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Relating Stochastic Volatility Estimation Methods

Charles S. Bos∗

Tinbergen Institute and VU University Amsterdam

March 2, 2011

Abstract

Estimation of the volatility of time series has taken off since the introduction of the
GARCH and stochastic volatility models. While variants of the GARCH model are applied
in scores of articles, use of the stochastic volatility model is less widespread. In this article
it is argued that one reason for this difference is the relative difficulty of estimating the
unobserved stochastic volatility, and the varying approaches that have been taken for such
estimation.

In order to simplify the comprehension of these estimation methods, the main methods
for estimating stochastic volatility are discussed, with focus on their commonalities. In
this manner, the advantages of each method are investigated, resulting in a comparison
of the methods for their efficiency, difficulty-of-implementation, and precision.

Keywords: Stochastic volatility, estimation, methodology.

JEL classification: C13, C18, C51.

1 Introduction

Interest in the volatility of returns dates back further than our capabilities of estimating such
volatility sequences in a sensible manner. E.g. Markowitz (1952), discussing the possibility
of constructing a portfolio with an optimal expected return-variance trade-off, indicates that

One suggestion as to tentative µi, σij is to use the observed µi, σij for some period
of the past. I believe that better methods, which take into account more informa-
tion, can be found. I believe that what is needed is essentially a “probabilistic”
reformulation of security analysis.

In his article he indeed explicitly claims to start from a set of beliefs on expected returns
and volatility µ, σ, and does not consider the stage of forming the relevant beliefs on these
moments on the basis of observations.

Part I of the present volume is largely directed at non-probabilistic measures of volatility
like the (G)ARCH class of models, where volatility depends in a deterministic way on past
returns. These models have taken a large flight after the seminal publications of Engle (1982)
∗Corresponding author: C.S. Bos, Department of Econometrics & O.R., VU University Amsterdam, De

Boelelaan 1105, 1081 HV Amsterdam, The Netherlands. Email cbos@feweb.vu.nl, tel/fax: +31 (0)20 598 60
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and Bollerslev (1986). The article of Clark (1973) on the other hand is generally recognised as
the first to explicitly refer to a probabilistic approach to variance estimation. In the article,
log-prices are driven by two independent processes, one for the levels and one for the volatility.
In discrete time, Taylor (1982) described a version of the product process, which later became
known as the stochastic volatility (SV) model.

Taylor (1982) extracts the volatility of this product process by computing an exponentially
weighted moving average of scaled absolute returns, where the weights are calibrated. Only a
decade later a series of more efficient estimation methods are devised. Even though Ghysels
et al. (1996) state that these estimation methods have made the SV model an attractive
alternative to models such as GARCH, one cannot escape the impression that this attraction
has not come to full fruition. While there are literally thousands of applications of GARCH,
for SV this number is far lower.

Two reasons for this relative lack of applied work using SV are apparent. First, there
are as of yet no standard packages for estimating SV models, whereas for GARCH most
statistical packages have a wealth of options for incorporating GARCH effects. A second
difference seems to be that GARCH has many variants of the model (Bollerslev, 2008), with
basically a single estimation method for all of them. For SV, there are few variants of the
model, but a full series of estimation methods. No estimation method has come out as clearly
the simplest or most efficient, and the relations between the methods are not immediately
clear.

Several reviews of the SV literature are available (see Ghysels et al., 1996; Broto and Ruiz,
2004; Shephard, 2005, to name a few). Instead of giving another review of the literature, this
chapter focuses instead on the estimation of the basic univariate SV model, interrelating
in detail the various estimation methods. In order to get a clear comparison and better
understanding, initially only the most basic SV model is investigated here. Not all methods
are equally adequate for incorporating extensions, and these extensions would hamper the
understanding of the basics of estimating SV models. The methods covered are chosen to
give a broad overview of the possible approaches for estimation, while still being relevant in
that the methods have not been clearly surpassed by alternative estimation procedures.

Table 1: Methods and main references
Acronym Central reference Approach State
QML Harvey et al. (1994) Classical f/s
GMS Kim et al. (1998) Bayesian s
SMM Gallant and Tauchen (1996) Classical -
IS Durbin and Koopman (1997) Classical s
EIS Richard and Zhang (2007) Classical s
IIS Nguyen (2007) Classical s
SSS Carter and Kohn (1994) Bayesian s
MMS Shephard and Pitt (1997) Bayesian s

Section 2 first introduces the basic SV model. It continues, using common notation, with
a description of a series of estimation methods for the above model. First, the quasi maximum
likelihood method (Harvey et al., 1994, QML) is introduced in Section 2.1, as it uses a linear
approximation which is in essence common to the other methods as well. This method is only
a quasi maximum likelihood approach, as it does not adapt for the approximation error. The
Gaussian mixture sampling (see Carter and Kohn, 1997; Kim et al., 1998, GMS), in Section
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2.2, uses a Bayesian approach in which a mixture of normals decreases the approximation
error. It is followed by the simulated method of moments (Section 2.3, see Gallant and
Tauchen, 1996, among others, SMM), which provides a classical approach for extracting only
the parameter estimates. Importance sampling for SV, as proposed by Durbin and Koopman
(1997, IS), can be seen as an improvement on QML. It is however not fully efficient, and
hence gave rise to both efficient importance sampling (Richard and Zhang, 2007, EIS) and
improved importance sampling (Nguyen, 2007, IIS). These three methods are combined in
Section 2.4. Lastly, the importance sampling approach can also be turned into a Bayesian
sampling scheme as described in Section 2.5. Sampling either a single state at a time (Carter
and Kohn, 1994, SSS) or using a multimove sampler (Shephard and Pitt, 1997, MMS) could
provide more flexibility and/or efficiency. This set of methods is summarised in Table 1,
indicating for each method the acronym used, one main reference, whether the method is
classical or Bayesian in background, and whether the method allows for extracting either the
filtered (f) or smoothed (s) state.

The theory can be interesting by itself, though ultimately the methods should be compared
in their efficiency and ease-of-use in obtaining the estimates. Section 3 provides the results
on a simulation exercise, where each method is used for estimating the volatility model on
the same 1,000 simulated data series. Results are presented on different aspects of efficiency.
It is followed by Section 4, which looks at practical results on two financial returns series.
These two return series are estimated first univariately, with the basic SV model. Afterwards
a simple extension to a bivariate volatility model with stochastic correlation is introduced
and estimated. A discussion of the methods with concluding remarks is found in Section 5.

2 Theory and methodology

The notation used for the simple univariate stochastic volatility model is the following. Given
a series of returns Y ≡ {y1, . . . , yT } with expectation zero,1 the model is given by

yt = εt, εt ∼ N (0, σ2
ε exp(ht)), (1)

ht+1 = φht + ξt, ξt ∼ N (0, σ2
ξ ), (2)

h1 ≡ 0, t = 1, . . . , T. (3)

Here H = {h1, . . . , hT } is the underlying stochastic volatility, and θ = (σε, φ, σξ) the vector
of parameters. Interest is in estimating the parameters in the model, and preferably also
extracting the volatility sequence, as this is useful for evaluating the uncertainty pertaining
to the returns.

The difficulty in estimating the SV model lies in the fact that the observation equation (1)
depends non-linearly on the states ht. These states evolve according to the state equation (2).
As the dependence in (1) is non-linear, the Kalman filter (KF, see Harvey, 1989) equations
cannot be used directly for obtaining the likelihood of the observations, or to extract filtered
states. The estimation methods indicated in Table 1 each take their individual approach
in solving this problem. However, those approaches are necessarily interrelated as the final
model to estimate is the same. A commonality shared between most of the methods is the

1The model is kept as simple as possible here on purpose, for ease of exposition. Extensions to include
either autocorrelation in the returns, or non-Gaussianity, could be taken up into the specification as well.
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use of an approximating linear Gaussian state space model, approximating (1) by

ct = ht + ut, ut ∼ N (0, dt), (4)

for certain choices of ct, dt. In the remainder of this section, the relations between the methods,
and their choice for the auxiliary data y∗t = (ct, dt) of the approximating linear model, are
exposed.

2.1 Quasi maximum likelihood estimation

The most direct approach for estimating SV is found in Harvey et al. (1994). As the non-
linearity of the observation equation is the main source of difficulty, the authors linearise the
equation by writing

ln y2
t = ht + ln ε2t = ht + lnσ2

ε + ln e2
t , et ∼ N (0, 1).

The density of ln e2
t is approximated by a normal density with expectation E(ln e2

t ) =
(

Γ′( 1
2

)

Γ( 1
2

)
− ln(1

2)
)
≈

−1.2704 and variance var(ln e2
t ) = ∂2 ln Γ(ν)

∂ν2

⌋
ν= 1

2

= 1
2π

2 (see Abramowitz and Stegun, 1972,

eq. 26.4.36). In terms of the linear approximating density (4) this gives parameters

ct ≈ ln y2
t − lnσ2

ε + 1.2704,

dt =
1
2
π2.

The resulting linear Gaussian state space model is amenable to evaluation using the Kalman
filter equations, which deliver the likelihood of this model efficiently. No correction is made for
approximating the density of ln e2

t by a simple normal density, hence the resulting optimisation
delivers no true but only quasi-maximum likelihood (QML) estimates.

2.2 Gaussian mixture sampling

In Carter and Kohn (1997), Kim et al. (1998) and Omori et al. (2007) a similar linearisation
of the observation equation is used, but now the density of ln e2

t is approximated using a
Gaussian mixture (GM) density, as in

ln e2
t ≈ ut ∼

C∑
i=1

piN (mi, s
2
i ).

In this notation, pi are the weights of the mixture components, and mi, s
2
i the respective

means and variances. The distinction between the three articles is the number C of mixture
components that is used (5, 7 and 10 respectively), where obviously the mixture with the
largest number of components delivers the closest match between the approximating and true
density. The QML method would correspond to a 1-component mixture in this notation.

With this extension to a Gaussian mixture, the full model is no longer an unconditionally
linear and Gaussian state space (StSp) model, as it depends on the discrete unobserved
states it. Instead of optimising the likelihood directly, a Bayesian Markov chain Monte Carlo
(MCMC) approach with data augmentation is used: If one assumes indices it indicating which
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element i of the mixture is used at time t, then the model for Y |I is conditionally linear and
Gaussian, where I = {i1, . . . , iT }. In terms of the general approximating linear Gaussian
observation equation (4), conditional choices of

ct|it = ln y2
t − lnσ2

ε −mit , dt|it = s2
it

are used.
The simulation smoother (De Jong and Shephard, 1995; Durbin and Koopman, 2002)

delivers a sample from the states H conditional on the data Y , state indices I and parameters
θ. Conditionally on the states H, on data Y and on the parameters θ, each mixture node has a
certain probability P (it = i) which can be evaluated. From the resulting multinomial density
a sample of new indices it is drawn. Afterwards, conditional on states I,H and data Y , new
parameters θ are drawn as in a standard Gibbs scheme (Smith and Gelfand, 1992). A final
sample from the parameters and states describes the posterior density of these, conditional
on the full set of data. The posterior mean of the states is an estimate of the smoothed state.

2.3 Simulated method of moments

Where QML uses a likelihood approach, and GMS a Bayesian MCMC, the simulated method
of moments approach (SMM, Gallant and Tauchen, 1996; Andersen et al., 1999) takes a third
route to parameter estimation. If the loglikelihood function lnPSV(Y ; θ) of the SV model
were available in closed form, then it could be optimised by finding those parameters which
set the average score to zero, with score function

sSV(Y ; θ) =
1
T

∂ lnPSV(Y ; θ)
∂θ

.

This true score function cannot be evaluated directly, as the likelihood function of SV models
is not available in closed form. SMM instead uses an auxiliary model which fits the most
important characteristics of the data closely, and is easier to estimate. In this case, for the
SV model, some GARCH model could be used as the auxiliary model. Suppose that this
auxiliary model delivers auxiliary parameters θ̂Aux. Clearly, at these estimates the score of
the loglikelihood lnPAux(Y, θ̂Aux) of the auxiliary model for the current set of data equals
zero. But if data were generated from the SV model, for the optimal set of parameters θ̂,
then the same θ̂Aux should provide a good fit for the auxiliary model as well. Hence SMM
evaluates

sAux(Y ∗(θ), θ̂Aux) =
1

TAux

∂ lnPAux(Y ∗(θ); θAux)
∂θAux

⌋
θAux=θ̂Aux

,

which is the score of the auxiliary model, at parameters θ̂Aux, for TAux observations Y ∗(θ)
simulated from the SV model using parameters θ. Searching for those parameters θ which
equate these scores to zero delivers estimates of the parameters of the SV model, through the
detour of the auxiliary model.

As an auxiliary model, the QML-SV model of Harvey et al. (1994) mentioned before could
be used, though for this QML-SV model the score function is not available analytically either.
As mentioned before, a GARCH model, with either Gaussian or Student-t disturbances, or
an EGARCH (Nelson, 1991), provides an approximating model where the analytic scores can
be derived. In those cases, the parameters of the auxiliary model are different in number
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and type from the parameters in the true model. Therefore, the score vector of the auxiliary
model should be scaled by the inverse information matrix of the model, minimising effectively

Q(θ; θ̂Aux) = sAux(Y ∗(θ), θ̂Aux)′I−1(θ̂Aux)sAux(Y ∗(θ), θ̂Aux),

I(θ̂Aux) =
1
T

∑ ∂ lnPAux(yt; θAux)
∂θAux

∂ lnPAux(yt; θAux)
∂θ′Aux

⌋
θAux=θ̂Aux

.

If the auxiliary model indeed covers the important characteristics of the data, and if the
auxiliary sample size TAux is sufficiently large, then optimising Q(θ; θ̂Aux) provides an efficient
estimate of the parameters θ of the SV model (see also Andersen et al., 1999). SMM however
never optimises, or even calculates, a likelihood of the SV model, but arrives at a set of
parameter estimates without even touching upon the underlying states. If only parameter
estimation is requested, it can be a good alternative to the other methods in this chapter.

2.4 Methods based on importance sampling

The three aforementioned methods all have their drawbacks: QML is only approximative,
GMS does not provide a classical maximum likelihood estimator, and SMM lacks an estimate
for the state of the volatility. A set of methods based on the idea of importance sampling
provides alternative estimators. In the following, three versions of importance sampling will
be contrasted: basic Importance Sampling (IS, Durbin and Koopman, 1997), Efficient Im-
portance Sampling (EIS, Liesenfeld and Richard, 2006; Richard and Zhang, 2007), and an
improved version of importance sampling (IIS, Nguyen, 2007) which will be found to be as
efficient as EIS.

For the basic method of importance sampling, the likelihood function L(Y ; θ) is approxi-
mated using simulation through

L(Y ; θ) =
∫

P (Y,H)
G(H|Y ∗)

G(H|Y ∗)∂H

≈ 1
M

∑ P (Y,H(i))
G(H(i)|Y ∗)

=
1
M

∑
ωi ≡ ω, (5)

where the H(i) are sampled volatilities from the approximating importance density G(H|Y ∗).
The latter density depends on some auxiliary data Y ∗, and is chosen such that it is a close
approximation to P (Y,H) (where dependence on parameters θ is skipped in the notation for
simplicity). From this importance density, M series of H(i) = {h(i)

1 , . . . , h
(i)
T } are drawn and

used for evaluating the likelihood.2

The approximation in (5) can be made as accurate as required by increasing the number
M of sampled volatility sequences. If a common random seed is used for sampling H(i) when
the likelihood is evaluated for different values of θ, the likelihood will be a smooth function
of the parameters, and standard quasi-Newton optimisation methods can be used.

2In practice, it is often desired to estimate logL(Y ; θ). Durbin and Koopman (1997) derive how an unbiased
estimator for this quantity is

logL(Y ; θ) ≈ logω +
s2ω

2Mω2 ,

with ω the average weight and s2ω the variance.
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The three methods IS, EIS and IIS use the same setup (4) for the approximating linear
observation equation. Where QML chose ct, dt only taking the lnχ2 density into account, the
IS methods also look at the values of ht around the current observation, to obtain an optimal
fit between P (Y,H) and G(H|Y ∗). The methods IS, EIS and IIS differ in the way optimal
Y ∗ ≡ {ct, dt, t = 1, . . . , T} and the sample of H|Y ∗ are obtained.

Approximating in the basic IS approach

In the method of Durbin and Koopman (1997) full advantage of the linear Gaussian unob-
served component structure of the approximating model (2) and (4) is taken. Notice that
G(H|Y ∗) is the density of the linear states, conditional on the auxiliary data as represented
by Y ∗. A sample from this density can be drawn using the simulation smoother. The weights
ωi are evaluated by rewriting

G(H(i)|Y ∗) =
G(Y ∗|H(i))G(H(i))

G(Y ∗)
,

P (Y,H(i)) = P (Y |H(i))P (H(i)),

such that

ω(i) =
P (Y,H(i))
G(H(i)|Y ∗)

= G(Y ∗)
P (Y |H(i))P (H(i))
G(Y ∗|H(i))G(H(i))

= G(Y ∗)
P (Y |H(i))
G(Y ∗|H(i))

= G(Y ∗)
∏
t

P (yt|h(i)
t )

G(y∗t |h
(i)
t )

.

In these equations, G(H(i)) represents the density of the states as defined by the transition
equation (2), and G(Y ∗|H(i)) the density corresponding with the approximating observation
equation (4). G(Y ∗) is the full unconditional likelihood of the auxiliary data according to
the approximating model and can be evaluated using the KF equations. As the transition
equations of the auxiliary and true model are the same, the factor P (H(i))/G(H(i)) cancels
from the weight ωi.

For finding the optimal y∗t = {ct, dt} of the approximating model, IS ensures that the den-
sities relating to the observation equations (1) and (4) correspond in their first two moments.
Define p ≡ lnP (yt|ht), g ≡ lnP (y∗t |ht) with first and second derivatives with respect to ht
indicated as ṗ, ġ, p̈, g̈, then

p = −1
2

(
ln 2π + lnσ2

ε + ht +
y2
t

σ2
ε exp(ht)

)
,

g = −1
2

(
ln 2π + ln dt +

(ct − ht)2

dt

)
, (6)

ṗ = −1
2

(
1− y2

t

σ2
ε exp(ht)

)
, ġ =

ct − ht
dt

, (7)

p̈ = − y2
t

2σ2
ε exp(ht)

, g̈ = − 1
dt
. (8)
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For a given value of ht, the corresponding optimal values of ct, dt can be solved from this
system of equations.3 Ideally, the approximating model would fit lnP (yt|ht) well around a
plausible value of ht, for all t = 1, . . . , T . One such a plausible value of H = (h1, . . . , hT )
could be the smoothed state H̃ from the auxiliary model. By iterating back and forth between
improving estimates of Y ∗ and extracting a new H̃, an optimal solution for the parameters
can be found in what is usually a small number of iterations (Sandmann and Koopman, 1998).

Improving on IS with IIS

The IS method of estimating a SV model is flexible, relatively easy to implement, and not too
computationally intensive in practice either. A weak spot of the IS method, first recognised
in the EIS method (Liesenfeld and Richard, 2006) described below, is that the likelihood
evaluation (5) is based on a M samples H(i), i = 1, . . . ,M of the volatilities, whereas the
auxiliary model is only fitted to the true stochastic volatility model using a second order
Taylor expansion at the mode H̃.

The Taylor expansion however provides the closest possible approximation only locally,
where the error in the approximation is increasing with the order O((ht − h̃t)3), for the
second order Taylor expansion used here. Therefore, there is no guarantee that the current
approximation is sufficiently close over the full range of possibly interesting values of H.

Nguyen (2007) proposes to take M samples from the approximating model, H(i), i =
1, . . . ,M , and minimise the distance between the two observation densities P (yt|h(i)

t ) and
G(y∗t |h

(i)
t ), following the example of the EIS sampler of Richard and Zhang (2007). As all

dependence through time is taken up by the simulation smoother and incorporated into the
sample H(i), optimising the distance between the observation densities can be done at each
time t separately from other time-points. A simple but effective approach is to minimise the
variance of the log-weights lnω(i)

t , as in

Qt(ct, dt) =
∑
i

(lnω(i)
t − lnωt)2 =

∑
i

(
p(yt|h(i)

t )− g(y∗t |h
(i)
t ) + const

)2

=
∑
i

(
−1

2
h

(i)
t −

y2
t

2σ2
ε exp(h(i)

t )
+

ln dt
2

+
(h(i)
t − ct)2

2dt
+ const

)2

≡
∑
i

(
z(i) − a0 − a1h

(i)
t − a2(h(i)

t )2
)
.

The optimal solution for ct, dt can be found using a linear regression of

z(i) = −1
2
h

(i)
t −

y2
t

2σ2
ε exp(h(i)

t )
(9)

on h
(i)
t and (h(i)

t )2, solving for ct, dt from

a1 =
ct
dt
, a2 = − 1

2dt
. (10)

3There is no guarantee that the second derivative p̈ is negative, such that some variances dt could become
non-positive. Jungbacker and Koopman (2007) note that the simulation smoothing equations of De Jong and
Shephard (1995) can be adapted to allow for this case, without influencing the effectiveness of the algorithm.
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Note that the value of a0 is not of interest, as it takes up lnωt and the integrating constants
of the densities.

Given a new set of estimates Y ∗ = {ct, dt, t = 1, . . . , T}, a more appropriate sample of
H can be drawn, and the optimisation repeated until convergence. As with the basic IS
method, convergence will usually take place within a few iterations, and the final weights ωt
are expected to display lower variability.

Alternative efficiency gains with EIS

As seen with the IIS method, the fit of the auxiliary density could be improved compared to
IS when the true and auxiliary density are matched for a sample H(i) of volatility sequences.
Where IIS uses the simulation smoother to sample from the density of H|Y ∗, EIS chooses
instead to sample from the predictive densities, i.e. to sample each ht|y∗t , ht−1. The final
auxiliary sampling density will be indicated by GEIS(H|Y ∗), where the notation does explicitly
indicate that the sampling density here is the predictive density only.

These predictive densities can be constructed from the combination of the information
stemming from Gaussian transition equation (2) and observation equation (4), as

G(ht|y∗t , ht−1) =
G(ht|y∗t )G(ht|ht−1)

χt(ht−1)
∝ G(ht|y∗t )G(ht|ht−1),

ht|y∗t ∼ N (ct, dt), ht|ht−1 ∼ N (φht−1, σ
2
ξ ).

This implies that ht|y∗t , ht−1 ∼ N (mt, s
2
t ) with

s2
t =

(
1
σ2
ξ

+
1
dt

)−1

, mt = s2
t

(
φht−1

σ2
ξ

+
ct
dt

)
.

The integrating constant χt(ht−1) is

χt(ht−1) =

√
2πdtσ2

ξ

s2
t

exp

(
c2
t

2dt
+
φ2h2

t−1

2σ2
ξ

− m2
t

2s2
t

)
∝ exp

(
φ2h2

t−1

2σ2
ξ

− m2
t

2s2
t

)
.

Note how χt(ht−1) depends on the previous value of the volatility, both directly through
φ2h2

t−1 and also indirectly through the value m2
t . It is through the integrating constant that

part of the information on the previous observation is handed over towards the present.
EIS, like IIS, looks at the variance of the log-weights

lnω(i) =
∑
t

(
p(yt|h(i)

t ) + p(h(i)
t |h

(i)
t−1)− g(h(i)

t |y∗t )− g(h(i)
t |h

(i)
t−1) + lnχt(h

(i)
t−1)

)
=
∑
t

(
p(yt|h(i)

t )− g(h(i)
t |y∗t ) + lnχt(h

(i)
t−1)

)
≡
∑
t

(
p(yt|h(i)

t )− g(h(i)
t |y∗t ) + lnχt+1(h(i)

t )
)

=
∑
t

wt(h
(i)
t ).

In the third step, the integrating constant is moved forward in time, such as to combine
all elements concerning h

(i)
t together in wt(h

(i)
t ). Defining χT+1(hT ) = 1 takes care of the

endpoint condition.
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At each time point t the sum-of-squares function to minimise becomes

Qt(ct, dt) =
∑
i

(wt(h
(i)
t )− wt)2

=
∑
i

(
−1

2
h

(i)
t −

y2
t

2σ2
ε exp(h(i)

t )
+

ln dt
2

+
(h(i)
t − ct)2

2dt

+
φ2h

(i)2
t

2σ2
ξ

−
m

(i)2
t+1

2s2
t+1

+ const

)2

≡
∑
i

(
zi − a0 − a1h

(i)
t − a2h

(i)2
t

)2
,

where now

z(i) = −1
2
h

(i)
t −

y2
t

2σ2
ε exp(h(i)

t )
+
φ2h

(i)2
t

2σ2
ξ

−
m

(i)2
t+1

2s2
t+1

. (11)

Note how this specification for z(i) in (11) corresponds to the IIS regressor in (9), apart
from the added terms relating to the integrating constant lnχt+1(ht). Minimising the sum
of squares of wt(h

(i)
t ) then again corresponds to finding the solution of the linear regression

model relating z(i) to h(i)
t and its square. From the regression output on a1, a2 the optimal

values of (ct, dt) are extracted as in (10). This can be done recursively, starting at the end of
the sample (as χT+1(ht) ≡ 1 is known), working backwards towards t = 1.

At this stage, a theoretical comparison between the setup for IS, IIS and EIS can be
made. From the above description it is clear how IS uses the simulation smoother for a linear
approximating Gaussian model as auxiliary sampler. The approximating model is fitted such
that at the smoothed estimate H̃ the true and approximating log-densities correspond in their
first two moments. With IIS, the same approximating model is used, but the approximation
is optimised not for an estimate H̃ but for a full sample. EIS changes the auxiliary sampler
to contain only past and present information; future information is taken into account by
adapting for the integrating constant in the sum-of-squares function, and hence it uses the
same amount of information as IIS. Below, in Section 3, it will indeed be seen that IIS and EIS
are equally efficient, both surpassing the precision of the likelihood estimate of IS considerably.

2.5 Alternative sampling methods: SSS and MMS

The IS-based methods effectively provide a sampling-based alternative to evaluating the exact
loglikelihood function for the stochastic volatility model (albeit by simulation), instead of the
rough approximation of the QML method of Section 2.1. A different route discussed in Section
2.2 provided a Bayesian approach to a similar goal: Improve the approximation of the density
of ln e2

t through a mixture density, and sample in turn from all full conditional densities. This
latter approach, however exact the mixture density can be, is still an approximation, as the
mixture density is theoretically not equal to the target density.4

Two alternative flexible methods are available for obtaining a theoretically exact Bayesian
sampler for the SV model. These methods, the Single Site Sampler (SSS) and the MultiMove

4In the original work of Kim et al. (1998) this is solved by performing an extra reweighting step. Here we
will forgo this possibility for simplicity.
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Sampler (MMS) can be described together, where the SSS is a special (and simpler) case of
the MMS. Both methods provide a sampler of H from the true SV model. The methods
follow the framework of GMS of Section 2.2 in that they try to sample H from the full
conditional density. Instead of enlarging the parameter space with a set of mixture indices
I, the problem of sampling H = {h1, . . . , hT } is broken up into smaller blocks. Say we
have block sizes k1, . . . , kk,

∑
kj = T , then successively each block of kj volatilities Hkj

≡
{htj , . . . , htj+1−1} with t1 = 1, tl = tl−1 + kl−1, l > 1 is sampled conditioning on Y and
(H \ Hkj

) = {h1, . . . , htj−1, htj+1 , . . . , hT }. With SSS the blocksize kj = 1, whereas with
MMS kj is larger than 1.

To sample from the present block, a slightly enlarged approximating model is fitted to the
data. Equations (2) and (4) are extended with end-point conditions for the auxiliary data
outside the current block,

ctj−1 ≡ htj , dtj−1 ≡ 0, (12)
ctj+1 ≡ htj+1 , dtj+1 ≡ 0. (13)

The knots outside the block are fixed at the current value of htj−1 and htj+1 . Within the
block, again ct, dt can be chosen to provide a good fit for the approximating model to the
true observation equation. As in Section 2.4, the first two derivatives of the log-densities are
equated (ṗ ≡ ġ, p̈ ≡ g̈), for an estimate of the present set of volatilities. Again, one could use
a smoothed estimate H̃kj

, or even a full sample of H̃(i)
kj

.
From the approximating model a candidate sample H∗kj

is drawn using the simulation

smoother. The candidate draw H∗kj
is accepted as new value for H(i)

kj
with Metropolis-Hastings

(MH) acceptance probability α, comparing the likelihood contributions of the true and ap-
proximating models:

α
(
H∗kj

, H
(i−1)
kj

)
= min

P (Ykj
|H∗kj

)G(Y ∗kj
|H(i−1)

kj
)

P (Ykj
|H(i−1)

kj
)G(Y ∗kj

|H∗kj
)
, 1

 .
If the candidate draw is not accepted, one continues with H

(i)
kj
≡ H

(i−1)
kj

, else H(i)
kj
≡ H∗kj

.
This approximating and sampling step is taken successively for all blocks, until a full new
sample H(i) is obtained.

With SSS, constructing the optimal approximating density does not need to go through
the full state space setup of the above equations, as the optimal Gaussian approximation
sampler for ht|ht−1, ht+1, yt can be found analytically. Notice that there are three sources of
information on ht, with

ht|ht−1 ∼ N (φht−1, σ
2
ξ ) ≡ N (cp, dp), Past information,

ht|ht+1 ∼ N
(

1
φ
ht+1,

1
φ2
σ2
ξ

)
≡ N (cf , df ), Future information,

ht|y∗t ∼ N (ct, dt) ≡ N (−p̈−1ṗ+ h̃t,−p̈−1), Time t information.

The h̃t is an estimate of the present ht, for which the last draw could be filled in. These three
normal densities can be convoluted into one sampling density, with

ht|ht−1, ht+1, y
∗
t ∼ N (cc, dc), Convoluted information,

cc = dc
(
cp

dp
+
cf

df
+
ct
dt

)
, dc =

(
1
dp

+
1
df

+
1
dt

)
.
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This manner of sampling, conditioning on the present and immediate past and future in-
formation, may lead to large correlation in the Markov chain of sampled volatilities, and of
sampled parameters. The MMS lowers the correlation by sampling larger blocks of volatilities
at once. When the blocksize becomes too large, the acceptance rate of the MH step could
become too low, again leading to an increase in sample correlation. Hence an intermediate
choice for the average blocksize should be made.

As the elements ht close to the knots are tied down more than elements in between two
knots, it is advisable to change the location of the knots between iterations. The random
procedure of Shephard and Pitt (1997) for choosing knots is used in this chapter.

3 Comparison of methods

3.1 Setup of data generating process and estimation procedures

From a theoretical point-of-view, the links between the estimation methods are described in
Section 2. The practical implication of those differences for the estimation results is the topic
of the present section. We consider a pure SV model (1)–(2), with parameters σε, φ, σξ as
specified in Table 2. A value of φ = 0.95 allows for a considerable amount of persistence in
the volatility, while σξ = 0.1 indicates a long-run variance of volatility of σ2

ξ/(1 − φ2) ≈ .1.
The σε is a scaling parameter, and is set at 1. Note that the choices for these parameter are
modelled to mimic results of Section 4.

Further columns in the table indicate the prior densities for the parameters. For φ, a
conjugate normal prior is taken, with expectation 0.9 and standard deviation 0.1. For σε, σξ,
Inverted Gamma-1 priors are conjugate. The prior-parameters are chosen such that the prior
mean corresponds roughly with the DGP value, and the prior standard deviation allows for
sufficient flexibility for the data to decide on the location of the posterior.

Table 2: DGP and prior specifications
DGP π(θ) r a E(θ) s(θ)

σε 1 IG-1(r, a) 2 1.5 1.09 0.57
φ 0.95 N (µ, σ2) 0.9 0.1
σξ 0.1 IG-1(r, a) 1.3 0.006 0.1 0.1

With these settings, 1,000 data series of length T = 1,000 are simulated from the SV
model. The parameters of the SV model are estimated using each of the methods, for each
of these data series, using a set of programs written in Ox (Doornik, 2009) in combination
with SsfPack (Koopman et al., 2008). Estimation is started at the values of the DGP, and
continued until convergence for the QML, SMM, IS, EIS and IIS methods. For the Bayesian
methods GMS, SSS, MMS a sample of 10,000 draws from the posterior density is collected,
after a burn-in sample of 1,000 iterations for obtaining an initial estimate of H while fixing the
parameters, followed by a further 1,000 iterations where both H and parameters are sampled,
but not stored. From the posterior sample the mode is taken as the estimate of the parameters.
The methods based on importance sampling take M = 250 draws from the auxiliary density
using antithetic sampling, therefore effectively M = 500 weights are evaluated. For SMM, a
GARCH(1, 1) auxiliary model with either normal (SMMn) or Student-t (SMMt) disturbances
is used. From the estimated auxiliary model N = 100, 000 observations are generated for each
evaluation of the criterion function.
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3.2 Parameter estimates for the simulation

Table 3 displays results on the parameter estimates for the simulation. It reports the average
parameter estimates (in the first three columns) together with the standard deviation of the
estimates (in columns 4-6), and the average time to completion in seconds. It can be seen
that all methods estimate the standard deviation σε close to the DGP value of 1. The overall
level of volatility is relatively easy to extract from the data. For the persistence parameter
φ, QML leads to a considerable downward bias, with SMM and the IS methods displaying a
less severe bias. The Bayesian methods in the last three rows of the table seem to estimate
φ closest to 0.95. In general, if φ is underestimated, then the parameter σξ tends to be
overestimated. The bias on the long run variance σ2

ξ/(1 − φ2) is generally smaller than the
bias on the underlying parameters themselves.

Table 3: Parameter estimates for SV simulation
σε φ σξ s(σε) s(φ) s(σξ) Time

DGP 1 0.95 0.1
QML 1.003 0.809 0.174 0.052 0.248 0.218 0.1

SMMn 0.996 0.934 0.113 0.049 0.065 0.114 38.9
SMMt 0.990 0.868 0.147 0.056 0.181 0.120 43.8

IS 0.998 0.914 0.116 0.041 0.115 0.063 63.0
EIS 0.998 0.913 0.117 0.041 0.116 0.064 133.0
IIS 0.998 0.914 0.117 0.041 0.112 0.064 300.7

GMS 0.997 0.944 0.086 0.040 0.030 0.027 14.1
SSS 0.999 0.945 0.088 0.041 0.032 0.031 13.1

MMS 1.000 0.944 0.088 0.038 0.030 0.030 253.9

The second set of columns displays the standard deviation of the parameter estimates.
The Bayesian methods deliver the lowest uncertainty in the estimates. This effect can also be
seen from Figure 1, which displays the density of the 1,000 parameter estimates for each of
the methods. The top panels display results for σε, φ and σξ for the classical QML, SMM, IS,
EIS and IIS methods, whereas the bottom panels plot the density of the parameters for the
Bayesian GMS, SSS and MMS methods, together with the prior. From the figure it is seen
how the mode of the estimates of σξ in panel (i-a) corresponds closely with the DGP value of
σξ = 0.1, but the large right-hand tail leads to an upward bias for the estimates on average.
The IS, EIS and IIS results are plot separately, but are not distinguishable from eachother in
Figure 1 as the estimates are virtually equal. QML delivers only quasi-maximum likelihood
estimates, which are clearly distinct from the IS estimates. The SMM estimates theoretically
should deliver the same efficient estimates as the maximum likelihood-based methods; the
distinction in results in this case appears to be due to neither of the auxiliary models fitting
the true model sufficiently well at the present sample size.5

With the Bayesian methods, estimates of σξ in the bottom right panel are seen to be
spread around 0.1. The distribution of these estimates is close to the distribution of the prior
for σξ, indicating that the present DGP with 1,000 observations provides little information
on this parameter measuring volatility of volatility. The prior influences the location of the

5As additional auxiliary model a semi-nonparametric GARCH model (Gallant and Nychka, 1987) was tried.
With T = 1, 000 observations the data was not informative enough to obtain good convergence for the auxiliary
parameters.
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Figure 1: Density of parameter estimates σε (panels (i-a/b)), φ (panels (ii-a/b)) and σξ
(panels (iii-a/b) for SV simulation exercise, for classical (panels (a)) and Bayesian (panels
(b)) estimation methods.

posterior mode estimates relatively strongly in such a case.
The last column of Table 3 reports the average optimisation times in seconds. QML

is clearly the fastest, as it is only a simple and direct approximation. The speed of SMM
depends fully on the length of the auxiliary sampler. For the IS methods, the basic IS is
moderately quick as the approximating model needs only a single run from the volatility
sequence, whereas EIS needs a full sample of runs for the approximating algorithm. EIS
and IIS theoretically make a similar computational effort, though in practice it is simpler to
generate a sample from EIS’s predictive density than from IIS’s simulation smoother. For
the Bayesian samplers, clearly MMS is computationally most intensive. For each block of
observations, an approximating model has to be found, and a separate sample is drawn. For
the SSS, the approximating model can be obtained using analytic closed form expressions for
the smoothed states, which tends to be quicker. GMS is comparable to SSS, at least in effort
that is needed for obtaining a similarly sized sample from the posterior density. Note how
these computational times are roughly in line with the theoretical properties of the estimators:
The procedures which are theoretically nicer, providing either a direct link with the likelihood
or a full sample from the posterior density take more time. While EIS may be slightly harder
than IIS to set up, this extra effort is rewarded with a smaller computational effort.

3.3 Precision of IS

Among the methods, IS, IIS and EIS are based on the idea of importance sampling, and the
final likelihood estimate is calculated in (5) as the average of a set of weights, L(Y ; θ) ≈
1
M

∑
ωi. This estimator of the likelihood only converges if a central limit theorem holds for
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the average of weights ωi (Koopman et al., 2009). Most importantly, the variance of the
weights should converge to a finite constant. A lower variance then corresponds to a more
precise likelihood estimate.
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Figure 2: Cumulative average of standardised weights (panel (i)) and related standard de-
viation (ii) for one iteration of IS, EIS and IIS, and density of 1,000 final weight standard
deviations of full simulation (iii).

For one specific sample of the DGP, the three methods were used for estimation, and at
the final estimates the weights ωi were collected. A sample of size M = 250 with antithetic
sampling was used, resulting in a total of 500 weights for each method. The weights were
standardised to have mean 1. Figure 2 plots the cumulative estimates of the average of the
weights (panel (i)) and of the standard deviation (panel (ii)).

From panel (i) it is seen that for IS the cumulative average converges slower than for
the EIS and IIS approaches. In the second panel indeed the final standard deviation of the
weights for IS is found to be larger than for EIS and IIS. The latter two methods appear to
have virtually equal standard deviations for their weights. Panel (iii) of Figure 2 compares
the final standard deviations of IS, EIS and IIS over the S = 1, 000 simulations. Indeed the
IS is less efficient in general, and the EIS and IIS are indistinguishable. As EIS and IIS use
exactly the same information for constructing the auxiliary density, they lead to similar draws
of the weights with similar standard deviations.

3.4 Precision of Bayesian methods

With the Bayesian methods GMS, SSS and MMS a final sample of size S = 10, 000 of draw
from the posterior was collected. For MMS the average blocksize had to be chosen. A small
blocksize leads to behaviour similar to the SSS, sampling a single volatility at a time. Larger
block sizes could lower correlation in the chain, as a larger number of volatilities is updated in
a single sweep. When the block size becomes too large, the Metropolis-Hastings acceptance
probability drops, and correlation again increases when a candidate draw is rejected too often
(see also the discussion in Shephard and Pitt (1997) and Liesenfeld and Richard (2008)).

In the above simulation, the volatility series of H was divided into 7 blocks, resulting in
a blocksize of around k = T/7 ≈ 143 volatilities ht on average when using MMS. To judge
the effect of the block size, panel (i) of Figure 3 displays the relative numerical inefficiency
(Shephard and Pitt, 1997, RI(B)), for different values of the average blocksize. The RI(B)
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compares the variance of the posterior sample when correcting for B lags of possible auto-
correlation, to the variance when no correction for autocorrelation is made. A bandwidth of
B = 1, 000 lags is chosen.
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Figure 3: Inefficiency versus blocksize (panel (i)) and acceptance rate (ii)

In panel (i) it is seen how for very small block sizes, inefficiency is high. Starting at
a blocksize of at least 10, inefficiency stabilises, until it increases again when the blocksize
reaches 250. These results correspond with the findings of Shephard and Pitt (1997), that
the efficiency gains are fairly robust against the blocksize.

The panel (ii) of Figure 3 displays the related acceptance rate of the Metropolis-Hastings
step. This acceptance rate is negatively related with the blocksize, and in this case if the
acceptance rate drops below around 0.9, the efficiency of the sampler starts to deteriorate
with blocksize. Note that the insights of EIS/IIS could be combined with MMS as well:
Using the improved approximating density of EIS/IIS, the acceptance rate of MMS could
be increased, allowing larger blocks to be sampled with lower inefficiencies as a result. See
Liesenfeld and Richard (2008). This possibility is not pursued in this chapter.

Table 4: Comparing inefficiencies
Average relative numerical inefficiency Acceptance
σε φ σξ rate

GMS 27.72 143.42 332.10
SSS 339.45 436.82 616.80 0.997

MMS 17.78 146.17 342.86 0.921

Given a blocksize for the MMS sampler, the inefficiencies of the samplers can be compared.
It must be kept in mind that the mixture sampler, GMS, theoretically only provides a sample
for the model with the approximating Gaussian mixture as observation density (instead of
using the true observation density). Table 4 compares the average inefficiencies of the GMS
to that of the SSS (effectively the MMS but with k = 1), and to the MMS with k ≈ 143
in the last line of the table. In the present situation the single site sampler delivers clearly
higher correlation in the chain, and the MMS is roughly on par with GMS. Notice however
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that the behaviour of the samplers can also be affected by the sampling procedure for the
parameters θ, by their parametrisation, and by the choice of those parameters in the DGP
(cf. Bos and Shephard, 2006). In practical situations the SSS sampler can still be of interest,
as it is simpler to implement than the MMS, considerably quicker (such that a longer sample
could be drawn, subsampling the draws from the posterior to lower the correlation), and more
flexible in combination with extended models, see also Section 4.4 for an example.

4 Estimating volatility models in practice

4.1 Describing return data of Goldman Sachs and IBM stock

With simulated data, the DGP is fully under the control of the researcher, and estimation of
the volatility models can be performed with few surprises. This section however compares the
estimation results for the alternative estimation approaches for two series of financial stock
returns, to judge their performance in a practical setting.

The data considered here are the stock returns on the adjusted closing prices of Goldman
Sachs (GS) and IBM, measured over the period 2005/1/3–2009/12/31, for a total of 1259
daily observations. These closing prices are available through Yahoo Finance. The period
covers the financial crisis which has been affecting the economy since October 2007. For
Goldman Sachs, this crisis led to large turmoil and great changes in the stock price. While
the initial crisis delivered some large profits for Goldman Sachs (as they had invested in shorts
on the sub-prime market before the major collapse, delivering them large gains), later the
firm was hit by large losses and lawsuits. The uncertainty around the banking sector and the
aftermath of the collapse of Lehman Brothers in September 2008 forced the firm to convert
into a traditional bank, instead of the investment bank they used to be.

The second stock, IBM, is chosen for its entirely different field of operation. As a computer
firm, the financial crisis will have had far less of an effect on its stock price. Indeed, Figure
4 displays in panel (i) the stock price of GS and IBM, with strong gains and equally strong
losses for GS, whereas the IBM stock has moved comparatively little over this 5 year period.
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Figure 4: Daily Goldman Sachs and IBM stock price (panel (i)), ACF of returns (ii) and ACF
of squared returns (iii), over the period 2005–2009.
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Table 5: Moments of the percentage returns on Goldman Sachs and IBM stocks, over the
period 2005-2009

Goldman Sachs IBM
n 1259 1259

Mean 0.04 0.03
Standard deviation 3.06 1.54

Skewness 0.44 0.06
Kurtosis 15.33 8.57

The center panel of Figure 4 displays the autocorrelation function (ACF) of the returns.
Some of these autocorrelations are larger (in absolute value) than the 95% error bands. How-
ever, it should be kept in mind that these errors bands are based on the assumption of un-
derlying white noise data, whereas the variance of the returns is time-varying. These ACFs
indicate that disregarding the autocorrelation in the return series is not at great odds with
the data.

Panel (iii) of the figure displays the autocorrelation of the squared returns. As usual, the
squares of the returns are strongly correlated through time, and a model for volatility could
help in fitting the return series correctly. Table 5 displays the moments of the returns. The
kurtosis of the returns is around 15.3 for GS vs. 8.6 for IBM. Though this could indicate
either heavy tails in the return distribution or time-varying variance, for simplicity we limit
ourselves to the pure Gaussian stochastic volatility model.

4.2 Estimating SV models

Table 6 displays the estimated parameters for the selection of methods. For each method,
the optimal parameter is reported with its standard deviation. The results indicate a close
correspondence between the group of IS, the group of Bayesian methods, and (mostly) with
the QML approach. The only estimates standing out are the SMM estimates. The choice of
auxiliary density here seems to matter for the outcomes, with the GARCH model with normal
disturbances delivering results which seem to be closer to other estimates. These results are
in line with findings of Andersen et al. (1999). Trials to incorporate a semi-nonparametric
density (Gallant et al., 1997) were not successful, as such an auxiliary model could not be
optimised in a stable manner for the current sample size.

In Section 3 the methods based on importance sampling were compared on their sam-
pling efficiency through the standard deviations of the importance sampling weights. These
standard deviations are reported in Table 7. IS is found to be less efficient in its likelihood
estimation than EIS and IIS. These latter methods deliver virtually the same efficiency, where
the difference seems due to simulation error, as it was in Section 3.3.

Table 8 compares the inefficiencies in the posterior samples of the parameters from the
three Bayesian estimation methods. Note that for these estimates a sample of size 1,000,000
draws was collected after a burn-in period. The GMS method, through its approximation
of the density of ln e2

t by a mixture, delivers a well-mixing chain, in which a new draw from
the full vector of volatilities is obtained through the simulation smoother. The SSS does not
make the approximation, but instead draws a single ht|ht−1, ht+1, yt, θ, incurring far higher
correlation in the sampling chain. The MMS, on the other hand, by sampling blocks of
k ≈ 150 volatilities at once, delivers efficiency values at least as good as those of GMS, at
acceptance rates dropping towards 74-82%.
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Table 6: Parameter estimates for Goldman Sachs and IBM, 2005–2009
σ̂ε s(σε) φ̂ s(φ) σ̂ξ s(σξ)

Goldman Sachs
QML 1.1346 (0.304) 0.9975 (0.003) 0.1122 (0.023)

SMMn 1.6949 (0.353) 0.9861 (0.018) 0.1073 (0.058)
SMMt 1.2354 (0.071) 0.8257 (0.110) 0.3317 (0.123)

IS 0.8794 (0.210) 0.9976 (0.002) 0.1424 (0.022)
EIS 0.8878 (0.224) 0.9976 (0.002) 0.1427 (0.023)
IIS 0.8814 (0.211) 0.9976 (0.002) 0.1429 (0.023)

GMS 1.1460 (0.186) 0.9966 (0.003) 0.1406 (0.023)
SSS 0.7964 (0.223) 0.9982 (0.002) 0.1411 (0.022)

MMS 0.8829 (0.215) 0.9979 (0.003) 0.1378 (0.022)
IBM

QML 0.8523 (0.231) 0.9961 (0.004) 0.0994 (0.026)
SMMn 1.2016 (0.116) 0.9535 (0.030) 0.2279 (0.084)
SMMt 0.8636 (0.040) 0.7714 (0.116) 0.3925 (0.124)

IS 1.1005 (0.128) 0.9730 (0.011) 0.2176 (0.034)
EIS 1.1087 (0.127) 0.9725 (0.011) 0.2203 (0.035)
IIS 1.1012 (0.127) 0.9727 (0.011) 0.2200 (0.035)

GMS 0.8840 (0.129) 0.9903 (0.008) 0.1771 (0.031)
SSS 1.0808 (0.136) 0.9792 (0.010) 0.2004 (0.035)

MMS 1.0662 (0.148) 0.9797 (0.010) 0.1936 (0.033)

Table 7: Standard deviations σ(ω) of importance sampling weights
IS EIS IIS

Goldman Sachs 2.152 0.709 0.652
IBM 3.585 1.049 1.119

Table 8: Comparing inefficiencies and acceptance rates
Inefficiencies Acceptance

σε φ σξ rate
Goldman Sachs

GMS 364.65 101.90 138.76
SSS 1675.29 535.67 353.56 0.996

MMS 268.338 100.843 137.282 0.82
IBM

GMS 342.38 191.44 167.48
SSS 1336.78 429.93 384.73 0.993

MMS 162.59 123.68 164.21 0.74

4.3 Extracting underlying volatility

All estimation methods, except for the simulated method of moments, deliver an estimate of
the smoothed volatility together with the parameter estimates. These smoothed states of H
are plotted in Figure 5. The line for QML-based volatility is clearly distinct from the others,
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running smoother than the other state estimates. The approximation of the non-linear SV
model by the linear Gaussian state space model influences the extracted state considerably.
Close to the QML estimate of the state runs the GMS volatility estimate, both for GS and IBM
data. Remember that the GMS uses a 7-component mixture density to approximate the ln e2

t

density, where we did not perform any resampling to get rid of the remaining approximation
error. The extracted state for GMS seems to run in-between the QML and the other estimates.
Notice that the remaining methods were all theoretically exact, therefore it is no surprise that
their state estimates are similar.
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Figure 5: Extracted smoothed volatility sequences ht for Goldman Sachs (panel (i)) and IBM
(ii) returns.

4.4 Relating the returns in a bivariate model

Both Goldman Sachs and IBM operate in the same market, and their stocks are traded in
the same country on the same stock exchange. Therefore one could expect that the returns
on both stocks are related, as they both may react to the general atmosphere on the stock
market. As an extension to the standard stochastic volatility model, this section looks into
the correlation between the stock returns. For this purpose, the vector of bivariate returns at
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time t can be modelled as

yt = εt, εt ∼ N (0,Σt),
Σt = DtRtD

′
t,

Dt =
(
σε1 exp(1

2h1t) 0
0 σε2 exp(1

2h2t)

)
, Rt =

(
1 ρt
ρt 1

)
,

ρt =
exp qt − 1
exp qt + 1

,

qt+1 = qt + vt, vt ∼ N (0, σ2
q ).

This dynamic correlation stochastic volatility setup (DCSV, Yu and Meyer, 2006; Bos and
Gould, 2007) allows the returns to be correlated, with the correlation ρt changing stochasti-
cally over time in a manner similar to the behaviour of the stochastic volatility component.
As correlation is not easily estimated from the data, especially when it is time-varying, a
simple specification like the present transformed random walk is preferred.

With the likelihood or moments-based methods introduced above, estimating this ex-
tended model would require obtaining an approximating density for this full bivariate returns
model, depending on the three underlying unobserved states. The Bayesian sampling meth-
ods however perform all sampling steps conditionally on other results. Adapting the model
to include the correlation implies adding two steps to the sampling scheme, and adapting
a third. Firstly, the parameter σq is sampled conditionally on all the states and other pa-
rameters, which is comparable to drawing parameters σξ or σε. Secondly, Q = {q1, . . . , qT }
is sampled conditionally on the parameters and the volatilities, in a manner fully compara-
ble to the sampling of the H sequence. And lastly, the sampling of H has to be adapted
to incorporate the information stemming from the correlation. With the GMS this is not
easily performed, as a fully new mixture sampling procedure has to be devised (cf. Omori
et al., 2007). With SSS sampling the volatilities Hi|Y,Hj , ρ, θ, from the univariate volatility
sequences conditioning on the parameters, correlation, second volatility and the data im-
plies using slightly altered conditional densities instead of Equations (6)–(8). If one uses
p = lnP (y1t, y2t;Ht, ρt, θ) ≡ lnP (y1, y2;h1, h2, ρ, θ) (skipping the dependence on time from
the notation), then

uj =
yj
σεj

exp(−1
2
hj),

p = −1
2

(
h1 + h2 + log σ2

ε1 + log σ2
ε2 +

u2
1 − 2ρu1u2 + u2

2

1− ρ2

)
,

ṗ1 = −1
2

(
1− u2

1 − ρu1u2

1− ρ2

)
,

p̈1 = −1
2
u2

1 − 1
2ρu1u2

1− ρ2
,

where ṗ1 and p̈1 are the first and second derivatives of p with respect to the first volatility
h1. Derivatives with respect to h2 are similar.

With these changes to the derivatives, the SSS is implemented on this extended model
without further problems. The sampler can be started using the parameter estimates from
the univariate samplers as initial values, initialising the correlation sequence at the fixed full-
sample correlation. The prior for parameter σq was taken as IG-1(r, a), with expectation and
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standard deviation equal to 0.05. Results on the parameter estimates are reported in Table
9, with extracted volatilities and the correlation in Figure 6.

Table 9: Bivariate Goldman Sachs and IBM volatility/correlation results
Series Parameter θ̂ s(θ) Inefficiency
GS σε 0.9993 (0.027) 15.23

φ 0.9977 (0.002) 29.39
σξ 0.1236 (0.019) 297.51

IBM σε 1.0028 (0.027) 46.35
φ 0.9790 (0.009) 259.38
σξ 0.1953 (0.031) 469.18

Correlation σq 0.0241 (0.006) 3551.96
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Figure 6: Extracted smoothed volatility sequences ht for Goldman Sachs (panel (i)) and IBM
stock returns (ii) together with correlation ρt (iii), with 95% confidence bands, using the
bivariate DCSV model, and comparing with the univariate SV model.

The parameter estimates of Table 9 are very similar to the estimates found in for SSS in
Table 6. The new parameter σq is estimated at 0.024, clearly below the prior mean of 0.05.
In a plot of the posterior density of σq (not reported here) it is found that the mass of the
posterior indeed is concentrated at the lower end of the range of the prior density, and hence
the data is informative on the volatility of the correlation. The inefficiency measures are in
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general better than corresponding values for the SSS sampler in Table 8. It is commonly
found that an alteration in the specification of the model can indeed alter the efficiency of
the SSS strongly.

Figure 6 compares the volatilities as extracted from the univariate model with the results
from the bivariate DCSV model, in panels (i) and (ii) for Goldman Sachs and IBM respectively.
Taking the second return series into the model does not alter the estimate of volatility, as
the univariate return series themselves are sufficiently informative on the matter. Panel (iii)
displays the extracted correlation. Here it is seen how correlation between stock returns for
this bank and this information technology company are low, at around 0.4 at the start of the
sample, to increase with the onset of the crisis reaching a maximum of ρt = 0.59 in December
2008, within a month’s distance from the moment when volatility peaked. Even though
these two companies are very dissimilar in their field-of-operation, they both suffered from
the financial crisis. In bad times the co-movement of their stocks increases slightly, which is
valuable information for investors who plan on building a portfolio out of these assets.

5 Discussion and concluding remarks

This chapter set out as an investigation into the alternative estimation methods for basic
stochastic volatility models. A range of five classical and three Bayesian methods was de-
scribed, using a common notation. While the simulated method of moments approach was
found to stand apart, the others were found to share the basic idea of approximating the
(non-linear) observation equation (1) through a linear model, fitting the first two derivatives
of the log-densities using (with most methods) a single parameter for the mean and a second
for the variance at each time period t.

Both QML and GMS made the approximation without taking the most likely volatility
sequence into account, and without correcting for the approximation either. For QML this
was seen to lead to a bias in the parameter estimates. For GMS, the approximation was far
more precise using a mixture of several normal densities, and the problem of the bias was
mostly solved for parameter estimation. The extracted state however was seen to diverge
from estimates of other, theoretically exact methods.

The basic IS method improves on QML by extracting the smoothed state of the QML
approximation, and adapting the approximating model iteratively to take this most probable
state of the volatility into account. EIS and IIS continue in this same direction by taking a
full sample of probable volatilities instead of only a single smoothed state. This results in a
better approximating model and less variance of the importance weights in the evaluation of
the likelihood. EIS depended on deriving analytically the integrating constant of the auxiliary
density, taking information on past volatilities into account when optimising the parameters
of the auxiliary model. For IIS this integrating constant was not needed, as the information
was taken along in the sampling of the volatilities, applying the simulation smoother for this
purpose.

The remaining Bayesian approaches can be seen as also taking the IS approach as a
starting point. Either for a single state, or for a block of volatilities, the approximating model
is formed as in the IS method, and a single sample is drawn. Instead of using the importance
weights of IS, now a Metropolis-Hastings-within-Gibbs acceptance probability is calculated.
After deciding upon acceptance, attention shifts to the next block of volatilities.

Simulation results were found to be in line with expectation, in that indeed QML can
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lead to quick but biased estimates, and that the IS, EIS and IIS end up at virtually the same
estimators. The advantage of highest efficiency is shared between EIS and the novel IIS,
with the latter model requiring less input from the researcher in setting up the importance
sampler. The SMM approach depends on the specification of the approximating model,
though the mode of the estimates seems to be closely in line with the values of the DGP. It
could be expected that SMM works better for larger samples, where a richer auxiliary model
can be estimated with high precision. For the Bayesian approaches, SSS is found to be quick,
and theoretically exact (in contrast to GMS if no resampling is applied), but the correlation
in the resulting posterior sample is high. MMS, taking larger blocks of volatility for sampling
at once, leads to less inefficiency in the posterior sample.

Extracting volatility for Goldman Sachs and IBM returns over the period 2005–2009
indicates that the estimates of parameters and volatility of both return series correspond
largely between the methods. Mid 2007, when the first signs of the sub-prime crisis emerged,
volatility started to creep up slowly. In September 2008 the big crisis hit the financial markets,
and volatilities of both series went up further.

In an extension, the two stocks were modelled jointly, allowing for time-varying correlation
between the returns. This was easily accommodated for in the SSS. For the volatilities, little
difference was found compared to the univariate results. The extracted correlation indicated
that these rather distinct companies display stock returns which are correlated at a level of
around 0.4-0.6, where the amount of correlation is positively related to the uncertainty in the
markets.

The GARCH model has the advantage that it can be estimated using a single, well-
defined and simple, estimation method. There are however many variants of the GARCH
model, which can make it cumbersome to choose the best specification for the data at hand.
For the SV model, there is far less discussion about the preferred specification, and only the
difficulty of estimation seems to hamper a larger uptake of the model in practical research. In
this chapter it was found that the estimation methods have many commonalities. These com-
monalities can help both in understanding in detail the algorithms, and also in the practical
implementation and application of the stochastic volatility model.
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