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Abstract

We show that if an agent is uncertain about the precise form of his

utility function, his actual relative risk aversion may depend on wealth

even if he knows his utility function lies in the class of constant relative

risk aversion (CRRA) utility functions. We illustrate the consequences

of this result for asset allocation: poor agents that are uncertain about

their risk aversion parameter invest less in risky assets than wealthy

investors with identical risk aversion uncertainty.

JEL classification: D81, D84, G11

Keywords: risk aversion; preference uncertainty; risk-taking; asset

allocation.

1 Introduction

Invididual preferences for risk are not necessarily stable and deterministic,

as assumed in standard models of economic decision making. For example,

Andersen, Lau, Harrison, and Rutstrom (2008) find sizeable within-subject

differences in elicited relative risk aversion. Given the usual caution in in-

terpreting survey research, it is quite possible that agents do not know their

preferences very well, or that their preferences change between the stage of

thinking about a choice and actually making the choice, see also Weber and

Milliman (1997).

The effect of uncertain preferences on choice behavior has only received

limited attention. In particular, it is not clear what are the effects of pref-



erence uncertainty on decision making under uncertainty. In this paper, we

try to fill this gap by taking the perspective of an agent who is aware of his

ambivalence or may even be averse to preference uncertainty. As a simple

example, one can think of an investor who is unsure whether he is moderately

risk averse or very risk averse. As an application of our theory, we illustrate

the impact of this type of uncertainty on asset allocation decisions.

Existing research on preference uncertainty largely focuses on preferences

for alternative (risk-less) outcomes, particularly for resource valuation, see Li

and Mattsson (1995), Akter, Bennett, and Akhter (2008), and Van Kooten,

Krcmar, and Bulte (2001). Another line of research rationalizes the underly-

ing mechanisms that result in preference uncertainty. For example, Fischer,

Luce, and Jia (2000) argue that preference uncertainty arises because of un-

familiarity with and the need for learning about prospects that have multiple

attributes. In contrast to these earlier papers, the current paper focusses on

decision making under uncertainty and the impact of preference uncertainty.

For the set-up of our model, we build on the framework of decision making

under ambiguity aversion by Klibanoff, Marinacci, and Mukerji (2005, 2009).

These authors study the impact of uncertainty about the probabilities of risky

outcomes. In our paper, we take the probabilities of risky outcomes as given

and study the impact of uncertainty about the preference structure itself.

The paper is set up as follows. Section 2 formalizes our model for prefer-

ence uncertainty and states the main result. Section 3 provides an illustration

and presents the implications of our main result on asset allocation decisions

under power utility. Section 4 concludes.

2 The model

Consider an agent with investment horizon T and uncertain final wealth WT .

The distribution of WT is denoted as F (WT ). The agent’s utility function,

U(w, γ) is indexed by a parameter γ. For example, U can be a standard

power utility function U(W ; γ) = (1 − γ)−1W 1−γ, with γ the coefficient of
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relative risk aversion. We assume there is uncertainty about the precise value

of γ. This uncertainty may be the result of an intrinsic uncertainty about

preferences, e.g., due to the difficulty of valuing multi-attribute alternatives

as in Fischer, Luce, and Jia (2000). Alternatively, the uncertainty may be the

result of possible shifts in preferences between now and the horizon date T .

The uncertainty about γ is summarized by the distribution function G(γ).

We assume the agent maximizes

V (F,G) =

∫

v

(
∫

U(w; γ)dF (w)

)

dG(γ), (1)

where v is a strictly increasing concave function. The function v captures the

agent’s aversion to preference uncertainty in a similar way as the ambiguity

aversion function of Klibanoff, Marinacci, and Mukerji (2005, 2009). The

more curved the function v, the higher the agent’s aversion to preference

uncertainty.

The objective function in (1) naturally embeds the expected utility case

for fixed γ. To see this, note that if δg is the Dirac function that jumps from

0 to 1 at g ∈ R, we obtain

V (F, δg) = v

(
∫

U(w; g)dF (w)

)

, (2)

such that maximizing V (F, δg) is the same as maximizing expected utility.

The uncertainty about γ can be considered as a type of background risk,

as in Guiso and Paiella (2008) and Heaton and Lucas (2000). It enters the

model exogenously and cannot be hedged (completely). Usually, background

risk enters the objective through F only. Here, by contrast, the background

risk enters through the separate probability function G, where G does not

affect the distribution of final wealth. Instead, G operates on the perception

of final wealth through the utility function and through the risk-return trade-

off over all possible final wealth levels.

The first and second order partial derivatives of U with respect to wealth

are denoted as U ′ and U ′′, respectively. We assume U ′ > 0, and U ′′ < 0.

We also introduce Ū = Ū(γ) =
∫

U(w; γ)dF (w) as a short-hand notation
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for expected utility under the fixed preference γ, with first and second order

derivatives (with respect to γ) denoted as Ū ′ and Ū ′′, respectively. Finally,

v′ and v′′ denote the first and second order derivatives of v with respect to

its argument Ū , and we assume v′ > 0 and v′′ < 0.

A key concept to assess the effect of preference uncertainty on opti-

mal asset allocation decisions is the Arrow-Pratt coefficient of absolute risk

aversion (ARA). A textbook result is that for standard utility functions,

the ARA coefficient can be obtained by computing the negative second or-

der derivative of the certainty equivalent for a small Bernoulli gamble, i.e.,

ARA = −∂2c(e)/∂e2|e=0, where

U(c(e)) = 0.5U(W0 + e) + 0.5U(W0 − e),

see also the appendix. Using this definition for absolute risk aversion, the

following theorem gives our main result.

Theorem 2.1 Define the risk aversion coefficients with respect to w and γ

as ARAw = −∂2c(e)/∂e2|e=0 and ARAγ = −∂2g(e)/∂e2|e=0, where

V (δc, G) = V (0.5δw−e + 0.5δw+e, G), (3)

V (F, δg) = V (F, 0.5δγ−e + 0.5δγ+e), (4)

for fixed w and γ. We have

ARAw = −

∫

U ′′(w; γ̃)

U ′(w; γ̃)
dḠ(γ̃;w), (5)

where

dḠ(γ̃;w) =
v′(U(w; γ̃))U ′(w; γ̃)dG(γ̃)

∫

v′(U(w; γ̃))U ′(w; γ̃)dG(γ̃)
. (6)

Similarly,

ARAγ = −
v′′(Ū)

v′(Ū)
Ū ′ −

Ū ′′

Ū ′
, (7)

where Ū = Ū(γ) =
∫

U(w; γ)dF (w).

4



The proof of Theorem 2.1 can be found in the appendix.

Equation (5) shows that under preference uncertainty the risk aversion

coefficient with respect to wealth, ARAw, is the expected value of the stan-

dard risk aversion coefficient for known γ, . The expectation, however, is not

taken with respect to the distribution G of preference uncertainty, but rather

with respect to Ḡ, as defined in Equation (6). The denominator in (6) is the

integrating constant to ensure that Ḡ is a distribution function. The distri-

bution Ḡ assigns more weight to those values of γ that have a high marginal

utility U ′ for the current level of wealth w and/or a high marginal valuation

v′ of expected utility preference. In this way, the risk aversion coefficient

becomes wealth dependent, even if the risk aversion coefficient of U itself

does not depend on wealth.

We give a clear illustration of this case in the next section for the case of

constant relative risk aversion (CRRA). Interestingly, the transform from G

to Ḡ resembles the transform from actual to risk neutral probabilities via a

pricing kernel, see for example Cochrane (2001). In this case, however, the

transform is not applied to wealth uncertainty, but to preference uncertainty.

The risk aversion coefficient for preference uncertainty (ARAγ) is com-

posed of two terms. The first term of (7) reflects the curvature of v, which

operates on expected utility. Clearly, the more curved v, the higher ARAγ .

The effect is multiplied by the derivative of expected utility with respect

to γ. If expected utility hardly moves if γ is changed, the curvature of v

matters less. The second component of ARAγ is the curvature of expected

utility Ū with respect to γ (rather than w). Though the notation is similar

to the standard notation for risk aversion, the expression for familiar utility

specifications U is substantially different. For example, even for the CRRA

case, no closed form expressions for Ū are readily available.
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3 Asset allocation with CRRA utility

To illustrate Theorem 2.1, we consider an expected utility maximizing agent

(v(Ū) = Ū), endowed with a power utility function

U(WT , γ) = (1− γ)−1W 1−γ
T , (8)

where γ = −WTU
′′/U ′ denotes the relative risk aversion of the agent. The

agent is unsure about his precise value of γ, which can take either a high

value γH or a low value γL with equal probability.

In our context of optimal asset allocation, the agent can invest in a risky

and a risk-free asset with returns rf+r and rf , respectively. The risky asset’s

excess return above the risk-free rate r has probability distribution F (r). If

α denotes the fraction invested in the risky asset, end-of-period wealth WT

equals WT = W0 · (1 + rf +α · r). Using Theorem 2.1, we obtain the relative

risk aversion coefficient

RRAw = W · ARAw =
γLW

∆γ + γH
W∆γ + 1

, (9)

where ∆γ = γH − γL > 0. The RRAw coefficient clearly depends on wealth,

even though the RRAw for fixed γ does not. Looking more closely at (9),

we see that risk aversion monotonically decreases in W with an upper limit

γH for small values of W , and a lower limit γL for high values of W . Put

differently, the uncertainty in γ induces decreasing relative risk aversion.

Figure 1 illustrates the results.

The baseline case in Figure 1 is the setting without preference uncertainty:

γH = γL = 5. We obtain the familiar result that the fraction invested in the

risky asset is constant in the initial wealth level. If the uncertainty in γ is

increased by a mean preserving spread, the pattern changes substantially. For

high wealth levels, the relative risk aversion coefficient in (9) is substantially

lower than 5. This results in higher allocations to the risky asset. Ultimately,

the allocation tends to that for γL. For low wealth levels, a similar result

emerges. At low wealth levels, the agent becomes more prudent, ultimately

converging to the allocation for γH .
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Figure 1: Optimal fraction for different noise levels.

The figure shows the optimal fraction in stock for uncertain γ,

where γ takes a low or high value with equal probability as indi-

cated in the legend. The horizontal line in the figure corresponds

to γ = 5, the baseline case.

All curves in Figure 1 cross the point (1, αγ̄), where αγ̄ is the optimal

asset allocation for the expected level of risk aversion γ̄ = (γH +γL)/2. Note

that at W = 1, γ̄ is the risk aversion for 0.5U(1, γL) + 0.5U(1, γH). This

result indicates that under preference uncertainty, scaling of wealth starts to

matter. This feature is shared with other utility functions without prefer-

ence uncertainty, such as the exponential or constant absolute risk aversion

(CARA) utility function.

The effect of preference uncertainty appears negligible if wealth at the

horizon WT is scaled by current wealth W0, i.e., around the point W = 1

in the graph. However, this only holds in the static one-period model pre-

sented above. For the general multi-period context, wealth drifts from its

initial starting value W0 as time progresses. This re-introduces the chang-
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ing asset allocations over wealth levels at later stages. As a result, our

current set-up produces succinctly different results from the familiar Merton-

Samuelson multi-period result for CRRA utility functions without preference

uncertainty, see Merton and Samuelson (1990).

Further intuition for the pattern in Figure 1 can be obtained from the

first order conditions,

E
[(

x(W0) · (1 + rf + α · r)−γL

+ (1− x(W0)) · (1 + rf + α · r)−γH

)

· r
]

= 0,

(10)

where x(W0) = W∆γ
0 /(1+W∆γ

0 ) is a weight function that increases from zero

for W0 = 0 to 1 for large values of W0. Equal weights are implied by W0 = 1.

The use of weights in (10) has an obvious effect. For large initial wealth levels,

only the first order condition for a standard CRRA optimization problem

for known γ = γL plays a role. The opposite holds for low wealth levels.

The phenomenon is linked to the use of the transformed probabilities Ḡ in

Theorem 2.1 and can be understood from the different curvatures of the

utilities for the two different levels of risk aversion. For a large wealth level,

the trade-off between a risky and a safe prospect is dominated by the lowest

risk aversion utility function. The curvature of the high-risk aversion (γH)

utility at high wealth levels is negligible compared to the curvature of its γL

counterpart. The converse holds for low wealth levels, where the curvature

of U(·, γH) dominates that of U(·, γL). This causes x(W ) to go to 0 and the

asset allocation (and the first order condition) in this area to be dominated

by γH .

4 Conclusion

We have shown that uncertainty about risk aversion impacts the relation

between wealth and risk aversion, so that the asset allocation implications of

traditional utility functions are altered. The relation between wealth and risk

taking depends on the specification of uncertainty. Our example for a power
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utility maximizer shows that some uncertainty on risk aversion leads to a

positive relation between wealth and risk taking. This has implications for

analyzing actual risk taking behavior: preference uncertainty helps to recon-

cile power utility implied decision making with observed decreasing absolute

risk aversion (DRRA) behavior.
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Appendix

Derivation of ARA

Consider the gamble W = W0 + e or W = W0 − e with equal probability 0.5. The

certainty equivalent c(e) is the dollar amount for which U(c(e)) = E[U(W )], such that

U(c(0)) = U(W0). We assume U ′(W0) > 0. Define c = c(e), ċ = ċ(e) = ∂c(e)/∂e, and

c̈ = c̈(e) = ∂ċ(e)/∂e. Taking first and second order derivatives of U(c) = E[U(W )] with

respect to e and evaluating in e = 0, we obtain

U ′(c)ċ = 0.5U ′(W0)− 0.5U ′(W0) = 0 ⇒ ċ(0) = 0,

and

U ′′(c)ċ2 + U ′(c)c̈ = U ′′(W0) ⇒ c̈(0) = U ′′(W0)/U
′(W0),

such that −c̈ is the standard absolute risk aversion (ARA) coefficient.

Proof of Theorem 2.1

First note that ∂Ū(γ)/∂e|e=0 = 0 and ∂2Ū(γ)/∂e2|e=0 = U ′′(w) for F = 0.5δw−e+0.5δw+e.

Using the definition equation for c, V (δc, G) = V (0.5δw−e + 0.5δw+e, G), and taking first

and second order derivatives with respect to e on both sides and evaluating in e = 0, we

obtain

∫

v′(U(c)) U ′(c) ċ dG =

∫

v′(Ū(γ))
∂Ū(γ)

∂e
dG

e=0
=⇒ ċ(0, G) = 0,

and

∫

v′′(U(c)) U ′(c)2 ċ2 dG+

∫

v′(U(c)) U ′′(c) ċ2 dG+

∫

v′(U(c)) U ′(c) c̈ dG =

∫

v′′(Ū(γ))

(

∂Ū(γ)

∂e

)2

dG+

∫

v′(Ū(γ))
∂2Ū(γ)

∂e2
dG

e=0
=⇒

c̈(0, G) =

∫

v′(U(w)) U ′′(w)dG
∫

v′(U(c)) U ′(c) dG
=

∫

U ′′(w)

U ′(w)

v′(U(w)) U ′(w) dG
∫

v′(U(w)) U ′(w) dG

=

∫

U ′′(w)

U ′(w)
dḠ,

where we used c(0) = w. The result for ARAγ follows similarly.
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