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Abstract 

We study road supply by competing firms between a single origin and destination. In 

previous studies, firms simultaneously set their tolls and capacities while taking the actions of 

the others as given in a Nash fashion. Then, under some widely used technical assumptions, 

firms set a volume/capacity ratio that is socially optimal, and thus the level of travel time or 

service quality is socially optimal. We find that this result does not hold if capacity and toll 

setting take place in separate stages, as then firms want to limit the toll competition by setting 

lower capacities; or when firms set capacities one after another in a Stackelberg fashion, as 

then firms want to limit their competitors’ capacities by setting higher capacities. In our 

Stackelberg competition, the firms that act last have few if any capacity decisions to 

influence. Hence, they are more concerned with the toll-competition substage, and set a 

higher volume/capacity ratio than socially optimal. The firms that act first care more about 

their competitors’ capacities that they can influence: they set a lower volume/capacity ratio. 

So the first firms to enter have a too short travel time from a social perspective, and the last 

firms a too long travel time. The average private travel time is shorter than socially optimal. 

Still, in our numerical model, for three or more firms, welfare is higher under Stackelberg 

competition than under Nash competition, because of the larger total capacity and lower tolls.  
 

JEL codes: D62; L13; R41; R42; R48 

Keywords: Private Road Supply, Oligopoly, Nash Competition, Stackelberg Competition, Service Quality, 

Volume/Capacity ratio, Traffic Congestion, Congestion Pricing 

 

1. Introduction 

As government budgets become increasingly tight, it becomes ever harder to find funds for 

public road expansion in the face of ever-growing congestion on urban and inter-urban 

infrastructures. This has sparked a rising interest in private supply of road capacity. In 

addition, there is a widespread view that private firms operate more efficiently because of 

their profit motive, thereby lowering the cost of capacity. Finally, private roads may offer a 

way to introduce congestion-externality tolling in the face of strong public opposition to 

tolling of existing public roads. In Western Europe, about a third of the highway network is 

currently privately owned (Verhoef, 2007). In the USA, private roads and express-lanes are 

becoming increasingly common; the same is true for many developing countries. Hence, 

private roads form an important and relevant option in contemporary transport policy.  

Yet, there are also disadvantages to private road supply. The private-road operator 

invariably has market power: it is after all impossible to have an infinite number of private 

roads in parallel to ensure a perfectly-competitive outcome. Hence, firms can set tolls and 

capacities that might be profit-maximising, but that are not socially optimal. An important 

question is how harmful this is to social welfare, and to which extend this depends on the 

number of firms. More generally, the private supply of roads raises questions on the social 

desirability of market equilibria, and how best to intervene if outcomes are inefficient. 

The early literature on private roads looked at toll setting by a monopolist on a road of 

given capacity. Unless demand is perfectly elastic, the monopolist generally sets a higher toll 
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than socially optimally and consequently has less congestion and shorter travel times (see, 

e.g., Buchanan, 1956; Mohring 1985; and de Palma and Lindsey, 2000).
1
 

But this argument ignores capacity setting. Xiao, Yang and Han (2007) study private firms 

building and operating parallel roads between a single origin and destination. Firms 

simultaneously determine capacity and tolls while taking the actions of the other as given: i.e. 

there is a single Nash-competition stage (also called an open-loop game in the literature). 

Now, firms set the socially-optimal volume/capacity ratio (i.e. they set the optimal service 

quality) and hence have the same travel time as in the first-best public case. Thus, private 

supply does not lead to a distorted choice of the service quality. Still, firms do set higher tolls, 

build lower capacities, and have fewer users than is socially optimal. Wu, Yin and Yang 

(2011) find that the constant ratio result also holds in a general network. These results are 

conditional on neutral scale economies characterising road building, and travel time being 

homogeneous to the degree zero in volume and capacity. The latter condition means that if 

both the number of cars and capacity double, travel time remains the same, and travel time 

only depends on the volume/capacity ratio. 

The crucial assumption behind the above results is that capacities and tolls are set 

simultaneously. De Borger and Van Dender (2006) use separate Nash-competition substages 

for capacity and toll (i.e. two-substages Nash, or a closed-loop game). Now, firms set a lower 

capacity and a higher volume/capacity ratio (or alternatively a lower service quality), as this 

lessens toll competition and increases equilibrium tolls. This is opposite to the result in the 

earlier literature that only looked at toll setting.  

Separate stages for capacity and toll seem more realistic, as it takes a considerable time to 

build or expand a road whereas the toll could be changed at virtually any moment. However, 

this two substages set-up still assumes that all firms build their roads simultaneously. This 

also seems unrealistic. Obviously, in reality, not all toll roads were built at the same moment. 

And if firms play a sequential capacity game, ―earlier‖ movers are unlikely to take the actions 

of ―later‖ movers as given, and the firms will not compete in a Nash fashion.  

To take this into account, we consider firms first setting their capacities sequentially in a 

Stackelberg fashion, and then simultaneously setting tolls in a Nash fashion. Nash setting of 

tolls seems most realistic, as tolls can be changed frequently and it is hard to credibly commit 

to a toll level.
2
 By setting a larger capacity, a firm can induce firms that follow to set lower 

capacities, which increases its market power and profit. Accordingly, the first few firms to 

enter set a higher capacity than they would without these strategic considerations, and this 

means that their volume/capacity ratios are lower than social optimal (or alternatively that 

their service qualities are higher). The mechanism of De Borger and Van Dender (2006), that 

they want to set a higher ratio to lessen the toll competition, still occur; but, for these first 

firms this is dominated by the capacity effect. The last few firms to enter have few if any 

competitors’ capacities to affect. Hence, they care more about the toll substage, and set a 

higher ratio. In our numerical model, with two firms, the first firm has a lower ratio than 

socially optimal; the second has a higher ratio. With five firms, the first three firms have a 

higher ratio and the last two a lower. The net result is that the average volume/capacity ratio 

on the private roads is lower than socially optimal, and hence average travel time is too short.  

Our analysis concerns road transport, but also has implications for rail transport, airlines, 

airports, and seaports; as well as for non-transport infrastructure such as waste disposal and 

telecommunication. For instance, there is an extensive literature on airlines competing in 

different market structures (see, e.g., Daniel, 1995; Breuckner, 2002; Breuckner and Verhoef, 

                                                 
1 These studies assume that users have identical values of time, and we will follow this assumption. Edelson (1971) and Mills 

(1981) show that with heterogeneous users, the monopolist may charge a lower toll than social optimal. 
2 A firm might make a contract with the government or a consumer organisation. But it seems unlikely that these partners 

would sue for breach of contract when the firm lowers its toll, making this commitment not credible. 
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2010). Zhang and Zhang (2006) study a monopolist airport’s choice of capacity and landing 

fare while carriers have market power, and find that it sets a lower volume/capacity ratio than 

socially optimal. Basso and Zhang (2007) extend this with two airports competing single- or 

two-substages-Nash. Also in these settings, our Stackelberg-capacity game could be applied. 
 

2. Analytics 

2.1. Basic policies 

Consider a case where there are multiple roads connecting a single origin and destination. 

All roads have the same congestion technology and free-flow travel time. Generalised user 

cost, c
i
, of link i (or user cost for brevity) is homogeneous to the degree zero in the number of 

users, q
i
, and capacity, s

i
. Hence, user cost, marginal external cost, and travel time only 

depend on the volume/capacity ratio q
i
/s

i
. The derivative of user cost with respect to the 

number of users is always positive; to capacity it is always negative. Capacity costs are 

proportional to capacity and follow          . Throughout the paper, we assume that 

demand is price sensitive and all roads are congestible. We indicate total capacity by S, and 

total number of users by Q. 

We first discuss some basic policies that act as benchmarks for the oligopolies. Since these 

policies are conventional in the economic literature, we will keep the discussion short; for a 

more detailed discussions please see, among others, Small and Verhoef (2007).  

In the first-best (FB) case, the toll,    , equals the marginal externality, and capacity is set 

so that the marginal cost of capacity expansion, k, equals the reduction in total user cost, 

     , it achieves: 
 

FB
Qc Q   ,  (1) 

Sk c Q   . (2) 

 

Here, subscripts indicate partial derivatives; superscripts indicate the situation or road. So, cQ 

is the derivative of user cost to the number of users Q. 

If a certain initial capacity, s
0
, remains untolled while the new public capacity, s

1
, can be 

tolled, we are in a second-best (SB) situation, as considered earlier by, for example, 

Marchand (1968) and Lévy-Lambert (1968). The SB toll has a term that equals the externality 

on the tolled road,       ,  and a negative term to attract users away from the untolled road:
3
  

 

1 0

0

1 0 0

0
.

QSB

q q
Qq

D
c q c q

c D


 
     
 
 

 (3) 

 

The DQ is the derivative of inverse demand to the total number of users, and q
0
 and q

1
 are the 

number of users on the initial and new road. While the toll rule is adapted to reflect the 

second-best distortion, the capacity rule remains (basically) the same: the cost of a marginal 

capacity expansion equals the user cost reduction on the priced link this achieves: 
 

1
1 1.
s

k c q  
 

(4) 

 

Due to the assumptions that c
i
 is homogeneous to the degree zero in q

i
 and s

i
 and that  

  
    

and  
  
   , the  

  
     and      only depend on the volume/capacity ratio (respectively, qi/si 

and Q/S). Since    
     in (4) and      in (2) both equal k, this implies that the 

volume/capacity ratio must be the same on the tolled SB link and the entire FB network. But 

since there also is the untolled road, the average ratio for the entire SB network is higher.  

                                                 
3 The second term in (3) is negative since DQ is negative while all other variables are positive. 



 

4 

 

Also a single firm (SF) offering capacity in parallel to an untolled road uses capacity rule 

(4), and hence has the same volume/capacity ratio on its road (see also Verhoef and Small, 

2007). Any decrease in user costs can be converted into toll payments, so, for a given number 

of users, it is profit maximising to minimise social cost by using the same capacity rule as in 

the SB case. But the toll of the single firm is higher, as, following (5), the firm adds a mark-

up to the congestion-externality charge as long as demand is not perfectly elastic (i.e. −DQ >
 0) 

and as long as the untolled road is congestible (i.e.    
    .

4
 The firm internalises the 

congestion externality, because again any reduction in user cost can be met by a toll increase. 

The capacities in the single-firm and second-best cases are generally different: the higher 

private toll means that there are fewer users, which given that the volume/capacity ratios are 

same means that the capacity of the single firm is lower. Concluding, volume/capacity ratio of 

the single firm is socially optimal, whereas the choice of toll is distorted by market power. 
 

1 0

0

1 0 0

0
,

QSF

q q
Qq

D
c q q c

c D


 
     
 
 

 (5) 

 

We also look at an untolled road with parallel private firms in perfect competition. This 

perfect competition (PC) case is equivalent to welfare maximisation under a zero-profit 

constraint (see Verhoef, 2008). The corresponding Lagrangian is 
 

     0 0 1 1 1 0 0 1 1 1 1 1 1

0
[ ] [ ] [ ] .

Q
PC PD n dn q c q c k s D Q c D Q c q k s                      

  

Note that s1 is the total capacity of the atomistic firms, and 1 is their toll. To find the capacity 

rule, we only need the first order conditions for toll and capacity: 
  

PC 1 1 1/ 0 ,Pq         (6a) 

1 1

PC 1 1 1 1 1/ 0 .P

s s
s q c k c k             (6b) 

 

Eq. (6a) implies          and inserting this into (6b) results in the capacity rule:  
 

1
1 1,
s

k c q     (7) 

 

Thus, the volume/capacity ratio is again the socially optimal one. Interestingly, the toll 

follows the same formula as the first-best toll: 
 

1
1 .PC

q
c q  

 
(8) 

 

The intuition behind this result follows the self-financing (i.e. zero-profit) result of Mohring 

and Harwitz (1962) with FB pricing. Since, the volume/capacity ratio is the same as with FB 

pricing, the FB toll rule also leads to zero profit with perfect competition; and zero profit is 

what will result from perfect competition. Eq. (8) also implies that the levels of the perfectly-

competitive and first-best toll are the same. The congestion externality is only a function of 

the volume/capacity ratio. Thus, if the first-best and perfectly-competitive volume/capacity 

ratios are equal, the tolls—which equal the marginal externalities—will also be equal.  

 With price-sensitive demand and congestible capacity, the perfectly competitive outcome 

has a higher toll than the SB case, and thus there are fewer users and capacity is lower. At the 

same time, the competition drives the perfectly-competitive toll below that of a single firm. 

                                                 
4 Conversely, in Knight (1924) and Edelson (1971), the firm does not add a mark-up because these authors assume    
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2.2. Single-stage Nash 

For all our oligopolistic regimes, we assume that the initial capacity remains untolled, and 

this will limit the market power of the firms. This set-up seems realistic for many practical 

cases—and of course, when it is not, we are free to set the initial capacity at zero. In other 

words, zero unpriced capacity is just a special case of our model. 

Our first oligopolistic market structure is the single-stage Nash game from Xiao et al. 

(2007). Firms set their capacities and tolls simultaneously. If firms take the tolls and 

capacities of the others as given, they set the socially-optimal volume/capacity ratio. At this 

ratio, the capacity cost of a marginal capacity expansion equals the user cost reduction on this 

link it causes. If the firm offered a higher capacity this would reduce user costs and it could 

ask a higher toll, but then the extra revenue would be smaller than the extra capacity costs. 

Note that firms actually choose their capacity, but since there is complete information this is 

equivalent to choosing the volume/capacity ratio.  

Tolls are higher than with perfect competition as firms have market power, and this also 

means that total number of users and capacity are lower. Yet, as DeVany and Saving (1980) 

and Engel, Fisher and Galetovic (2004) show for a given capacity, as the number of firms 

increases, the equilibrium toll decreases and approaches the perfectly-competitive toll. 

Moreover, as the number of firms increases, total capacity also approaches the perfectly-

competitive one.   

  

2.3. Two-substages Nash 

In the two-substages Nash set-up of De Borger and Van Dender (2006), the capacity 

setting precedes the toll setting. In each substage, firms take the actions of the others in that 

substage as given. Firms have an incentive to set a lower capacity, as this lessens toll 

competition and increases Nash-equilibrium tolls: the lower total capacity is, the higher the 

toll a firm can set due to the higher congestion on the competitors’ roads. This alteration of 

the capacity rule means that firms set a higher volume/capacity ratio than is socially optimal.  

Using the formulas of De Borger and Van Dender (2006), we can write the capacity rule 

for a duopoly as 
 

,*

 ,i

i
i i i

i s
k Stategic effect k q c q

s


      



 (9) 

 

where superscript 
*
 indicates that the toll is determined by the Nash toll-setting substage. Our 

model assumes that the outcome is symmetric in capacities. De Borger and Van Dender 

(2006) find that, for their linear congestion technology and with very low marginal costs of 

capacity (0.25 or lower, where their base case cost is 1), an asymmetric equilibrium would 

result, which has slightly different characteristics. Still, even then, the volume/capacity ratios 

and tolls are higher than with single-stage Nash. We use the ―Bureau of Public Roads‖ (BPR) 

function of travel time, and have only encountered symmetric outcomes in our numerical 

models, even for a marginal capacity cost as low as 0.05 where our base-case cost is 7.
5
 

Therefore, we focus on the symmetric outcome.  

 

2.4. Stackelberg 

In our Stackelberg game, firms set their capacities one after the other. Then the toll setting 

substage follows, in which tolls are set in a Nash fashion. The first firm to act is the leader 

                                                 
5 An advantage of the symmetric outcome is that in the analysis of De Borger and Van Dender (2006), it ensures that the 

response function of firm i’s capacity to firms j’s is negative; with asymmetry this need not be so. We assume that capacity 

costs are high enough to ensure downward-sloping response functions. In our numerical analyses, we have only 

encountered such downward-sloping functions, but our solution method does not assume this. 
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and has the best position. With its capacity, it influences the capacity setting of all other firms, 

as well as the toll substage. By setting a higher capacity, the leader limits the capacities 

chosen by the other firms, which raising its market power. Hence, the capacity rule is 

different than in the fully-competitive case, and the leader’s volume/capacity ratio is lower 

than socially optimal. Still, this lower ratio also has a profit lowering effect: given the actions 

of the others, it would be profit maximising to set the socially-optimal ratio. Optimal capacity 

is found when, for a marginal capacity increase, the profit increasing effect from the induced 

lower capacities of the competitors plus that of the lower user cost equals the profit lowering 

effects from the stronger competition in the toll-setting substage and higher capacity cost. 

If there are many firms acting sequentially, the second firm to act also has an incentive to 

set a lower volume/capacity ratio than is socially optimal. However, its ratio will be above 

that of the first firm, as it has fewer capacity decisions to influence. The last firm to act has no 

capacities to influence. So it is only concerned with the toll setting substage. Just as in De 

Borger and Van Dender’s (2006) two-substages Nash game, this firm sets a lower ratio to 

lessen the toll competition and raise the Nash-equilibrium tolls.  

Since the firms set different volume/capacity ratios, their travel times are different. Since 

the sum of user cost and toll (i.e. the generalised price, or price for brevity) must be the same 

on all roads, the first firm—that has the shortest travel time—can ask the highest toll. The last 

firm has the longest travel time and lowest toll.  
 

2.5. Sequential entry 

 Our last oligopolistic market structure follows Verhoef (2008) and is sequential entry. 

This set-up is in between the two-substages-Nash and Stackelberg set-ups. There are again 

separate substages for capacity and toll. When the first firm enters, it first sets its capacity and 

then toll, assuming that it is and will remain the only firm. Since there are no other players to 

influence, it is profit maximising to have the socially optimal volume/capacity ratio. Then, a 

second firm enters, and optimises its capacity given that there are two firms and anticipating 

the toll-competition in the Nash substage. The capacity of the first firm is fixed, but it can 

change its toll.
6
 The second firm’s capacity influences the toll of the first firm, and this alters 

its capacity-setting rule, resulting in the second firm setting a higher volume/capacity ratio. 

Each further entry follows the same pattern as for two firms.  

The sequential entry set-up might seem inconsistent in that firms are forward-looking to 

the toll substage, but are continuously surprised when further entry occurs (i.e. they are 

myopic to the next capacity stage). Yet, it also seems plausible that firms do not perfectly 

know what the future will bring and optimise given the current situation. Then a remark could 

be made against the Nash and Stackelberg games, in which a firm has to known how many 

firms there will be. In reality, the market structure might be a mix of our Stackelberg and 

sequential-entry games: i.e. a firm does not know how many firms there will be, but has a 

prior belief about the likelihood of each outcome, and optimises given this belief.  
 

3. Numerical model 

We use a numerical model to obtain insights into the relative performance of the schemes 

identified above. The calibration of our model follows Verhoef (2007; 2008). The model is 

simple, but it is calibrated to represent a realistic congested peak-hour highway. User cost 

follows the BPR function, just as in most of the recent literature on private roads: 
 

                                                 
6 This is not as restrictive as it seems. The first firm would like decrease its capacity, but this is not directly possible and 

would certainly not result in its recuperating all capacity costs. Hence, the best it can do is to keep its current capacity. 
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[ / ] 1 0.15 .
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q
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s


  
         

 (10) 

 

Free-flow travel time, t
f
, is half an hour. Using a free-flow speed of 120 km/hour, this implies 

a trip length of 60 kilometres. The value of time, α, is 7.5. Units of capacity are set so that a 

traffic lane corresponds to a capacity of s
i
=1500. Capacity costs follow          , where k 

equals 7. Since our unit of time is an hour, k is the hourly capacity cost. See Verhoef (2008, 

pp. 476-477) for the derivation of k=7 from the average yearly capital cost of €5 million per 

lane-km or $8 million per lane-mile for freeways in the Netherlands. This cost seems in line 

with the estimates for the USA. Washington State Department of Transport (2005) reports 15 

project from outside the state and 21 from inside the state. For outside the state, median cost 

is about $8 million per lane-mile while a third is above $10 million. For in the state, median 

cost is around $5 million while a quarter is above $10 million. 

All roads have the same congestion and construction technologies and free-flow travel 

time. The initial capacity in the base equilibrium is s
0
=1500. Inverse demand follows  

 

[ ] .D Q A B Q       (11) 

 

The A equals 61.27 and B 0.0117. In the base equilibrium, the price elasticity is −0.5. This 

calibration results in a very congested road in the base case, with a travel time that is 5.4 times 

the free-flow one. If the initial situation were less congested, the gain of private road supply 

and public policies would be lower. We choose this rather extreme level of initial capacity to 

allow a fair number of firms to enter in all regimes (even though we do not impose a 

minimum road size for an entering firm). 

  

3.1. Basic policies and Nash capacity competition 

Table 1 describes the benchmark equilibria. It shows such performance measures as consumer 

surplus, welfare (the sum of consumer surplus and system profit), and relative efficiency, 

which is the welfare gain of a policy from the initial base equilibrium relative to the first-best 

gain. It also gives the volume/capacity ratio averaged over the entire network, on the untolled 

part, and on the tolled part. In the base equilibrium, there is no tolling and capacity is 1500. 

In the first-best (FB) case, capacity is more than twice as large, and the toll equals the 

marginal congestion externality.  

 In the second-best (SB) case, the initial capacity remains untolled, but the new capacity 

has a welfare-maximising toll. Optimal capacity is higher than in the first-best case, but the 

volume/capacity ratio on the tolled part is the same. Due to the low initial capacity, the 

welfare gain of the second-best option is very close to the FB gain. With more initial capacity, 

the relative efficiency would be lower: the capacity expansion would be less important, while 

the detrimental effect of the larger untolled capacity would be larger. The SB set-up makes a 

large loss, and the government has to finance this from other sources. This might be difficult 

in practice, and may lead to tax distortions elsewhere in the economy (which we ignore). 

A single firm building and tolling an extra road is also welfare improving. In fact, private 

road supply is in our setting always welfare improving: the firm makes a profit; whereas the 

consumers cannot be worse off (since if users choose to use the private road, it cannot have a 

higher price than the untolled road). Again, the private road has the same volume/capacity 

ratio as the first-best network. Still, the price and toll are higher, and capacity is lower. 

The final case in Table 1 is perfect competition, which describes what happens when an 

infinite number of firms add capacity in parallel to the untolled capacity. This outcome is a 

useful benchmark for the oligopolistic regimes where firms have market power. Note that the 

perfectly-competitive private operators set the socially-optimal volume/capacity ratio.  
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Table 1. Basic policies 

 

Base 

equilibrium First-best Second-best Single Firm 

Perfect 

competition 

Total capacity (S) 1500 3451.8 3734.0 2078.5 2708.7 

Total demand (Q) 3500 4331.3 4782.7 4331.3 3927.9 

Toll - 5.58 0.31 10.29 5.58 

Overall Q/S 2.333 1.255 1.281 1.890 1.599 

q0/s0 on untolled part 2.333 - 1.320 2.135 1.876 

q1/s1 on tolled part - 1.255 1.255 1.255 1.255 

Price 20.42 11.16 5.46 15.43 10.72 

c0 on untolled part 20.42 - 5.46 15.43 10.72 

c1 on tolled part - 5.14 5.14 5.14 5.14 

System profit -10500 0 -25266 -7083 -10500 

Profit tolled part - 0 -14766 3417.32 0 

Consumer surplus 71484 109468 133472 90029 109468 

Welfare 60984 109468 108206 82946 98968 

Relative efficiency 0 1 0.974 0.453 0.783 

 

Table 2 shows that, with single-stage Nash outcomes for varying number of firms. In all 

oligopolistic settings, a single firm competing leads to the same outcome as the single firm in 

Table 1. We only include it again for easy of reference. All firms set their tolls and capacities 

at the same time. Since the equilibrium is symmetric in that all firms have the same tolls and 

capacities, we give one set of result for any firm i. Because firms take the actions of the others 

a given, the best they can do is set the socially-optimal volume/capacity ratio.  

As the number of firms increases, the single-stage Nash outcome approaches the perfectly-

competitive outcome. With a single firm, the welfare gain is 58% of that with perfect 

competition; with two firms, it is already 83%; and with 5 firms, it is 94% percent. This 

suggests that a limited number of firms may be enough to obtain an equilibrium that is close 

to perfect competition in terms of efficiency. 

 

Table 2. Single-stage Nash competition 

Number of firms 1 2 3 4 5 

Total capacity (S) 2078.5 2411.4 2521.4 2572.7 2602.0 

Total demand (Q) 3928.0 4150.5 4219.6 4250.9 4268.6 

Average toll 10.29 7.69 6.88 6.52 6.31 

Overall Q/S 1.890 1.721 1.673 1.652 1.640 

q0/s0
 on the untolled part 2.135 2.005 1.959 1.937 1.924 

qi/si on each private road 1.255 1.255 1.255 1.255 1.255 

Price 15.43 12.83 12.03 11.66 11.46 

Profit firm i 3417.3 1206.7 557.2 315.9 202.6 

Consumer surplus 90029 100518 103892 105440 106319 

Welfare 82946 92432 95064 96204 96832 

Relative efficiency 0.453 0.649 0.703 0.726 0.739 

Welfare gain relative to 

perfect competition 
0.578 0.828 0.897 0.927 0.944 

 

 

3.2 Two-substages Nash Competition 

Now we turn to the first of three set-ups where firms set their capacities strategically to 

influence the actions the other firms. These strategic considerations change the capacity rule, 

which means that firms have a different volume/capacity ratio than is socially optimal. As 

Table 3 shows, with two-substages Nash competition, firms have an incentive to set a lower 



 

9 

 

capacity and higher ratio, because this lessens toll competition, thereby raising Nash-

equilibrium tolls. However, this higher ratio comes at a cost for the firm: it raises travel time 

and this lowers the toll users are willing to pay. The profit-maximising capacity is found 

where, for a marginal capacity increase, the profit-enhancing effect of the lower user costs 

equals the detrimental effect of the lower tolls of the competitors and higher capacity cost.  

With two firms, the welfare gain of two-substages Nash is much lower than with a single 

stage, since total capacity is lower and tolls are higher. Yet, as the number of firms increases 

the advantage for the firms of the separate setting of capacity and toll decreases. Our results 

indicate that this two-substages Nash game approaches single-stage Nash and perfect 

competition as the of firms becomes large. This is also logical, if there are many firms, it is 

hard for a firm to influence the toll setting of others, as it only controls a tiny part of the total 

capacity. Hence, then the outcome is close to the single-stage Nash, where it is impossible to 

affect the toll setting of other firms.  

 

Table 3. Two-substages Nash competition 

Number of firms 1 2 3 4 5 

Total capacity (S) 2078.5 2292.3 2404.4 2470.2 2513.1 

Total demand (Q) 3928.0 4087.1 4159.9 4200.0 4225.2 

Average toll 10.29 8.27 7.44 6.99 6.72 

Overall Q/S 1.890 1.966 1.815 1.747 1.710 

q0/s0 2.135 2.044 1.999 1.972 1.955 

qi/si 1.255 1.288 1.285 1.280 1.277 

Price 15.43 13.57 12.72 12.26 11.96 

Profit firm i 3417.3 1449.6 772.1 474.1 319.2 

Consumer surplus 90029 97472 100971 102931 104170 

Welfare 82946 89871 92787 94328 95266 

Relative efficiency 0.453 0.596 0.656 0.688 0.707 

Welfare gain relative 

to perfect competition 
0.578 0.760 0.837 0.878 0.903 

 

3.3. Sequential entry set-up 

The sequential-entry market structure follows Verhoef (2008). Firms again have separate 

capacity and toll decisions. The difference is that now firms enter sequentially. First, firm 1 

enters, and sets its capacity and then its toll, assuming that it will be the only firm. Next, a 

second firm enters and sets its profit-maximising capacity given that there are two firms while 

taking into account how this affects the toll-setting substage. So the first firm’s capacity is 

fixed, as this is a long-term decision; while its toll can be changed, as this is a short run 

decision. The entry pattern is the same for the third and further entrants. Firms are thus 

forward looking to the toll-setting substage, but myopic to the next entry (i.e. the next 

capacity stage). The difference with the two-substages Nash is that now firms build their road 

sequentially, which seems more realistic as not all roads have been build at the same time.  

As Table 4 shows, even though all firms have the same cost structures and congestion 

technologies, they are now ex-post asymmetric. This is due to the sequential decision making. 

The first firm sets a much higher capacity than it would under single- or two- substages Nash 

competition, and this limits the capacities that the others will set. Yet, this sequential decision 

making need not be good for the firms, as becomes clear when comparing the profits shown 

in Fig. 1 (sequential entry) with those in Table 3 (two-substages Nash). For 4 or more firms, 

firm 1’s profit is lower with sequential entry than with two-stage Nash. Firm 2 always has a 

lower profit with sequential entry. Sequential entry leads to a higher total capacity, and thus to 

stronger toll competition. For the up to 5 firms we study, sequential entry gives a higher 

welfare gain than Nash competition. 
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Table 4. Results under sequential entry 

Number of firms 1 2 3 4 5 

Total capacity (S) 2078.5 2399.1 2576.4 2670.3 2718.6 

Total demand (Q) 3928.0 4138.4 4237.3 4285.0 4308.4 

Average toll 10.29 7.86 6.80 6.30 6.05 

Overall Q/S 1.890 1.725 1.645 1.605 1.585 

q0/s0 2.135 2.012 1.946 1.912 1.894 

Capacity  firm 1 (s1) 578.5 578.5 578.5 578.5 578.5 

Capacity  firm 2 (s2) - 320.5 320.5 320.5 320.5 

Capacity  firm 3 (s3) - - 177.4 177.4 177.4 

Capacity  firm 4 (s4) - - - 93.8 93.8 

Capacity  firm 5 (s5) - - - - 48.3 

Price 15.43 12.98 11.82 11.26 10.99 

Consumer surplus 90029 99931 104767 107138 108308 

Welfare 82946 91939 95687 97365 98153 

Relative efficiency 0.453 0.638 0.716 0.750 0.767 

Welfare gain relative to 

perfect competition 
0.578 0.814 0.910 0.953 0.973 

 

Fig. 1. Firm profit by the number of firms under sequential entry 

 
 

Fig. 2. The toll of each firm by the number of firms under sequential entry 

 
 

 As the number of firms increases, total capacity increases and tolls decrease (see Fig 2), 

leading to lower profits. Firm 1 always attains the largest profit due to its largest size. The 

later a firm entered, the lower its profit will be.  
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The sequential-entry market structure does not approach perfect competition when the 

number of firms goes to infinity. With 5 firms, total capacity is already above the perfectly-

competitive level, and the entries of the sixth and seventh firms only increase capacity further 

(these cases are not shown, but for this game they were calculated). It is perhaps surprising 

that an above perfectly-competitive capacity level can be profitable. The reason is that, with 

five firms, a firm still has market power, and adds a mark-up to the toll (see Fig. 2); whereas 

with perfect competition, the toll equals the congestion externality and the mark-up is zero. At 

some point, there will be no further entry, as this would decrease market power so much that 

the entering firm would make a loss. Still, the welfare loss from this game never reaching 

perfect competition is limited. Two firms entering sequentially gives a consumer surplus that 

is 9% lower and welfare gain that is 19% lower than with prefect competition; for five firms 

these figures are, respectively, 1% and 3%. 

An intriguing result from the sequential-entry market structure is the development of the 

volume/capacity ratios in Fig 3. When firm 1 enters, it sets the socially-optimal ratio, since 

there are no other players to influence. When firm 2 enters, it sets a higher ratio, because this 

increases Nash-equilibrium tolls, thereby increasing its profit. Because the first capacity is 

fixed but the new entry attracts users away, the first firm’s volume/capacity ratio decreases 

and is now lower than socially optimal. The average ratio on the private roads also decreases, 

because firm 1 is larger. For later entries a similar pattern holds: the entrant sets a ratio that is 

higher than socially optimal to limit the toll competition, and the ratios of the incumbents and 

the overall ratio decrease.  
 

Fig. 3. Volume capacity ratio under sequential entry 

 
 

3.4. Stackelberg capacity competition 

Our last market structure extends the previous one by making firms forward looking in 

their capacity choices: they recognise that their capacity influences the capacity setting of all 

following firms as well as the Nash toll-setting substage. The difference with the previous 

setting is that now firms know how many firms there will be, whereas before they assumed 

that they were the last entrant. It is important to emphasise that for each number of firms the 

table and figures give the results after the final stage. Unlike with sequential-entry, the various 

number of firms should not be interpreted as intermediate stages in the same dynamic process. 

Table 5 and Fig. 4 show the results. With two firms, the leader sets a higher capacity and 

lower volume/capacity ratio than the follower, which means that the leader has more market 

power and a shorter travel time, allowing it to can ask a higher toll. Still, the leader’s capacity 

is below the one with sequential entry, as this lower capacity lessens toll competition, which 
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raises profit even though it also raises the capacity of firm 2. The leader’s capacity is well 

above the single- or two-substages-Nash level. For three or more entrants, the set-up and the 

results follow the same lines.  
 

Table 5. Results under Stackelberg capacity competition 

Number of firms 1 2 3 4 5 

Total capacity (S) 2078.5 2397.6 2564.2 2647.2 2686.6 
Total demand (Q) 3928.0 4137.8 4233.6 4279.0 4301.2 
Average toll 10.29 7.87 6.82 6.32 6.06 

Overall Q/S 1.890 1.726 1.651 1.616 1.601 

q0/s0 2.135 2.013 1.949 1.916 1.890 

Capacity  firm 1 (s1) 578.5 576.2 543.4 489.7 428.3 

Capacity  firm 2 (s2) - 321.5 336.5 350.7 345.8 

Capacity  firm 3 (s3) - - 184.3 201.0 226.5 

Capacity  firm 4 (s4) - - - 105.8 122. 

Capacity  firm 5 (s5) - - - - 63.2 

Price 15.43 12.98 11.86 11.33 11.08 

Consumer surplus 90029 99902 104580 106837 107949 

Welfare 82946 91916 95558 97177 97943 

Relative efficiency 0.453 0.638 0.713 0.746 0.762 

Welfare gain relative to 

perfect competition 
0.578 0.814 0.910 0.953 0.973 

 

Fig. 4. Volume capacity ratio on each road under Stackelberg capacity competition 

 
For an end equilibrium with up to 4 firms, the volume/capacity ratio of firm 1 decreases 

with the number of firms. Yet, with 5 firms, it is higher than with 4 firms. This suggests that, 

as the number of firms increases even further, the ratios of all firms may approach the 

socially-optimal ratio. With more firms, it is more difficult to influence the capacity and toll 

setting of others, and trying this becomes less profitable. Conversely, the profit loss from 

setting a lower ratio remains, in that the increase in capacity cost is larger than the toll 

revenue gain due to the lower travel time; while for a higher ratio, the capacity cost reduction 

is offset by a larger loss in revenue. Only when it is possible to influence the actions of the 

others is it profitable to set a different ratio, but with many firms, the strategic effect is small. 

This suggests that our Stackelberg market structure also approaches perfect competition as the 

number of firms becomes large, just as with standard Stackelberg competition. Certainly, as 

Figs. 5 and 6 indicate, the tolls and profits approach the perfectly-competitive outcome. 
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Fig. 5. The toll of each firm by the final number of firms under Stackelberg competition 

 
 

Fig. 6. Firm profit by the final number of firms under Stackelberg competition 

 
 

3.5. Comparison of the oligopolistic market structures 

Fig. 7 compares the average volume/capacity ratio in the different oligopolistic settings. It 

also shows the ratio with perfect competition (which is the socially optimal one) as a 

benchmark. Single-stage Nash results in constant private volume/capacity ratios that are 

socially optimal. When the capacity and toll competitions are separate substages, firms set a 

higher ratio to lessen the later toll competition. Still, this ratio seems to approach the 

perfectly-competitive level as the number of firms increases. Conversely, when firms set their 

capacities one after the other, the average ratio is below the perfectly competitive one. For 

Stackelberg competition, the average seems to level off at five firms. And we expect, when 

number of firms becomes even larger, that the average will increase again and approach the 

perfectly-competitive level: with more firms it becomes ever more difficult to influence your 

competitors’ capacities and tolls, and this makes strategic capacity setting less attractive.  

Sequential entry never reaches perfect competition because at some point capacity is so 

high that no further entry is profitable. Moreover, as Fig. 8 also shows, in our numerical 

model, the capacity level with 5 firms is already above with perfect competition, and further 

entry only increases capacity.  

Figs. 8 to 10 compare the capacities, average tolls, and relative efficiencies in the different 

market structures. All set-ups lead to substantial welfare gains that, even for 2 firms, are 

relatively close to the perfectly-competitive level. Only with a single firm is the relative 

efficiency much lower with 0.453. Two-substages Nash attains of all oligopolies the lowest 

gain, as firms build less capacity and have higher tolls.  
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The Stackelberg and sequential entry games have very similar results. A weakness of the 

Stackelberg model is that firms have to know how many firms there will be with certainty. 

Conversely, with sequential entry, each firm assumes that it is the last entry, and every firm is 

―surprised‖ when a further entry occurs. Both models seem useful benchmarks, and it seems 

likely that in reality the outcome would be a mix of the two games. 

 
Fig. 7. Weighted average volume/capacity ratio on the private roads 

 
 

Fig. 8. Total capacity and the number of firms 

 
 

Fig. 9. Weighted average toll and the number of firms 
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Fig. 10. Relative efficiency and the number of firms 

 
 

It is important to perform sensitivity analyses to important parameters. We focus on the 

effect of the amount of initial capacity. The effects of other such standard things as price 

elasticity and value of time are as one would expect: e.g. more price sensitive demand makes 

private provision more beneficial, as it limits market power. With more initial capacity, the 

gain of the first-best policy is lower, since there is less to gain from the capacity expansion. 

For the second-best, single-firm, and perfect-competition cases the gain and relative 

efficiency are lower: capacity expansion is less important and there is more initial capacity 

that remains untolled (see also Verhoef, 2007). The oligopolistic settings also attain lower 

gains; but relative to perfect competition they fare better, because the larger untolled capacity 

limits the oligopolistic market power.  

 

4. Conclusion 

This paper reconsidered capacity, price, and service-quality setting of private competitors 

in oligopolistic markets for congestible services applied to the case of road transport. Previous 

studies found that, under some technical assumptions, firms competing in parallel set a 

volume/capacity ratio that is socially optimal if they take the actions of the others as given in 

a Nash fashion. We find that this single-stage Nash-competition assumption is crucial. If 

firms can influence the decisions of others with their capacity, this changes their capacity-

setting rule, and they generally set a different ratio than the socially optimal one.  

In our Stackelberg market structure, firms first set their capacities one after another and 

then set their tolls in a Nash fashion. Firms have two strategic considerations: (1) they want to 

limit the capacities of firms that follow by setting a higher capacity, and (2) they want to limit 

the toll competition by setting a lower capacity. The first firms to act have many capacities to 

influence, and hence set a higher capacity and lower volume/capacity ratio than they 

otherwise would. The last firms have few if any capacities to influence, and set a higher ratio.  

Strategic setting of a lower capacity to limit toll competition is harmful for welfare as it 

lowers capacities and increases tolls. Stackelberg setting of higher capacities to limit 

competitors’ capacities can be good or bad for welfare: it increases the market power of the 

leaders, but also tends to increase total capacity and to decrease the average toll. The 

Stackelberg oligopoly seems to approach perfect competition as the number of firms 

increases. In our numerical model, the Stackelberg game attains, with 2 firms, 81% of the 

perfectly-competitive gain; with 5 firms, this is 97%. A general result is that the effect of 

private road supply depends on the number of competitors and on the market structure: the 

outcomes are different in the single-stage Nash, two-substages Nash, and Stackelberg set-ups.  

The reader might wonder whether our setting with many firms competing in parallel is 

realistic, as it is rare to have many toll roads going to the same destination. However, if the 
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number of toll road keeps increasing, which seems likely, the chance that there are multiple 

roads going roughly in the same direction increases. Moreover, also with different network 

structures, strategic capacity setting might affect the outcome. An obvious follow-up are serial 

markets or combined serial-and-parallel markets such as in Verhoef (2008). While such 

stylised networks may provide interesting insights, complementary analyses using larger, 

more realistic, networks may give further insights that would be relevant for applied policy: 

notably, for the design of auctions for the right to build and operate a private infratructure. 
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