0.038 - -0.220 0.045

a5,2 - -0.097 0.046 - -0.225 0.064

a6,2 - -0.383 0.040 - -0.420 0.077

a7,2 - 0.464 0.242 - 0.297 0.032

a8,2 - 0.167 0.031 - 0.152 0.048

a9,2 - -0.023 0.038 - -0.072 0.043

a10,2 - 0.193 0.048 - 0.043 0.033

log ℓ̃(ψ̃) -47120 -46527 -46887 -46430

AIC 94262 93093 93797 92901
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7 Conclusions

We have shown that a general class of nonlinear non-Gaussian time series models with latent

long-memory components can be treated successfully by Monte Carlo maximum likelihood

methods based on importance sampling techniques. The estimation method is based on

exact maximum likelihood but it is subject to Monte Carlo error. The importance sampling

method is based on a linear Gaussian approximation model that also approximated the long-

memory process by a stationary autoregressive process with a large number of lags. This

is a new development and it illustrates the flexibility of the general methodology. We have

implemented a computationally efficient method for evaluating the Monte Carlo estimate

of the loglikelihood value. The methodology is studied in detail via a set of Monte Carlo

simulation studies in which we show that for a range of models, the underlying true parameter

values can be estimated accurately.

We further show that the methodology can be used in empirical analyses. We illustrate

the methods by fitting stochastic volatility models to ten components of the S&P 500 stock

index. Although it is empirically challenging to empirically identify long-memory and a

Student’s t density simultaneously in a stochastic volatility model, we have shown that

it is possible within our framework. The extension to multivariate analysis is shown to

be analytically relatively easy. However the computational implications of including many

latent long-memory components in the model are high. The introduction of time-varying

correlation between the latent long-memory components is an interesting research project

for future consideration.
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