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Abstract

This paper deals with the problem of combining predictive densities for

financial series. We summarize the general combination approach based on

a Bayesian state space representation of the predictive densities and of the

combination scheme which allows for incomplete model space proposed by Billio

et al. [2010]. In the combination model the weights follow logistic autoregressive

processes, change over time and their dynamics are possible driven by the past

forecasting performances of the predictive densities. For illustrative purposes

we apply it to combine White Noise and GARCH models to forecast the

Amsterdam Exchange index and use the combined predictive forecasts in an

investment asset allocation exercise.

JEL codes : C11, C15, C53, E37.

Keywords: Density Forecast Combination, Stock data.

∗The views expressed in this paper are our own and do not necessarily reflect those of Norges
Bank.

∗∗Corresponding author: hkvandijk@ese.eur.nl

1



1 Introduction

When multiple forecasts are available from different models or sources it is possible

to combine them in order to make use of all the available information on the

variable to be predicted and, as a consequence, to possibly produce better forecasts.

Most of applications concern macroeconomic data, but less evidence there is with

financial data. This paper deals with the problem of combining predictive densities

for financial series. Following Billio et al. [2010], we apply a general combination

approach based on a Bayesian state space representation of the predictive densities

and of the combination scheme. In the combination model the weights follow logistic

autoregressive processes change over time, and their dynamics can be driven by

the past forecasting performances of the predictive densities. Moreover, parameter,

model and weight uncertainty is taken into account in the combination scheme. For

illustrative purposes we provide an application to forecast and allocate a portfolio in

the Amsterdam Exchange Stock Market.

In the literature there is growing interest in model combination and many different

approaches have been proposed. Bayesian Model Averaging (BMA) is one of the

most common procedure, see Hoeting et al. [1999] for a review on BMA, with

an historical perspective. BMA gives a probability to any individual models and

combines them to obtain point and density forecasts. Parameter uncertainty and

model uncertainty are taken into account, but the model space is assumed to be

complete and the correct model is supposed to exist (in the limit). Our work

builds on another stream of literature started with Bates and Granger [1969] and

combines predictions from different forecasting models. See Granger [2006] for an

updated review on forecast combination. Granger and Ramanathan [1984] extend

Bates and Granger [1969] and propose to combine forecasts with weights obtained

as unrestricted regression coefficients. Terui and van Dijk [2002] generalize the least

squares weights by representing the dynamic forecast combination as a state space
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model. In their work the weights are assumed to follow random walk processes.

Hoogerheide et al. [2010] and Groen et al. [2009] propose robust time-varying weights.

Recently Billio et al. [2010] extend the state-space representation of Terui and van

Dijk [2002] and Hoogerheide et al. [2010] by assuming time-varying [0,1] (e.g. logistic

transformation) weights and propose a Bayesian state-space representation of the

predictive densities and of the combination scheme. In these papers the model space

is possibly incomplete.

Predictability for financial returns is very low and all models seem wrong and

unable to capture all the dynamics in such markets; and their performance varies

substantially over time. These features should be considered when combining financial

return predictive densities, making standard combination schemes unappealing.

Following Billio et al. [2010], we represent our combination schemes in terms of

conditional densities and write equations for producing predictive densities and not

point forecasts (as is often the case) for the variables of interest. We consider

convex combinations of the predictive densities and assume that the time-varying

weights associated with the different predictive densities belong to the standard

simplex. Under this constraint the weights can be interpreted as a discrete probability

distribution over the set of predictors. Tests for a specific hypothesis on the values

of the weights can be conducted due to their random nature. The weighting

schemes have time-varying continuous dynamics and a learning mechanism is also

introduced to allow the dynamics of each weight to be driven by the past and current

performances of the predictive densities in the combination scheme. A Sequential

Monte Carlo (SMC) algorithm similar to Billio et al. [2010] is applied.

The application shows that the methodology improves statistical accuracy of

forecasts for the Amsterdam Stock Exchange index, in particular in terms of density

forecasting. However, this does not guarantee higher investment performance.

The structure of the paper is as follows. Section 2 describes the combinations
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of prediction densities and presents time-varying weights dynamics with learning

mechanism. Section 3 provides the results of the application of the proposed

combination method to the macroeconomic and financial datasets. Section 4

concludes.

2 Bayesian Densities Combinations

Let yt be an observable variable at time t, with t = 1, . . . , T : we are interested in

predicting the future values of the variable yt. In particular, in a density forecasting

exercise, we are interested in estimating p(yt|y1:t−1), which is the distribution of the yt

conditional on its past values and which is called one-step-ahead prediction density of

yt. In many situations there are different prediction models available for the variable

yt. In what follows we will assume that at time t a set of K one-step-ahead predictors

ỹk,t, with k = 1, . . . , K, is available from different models or sources. Moreover we

assume that for each prediction model its conditional density p(ỹk,t|y1:t−1) is available

analytically or in a approximated form (e.g. through Monte Carlo samples).

When many prediction models are available one of the challenging issues is to

summarize the information on the future values of the variable. The combination

of predictions represents a solution to this problem. We propose here an optimal

combination based on the distributional representation of the predictive models

and, following Billio et al. [2010], we suggest to summarize the information from

the different predictive densities in one prediction density for yt by conditioning on

ỹt = (ỹ1,t, . . . , ỹK,t) and on a combination scheme wt = (w1,t, . . . , wK,t)

p(yt|wt, ỹt) ∝ exp

{
− 1

2σ2
(yt −w′

tỹt)
2

}
(1)
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which corresponds to a Gaussian combination where wt are the weights:

wk,t =
exp{xk,t}

1 +
∑K−1

j=1 exp{xj,t}
, with k = 1, . . . , K − 1 (2)

wK,t = 1−
K∑
j=1

exp{xK,t} (3)

The weights are thus multivariate logistic transformations of a latent process xt. The

transformation allows for positive weights that sum to one and accordingly can be

interpreted as the probability associated to a specific prediction model. In this work

we assume that the latent factor has the following Gaussian dynamics

p(xt|xt−1, ỹ1:t−1) ∝ exp

{
−1

2
(xt − xt−1 +∆et)

′ Λ−1 (xt − xt−1 +∆et)

}
(4)

with exogenous variable ∆et = et − et−1, where et = (e1,t, . . . , eK,t) is a vector of

exponentially weighted average errors

ek,t = (1− λ)
τ∑

i=1

λi−1(yt−i − ŷk,t−i)
2 (5)

with λ ∈ (0, 1) being a smoothing parameter and τ the size of the window of evaluation

of past errors. The past forecasting performance of the predictors is thus included

in the weights dynamics. A deterioration of the forecasting performance of the k-

th prediction model (i.e. ∆ek,t > 0) reduces its weight in the combination (i.e.

wk,t decreases). As opposite, an improvement in the prediction performance (i.e.

∆ek,t < 0) increases the value of the k-th weight. This simple mechanism has been

originally proposed Diebold and Pauly [1987] without the random components.

This combination scheme represents a general relationship between observable,

model-specific predictive densities, combination weights and the predictive density
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for yt

p(yt|y1:t−1) =

∫ ∫
p(yt|wt, ỹt)p(wt|y1:t−1, ỹ1:t−1)p(ỹ1:t|y1:t−1)dwtdỹ1:t (6)

This relationship for the prediction of the observable variable yt is part of a general

filtering and prediction problem which can be represented conditionally on ỹ1:t

through the following set of recursions

p(wt|y1:t, ỹ1:t) ∝ p(yt|wt, ỹt)p(wt|wt−1, ỹt−τ :t−1)p(wt−1|y1:t−2, ỹ1:t−2) (7)

p(yt|ỹ1:t,y1:t−1) =

∫
p(yt|wt, ỹt)p(wt|y1:t−1, ỹ1:t−1)dwt (8)

p(wt|y1:t−1, ỹ1:t−1) =

∫
p(wt|wt−1, ỹt−τ :t−1)p(wt−1|y1:t−2, ỹ1:t−2)dwt−1 (9)

(10)

And this recursions can be approximated by Monte Carlo simulation as described in

the following section.

2.1 Non-linear filtering

The conditional (unknown) future density p(yt+1|yt) is approximated by applying

Sequential Monte Carlo to the Monte Carlo empirical densities associated to the

different predictive models. The algorithm is briefly described in the following.

• First, draw j independent values yj
1:t+1, with j = 1, . . . ,M from p(ỹs+1|y1:s),

with s = 1, . . . , t.

• Conditionally on ỹj
1:t+1 obtain the particle sets Ξi,j

1:t+1 = {zi,j1:t+1, ω
i,j
t }Ni=1, with

j = 1, . . . ,M .
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• Simulate yi,j
t+1 from p(yt+1|zi,jt+1, ỹ

j
t+1) and obtain

pN,M(yt+1|y1:t) =
1

M

M∑
j=1

N∑
i=1

ωi,j
t δyi,j

t+1
(yt+1)

For further details see Billio et al. [2010].

3 Empirical Application: AEX stock index

We forecast the one-month ahead log returns of the Amsterdam Exchange index

(AEX) using two different models. The first alternative is a White Noise model (WN).

This model assumes and thus forecasts that log returns are normally distributed with

mean and standard deviation equal to the unconditional (up to time t for forecasting

at time t + 1) mean and standard deviation. WN is a standard benchmark to

forecast stock returns since it implies a random walk assumption for prices, which

is difficult to beat (see for example Welch and Goyal [2008]). The second alternative

is a Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model:

yt = µ+ ϵt, ϵt = σtzt, ; zt ∼ N(0, 1), σ2
t = α0 +

q∑
i=1

ϵ2t +

p∑
j=1

σ2
t−j. (11)

GARCH models are often employed in modeling financial time series that exhibit

volatility clustering, i.e. periods of swings followed by periods of relative calm. We

fix q = p = 1 and estimate the model using Bayesian inference with an algorithm

similar to Chen et al. [2005]. Finally, we apply our combination scheme (1)–(4) with

time-varying weights (TVW), logistic-Gaussian dynamics and learning.

We evaluate the statistical accuracy of point forecasts given by the two individual

models and the combination scheme in terms of the root mean square prediction error

(RMSPE), and in terms of the correctly predicted percentage of sign (Sign Ratio) for

the log percent stock index returns. We also evaluate the statistical accuracy of
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the density forecasts in terms of the Kullback Leibler Information Criterion (KLIC).

Specifically, the KLIC distance between the true density p(yt+1|y1:t) of a random

variable yt+1 and some candidate density p(ỹk,t+1|y1:t) obtained from model k is

defined as follows

KLICk,t+1 =

∫
p(yt+1|y1:t) ln

p(yt+1|y1:t)
p(ỹk,t+1|y1:t)

dyt+1,

= Et[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t))]. (12)

where Et(·) = E(·|Ft) is the conditional expectation given the information set Ft at

time t. An estimate can be obtained from the average of the sample information,

yt+1, . . . , yt+1, on p(yt+1|y1:t) and p(ỹk,t+1|y1:t):

KLICk =
1

t∗

t∑
t=t

[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t)]. (13)

Even though we do not know the true density, we can still compare multiple densities,

p(ỹk,t+1|y1:t). For the comparison of two competing models, it is sufficient to consider

the Logarithmic Score (LS), which corresponds to the latter term in the above sum,

LSk = − 1

t∗

t∑
t=t

ln p(ỹk,t+1|y1:t), (14)

for all k and to choose the model for which the expression in (14) is minimal, or as

we report in our tables, the opposite of the expression in (14) is maximal.

Moreover, being an investor more interested in the economic value of a forecasting

model than its precision, we test our conclusions in an active short-term investment

exercise, with an investment horizon of one month. The investor’s portfolio consists

of the stock index and risk free bonds only.1

1The risk free asset is approximated by monthly averages of Money market rates reported by
German banks. We collect them from the Bundesbank website.
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At the end of each period t, the investor decides upon the fraction αt+1 of her

portfolio to be held in stocks for the period t+ 1, based upon a forecast of the stock

index return. We do not allow for short-sales or leveraging, constraining αt+1 to be in

the [0, 1] interval (see Barberis [2000]). The investor is assumed to maximize a power

utility function with coefficient γ of relative risk aversion:

u(Rt+1) =
R1−γ

t+1

1− γ
, γ > 1, (15)

where Rt+1 is the wealth at time t+ 1, which is equal to

Rt+1 = Rt ((1− αt+1) exp(yf,t+1) + αt+1 exp(yf,t+1 + ỹt+1)), (16)

where Rt denotes initial wealth, yf,t+1 the 1-step ahead risk free rate and ỹt+1 the

1-step ahead forecast of the stock index return in excess of the risk free made at time

t.

Without loss of generality we set initial wealth equal to one, i.e. R0 = 1, such

that the investor’s optimization problem is given by

max
αt+1∈[0,1]

Et

(
((1− αt+1) exp(yf,t+1) + αt+1 exp(yf,t+1 + ỹt+1))

1−γ

1− γ

)
,

How this expectation is computed depends on how the predictive density for the

excess returns is computed. Following notation in section 2, this density is denoted

as p(ỹt+1|y1:t). The investor solves the following problem:

max
αt+1∈[0,1]

∫
u(Rt+1)p(ỹt+1|y1:t)dỹt+1. (17)

We approximate the integral in (17) by generating with the SMC procedure MN

equally weighted independent draws {ygt+1, w
g
t+1}MN

g=1 from the predictive density
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p(ỹt+1|y1:t), and then use a numerical optimization method to find:

max
αt+1∈[0,1]

1

MN

MN∑
g=1

(
((1− αt+1) exp(yf,t+1) + αt+1 exp(yf,t+1 + ỹgt+1))

1−γ

1− γ

)
(18)

We consider an investor who can choose between different forecast densities of the

(excess) stock return yt+1 to solve the optimal allocation problem described above.

We include three cases in the empirical analysis below and assume the investor

uses alternatively the density from the WN model, the GARCH model or a density

combination (DC) of the WN and SR densities. We apply here the DC scheme

described in the previous section.

We evaluate the different investment strategies by computing the ex post

annualized mean portfolio return, the annualized standard deviation, the annualized

Sharpe ratio and the total utility. Utility levels are computed by substituting the

realized return of the portfolios at time t+ 1 into (15). Total utility is then obtained

as the sum of u(Rt+1) across all t
∗ = (t− t+1) investment periods t = t, . . . , t, where

the first investment decision is made at the end of period t. To compare alternative

strategies we compute the multiplication factor of wealth that would equate their

average utilities. For example, suppose we compare two strategies A and B. Wealths

provided at time t+ 1 by the two resulting portfolios are denoted RA,t+1 and RB,t+1,

respectively. We then determine the value of ∆ such that

t∑
t=t

u(RA,t+1) =
t∑

t=t

u(RB,t+1/ exp(r)). (19)

Following Fleming et al. [2001], we interpret r as the maximum performance fee

the investor would be willing to pay to switch from strategy A to strategy B. For

comparison of multiple investment strategies, it is useful to note that – under a

power utility specification – the performance fee an investor is willing to pay to

switch from strategy A to strategy B can also be computed as the difference between
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the performance fees of these strategies with respect to a third strategy C.2 We

use this property to infer the added value of strategies based on individual models

and combination schemes by computing r with respect to three static benchmark

strategies: holding stocks only (rs), holding a portfolio consisting of 50% stocks and

50% bonds (rm), and holding bonds only (rb).

Finally, the portfolio weights in the active investment strategies change every

month, and the portfolio must be rebalanced accordingly. Hence, transaction costs

play a non-trivial role and should be taken into account when evaluating the relative

performance of different strategies. Rebalancing the portfolio at the start of month

t+1 means that the weight invested in stocks is changed from αt to αt+1. We assume

that transaction costs amount to a fixed percentage c on each traded dollar. Setting

the initial wealth Rt equal to 1 for simplicity, transaction costs at time t+1 are equal

to

ct+1 = 2c|αt+1 − αt| (20)

where the multiplication by 2 follows from the fact that the investor rebalances her

investments in both stocks and bonds. The net excess portfolio return is then given

by yt+1 − ct+1. We apply a scenario with transaction costs of c = 0.1% or 10 basis

points.

Panel A in Table 3 reports statical accuracy forecasting results. All the three

approaches perform very similar in term of RMSPE and Sign Ratio, with the WN

giving marginally smaller RMSPE and DC giving marginally higher Sign Ratio. DC

seems, on the contrary, superior in terms of density forecasting: it gives the highest log

score. Furthermore, Figure 1 plots the three density forecasts: the density forecasts

of the two individual models are very similar and too wide, in particular the one

produced by the WN. DC gives a smaller and more accurate interval.

2This follows from the fact that combining (19) for the comparisons of strategies A and B
with C,

∑
t u(RC,t+1) =

∑
t u(RA,t+1/ exp(rA)) and

∑
t u(RC,t+1) =

∑
t u(RB,t+1/ exp(rB)), gives∑

t u(RA,t+1/ exp(rA)) =
∑

t u(RB,t+1/ exp(rB)). Using the power utility specification in (15), this
can be rewritten as

∑
t u(RA,t+1) =

∑
t u(RB,t+1/ exp(rB − rA)).
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Table 1: Table: AEX index
WN GARCH DC WN GARCH DC

Panel A: Statical accuracy
RMSPE 6.442 6.459 6.464

SIGN 0.612 0.612 0.616
LS -3.391 -3.314 -3.301

Panel B: no transaction costs
γ=4 γ=6

Mean 0.695 0.700 0.699 0.694 0.697 0.698
St dev 0.415 0.415 0.416 0.336 0.337 0.336

SR 0.002 0.015 0.013 0.001 0.008 0.011
Utility -84.10 -84.10 -84.10 -50.12 -50.11 -50.11

r s 132.9 133.3 133.3 251.7 251.8 252.0
r m 17.92 18.35 18.34 39.30 39.48 39.62
r b 1.338 1.774 1.762 0.812 0.992 1.135

Panel C: transaction costs
γ=4 γ=6

Mean 0.695 0.700 0.699 0.694 0.697 0.698
St dev 0.415 0.415 0.416 0.336 0.337 0.336

SR 0.002 0.014 0.012 0.001 0.008 0.011
Utility -84.13 -84.14 -84.15 -50.13 -50.14 -50.15

r s 131.7 131.0 130.2 250.9 250.4 250.1
r m 16.38 15.64 14.85 38.19 37.62 37.30
r b 0.186 -0.553 -1.341 0.092 -0.480 -0.793

Note: In Panel A the root mean square prediction error (RMSPE), the correctly predicted sign

ratio (SIGN) and the Logarithmic Score (LS) for individual models and combination schemes in

forecasting the one month ahead AEX index return over the period January 1990 - March 2011.

WN, GARCH and DC denote strategies based on excess return forecasts from the White Noise

model, the Garch model and our density combination scheme in equations (1)–(4). In Panel B the

annualized percentage point average portfolio return and standard deviation, the annualized Sharpe

ratio (SR), the final value of the utility function, and the annualized return in basis points that an

investor is willing to give up to switch from the passive stock (s), mixed (m), or bond (b) strategy

to the active strategies and short selling and leveraging restrictions are given. In Panel C the same

statistics as in Panel B are reported when transaction costs c = 10 basis points are assumed. The

results are reported for two different risk aversion coefficients γ = (4, 6).
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Figure 1: Prediction densities for AEX
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Note: The figure presents the (99%) interval forecasts given by the White Noise benchmark model

(WN), the Garch model and our density combination scheme (DC). The red solid line shows the

realized values for AEX percent log returns, for each out-of-sample observation.

Figure 2 shows the combination weights with learning. The median weights vary

over time depending on the volatility level of the predicted variable. The GARCH

model has larger weight (between 0.5 and 0.7 in the figure) in periods of slowly

changing or constant volatility. The weight, however, reduces dramatically (down to

0.1) in periods of exploding volatility such as after the Russian crisis in October 1998,

after the large turmoil in the second semester of 2002, and after the failure of Lehman

Brothers in September 2008.

The results for the asset allocation exercise strengthen previous statistical

accuracy evidence. Panel B in Table 3 reports results for two different risk aversion

coefficients, γ = (4, 6). The performance fees are all positive for both investors and

all approaches, with the GARCH model and the DC giving the highest result for

coefficient aversions of 4 and 6 respectively. Difference are larger in term of Sharpe

ratio. Adding transaction costs changes results: the WN is the only one to provide

positive fees and investing all the money in the bond asset seems a passive strategy

difficult to beat. Considering the recent crises with a dramatic fall in stock returns,
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Figure 2: Combination weights for AEX forecasts
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Note: Time-varying weights for WN (top panel) and Garch (bottom panel) models for AEX

predictions.

our findings are not completely surprising. Results are also different than Billio

et al. [2010] where DC gives high performance. The high correlations between our

individual forecasts and their poor performance in various metrics can explain such

discrepancy.

4 Conclusion

This paper combines different predictive densities to forecast financial time series

using a method based on a distributional state-space representation of the prediction

model and of the combination scheme and on a Bayesian filtering of the optimal

weights proposed by Billio et al. [2010]. An application to forecast financial stock
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index shows that our methodology improves statistical accuracy, in particular in terms

of density forecasting. This does not guarantee higher investment performance.

The results indicate, however, that our proposed approach has wider application

than the illustrative example used in the present paper. We intend to pursue our line

of research further in future work.
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