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Abstract

We propose a new model for dynamic volatilities and correlations of skewed and heavy-

tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying

parameters driven by the score of the observation density function. The key novelty in our

approach is the fact that the skewed and fat-tailed shape of the distribution directly affects

the dynamic behavior of the time-varying parameters. It distinguishes our approach from

familiar alternatives such as the generalized autoregressive conditional heteroskedasticity

model and the dynamic conditional correlation model where distributional assumptions

affect the likelihood but not the parameter dynamics. We present a modified expectation-

maximization algorithm to estimate the model. Simulated and empirical evidence shows

that the model outperforms its close competitors if skewness and kurtosis are relevant

features of the data.
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1 Introduction

We propose a new dynamic observation driven model for correlations and volatilities based on

the class of multivariate Generalized Hyperbolic (GH) distributions. The GH distribution was

introduced by Barndorff-Nielsen (1977) and further explored in Barndorff-Nielsen (1978) and

Blæsild (1981). The distribution’s flexible form accommodates many of the relevant features in

financial time series data, such as excess kurtosis, skewness, and time-varying volatilities and

correlations; see McNeil, Frey, and Embrechts (2005), Eberlein and Keller (1995), Franses and

Van Dijk (2000), Engle (2002) and others.

The dynamics of the time-varying parameters in our GH distributions are driven by the

scaled score of the local observation density. This is a distinguishing feature of our approach.

By using the density scores, the skewed and fat-tailed nature of the observation distribution

not only affects the likelihood, but also the dynamics of the volatilities and correlations. This

differentiates our approach from other well-known models where the distributional assumptions

affect the likelihood only, but not the parameter dynamics, e.g., the Dynamic Conditional

Correlation (DCC) model of Engle (2002) with normal or Student’s t distributed innovations.

The literature on time-varying parameter models for volatilities and correlations is vast.

Our model follows the literature on observation driven rather than parameter driven models.

For surveys of the latter in the current context, see for example Shephard (2005) and Asai and

McAleer (2009). Within the observation driven class of volatility and correlation models, many

multivariate extensions of the seminal generalized autoregressive conditional heteroskedasticity

(GARCH) model have been proposed. Bollerslev (1990) introduced the idea of having dynam-

ically evolving variance matrices with the individual variances specified as GARCH processes

but with the corresponding conditional correlations treated as unknown constants. This spec-

ification has become known as the CCC model. Engle (2002) generalized the CCC model by

introducing a simple and parsimonious observation driven mechanism for the conditional cor-

relations. The parsimony of the DCC model combined with its time-varying full conditional

correlation matrix makes the DCC model attractive to empirical researchers. This feature is

retained in the new model proposed in this paper as well. Other multivariate extensions of

the GARCH model include the VEC model of Engle and Kroner (1995), the BEKK model of

Engle and Kroner (1995), the Orthogonal GARCH model of Alexander (1998) and Alexander
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(2001), and the Generalized Orthogonal GARCH model of van der Weide (2002) and Boswijk

and Van der Weide (2006).

Most of the above models were originally derived under the assumption of a (conditionally)

normal distribution for the underlying data. Since then, generalizations have been proposed

to accommodate alternative distributions, including the Student’s t, the skewed t, and the

GH distribution; see, for example, Bauwens and Laurent (2005), Fiorentini et al. (2003), Hu

(2005), Mencia and Sentana (2004), Peters (2001), and Prause (1999). In all of these models, the

likelihood changes but the dynamic specifications for volatilities and correlations are unaffected.

It is rather surprising that the form of the distribution should have no impact on the spec-

ification of volatility and correlation dynamics. If, for example, the distribution is leptokurtic,

we expect to see large (absolute) observations from time to time. The occurrence of a large

observation should not automatically be attributed to a recent increase in volatility, as is done

in a standard GARCH specification. Similarly, if the data are drawn from a skewed distribu-

tion, we would expect large negative or positive observations to convey different signals about

current volatility levels. Again, this would imply a link between the shape of the observation

distribution and the specification of the volatility and correlation dynamics. No such direct

link is present in the standard GARCH and DCC models.

Our main contribution in this paper is to provide a general model for time-varying vari-

ances and correlations in which the form of the error distribution governs the specification of

volatility and correlation dynamics. For this purpose we extend the framework of Creal et al.

(2008) and Creal et al. (2011) to a multivariate setting with skewed and heavy-tailed data.

Creal, Koopman, and Lucas (2011) treat the special case where time series are drawn from a

multivariate Student’s t distribution. Nelson and Foster (1994)) and Harvey and Chakravarty

(2008) give treatments of the univariate version of this model. Similar to these approaches, our

model provides an automatic mechanism that limits the impact of outlying or aberrant obser-

vations on future correlations and volatilities. At an intuitive level, the new model attributes

part of the sign and magnitude of each observation to the skewed and fat-tailed nature of the

data generating process rather than to direct changes in volatilities or correlations.

Our results provide a full treatment of skewness and kurtosis effects on volatilities and

correlations in a multivariate setting. We show that the volatility and correlation updating

mechanism includes a natural asymmetry effect to allow for a different impact of negative
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versus positive realizations. For example, if the distribution is left-skewed, large negative real-

izations are more likely and should not automatically be attributed to local volatility increases.

A large positive realization for a left-skewed distribution, however, is extremely unlikely unless

volatilities or correlations have increased recently. Via the density score, our dynamic specifi-

cation for volatilities and correlations includes an interaction between the skewness coefficient

and past observations. In this way, the possibly asymmetric impact of past observations on

future volatilities and correlations enters the dynamic specification in a natural way.

Parameter estimation is straightforward for our model, since the model is defined in con-

ditional terms similar to the standard GARCH model and its multivariate counterparts. This

implies that the likelihood function can be specified in closed analytical form and computed

using a prediction error decomposition. In the literature, maximum likelihood estimation of

the parameters or the GH distribution is often carried out using the Expectation-Maximization

(EM) algorithm of Dempster, Laird, and Rubin (1977), see Mencia and Sentana (2004). EM

estimation, however, is not straightforward for our new model due to the highly non-linear func-

tions of the data that are used to drive the volatility and correlation dynamics. We show how

to modify the standard EM algorithm to our specific setting to make estimation by EM feasible

again. The key step is to replace the density score as a driving mechanism by a conditional

density score that runs in parallel to the conditional expectations taken in the expectations

step of the EM algorithm.

In a simulation experiment, we compare the performance of our new model to its direct

competitors, including versions of the DCC model. We carry out simulations with different

correlation dynamics and a variety of error distributions. We also consider the DCC model

with GH distributed observations. Although it is not our primary focus, the DCC model with

GH errors can also be regarded as a contribution of our paper to the current literature. If the

true error distribution is normal, differences in performance between the different statistical

models are limited. For fat-tailed error distributions, our model with the GH distribution has

superior performance. If in addition the error distributions are skewed, our model performs

best.

We provide an empirical illustration of the new model to investigate the volatilities and

correlations between four blue-chip stocks from different industries. The sample period includes

the recent financial crisis. We find that the estimated correlation dynamics differ substantially
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between our new approach and a traditional DCC models. The new approach seems much less

influenced by incidental influential observations. Accounting for the skewness and fat-tailed

nature of the data, we show that volatilities for all series are relatively smaller and that the

overall persistence of volatilities and correlations is generally higher.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section

3 discusses some alternative model parameterizations. Section 4 extends the model for the

scale rather than the covariance matrix and proposes a modified EM algorithm for parameter

estimation. Section 5 provides Monte Carlo evidence on the performance of the model compared

to some of its competitors. Section 6 presents the empirical illustration. Section 7 concludes.

2 The dynamic GH model

We assume our data generating process is given by

yt = Ltεt, Σt = LtL
′
t, (1)

where yt, εt ∈ Rk for t = 1, . . . , n, Lt is a k × k lower triangular matrix giving rise to a time-

varying k× k covariance matrix Σt, and εt follows a Generalized Hyperbolic (GH) distribution

with zero mean and unit covariance matrix. The specification (1) can easily be extended to

include a conditional or unconditional non-zero and possibly time-varying mean for yt. In line

with Engle (2002), we further decompose the covariance matrix Σt as

Σt = LtL
′
t = DtRtDt, (2)

with Dt a diagonal matrix containing the standard deviations of the elements in yt, and Rt the

correlation matrix of yt.

The Generalized Hyperbolic (GH) distribution introduced by Barndorff-Nielsen (1977) is

a flexible distribution that accommodates both thin and fat-tailed as well as positively and

negatively-skewed distributions. We present the GH class as the normal mean-variance mixture

model

εt = µε + ζtTγ +
√
ζtTzt, zt ∼ N(0, Ik), (3)

where ζt ∈ R+ is a positively valued random scalar that is independent of zt, µε ∈ Rk is the

location parameter, k×k matrix TT ′ is the scaling matrix and γ ∈ Rk is the skewness parameter.
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The GH class includes distributions such as the normal (γ = 0 and ζt = 1), the (skewed)

multivariate Student’s t (for which ζt has an inverse Gamma distribution with γ = 0 for the

symmetric case and γ 6= 0 for the asymmetric case), the (skewed) variance-gamma distribution

(for which ζt has a Gamma distribution) and the Generalized Hyperbolic distribution (for which

ζt has a Generalized Inverse Gaussian (GIG) distribution with parameters λ, χ, and ψ).

Since we assume that εt has zero mean and unit covariance matrix, we obtain from (3) that

0 = E[εt] = µε + µζTγ ⇔ µε = −µζTγ, (4)

and

Ik = E[εtε
′
t] = T

(
µζI + σ2

ζγγ
′)T ′ ⇔ (T ′T )−1 = µζI + σ2

ζγγ
′, (5)

where µζ and σ2
ζ denote the mean and variance of ζt, respectively. The mean and variance of εt

exist if the mean and variance of ζt exist, respectively. The density of yt for our specification

of εt in (3) is given in the appendix.

We let the variances and correlations for yt be time-varying by assuming that both Dt and

Rt in (2) depend on a time-varying parameter ft, such that Dt = D(ft) and Rt = R(ft). This

accommodates a setting where correlations and volatilities have their own dynamics, as well as

a setting where correlations and volatilities are driven by a smaller set of time-varying common

factors such as in the factor GARCH literature.

We model the dynamics of ft using the framework of Creal, Koopman, and Lucas (2008,

2011). Their updating equation for the time-varying factor ft is given by

ft+1 =

p−1∑
i=0

Aist−i +

q−1∑
j=0

Bjft−j, (6)

where matrices Ai and Bj, with appropriate dimensions, depend on a static parameter vector

θ, that is Ai = Ai(θ) and Bj = Bj(θ). The innovation variable in (6) is st and is specified as

a function of current and past values of yt and ft. For example, in the univariate case with

ft = D2
t and normally distributed yt, the model in (6) embeds the standard GARCH model

by setting st = y2t . The simplicity of this choice for st is appealing, but it is generally hard

to extend it to a natural candidate st in other, more complicated cases. For example, in our

current setting we want (6) to account for the possibly fat-tailed and skewed nature of the GH

distribution, as well as for the adopted parameterization D(ft) and R(ft).
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Creal et al. (2008, 2011) demonstrate that a good choice for st in a general non-linear time

series context is the scaled density score, as given by

st = St∇t, (7)

∇t = ∂ ln p(yt|Ft−1; ft, θ)/∂ft, (8)

where St is an Ft−1-adapted scaling matrix, and Ft = {yt, . . . , y1}. By using the density score,

the time-varying parameters are changed in the direction that increases the model’s local fit

as measured by the log-density. For our standard GH distributed εt in (3), we rely on the

following result.

Result 1. Let ⊗ denote the Kronecker product, and let vec(·) denote the operator that stacks

the columns of a matrix into a column vector. If εt is modeled as in (3) with zero mean and

unit covariance matrix, we have

∇t = Ψ′tH
′
t

(
wt(yt ⊗ yt)− vec(Σ̃t)− (1− wtµζ)(yt ⊗ L̃tγ)

)
, (9)

where Ψt = ∂vech(Σt)/∂f
′
t, L̃t = LtT , Σ̃t = L̃tL̃

′
t, wt is a scalar weight, and Ht is a k × k

matrix. We define wt in (A6) and Ht in (A9) in the appendix.

Our current model generalizes some of the well-known univariate and multivariate GARCH

models. If εt is normally distributed, i.e., γ = 0 and T = Ik, the weight wt reduces to wt = 1 and

equation (9) reduces to ∇t = Ψ′tH
′
tvec(yty

′
t−Σt). This is the usual expression for a multivariate

GARCH model for time-varying volatilities and correlations. The matrix Ht captures the

relation between L̃t and Σt. The matrix Ψt is determined by the parameterization of D(ft) and

R(ft) in terms of the time-varying parameter vector ft.

There are two interesting differences between a standard multivariate GARCH model, that

is driven by squares and cross-products of vector yt−1, and our model, that is driven by the score

function (9) of the GH distribution. The first difference is the presence of the weighting factor

wt, which is fully defined in (A6) in the Appendix. The second difference is the presence of the

asymmetry term yt ⊗ γ. These differences are the result of the fat-tailedness and skewness of

the distribution of yt, respectively. For the case of a symmetric Student’s t distribution, Creal

et al. (2011) also obtain a weight effect but not the asymmetry term.
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We learn from Appendix A.2 that the weight wt is generally a decreasing function of dχxt ,

where

dχxt = χ+ x′txt, xt = L̃−1t yt + µζγ,

for fat-tailed distributions in the GH class, where xt is the standardized version of the original

observation yt. As a result, the impact of lagged (cross)-products in yt ⊗ yt on future values

of ft (and thus on volatilities and correlations) is mitigated by wt, if yt is large in the sense

that dχxt is large. The intuition is as follows. If yt is drawn from a fat-tailed distribution, large

values of yt are not necessarily due to local volatility or correlation increases. Instead, large

yt’s may be due to the fat-tailed nature of the distribution. The dynamics of ft (volatilities and

correlations) should therefore only partly reflect the large value of yt. The remainder is then

attributed to the fat-tailed nature of the distribution and should not affect the volatility and

correlation dynamics.

The second difference in (9) is the asymmetry term. The term takes a different role than

the usual leverage effect in volatility models, which captures increases in volatilities if recent

returns have been negative. Such a leverage effect can still be included in (9) in the usual

way. Our asymmetry term yt ⊗ γ is due to the skewness of the distribution. If, for example,

yt is univariate and right-skewed (γ > 0), a large positive value of yt is more likely and is not

necessarily attributable to a local volatility increase. However, a large negative value of yt should

be taken as a very strong signal of a volatility increase, because large negative observations are

extremely unlikely for a right-skewed distribution (unless the volatility has increased). This is

precisely the effect of the asymmetry term yt ⊗ γ in (9): for a right skew (γ > 0), the term

mitigates the volatility increase if yt > 0, and reinforces the volatility increase if yt < 0.

Since both the shape and the parameterization of the distribution affect the dynamics of

ft, our current model is clearly different from the GARCH class of models with non-Gaussian

observations. For the GARCH class of models, the non-Gaussian assumption only affects the

likelihood function; it does not affect the dynamic behavior of ft. In our framework, the

distributional properties of yt affect both the likelihood and the dynamic evolution of ft at the

same time.

Our model retains many of the convenient properties of the GARCH and DCC type models.

For example, st is Ft-adapted and therefore parameter estimation in model (7)–(9) is carried

out in the same convenient way as in GARCH models. Indeed, our likelihood function can be
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expressed in closed-form via the prediction error decomposition and the basic recursion (6). It

leads to fast likelihood evaluation. The interpretation of the model is also intuitive. Depending

on the choice of the scaling matrix St, the driver st can be interpreted as a local Gauss-Newton

or Steepest-Ascent improvement to the likelihood at time t. The score of the observation density

at time t, evaluated at the current estimate ft of the time-varying parameter, determines in

what direction ft is best updated to improve the fit of the model. The additional lags and

dynamics in (6) add further flexibility to the size and speed of these adjustments as time

progresses.

We collect all static parameters of the model, such as γ, µζ , σ
2
ζ , A1, . . . , Ap, B1, . . . , Bq,

into the vector θ. The parameter vector θ is estimated by the method of Maximum Likelihood

(ML). Inference on θ is carried out in the usual way by taking the negative inverse Hessian of

the log likelihood function at the optimum as the covariance matrix of the ML estimator.

3 Model parameterizations

The GH distribution has a considerable number of parameters from which a selection cannot

be identified simultaneously. In particular, χ and ψ are not separately identified; only their

product χψ is identified. Identification can be achieved in several ways. For example, we can

set |Σt| to a fixed constant, say unity, such that Σt is normalized. Alternatively, we can simply

fix χ or ψ and estimate the other parameter in an unrestricted way. In our implementation, we

estimate κ = (χψ)1/2 and extract χ and ψ separately through the identifying assumption µζ = 1.

This normalization turns out to be particularly useful when estimating the GH model using

the Expectation Maximization (EM) algorithm of Section 4. Given the identifying restriction

µζ = 1, we can obtain χ and ψ for a fixed value of κ by the equality

1 = µζ =

√
χψKλ+1

(√
χψ
)

ψKλ

(√
χψ
) ⇔ ψ =

κ ·Kλ+1 (κ)

Kλ (κ)
, (10)

with χ = κ2/ψ.

Following Creal et al. (2011), we can consider two obvious choices for the parameterization

of both the diagonal matrix of variances D2
t and the correlation matrix Rt in (2). We can take

the variances diag(D2
t ) themselves or the log-variances ln(diag(D2

t )) as parameters. The advan-

tage of taking log-variances as parameters is that the resulting variances are always positive.
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When the variances themselves are taken as parameters, we need to impose restrictions on the

coefficient matrices Ai and Bj in (6) to ensure positive variances at all times. In higher di-

mensional models with more lags in the updating equation (6), such restrictions become rather

complicated. We therefore take log-variances as parameters.

The specification of the correlation matrix Rt is subject to the constraints that Rt is a pos-

itive definite matrix with diagonal elements equal to one, for all t. A possible parameterization

of Rt is similar to the DCC model of Engle (2002). Let Qt = Q(ft) be an auxiliary time-varying

parameter matrix, and set

Rt = ∆−1t Qt∆
−1
t , (11)

where ∆2
t is a diagonal matrix holding the diagonal elements of Qt. The matrix Qt has k

redundant elements compared to the correlation matrix Rt. As a result, only k(k − 1)/2

independent signals in ∇t are distributed over the k2 elements of Qt. The details of this

specification and its implication for Ψt in (9) are presented in Creal et al. (2011).

An alternative specification for the correlation matrix is given by the hypersphere trans-

formation as adopted by, for example, Jaeckel and Rebonato (2000), van der Weide (2002),

and Creal et al. (2011). The correlation matrix is obtained from the Choleski decomposition

Rt = XtX
′
t where Xt is a lower triangular k × k matrix that is constructed from a set of

k(k − 1)/2 time-varying angles φijt in [0, π] and is given by

Xt =



1 c12t c13t · · · c1kt

0 s12t c23ts13t · · · c2kts1kt

0 0 s23ts13t · · · c3kts2kts1kt

0 0 0 · · · c4kts3kts2kts1kt
...

...
...

. . .
...

0 0 0 · · · ck−1,kt
∏k−2

`=1 s`kt

0 0 0 · · ·
∏k−1

`=1 s`kt


, (12)

with cijt = cos(φijt) and sijt = sin(φijt). For the 2-dimensional case, we have the Choleski and

correlation matrices given by

Xt =

 1 cos(φ12,t)

0 sin(φ12,t)

 , Rt = X ′tXt =

 1 cos(φ12,t)

cos(φ12,t) 1

 , (13)
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with the correlation given by cos(φ12,t). The second column of Xt in (13) expresses a two-

dimensional unit-length vector in terms of its polar rather than its Cartesian coordinates. The

generalization to the k-dimensional setting is given by the kth column of Xt in (12).

The number of unknown coefficients in Xt equals the number of correlations in the matrix

Rt such that there are no redundancies as in the specification (11). We collect all angles φijt in

the vector φt which is specified as a function of ft. For any value of φt, the matrix Rt = X ′tXt

satisfies the properties of a correlation matrix. The specification of Ψt in (9) when using the

hypersphere parameterization of Rt is provided in Creal et al. (2011).

The definition of st in (6) is completed by the choice of a scaling matrix St. Creal et al.

(2008) discuss a number of possible choices, all of which are based on the local curvature of

the model density at time t via the (local) information matrix. Computing the information

matrix for the general GH distribution, however, is analytically intractable. Therefore, we

consider the computationally feasible alternative by setting the scaling matrix equal to the

inverse information matrix for the symmetric Student’s t distribution as a special member of

the GH class. This information matrix is known analytically and is derived in Creal et al.

(2011). This choice accommodates both the possible fat-tailed nature of the distribution and

the time-variation in the volatilities and correlations. The form of scaling can be implemented

efficiently and has shown to work well for both simulated and empirical data, see also the results

in the following sections. Finally, this choice also makes our current model directly comparable

to the familiar multivariate GARCH models if the distribution is Gaussian.

An interesting final feature of our model is that one can easily impose a factor structure on

the volatilities and correlations. This can be done by picking the dimension of ft to be lower

than the number of elements in diag(Dt) and Qt or Xt. This approach can be used if the same

factors drive more correlations, or if correlations and volatilities are driven by the same factors.

The model allows the dynamic factors ft to adapt automatically via the specification of Ψt in

(9). Through the score of the density function, our framework naturally weights and combines

the different sources of information in yt to improve the current estimates of volatilities and

correlations.
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4 Time-varying scale matrix and an EM algorithm

The time-varying covariance matrix Σt = LtL
′
t is specified by means of the factor ft which is

modeled by (6) – (9). We assume that the variance of the multivariate GH distribution exists

and therefore we must constrain the fat-tailedness of the mixing variable ζt. For example, in

the case of a skewed Student’s t distribution, we require the degrees of freedom parameter to

be higher than 4, rather than the usual 2 for the symmetric case. This constraint may not be

realistic for financial data, especially returns on individual equities that have many jumps and

outliers. As an alternative, we can specify the time-varying scaling matrix Σ̃t in (9) rather than

the time-varying covariance matrix Σt. Moment restrictions are then no longer needed since

the scaling matrix Σ̃t always exists.

The GH distribution relies on many parameters. This can complicate parameter estima-

tion, particularly when the dimension of yt is high; see the discussion in Hu (2005). This is one

of the reasons why maximum likelihood estimation for the GH distribution is usually carried

out by the Expectation-Maximization (EM) algorithm of Dempster, Laird, and Rubin (1977).

A basic introduction of the EM algorithm for the GH distribution with a time-invariant co-

variance matrix is provided in McNeil et al. (2005). Parameter estimation for a multivariate

GARCH model with a GH distribution is considered by Hu (2005). A key simplification in the

EM algorithm is that the parameters for the mixing distribution can be separated from the

location, skewness, and scale parameters. This convenient property does not hold for the model

specification with the covariance matrix Σt. However, if we consider the model specification

in terms of the scale matrix Σ̃t, we are able to develop a newly modified EM algorithm for

estimation. The usual advantages of EM estimation then again apply to our setting of a GH

distribution with time-varying parameters.

First, we reformulate the model in terms of the scaling matrix Σ̃t = L̃tL̃
′
t. Second, we

develop the modified EM algorithm for estimating the static parameter vector θ. The mean-

variance normal mixture model for the observations yt using the square root scaling matrix L̃t

is given by

yt = µty + ζtL̃tγ +
√
ζtL̃tzt, (14)

with µty = −µζL̃tγ. This specification follows from (3). Since Σ̃t = L̃tL̃
′
t is a covariance matrix

for the normal variable in the mixture specification (3), we can use similar matrices as developed
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in the previous section, that is Σ̃t = D̃tR̃tD̃t and Ψ̃t = ∂vech(Σ̃t)/∂f
′
t .

In the implementation of the EM algorithm for the GH distribution, as proposed by McNeil

et al. (2005), estimation of parameters governing the mixing variable specification (3) can be

separated from estimation of the other parameters. The main difficulty in our current context

is the dynamic process for ft that is driven by the scaled score st of the GH distribution and

depends on the parameters of the mixing variable. It appears difficult to split the parameter

vector and to reduce a high-dimensional likelihood optimization into two lower dimensional

optimization problems. Our modification of the EM algorithm, however, circumvents this

problem on the basis of Result 2.

Result 2. We can express the score function of the conditional observation density by

∇t =
∂ ln p(yt|ft,Ft−1; θ)

∂ft
= E

[
∂ ln p(yt|ζt, ft,Ft−1; θ)

∂ft

∣∣∣∣Ft] . (15)

The result enables us to partition the parameter vector as θ′ = (θ′1, θ
′
2) where θ2 contains

the parameters associated with the distribution of the mixing variable ζt, in particular λ, χ,

and ψ. The remaining parameters are collected in θ1. We define the joint log likelihood of the

observation yt and the unobserved mixing variable ζt as

n∑
t=1

ln p(yt, ζt|ft,Ft−1; θ) = L1n(θ) + L2n(θ2), (16)

with

L1n(θ) =
n∑
t=1

ln p(yt|ζt, ft,Ft−1; θ), L2n(θ2) =
n∑
t=1

ln p(ζt; θ2), (17)

where the conditional density p(yt|ζt, ft,Ft−1; θ) is Gaussian and the marginal density p(ζt; θ2)

is Generalized Inverse Gaussian (GIG) denoted by N−(λ, χ, ψ). For the implementation of the

E-step in the EM algorithm, we define

Q1(θ, θ̂) =

∫
. . .

∫
L1n(θ)

(
n∏
t=1

p(ζt|yt,Ft−1; θ̂)

)
dζn . . . dζ1 = Eθ̂ [L1n(θ)| Fn] , (18)

and, similarly,

Q2(θ2, θ̂) = Eθ̂ [L2n(θ2)| Fn] . (19)

In Appendix A.3 we show that under the normalization constraint µζ = 1, Q1(θ, θ̂) depends on

θ1 only. Consequently, we write Qi(θi, θ̂) for i = 1, 2, with a slight abuse of notation. The EM

algorithm for parameter estimation is given follows.
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Modified EM algorithm for a the dynamic GH model for the scale matrix

1. Start with an initial guess of the parameters, θ̂(0), and set ` = 0.

2. Given a trial value of the parameters θ̂(`), define the modified transition equation for the

scaling matrix as

ft+1 =

p−1∑
i=0

Ais̃t−i +

q−1∑
j=0

Bjft−j, (20)

where s̃t = St∇̃t, and

∇̃(`)
t = Eθ̂(`) [∂p(yt|ζt, ft,Ft−1; θ)/∂ft | Ft] , (21)

with ∇̃(`)
t fully specified in the appendix.

3. Given the modified dynamics, compute Q1(θ1, θ̂
(`)) and maximize it numerically with

respect to θ1. The maximum is obtained at θ̃1.

4. Update θ̂(`) to θ̃(`) = (θ̃′1, (θ̂
(`)
2 )′), compute Q2(θ2, θ̃

(`)) and maximize it numerically with

respect to θ2. The maximum is obtained at θ̃2.

5. Update θ̂(`) to θ̂(`+1) = (θ̃′1, θ̃
′
2)
′, increase ` by one, and iterate steps 2–5 until convergence.

Steps 3–5 are standard for the GH-EM algorithm; see, for example, McNeil et al. (2005).

The E-step is developed in Appendix A.3. An important feature of our modified EM algorithm

is that the optimization can still be split into two lower dimensional problems in steps 3 and 4,

even though we have a GH model with time-varying parameters governed by complex dynamics.

The key to this result is that step 3 of the algorithm is effectively based on fitting a standard

multivariate Gaussian GARCH model with the updating equation (20). The crucial part that

enables this is our modification to the standard EM algorithm in step 2. In this step, the

updating equation that depends on θ2 only via the score ∇t is replaced by a simple equation

that does not depend on θ2. The intuition follows from Result 2. In the same way as in the

E-step of the EM algorithm, the score function is replaced by a conditional expectation of a

score function that depends on parameter values from the previous iteration, that is θ̂(`). As

this score function is conditional on ζt, it is the score of a Gaussian density and therefore takes

a very simple form. It follows that as the EM iterations converge to the ML estimates, the
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score ∇̃(`)
t in the EM algorithm converges to the score ∇t of the full GH distribution via (15).

This is confirmed by numerical experiments, where the ML parameter estimates are obtained

by the modified EM algorithm and by directly maximizing the likelihood.

5 Monte Carlo evidence

To study the behavior of the new model, we carry out a Monte Carlo study. In the next section,

we investigate the model’s performance in an empirical study. In both settings, we benchmark

the model’s performance to the well-known DCC model. The simulations test the accuracy

of the different models in estimating correlation patterns, similar to the experiments in Engle

(2002). We describe the set-up in Subsection 5.1 and present the results in Subsection 5.2.

5.1 Simulation design

The design of our Monte Carlo experiments are similar to the original experiments for corre-

lations as described in Engle (2002). We take the same deterministic functions as in Engle’s

paper, namely

(1) Constant: ft = 0.9,

(2) Sine: ft = 0.5 + 0.4 cos(2πt/200),

(3) Fast Sine: ft = 0.5 + 0.4 cos(2πt/20),

(4) Step: ft = 0.9− 0.5(t > 500),

(5) Ramp: ft = mod (t/200).

This allows us to study the properties of competing statistical models under a range of corre-

lation dynamics, such as slow and fast oscillations, and structural breaks.

The simulation experiment concentrates on recovering dynamic correlation patterns. We

consider a bivariate series yt with zero mean and unit variances, such that we can fully concen-

trate on the correlations. Using the five deterministic patterns for correlations described above,

we generate bivariate time series yt as

yt ∼ GHST (0, DtRtDt, γ, ν), Dt = I2, Rt =

 1 ft

ft 1

 . (22)
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Given the five different correlation patterns, we consider three different GHST distributions

in our experiments. The GHST distribution contains the symmetric Student’s t and the normal

distribution as special cases. In particular, the GHST collapses to the symmetric Student’s

t distribution if the skewness parameter γ goes to zero. It further reduces to the normal

distribution if the degrees of freedom parameter ν goes to infinity. As a benchmark, we start

with the normal distribution. Then we introduce moderate kurtosis by setting ν = 5. Finally,

we introduce mild skewness by setting γ = (−0.03,−0.03)′.

In the experiment, we take the DCC model of Engle (2002) as our benchmark. Again, for

each simulated DGP we use the correct class of distributions when computing the likelihood.

We like to emphasize that we are not aware of an earlier application that considers a DCC

model with GHST or GH distributed error terms. The DCC models are compared to our new

model with a diagonal structure for the 3×3 matrices A1 and B1. To model the correlation, we

use the hypersphere parameterization. The performance of the different statistical models is

measured using the Mean Absolute Error (MAE) based on the difference between the estimated

correlation and its true value. The MAEs are averaged across time and across simulations. We

generate samples of size T = 1, 100, discarding the first 100 observations to avoid dependence

on initial conditions, and use 100 Monte Carlo replications.

5.2 Simulation results

Table 1 contains the results for our experiment. For the normal distribution, the performance of

both models is roughly the same. There appears to be no noticeable loss in efficiency in this case

of using the over-parameterized GHST distribution in the new model. Again we note that as the

error distribution becomes more complex, the MAEs of the DCC model increases, whereas the

MAEs of the new model remain rather stable. We also see that the new model outperforms the

DCC in four out of five cases for the fat-tailed and skewed DGPs. The improved performance

is mainly due to the weighting function and asymmetry effect in the updating equations (6)

and (9) for the factor ft. Due to this weighting incidentally large observations result in less

distortions for the estimated correlation dynamics.
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6 Empirical application

In an empirical study, we examine the correlations in a multivariate dataset with four blue-chip

stocks from different industries: Coca-Cola, IBM, Merck and J.P. Morgan. All four stocks are

part of the Dow Jones 30 index. We use daily log returns from January 1989 to December

2009 from CRSP. The final dataset contains 5295 daily observations. Descriptive statistics are

provided in Table 2. It is clear that the series exhibit significant excess kurtosis and skewness,

warranting the use of the GH distribution.

To estimate the volatilities and correlations, we use the DCC model with a Gaussian and

GHST error distribution as our benchmark. We also implement our own model using the GHST,

the GH Variance-Gamma (GHVG, with ψ = 2λ and χ = 0), and the GH error distribution.

Our model has ten factors: four volatilities, and six correlations. We estimated the model using

both the DCC and hypersphere parameterization for the correlation matrix. The estimation

results for the dynamic parameters were similar, so we only report the results obtained under

the DCC parameterization to maximize comparability with the DCC model. We use p = q = 1

in (6) and impose the same parsimony as in the DCC model. This means that we use diagonal

matrices A1 and B1 in (6), and that the diagonal elements corresponding to the correlation

equations have the same value.

The estimation results are presented in Table 3. The parameters governing the dynamics

are statistically significant for all models. For the DCC model with a normal distribution,

the persistence parameters for the volatilities (A + B) are high. All the standard stationarity

conditions are satisfied. Changing the specification to a DCC model with a GHST distribution

has several effects. First, the likelihood increases by more than 1,200 points by adding only

four parameters. The GHST distribution, therefore, provides a much better fit to the data.

Second, the volatilities of the first two stocks (Coca Cola, IBM) are less affected by lagged

squared errors. This can be seen from the reduced values for the A coefficients. By contrast,

the persistence of the volatility dynamics of Merck (Bd3) goes up substantially. This is due to

some highly influential observations during the sample period for this stock.

The skewness parameters in the DCC model with the GHST distribution are mostly in-

significant. The only exception is the positive skewness for J.P. Morgan (stock 4). The signs of

the skewness coefficients γi in Table 3 are compatible with the descriptive statistics in Table 2.
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The degrees of freedom is estimated at 6.4 with a relatively small standard error.

For the new model with a GHST distribution, we see a further increase in the likelihood of

more than 100 points. This increase in the likelihood is obtained without adding any parameters

relative to the DCC model with a GHST distribution. The persistence parameters B and the

degrees of freedom ν are estimated at similar values as for the DCC-GHST model. Note that

the B parameters for the new model must be compared to the A + B parameter of the DCC

model. The primary reason for the increase in the likelihood is the effect of the fat-tailed and

skewed GHST distribution on the volatility and correlation dynamics.

The effect of the altered dynamic specification under fat tails on the correlation dynamics

can be clearly illustrated in Figure 1. The figure shows the estimated correlations of the different

statistical models for the sub-sample 2002–2005 for the two pairs Coca Cola-IBM and Merck-

J.P. Morgan. During this period, we note that several influential observations caused abrupt

shifts in the estimated correlation levels based on the DCC model. For Coca Cola-IBM, clear

examples of this behavior are seen at the end of the first quarter of 2002, mid 2003, mid 2004 and

September 2004, and April 2005. For Merck-JP Morgan, similar patterns are observed around

October 2003, November 2003, October 2004 (very clear), and February, March, and October

2005. During all these episodes, the evolution of the correlations for the new model is much

more stable and in line with expectations that correlations should behave rather smoothly. We

also note that the estimated dynamics of the correlations for the DCC models repeatedly take

a long time to revert to their old pattern. For example, for Coca Cola-IBM, it takes roughly

three months starting from the big drop in mid-2003 before the DCC model and the new model

exhibit similar correlation levels. The same is true for mid-2004. This holds even more strongly

for Merck-JP Morgan after October 2004, when Merck experienced a large incidental drop in its

stock price after it announced a major worldwide withdrawal of its products. As seen from the

DCC-GHST model, the use of the GHST model alone does not remedy the distortive impact of

such an influential observation. To adequately cope with such outliers, changes in the dynamic

equation of the correlations are needed in addition to a fat-tailed observation density. Our

current score driven modeling framework provides such corrections in a natural way.

The correlation differences between the DCC and score driven models over the entire sample

and for all six pairs of stocks are presented in Figure 2. A positive value in the graph indicates

that the DCC estimate of the correlation is lower than that of the score driven model. We
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see that the differences in the correlations can be substantial at times. When the underlying

observations causing the differences are extreme, the differences can persist for months and

in some cases even years. In particular, we note that during the dotcom crash in 2000 the

IBM correlations in the new model are estimated at a higher level than the estimates in the

DCC models. Also, for the pairs involving J.P. Morgan, the correlations from the score driven

models during the Financial Crisis are larger than for the DCC models. Such differences can

have important implications for diversification, risk management, and asset allocation.

The skewness parameters for the new model with a GHST distribution are significant, except

for Merck. The signs are in line with the descriptive statistics from Table 2. We note again

that the skewness parameters also contribute to the different correlation dynamics via (6).

Figure 3 shows the volatility estimates of both models. The volatility patterns are at first

sight much more in line between the two different volatility specifications. However, closer

inspection shows that the same effect of large innovations affects the volatility dynamics. This

is most clearly seen for Merck. For example, in October 2004 the stock price drops significantly

for reasons explained earlier. This causes a large spike in the volatility estimate of the GARCH-

DCC model, despite the use of a GHST error distribution. The spike in volatility only decreases

very slowly to normal levels over a period of almost a year. The score driven model, by contrast,

also shows an increase in volatility since October 2004, but on a much more modest and realistic

scale. Though this is one of the most striking differences between the two models, there are

many more. Particularly the IBM stock shows over the entire sample period various cases where

the volatility as estimated by the DCC model first jumps and then gradually recedes to normal

levels. This results in small reverse saw-tooth like patterns in the graph. The corresponding

volatility dynamics for the score driven models do not exhibit such peculiar behavior and are

much more stable.

To conclude the empirical analysis, we also estimate a specification based on the GH Vari-

ance Gamma (GHVG) distribution, and on the general GH distribution. The GHVG has χ = 0

and ψ = 2λ and has a clear link to Lévy driven stochastic processes. The likelihood of the

GHVG model is lower than that of the GHST model, and even lower than the DCC-GHST

specification. This is confirmed by the model using the unrestricted GH distribution. Interest-

ingly, the unconstrained GH estimates reveal that the GHST model is a good model for the

data set at hand. We see that the parameter κ = (ψχ)1/2 is very close to zero, and that the
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value of λ is negative. For the GHST, we have λ = −ν/2, and this is precisely the value that

is estimated under the GH specification. We conclude that the GHST distribution provides

sufficient flexibility to accommodate the current levels of fat-tailedness and skewness combined

with correlation and volatility dynamics.

7 Conclusion

We have proposed a new time-varying conditional correlation model that accounts for skewness

and fat tails through the use of the Generalized Hyperbolic (GH) distribution with time-varying

parameters. The distinguishing feature of the model is that the shape of the observation

distribution directly affects the mechanism by which volatilities and correlations are updated.

The key mechanism for this is the use of the local density score to update volatilities and

correlations. As a result, large observations are reweighted before they enter the updating

equation. Because of this, the model is much less sensitive to outliers and incidental influential

observations. The new model also includes a natural asymmetry term if the GH distribution is

skewed.

We showed that the model is easy to estimate by standard maximum likelihood and Expectation-

Maximization procedures. In a simulation experiment, we demonstrated that the model does a

better job at estimating the unknown correlation dynamics than competing models if the error

distribution is fat-tailed and skewed. When applied to real data, we showed that the model

yields a more robust assessment of local volatility and correlation dynamics. Because the new

model accounts for fat tails and skewness in the volatility and correlation dynamics, it is less

affected by aberrant observations and therefore produces clearer picture of actual volatilities

and correlations.
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A Appendix

A.1 Skewness of the GH distribution

Define ȳt = L̃−1t yt and miζ = E[(ζt−µζ)i] for integer i. Let ei denote the ith column of Ik. We obtain

E[ȳt] = 0, (A1)

E[ȳtȳ
′
t] = µζI +m2ζγγ

′ = (T ′T )−1, (A2)

E[ȳt ⊗ ȳtȳ′t] = m3ζγ ⊗ γγ′ +m2ζ


γ1Ik + γe′1 + e1γ

′

...

γkIk + γe′k + ekγ
′

 , (A3)

such that the skewness of ȳt only depends on γ and on the variance and skewness of the mixing variable

ζt.

A.2 The Score of the GH distribution

Define the matrix vec(L) = D0
kvech(L) for a lower triangular matrix L. Note that D0

k is different

from the standard duplication matrix Dk for a symmetric matrix S, i.e., vec(S) = Dkvech(S) with

Bk = (D′kDk)−1D′k. Also note that D0
k
′D0

k = Ik, such that B0k = D0
k
′
. Finally, let Ck be the commutation

matrix, vec(S′) = Ckvec(S) for an arbitrary matrix S. For completeness, we mention that L̃t = LtT ,

and Σ̃t = L̃tL̃
′
t.

An intermediate result is

dΣt = d(LtL
′
t) ⇔

vec(dΣt) = (Ik2 + Ck) (Lt ⊗ Ik) vec(dLt) ⇔

Dkvech(dΣt) = (Ik2 + Ck) (Lt ⊗ Ik)D0
kvech(dLt) ⇔

vech(dLt) =
(
Bk (Ik2 + Ck) (Lt ⊗ Ik)D0

k

)−1
vech(dΣt). (A4)

First define the standardized yt as xt = L̃−1t yt + µζγ. The random variable xt has a GH distribution

with location 0 and scaling matrix Ik. Let dνz = ν + z′z for a scalar ν and a vector z. With this

notation, the density of the GH distribution of yt is given by

pGH(yt|ft;λ, χ, ψ, µζ , σ2ζ , γ,Σt) =
eγ

′xt

|2πL̃tL̃′t|1/2
·

(√
dχxt/d

ψ
γ

)λ−k/2
·Kλ−k/2

(√
dχxtd

ψ
γ

)
(
√
χ/ψ)λ ·Kλ

(√
χψ
) , (A5)
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Let kλ(·) = lnKλ(·) with first derivative k′λ(·). Define the scalar weight

wt = −λ− k/2
dχxt

−
k′λ−k/2

(√
dχxtd

ψ
γ

)
√
dχxt/d

ψ
γ

. (A6)

We obtain

∇t =
∂vech(Σt)

′

∂ft

∂vech(Lt)
′

∂vech(Σt)

∂vec(L̃t)
′

∂vech(Lt)

∂ ln pGH(yt|ft)
∂vec(L̃t)

= Ψ′tH̄
′
t

∂ ln pGH(yt|ft)
∂vec(L̃t)

,

with Ψt = ∂vech(Σt)/∂f
′
t and

H̄t =
(
(T ′ ⊗ Ik)D0

k

) (
Bk (Ik2 + Ck) (Lt ⊗ Ik)D0

k

)−1
(A7)

using the intermediate result (A4).

Taking the derivative of the log-density with respect to vec(L̃t) and then via the chain rule with

respect to ft, we get

∂ ln pGH(yt|ft)
∂vec(L̃t)

=
∂x′t

∂vec(L̃t)

(
−0.5wt

∂dχxt
∂xt

+ γ

)
− vec((L̃′t)

−1)

= (L̃−1t yt ⊗ (L̃′t)
−1) (wtxt − γ)− vec((L̃′t)

−1)

= (L̃−1t ⊗ (L̃′t)
−1)(yt ⊗ I)(wtL̃

−1
t yt + wtµζγ − γ)− vec((L̃′t)

−1)

= (L̃′t ⊗ I)(Σ̃−1t ⊗ Σ̃−1t )
(
wtyt ⊗ yt − vec(Σ̃t)− (1− wtµζ)(yt ⊗ L̃tγ)

)
. (A8)

The main result is now obtained by defining

H ′t = H̄ ′t(L̃
′
t ⊗ I)(Σ̃−1t ⊗ Σ̃−1t ). (A9)

A.3 EM algorithm for time-varying scale matrix Σ̃t

We first prove Result 2. It is easy to check that

∇t =
∂ ln p(yt|ft,Ft−1; θ)

∂ft
=

1

p(yt|ft,Ft−1; θ)

∫
∂p(yt, ζt|ft,Ft−1; θ)

∂ft
dζt

=

∫
∂p(yt|ζt, ft,Ft−1; θ)

∂ft

p(ζt; θ2)

p(yt|ft,Ft−1; θ)
dζt

=

∫
∂ ln p(yt|ζt, ft,Ft−1; θ1)

∂ft

p(yt, ζt|ft,Ft−1; θ)
p(yt|ft,Ft−1; θ)

dζt

= E

[
∂ ln p(yt|ζt, ft,Ft−1; θ)

∂ft

∣∣∣∣Ft] = ∇̃t. (A10)
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Throughout, we impose the normalization constraint µζ = 1. We note that

ln p(yt|ζt, ft,Ft−1; θ) = −1

2
ln |Σ̃t|−

k

2
ln(ζt)−

k

2
ln(2π)− 1

2ζt
(yt− (ζt−µζ)L̃tγ)′Σ̃−1t (yt− (ζt−µζ)L̃tγ),

(A11)

and

ln p(ζt; θ2) = −λ
2

ln(χ/ψ)− ln(2)− lnKλ

(√
χψ
)

+ (λ− 1) ln(ζt)−
1

2
(χζ−1t + ψζt), (A12)

where L̃t = L̃(ft) and Σ̃t = Σ̃(ft), and where the mapping from ft to Σ̃t does not depend on θ2.

We define x̃t = L̃−1t yt + γ. From (A11) and (A12) and the properties of the Generalized Inverse

Gaussian distribution (see Appendix A.2 of McNeil et al. (2005)), we get

δ
(`)
1t = Eθ̂(`)

[
ζ−1
∣∣Fn] =

(
dχx̃t

dψγ

)−1/2 Kλ−1−k/2

(√
dχx̃td

ψ
γ

)
Kλ−k/2

(√
dχx̃td

ψ
γ

) , (A13)

δ
(`)
2t = Eθ̂(`) [ζ| Fn] =

(
dχx̃t

dψγ

)1/2 Kλ+1−k/2

(√
dχx̃td

ψ
γ

)
Kλ−k/2

(√
dχx̃td

ψ
γ

) , (A14)

δ
(`)
3t = Eθ̂(`) [ ln(ζ)| Fn] =

∂

∂ξ

(
dχx̃t

dψγ

)ξ/2 Kλ+ξ−k/2

(√
dχx̃td

ψ
γ

)
Kλ−k/2

(√
dχx̃td

ψ
γ

)
∣∣∣∣∣∣∣∣
ξ=0

, (A15)

where d.. is defined below (A4).

From (A11) and using µζ = 1, we obtain

∂ ln p(yt|ζt, ft,Ft−1; θ)
∂ft

= Ψ̃′tH̃
′
tvec

(
ζ−1t yt(yt + L̃tγ)′ − Σ̃t

)
(A16)

with Ψ̃t = ∂vech(Σ̃t)/∂f
′
t and

H̃t = (Σ̃−1t ⊗ Σ̃−1t )(L̃t ⊗ I)D0
k(Bk(Ik2 + Ck)(L̃t ⊗ Ik)D0

k)
−1,

and with L̃t a lower triangular matrix. Taking conditional expectations, we obtain

∇̃(`)
t = Ψ̃′tH̃

′
t

(
δ
(`)
1t yt ⊗ yt − vec(Σ̃t)− (1− δ(`)1t )(yt ⊗ L̃tγ)

)
, (A17)

which only depends on θ̂(`), γ, and Σ̃t, and therefore not on θ2. As a result, the modified model for yt

conditional on ζt depends on θ1 only.
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Using these results, it is clear that Q1(·) only depends on θ1 and θ̂(`). We have

Q1(θ1, θ̂
(`)) = −1

2
ln |Σ̃t| −

k

2
δ
(`)
3t −

k

2
ln(2π)− 1

2
δ
(`)
1t x̃

′
tx̃t + x̃′tγ −

1

2
δ
(`)
2t γ

′γ. (A18)

For expositional purposes, we restrict our attention to the model with order (1,1) dynamics,

ft+1 = A1St∇̃(`)
t +B1ft. (A19)

Optimizing (A18) using the dynamics in (A19) now becomes similar to estimating a Gaussian mul-

tivariate GARCH in Mean model. The transition equation uses weighted (by δ
(`)
1t ) rather than un-

weighted squared observations to drive volatilities and correlations, see (A17). Similarly, there is

weighting by δ
(`)
1t in the objective (A18). When optimizing over θ1, however, these weights are fixed.

Numerical optimization should therefore be faster than direct ML estimation of the full θ vector due

to the less complicated likelihood and the lower dimensional parameter space.

Using the new estimate of θ1 obtained by maximizing (A18), we update the parameter estimate to

θ̃(`), and use this new estimate to update the weights δ
(`)
it . The second part of the EM maximization

step then follows from

Q2(θ2, θ̃
(`)) = −λ

2
ln(χ/ψ)− ln(2)− lnKλ

(√
χψ
)

+ (λ− 1)δ
(`)
3t −

1

2
(χδ

(`)
1t + ψδ

(`)
2t ), (A20)

which can be optimized numerically with respect to θ2 under the constraint µζ = 1. This can be

achieved by optimizing over κ = χψ > 0 and λ, and using (10).

The similarity of (A17) and (A8) can be taken a step further by noting that wt = δ
(∞)
1t , where

δ
(∞)
1t is evaluated using the true parameters. This follows from the fact that

wt − δ(∞)
1t = −λ− k/2

dχx̃t
+ 0.5

Kλ−k/2+1

(√
dχx̃td

ψ
γ

)
−Kλ−k/2−1

(√
dχx̃td

ψ
γ

)
Kλ−k/2

(√
dχx̃td

ψ
γ

) √
dχx̃t/d

ψ
γ

(A21)

and the properties of the modified Bessel function of the second kind,

Kλ+1(κ) = 2λ · κ−1 ·Kλ(κ) +Kλ−1(κ),

and
∂ lnKλ(κ)

∂κ
=
Kλ+1(κ) +Kλ−1(κ)

2 ·Kλ(κ)
,

such that from (A21) it follows that wt − δ(∞)
1t = 0.
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Figure 1: Estimated correlation subsample for the DCC-GHST, and DGH-GHST models.

To look into the difference of the DGH(1,1) and the DCC(1,1) model, we have zoom-in plot of the estimated
correlations under different models: DCC-GHST and DGH-GHST. We can see that the DGH(1,1) is less
volatile than the estimates from DCC.
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Figure 2: Estimated correlation difference for the DCC-GHST, and DGH-GHST models.

To look into the difference of the DGH(1,1) and the DCC(1,1) model, we have the plot of the difference in
estimation under GHST distributions. It appears that the DCC differs from DGH model even under the same
parametric assumption.
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Figure 3: Volatility estimation from DCC-GHST and DGH-GHST: stock returns

The volatility estimates from the DCC under GHST distributions and DGH(1,1)-GHST with stock return
data. From the graphs, we can see that the volatility from DGH-GHST is smoother than the DCC estimates.
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Table 1: Mean Absolute Errors for Correlation Estimates
The table presents the average Mean Absolute Error (MAE) over 100 Monte Carlo replications
and 1,000 time series observations for the correlation estimates for three different distributions
(in pairs of columns) and five different correlation patterns. The distributions used are the
normal, Student’s t(5), and GHST(0,Σt,−0.03, ν). The boldface numbers show the models
with the smallest MAE for a given DGP.

Dynamic Correlations
normal t(5) GHST

DCC model DCC model DCC model
(6)–(9) (6)–(9) (6)–(9)

Constant 0.004 0.004 0.006 0.005 0.005 0.005
Sine 0.135 0.133 0.139 0.129 0.151 0.133
Fast Sine 0.225 0.226 0.255 0.219 0.254 0.221
Step 0.066 0.065 0.068 0.067 0.094 0.070
Ramp 0.159 0.157 0.159 0.165 0.168 0.164

30



Table 2: Data descriptive statistics.
The descriptive statistics for the empirical CRSP stock returns between January 1989

and December 2009. All observations are daily log returns. All four stocks are part of the
Dow Jones 30 composite index. All skewness and excess kurtosis statistics have p-values
below 10−4.

Coca-Cola IBM Merck JP Morgan
Mean ×104 6.33 5.27 5.69 7.56
Median 0.00 0.00 0.00 0.00
Standard Deviation×100 1.56 1.89 1.82 2.62
Skewness 0.23 0.29 -0.12 0.74
Excess Kurtosis 2.05 3.89 3.00 8.33
Minimum -0.10 -0.16 -0.15 -0.21
Maximum 0.14 0.13 0.13 0.25
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Table 3: Empirical Estimation Results

Empirical results based on stock return data between January 1989 and December 2009 for Coca Cola, IBM,
Merck, and JP Morgan. The DCC model is defined as in Engle (2002) and uses a normal or GH skewed t
(GHST) likelihood. The new model uses the GH, GHST, and GH Variance Gamma (GHVG) distribution for
the likelihood and the parameter dynamics. Intercepts are not reported to save space. Ad1 to Ad4 and Bd1 to
Bd4 contain the diagonal elements of A1 and B1 from (6) corresponding to the volatilities, and Aρ and Bρ the
parameter corresponding to the correlations. γi is the skewness parameter for series i (1: Coca Cola, 2: IBM, 3:
Merck, 4: JP Morgan), κ = (χψ)1/2, with χ, ψ and λ the GH parameters. For the GHST, we report ν = −2λ.

DCC New Model (6)–(9)

Gaussian GHST GHST GHVG GH

Ad1 0.037a 0.029a 0.032a 0.119a 0.032a

(0.004) (0.003) (0.004) (0.017) (0.004)
Ad2 0.035a 0.026a 0.034a 0.109a 0.034a

(0.005) (0.003) (0.004) (0.016) (0.004)
Ad3 0.038a 0.030a 0.038a 0.110a 0.038a

(0.007) (0.005) (0.005) (0.020) (0.005)
Ad4 0.057a 0.053a 0.053a 0.174a 0.052a

(0.005) (0.005) (0.007) (0.024) (0.006)
Aρ 0.010a 0.010a 0.010a 0.030a 0.010a

(0.001) (0.001) (0.001) (0.005) (0.001)

Bd1 0.959a 0.969a 0.996a 0.999a 0.996a

(0.004) (0.004) (0.001) (0.002) (0.001)
Bd2 0.959a 0.969a 0.994a 1.000a 0.994a

(0.005) (0.004) (0.002) (0.001) (0.002)
Bd3 0.913a 0.956a 0.989a 0.985a 0.989a

(0.018) (0.008) (0.003) (0.004) (0.003)
Bd4 0.939a 0.944a 0.994a 0.996a 0.994a

(0.005) (0.006) (0.002) (0.001) (0.002)
Bρ 0.986a 0.985a 0.996a 0.997a 0.996a

(0.001) (0.002) (0.001) (0.001) (0.001)

γ1 0.045 0.089a 0.131a 0.089a

(0.028) (0.029) (0.038) (0.029)
γ2 0.026 0.074a 0.099a 0.074a

(0.027) (0.028) (0.037) (0.028)
γ3 -0.038 -0.026 -0.025 -0.026

(0.028) (0.028) (0.037) (0.028)
γ4 0.056a 0.083a 0.126a 0.083a

(0.028) (0.028) (0.038) (0.028)

ν 6.434a 6.318a

(0.235) (0.245)
λ 3.738a -3.160a

(0.128) (0.123)
κ 0.027

(0.467)

Log-lik -39991 -38787 -38684 -38994 -38684
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