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Abstract

Actual portfolios contain fewer stocks than are implied by standard

financial analysis that balances the costs of diversification against the

benefits in terms of the standard deviation of the returns. Suppose a

safety first investor cares about downside risk and recognizes the heavy

tail feature of the asset return distributions. Then we show that optimal

portfolio sizes are smaller than traditional correlation based diversification

analysis suggests.
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1 Introduction

The level of diversification in investor’s equity portfolios presents a puzzle to the

mean-variance based portfolio analysis. In standard financial analysis the opti-

mal portfolio size follows from balancing at the margin the cost of trading and

holding different securities against the benefits of diversification. The benefits

derive from the reduction in risk. If the risk is measured by the variance of the

portfolio return, typical portfolio sizes comprise dozens of different assets. In

two perceptive papers Statman (1987, 2004) was the first to explicitly consider

the trade-off between the costs and benefits of diversification, but found that

the theoretical analysis implies more diversification than is observed in reality.

Statman (2004) discusses the importance of behavioral aspects of the investor’s

decision process for closing the gap.

In this paper, we take Statman’s analysis further by explicitly recognizing

the behavioral concern for downside risk in the investor’s evaluation of port-

folios. Moreover, we take into account that the loss return distribution is fat

tailed distributed. Traditional diversification analysis proceeds on the basis of

naive portfolio selection whereby stocks are selected at random. This can al-

ready be regarded as a crude form of behavioral analysis where the investor

acts under ignorance (Elton and Gruber, 1978); see also Benartzi (2001), Be-

nartzi and Thaler (2001) for evidence in this direction. A mainstay component
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of behavioral attitudes toward risk is the concern for downside risk, see Shefrin

and Statman (2000). We extend the traditional naive diversification strategy

by adding the concerns for downside risk in the portfolio evaluation.

Several recent papers have shown the relevance for downside risk in financial

analysis. For example Ang, Chen and Xing (2006), and Harvey and Siddique

(2000) provide evidence that downside risk is priced. We cast the concern for

downside risk in Arzac and Bawa’s (1977) equilibrium setting of a market with

safety-first investors. The downside risk measure is made operational in two

alternative ways. One measure is the zero-th lower partial moment or Value-at-

Risk (VaR) measure. Given its proliferation in banking and insurance it is the

most direct evidence for the downside risk concern. We also consider expected

shortfall as an alternative measure, given its theoretical appeal of subadditivity.

If agents display concern for downside risk, it becomes important to model

this risk adequately. It is by now a well recognized stylized fact that tail risk

is not normal. Rather, this risk is fat tailed distributed, see e.g. Jansen and

de Vries (1991). We show theoretically that the speed of diversification under

fat tailed distributed (loss) returns is, perhaps somewhat surprisingly, higher

than under normality. The intuition is as follows. At a given risk level, under

normality diversification changes by the square root of the number of assets,

since this is how the standard deviation changes. In the case of heavy tails, the

tail risk is shaped like the power of the Pareto distribution. Diversification then

lowers the scale of the tail risk at the rate of this power minus one (the power

is unaffected). Holding the risk level constant, this implies that diversification
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reduces the loss level at a rate equal to one minus the inverse of this power.

Since for stocks and bonds it is an empirical fact that this power is larger than

two (consistent with a finite variance), the diversification speed is higher than

the square root of the normal case. The apparent, but not real, contradiction

derives from the comparison between fat tails and normal tails: By lowering the

risk level, any power rate is eventually always beaten by the exponential decline

of the normal distribution. Subsequently, we show that these claims are also

the case empirically. Furthermore, we demonstrate that if investors are a little

less naive than the random stock picker, in the sense that they are able to select

a portfolio which is among x% with the lowest downside risk, then a portfolio

size of about five stocks suffices. Alternatively, we also consider sophisticated

investors who are able to randomly select from the set of low beta stocks. This

generates optimal portfolio sizes of about ten to fifteen stocks for investors who

are concerned with events that occur once every five years.

In summary, we extend Statman’s cost-benefit analysis to explain the low

portfolio diversification by incorporating the concern for downside risk and by

recognizing the stylized fact of fat tailed distributed returns. This gives quite a

bit of mileage to closing the gap of the portfolio diversification puzzle. The rest

of the paper proceeds as follows. Section 2 recapitulates Statman’s cost-benefit

analysis. Section 3 presents alternative measures of risk. In section 4 we review

some of the important properties of heavy tail distributions. The implications

of the heavy tail property for diversification under the various risk measures

are derived in section 5. Following this, we show the gains from diversification

4



empirically in section 6. Conclusions and summarizing comments are provided

in the final section. The appendix collects some derivations and a useful result.

2 A Cost Benefit Analysis of Portfolio Size

Early diversification studies such as Evans and Archers (1968) and Elton and

Gruber (1978) focussed solely on the benefits from portfolio diversification. In

these studies the benefits are measured in terms of the reduction in the portfolio

return volatility. It is shown by how much the volatility is reduced if the number

of assets in the portfolio is increased. Since different stocks are correlated, as

in the CAPM, the studies also show there is a limit to what diversification can

attain. Moreover, it is clear from these studies that it takes quite a few extra

stocks to get some volatility reduction.

Even though it is of clear interest to know how much it takes to eliminate

’almost all’ or ’virtually all’ unsystematic risk through diversification, which is

the typical result from the early literature, it is unsatisfactory in an economic

sense when left to itself. A first step to meet this criticism was the development

of tests to determine the statistical significance of the volatility reduction as the

portfolio size is increased, an approach pioneered by Evans and Archers (1968)1 .

Such an analysis provides a statistical limit to the benefit of diversification. An

economic based limit takes into account the associated costs. Thus a financial

economics based analysis weighs the benefits against the costs of diversification.

1For recent literature following this approach, see Beck, Perfect and Peterson (1996), Tang
(2004) and Domian, Louton and Racine (2007).
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The optimal portfolio size is there where at the margin the cost of adding one

extra security is equal to the benefit of the reduction in risk. Statman (1987)

was the first to cast the question of diversification in this optimizing framework.

We are not aware of any subsequent literature2 that has followed this framework,

except Statman (2004). Below we briefly review this analysis.

2.1 The Cost of Diversification

Although diversification has been accepted as an important element of portfolio

construction, it carries several potential costs as well, such as transaction, hold-

ing and monitoring costs. If costs for a stock were proportional to the size of

the trades, then the total amount of costs would be independent of the number

of stocks in the portfolio. The only effect would be a reduction in the risk until

this is equal to the average covariance between all stocks, see Elton and Gruber

(1978). This is the case the early diversification analysis must have had in mind,

as a consideration of the costs would not alter the analysis.

The proportionality assumption is not warranted, however, if there are fixed

costs per trade so that costs do increase as the number of different stocks in the

portfolio increases, while the risk (diversification benefit) is inversely related to

the number of stocks. Thus with fixed costs a trade-off exists. For large wealth

portfolios, the cost function may even be U-shaped as large trades usually have

negative market impact. Statman (1987, 2004) was the first to consider the

2Shawky and Smith (2005) consider indirectly the cost of diversification by using risk-
adjusted returns net of expenses of mutual fund porfolios. But these authors do not calculate
explicitly costs such as transaction, monitoring and holding costs as in Statman (2004).
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increasing costs of diversification. Statman uses the concept of "additional net

cost". The "additional net cost" is the net cost of increasing diversification from

any n-stock portfolio to a fully diversified portfolio. Statman assumed that the

additional net costs are constant, i.e. independent of n. This presents some

conceptual difficulty, since the fully diversified portfolio in practice contains a

large but finite number (m) of different securities. Thus as n approaches m,

the additional net costs should go down to zero. A by-product of the paper is

that we show that this consistency requirement has only a moderate effect in

practice.

2.2 Benefits of Diversification

The following is a succinct summary of Statman’s (1987) theoretical framework.

The benefit of diversification in the mean-variance framework is the reduction of

risk, and where risk is measured as the standard deviation of portfolio returns.

Consider an investor who composes an equally weighted n-stock portfolio by

randomly selecting n different securities from the universe of m securities, n <

m. Let ri denote the return of the i-th security with the expected return Ri,

and standard deviation σi. The standard deviation of a n-stock portfolio is

√√√√
n∑

j=1

n∑

i=1

ωiωjCov(ri, rj),

where ωi is the weight of stock i in the portfolio and Cov(ri, rj) is the covariance

between the returns of stocks i and j.
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From the point of view of the random stock picker, the expected return of

each security, R, their standard deviation, σ, and the correlation coefficients, ρ,

are all equal to the averages of allm securities. The expected standard deviation

of a portfolio of n stocks then reads

σn = σ

√(
1

n

)
+

(
n− 1
n

)
ρ. (1)

Note that the expected standard deviation of the portfolio declines as the num-

ber of stocks in the portfolio increases. The limit of the diversification benefit

σ
√
ρ is reached as n becomes large, i.e., when all idiosyncratic risk is removed.

Since the diversification costs are expressed in currency units, the benefits

have to be brought under the same numeraire to be able to determine the

optimal level of diversification. Therefore the benefits are translated in units

of expected returns. To do this, the risk reduction benefits of diversification in

units of expected return are determined by a simple comparison of two portfolios.

Let P (n) denote one of the randomized portfolios with size n. Let the m-stock

portfolio, P (m), denote the benchmark portfolio. The benchmark portfolio

constitutes the most fully diversified portfolio such that m >> n.

Due to the randomized selection, all stocks are viewed as having the same

expected return, R. This return is equal to the sum of the risk-free rate, Rf ,

plus the equity premium (EP ), i.e., EP = R − Rf . If investors can borrow

and lend at the risk-free rate, the m-stock portfolio can be levered, through

borrowing or lending to form the levered portfolio P (nm). This linearly changes
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the standard deviation in accordance with the market line, see Figure 1. The

standard deviation of the levered portfolio P (nm) equals the standard deviation

of the less diversified n-stock portfolio, say. Then the expected return of the

levered portfolio is

Rnm = Rf +
σn
σm

(R−Rf ) = Rf +
σn
σm
EP, (2)

where Rnm - the expected return of the levered m-stock portfolio P (nm)

Rf - the risk-free rate

Rm - the expected return of m-stock portfolio P (m),

Rm = R constant, due to randomization

EP = R−Rf , equity premium

σn - the standard deviation of n-stock portfolio P (n)

σm - the standard deviation of m-stock portfolio P (m).

Equation (2) defines the "Total (capital) Market Line" and all levered port-

folios P (nm) lie on this line as depicted in Figure 1. From (2), one can derive

the difference between the expected returns of the n-stock portfolio, R, and the

expected return of its corresponding levered m-stock portfolio, Rnm. The incre-

mental benefit of increased diversification from n to m stocks, Bnm, expressed

in units of expected returns is

Bstdvnm = Rnm −R =
(
σn
σm

− 1
)
×EP, (3)
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Figure 1: Total Market Line: Mean-Variance Theory

Expected Returns (%)

Standard 
Deviation  (%)

Levered Portfolio P(nm)

Benefits of Diversification
P(n) P(m)

Portfolio P(n)

Portfolio P(m)

Rnm

R

Rf

σm σn

which in the specific case of (1) can be expressed as

Bstdvnm =

{√ (
1

n

)
+

(
n−1
n

)
ρ(

1

m

)
+

(
m−1
m

)
ρ
− 1

}
×EP. (4)

Note that the benefits from diversification come at a rate equal to the square

root of the number of assets n. On the basis of this equation, Statman (1987)

estimated that the optimal level of diversification amounts to holding about 40

different stocks by balancing these benefits with his net additional cost measure.

Later, on the basis of new figures of ρ, EP, m and a lower estimate of net cost in

Statman (2004), the optimal level of diversification estimate increased to about

300 stocks.
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These estimates constitute the low diversification puzzle, given that actual

portfolios contain less than 10 different stocks in reality. Polkovnichenko (2003)

and Goetzmann and Kumar (2005) find that the average number of stocks3

held in actual portfolios is only 3 to 5. The level of diversification in the average

investor’s portfolio appears to be way below the optimal level as prescribed by

random stock picking and mean-variance analysis. To close the apparent gap,

Statman (2004) proposes to turn to behavioral finance.

3 Downside Risk Measures

An important aspect of the behavioral portfolio theory is the concern for down-

side risk. The literature has suggested several alternative measures to capture

the downside risk, see e.g. Danielsson et al. (2006). In banking the Value-at-

Risk (VaR) and Expected Shortfall (ES) are arguably the most popular downside

risk measures. The VaR is simply a low probability high loss quantile and the

ES is the expected loss below the VaR quantile. The latter measure has the the-

oretical appeal of being subadditive. Both measures of risk are used alongside

the traditional standard deviation measure. As we argue in the next section,

the downside risk measures better capture the risk of loss than the standard

deviation in the case of non-normal heavy tailed distributed returns.

3These analyses only consider directly held stocks. In some of empirical tests Goetzmann
and Kumar (2005) use the proportional holdings of investors in mutual funds but they do
not examine the composition of investors’ mutual fund holdings. They adopt the idea of
layered portfolio structure of behavioral portfolio theory. They argue that an investor makes
optimal portfolio selections separately when the portfolios belong to a different layer structure.
Although a mutual fund is a sum of stocks, an investor considers it separately from individual
stocks.
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There are several motives for using a downside risk measure for portfolio

selection instead of a global risk measure such as the standard deviation. Even

if agents are endowed with the standard concave utility function, practical cir-

cumstances such as margin requirements often impose constraints that elicit

asymmetric treatment of upside potential and downside risk. Regulatory con-

cerns require commercial banks to report and act on the VaR number. Capital

adequacy is judged on the basis of the size of the expected loss. There is,

moreover, a wealth of experimental evidence for loss aversion of individuals.

3.1 Mean-VaR equilibrium model

In the mean-variance context the CAPM provides an equilibrium theory of asset

prices that we need not repeat here. Analogously, Roy’s (1952) safety first theory

as formulated by Arzac and Bawa (1977) provides an equilibrium theory if a

downside risk measure is used instead of the standard deviation. In this section

we study the benefit of portfolio diversification with respect to a downside risk

measure in the context of this equilibrium model. The portfolio choice of the

safety-first investor is to maximize expected return subject to a downside risk

constraint.

We develop a cost-benefit analysis of diversification effect in the framework of

the safety first mean-VaR model. We derive a relation similar to (2) in the mean-

VaR context. Recall that the VaR is defined as follows: Pr {x ≤ −V aR} = δ for

some desired probability level δ. The safety-first investor maximizes expected

return subject a downside risk constraint. Arzac and Bawa (1977) use the
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Value-at-Risk as the downside risk measure in their equilibrium analysis.

If the m-stock portfolio P (m) is levered with the risk-free asset with weight

ω, then we get the levered portfolio P (nm) with the expected return of Rnm =

ωR+(1−ω)Rf . As we show in the Appendix A, the value at risk of the levered

portfolio then follows as

V aRnm = ωV aRm − (1− ω)Rf , (5)

where V aRnm and V aRm are the value at risk of portfolio P (nm) and P (m),

respectively. The V aRnm is equal to V aRn, the Value-at-Risk of a less diversi-

fied n-stock portfolio P (n). Analogous to (2), the expected return of the levered

portfolio can thus be expressed as4

Rnm = Rf +
V aRn +Rf
V aRm +Rf

(R−Rf ) (6)

by substituting ω from (5) into Rnm = Rf +ω(R−Rf ). Note that this equation

corresponds to the equation (14) from Arzac and Bawa’s (1977) equilibrium

analysis. The incremental benefit of increased diversification from n tom stocks,

Bnm, on basis of the VaR measure thus reads

BV aRnm = Rnm −R =
{
V aRn +Rf
V aRm +Rf

− 1
}
×EP. (7)

4 In (6) the ratio of standard deviations in (2) is replaced by the ratio of the VaRs shifted by
Rf . This is necessary since the VaR measure is not translation invariant, while the standard
deviation measure is.
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3.2 Mean-ES model

A similar expression can be derived if the expected shortfall (ES) is used as the

measure of downside risk. If the distribution of return x is continuous, ES at

confidence level (1− δ) is defined as

ES(q) = −E (x|x ≤ q) = −
∫ q

−∞

x
f (x)

F (q)
dx,

where f (·) and F (·) are the density and distribution function of x and Pr {x ≤ q} =

δ. With arguments similar to the mean-VaR setting, we obtain the following

expression for the levered portfolio P (nm)

Rnm = Rf +
ESn +Rf
ESm +Rf

(R−Rf ) .. (8)

Note that Rnm = ωR+ (1− ω)Rf . As we show in the Appendix A

ESnm = ωESm − (1− ω)Rf ,

where ESnm and ESm are the expected shortfall at the loss probability δ of port-

folio P (nm) and P (m) respectively. The ESnm is equal to ESn, the expected

shortfall of an n-stock portfolio P (n). The incremental benefit of increased

diversification from n to m stocks, Bnm, on basis of the ES measure then reads

BESnm = Rnm −R =
{
ESn +Rf
ESm +Rf

− 1
}
×EP. (9)
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To conclude, it is pretty straightforward to adapt Statman’s incremental benefit

of diversification measure (3) to the case of downside risk measures, as (7) and

(9) show.

4 Heavy tail distribution and Its implications

Given the concern for downside risk, it becomes important to characterize the

tail risk adequately. While the normal distribution is standard fare in financial

analysis and is suitable for many questions, it is by now well realized that the

normal law is less appropriate in the area of risk management and downside

risk. Therefore we investigate the heavy tail distribution and its implications

for the risk measures under consideration.

In comparison to the normal distribution the distribution of asset returns

has more returns concentrated in the very center and more returns in the tails

of the distribution. This fat tail property is modelled by assuming that the

distribution in the tail areas behaves like a Pareto distribution; see Jansen and

de Vries (1991) for the empirical relevance. The tail of the Pareto distribution

declines at a power rate, which is always slower than the exponential decline of

the normal distribution. Other distributions like the Student-t and non-normal

sum-stable distributions also exhibit Pareto type tails.

For the purpose of presentation we first assume that the returns of securities

are identically and independently distributed. This counterfactual assumption

of independence is relaxed later by allowing for common factors.
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Suppose the {ri} are generated by a distribution with fat tails at infinity.

Thus, far from the origin the Pareto term dominates:

Pr {ri ≤ −s} = As−α[1 + o(1)], α > 0, A > 0, (10)

as s → ∞. The Pareto term implies that only moments up to α are bounded

and hence the terminology of fat tails. Per contrast, the normal distribution

has all moments bounded because of its exponential tail shape.

An implication of the fat tail property is the simplicity of the tail probabilities

for convoluted data. By Feller’s Theorem (1971, VIII.8) we have that if ri and

rj are independently distributed and adhere to (10), then

Pr {ri + rj ≤ −s} = 2As−α[1 + o(1)].

Feller’s theorem is presented in detail in the Appendix B. Some intuition for the

Feller theorem is as follows. Let losses −X be iid Pareto distributed with scale

A = 1. Then for large s the probability of one or two severe losses is

1− P{X1 > −s,X2 > −s} = 1−
(
1− s−α

)2 ≈ 2s−α,

since the second term s−2α is of smaller order. The probability of one or two

losses is to a first order equal to the sum of the marginal (single) loss proba-

bilities. Thus only the marginal (univariate) probability mass along the axes

counts. Similarly, the mass below the line X1 +X2 = s is also determined by
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how much probability mass is aligned along the axes below this line, i.e. 2s−α.5

Thus suppose that the {ri} are generated by a fat-tailed distribution sat-

isfying (10). From the Feller’s Theorem (1971, VIII.8), one can derive the

diversification effect for the equally weighted portfolio P (n) at the larger loss

levels. The return of an n-stock portfolio

r(n) =
1

n

n∑

i=1

ri

satisfies

Pr {r(n) ≤ −s} = n1−αAs−α[1 + o(1)] (11)

as s → ∞. Note how the weighing affects the scale. In particular observe

that the loss probability is lower for larger n if α > 1. This latter requirement

boils down to requiring that the mean of the return is bounded. In an early

contribution Fama and Miller (1971) already noted that if α < 1 diversification

increases the risk (for the case of sum stable distributions). But a finite mean is

undisputed for most financial securities. Note that upon inversion, (10) implies

that at a constant risk level p, the loss level s changes as follows

s ≃
(
A

p

)1/α
n1−1/α.

Thus at a given risk level, the diversification speed is 1 − 1/α. Note that if

α > 2, implying that the variance is finite, the diversification speed is larger

5For a proof of the Feller theorem by elementary integration, see Dacorogna et al.(2001).
Appendix B.2 gives a more intuitive derivation.
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than the square root (implied by e.g. the normal distribution).

We now relax the assumption of independence between the security returns

and allow for non-diversifiable market risk. The market risk reduces the benefits

of diversification. First consider a single index model in which the idiosyncratic

risk is assumed to be independent of the market risk rmkt

ri = βirmkt + qi, (12)

and where rmkt is the (excess) return on the market portfolio, βi is the amount

of market risk and qi is the idiosyncratic risk of the return on asset i. The

idiosyncratic risk may be diversified away fully in arbitrarily large portfolios

and hence is not priced. But the cross-sectional dependence induced by the

common market risk factor has to be held in every portfolio.

We apply Feller’s theorem again for deriving the benefits from cross-sectional

portfolio diversification in this single index model. In this single index model

the qi are cross-sectionally independent and are, moreover, independent from

market risk factor rmkt. In addition, suppose that the distributions of qi and

rmkt are regularly varying with the same tail index but different scales A and

C. Thus assume

Pr {qi ≤ −s} /A = Pr {rmkt ≤ −s} /C = s−α[1 + o(1)], (13)

where α > 0, A,C > 0. Since the portfolio elements are randomly chosen, we

assume that the beta of stock i is also a random variable βi. It is assumed

18



that the βi are distributed on the support [0, a], and hence have all moments

bounded. This is in contrast to the other random variables qi and rmkt that

only have moments up to α.

Consider the return of an equally weighted portfolio

r(n) =
1

n

n∑

i=1

βirmkt +
1

n

n∑

i=1

qi.

We like to determine the probability

Pr {r(n) ≤ −s}

for s large. To this end we use a combination of the Feller convolution argu-

ment and the Breiman result for products of random variables presented in the

Appendix B.1. We first rewrite the probability by a conditioning argument

Pr {r(n) ≤ −s} = Pr
{
1

n

n∑

i=1

βirmkt +
1

n

n∑

i=1

qi ≤ −s
}

= Eβ

[
Pr

{
β̄rmkt +

1

n

n∑

i=1

qi ≤ −s |βi
}]
,

where β̄ = 1

n

∑n
i=1 βi. Next we apply the convolution result of Feller in combi-

nation with the Breiman result to get

Pr {r(n) ≤ −s} = Eβ
[(
Cβ̄α +An1−α

)
s−α[1 + o(1)]

]
(14)

=
(
CEβ

[
β̄α

]
+An1−α

)
s−α[1 + o(1)]
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as s → ∞. This result capitalizes on the assumption that the distribution of

the βi has all moments bounded.

In general one finds that the single index model does not hold exactly due to

the fact that Cov[qi, qj ] is typically also non-zero for off diagonal elements. Thus

though the qi may be independent from the market risk factor rmkt (they are

uncorrelated with rmkt by construction), they are typically not cross sectionally

independent from each other. This case is usually referred to as the market

model. Given the Feller theorem, it is not difficult to extend (14) to allow for

this feature, but we leave it to the reader.

Denote δ as the fixed desired probability level such that6

δ ≈ Pr {r(n) ≤ −V aRn} .

Since the VaR measure is defined at a given probability level, rather than at

a given quantile level, (14) is not the desired final result. Consider holding the

probability constant but letting the VaR level change as the number of assets

n increases. By first order inversion based on De Bruijn’s theorem7 , we finally

obtain

V aRn =
(
CEβ

[
β̄α

]
+An1−α

)1/α
δ−1/α[1 + o(1)] as δ → 0.

The advantage is that we can now take care of the stochastic nature of the βi,

6The level of V aRn is an approximation of V aR∗n such that Pr {r(n) ≤ −V aR∗n} = δ
exactly.

7See de Bruijn’s inverse in Theorem 1.5.13 of Bingham, Goldie and Teugels (1987).
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made easy by the fact that we only need an expectation, which is not stochastic.

But it is not directly easy to see what the order of magnitude of

T (α, n) = Eβ

[(
1

n

n∑

i=1

βi

)α]

is. In the Appendix B.3 we argue that there exists an W ∈ [k (k − 1) , α] and

where k is the integer closest to α, such that k ≥ α.

Eβ

[(
1

n

n∑

i=1

βi

)α]
= βα

{
1 +

W

2

σ2β
β2
1

n
+O

(
n−2

)
}

and where V ar [βi] = σ
2
β. Hence, combining terms, we obtain

V aRn =

[
Cβα

{
1 +

W

2

σ2β
β2
1

n
+O

(
n−2

)
}
+An1−α

]1/α
δ−1/α[1 + o(1)]

=
[
v1 + v2n

−1 + v3n
1−α +O

(
n−2

)]1/α
[1 + o(1)] (15)

say, and where v1 = Cβ
α/δ, v2 =

1

2
Cβα−2Wσ2β/δ, v3 = A/δ. Note that for the

special case of identical beta’s σ2β = 0 and (15) reduces to

V aRn =
[
v1 + v3n

1−α
]1/α

[1 + o(1)]. (16)

Note that for α > 2 the idiosyncratic part v3n
1−α is smaller than the market

factor term v2n
−1 for sufficiently large n. As n increases these two factors

determine the rate of of the diversification effect for the Value at Risk. This can
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be seen by differentiation:

∂V aRn
∂n

=
1

α

(
v1 + v2n

−1 + v3n
1−α +O

(
n−2

))1/α−1
[1 + o(1)]

×
[
−v2n−2 + (1− α) v3n−α +O

(
n−3

)]
. (17)

Note that differentiating v2n
−1 + v3n

1−α + O
(
n−2

)
gives the same terms as

between the second square brackets in (17). This shows that an increase in n

changes V aRn approximately by a constant times v2n
−1 + v3n

1−α +O
(
n−2

)
.

This result can now be used in (6) to obtain an explicit expression for the

benefit of diversification for mean-VaR safety first investors when asset returns

are heavy tailed distributed and the acceptable risk level δ is low. Specifically,

define the benefits as Bnm ≡ Rnm −R. Then combining (6) and (15) gives

BV aRnm =

{ [
v1 + v2n

−1 + v3n
1−α +O

(
n−2

)]1/α
[1 + o(1)] +Rf

[v1 + v2m−1 + v3m1−α +O (m−2)]1/α [1 + o(1)] +Rf
− 1

}
×EP,

(18)

and where EP is the equity premium R−Rf .

For the other downside risk measure, ES, we can derive a similar expression.

The level of ESn follows

ESn = −
∫ q

−∞

x
fn (x)

Fn (q)
dx

for the given q such that Pr {r(n) ≤ q} ≈ δ and fn (·) and Fn (·) are the prob-

ability and cumulative density function of the returns of the n-stock portfolio.

From Proposition 1 of Danielsson, Jorgensen, Sarma and de Vries (2006), one
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obtains the following approximation for ES at the given probability level δ

ESn =
α

α− 1
[
v1 + v2n

−1 + v3n
1−α +O

(
n−2

)]1/α
[1 + o(1)]. (19)

The benefit of increased diversification from n to m stocks under the mean-ES

criterion can thus be approximated by

BESnm =





α
α−1

[
v1 + v2n

−1 + v3n
1−α +O

(
n−2

)]1/α
[1 + o(1)] +Rf

α
α−1 [v1 + v2m

−1 + v3m1−α +O (m−2)]1/α [1 + o(1)] +Rf
− 1



×EP

(20)

where we used (8) and (19).

Lastly, consider the standard deviation risk measure. Even if the returns

are heavy tailed, as long as α > 2 the variance exists. Under this condition one

can proceed and use (3) for mean-variance optimizing agents even if the return

distribution is heavy tailed.

5 Theoretical Comparison of Diversification Ben-

efits

We compare the benefits from diversification for different type of investors who

employ different risk measures. The diversification benefits under alternative

risk measures are compared as the number of assets increases. The comparison

is between a mean-variance investor and a safety first investor. The comparison

is made under the alternative assumptions that returns are normally distributed
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and that returns are heavy tailed distributed.

We start the comparison by assuming that asset returns are (counterfactu-

ally) normally distributed. For the consistency of comparison, we consider a

single index model, ri = βirmkt+ qi, as (12), where the idiosyncratic risk qi and

the market risk rmkt are assumed to be independent and normally distributed

with variances σ2mkt and σ
2
q , respectively, and R = E[rmkt]. The idiosyncratic

risks are independent, i.e. have zero cross correlation Cov (qi,qj) = 0.

The incremental benefit of diversification (2) for the mean-variance investor

is

Bstdvnm =

(
σn
σm

− 1
)
×EP,

where the standard deviation σi, i = n,m and n < m is the standard deviation

of the equally weighted portfolio r(i)

σi =

√
β2σ2mkt +

1

i

(
σ2mktσ

2
β +R

2σ2β + σ
2
q

)
. (21)

Note that if m→∞

σm → βσmkt. (22)

Thus if m→∞ and β �= 0, the diversification benefit can be simplified to

Bstdvn∞ ≡ lim
m→∞

Bstdvnm

=

(
1

βσmkt

√
β2σ2mkt +

1

n

(
σ2mktσ

2
β +R

2σ2β + σ
2
q

)
− 1

)
×EP . (23)
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We show that the three different risk measures Bstdvn∞ , BV aRn∞ and BESn∞ are

equivalent in terms of diversification benefits if the asset returns are normally

distributed.

Proposition 1 (Equivalence under Normality) Suppose asset returns {ri}

follow the single index model ri = βirmkt + qi. Let the qi be i.i.d normally dis-

tributed for all i, and be independent of rmkt, which is normally distributed as

well. The variances of qi and rmkt are denoted as σ2q and σ2mkt, respectively,

and R = E[rmkt]. Suppose that the acceptable risk level δ is below 50%. Then

the diversification benefits of Bstdvn∞ , B
V aR
n∞ and BESn∞ are identical to the extent

that the ratios Bstdvn∞ / BV aRn∞ and Bstdvn∞ / BESn∞ do not depend on n.

Proof. First consider (23), using (21) and (22)

Bstdvn∞ =

(
σn
βσmkt

− 1
)
×EP = (σn − βσmkt)

(
EP

βσmkt

)

Under normality, the VaR level of r(n) by the random stock picker is given by

V aRn = −Rn + zδσn, (24)

where Pr {r(n) ≤ −V aRn} = δ, and r(n) ∼ N
(
Rn, σ

2
n

)
, and −zδ is the δ quan-

tile of N(0, 1), so that zδσn > 0 for δ < 1/2. From (7) the incremental benefit

of diversification to the safety first investor who uses the VaR risk measure is

therefore, cf. (6),

BV aRnm =

{
zδσn −EP
zδσm −EP

− 1
}
×EP,
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where Rn = Rm = R and EP = R − Rf . For BV aRn∞ = limm→∞B
V aR
nm , i.e. if

the market portfolio is large, then using (22)

BV aRn∞ = (σn − βσmkt)
(

zδEP

zδβσmkt −EP

)
. (25)

Since the second factor between brackets in (25) does not depend on n, we get

Bstdvn∞ / BV aRn∞ =

(
EP

βσmkt

)
/

(
zδEP

zδβσmkt −EP

)
=
zδβσmkt −EP
zδβσmkt

which is constant, i.e. independent of n.

We proceed analogously for the BESnm measure. Under normality, the ES level

of r(n) for the random stock picker is given by

ESn(−V aRn) = −
1

δ

∫
−V aRn

−∞

x
1√
2πσn

exp

{
−1
2

(
x−Rn
σn

)2}
dx

= −1
δ

∫
−zδ

−∞

(Rn + σnz)
1√
2π
exp

{
−1
2
z2

}
dz

= −Rn +ESzδ × σn,

where ESzδ is the expected shortfall of the standard normal distribution at the

probability level δ. So that by (9)

BESnm =

{
ESzδσn −EP
ESzδσm −EP

− 1
}
×EP.
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If the market portfolio is large this measure simplifies to

BESn∞ = (σn − βσmkt)
ESzδ ×EP

ESzδβσmkt −EP
.

Hence,

Bstdvn∞ / BESn∞ =
ESzδβσmkt −EP
ESzδβσmkt

and similarly

BV aRn∞ / BESn∞ =
ESzδβσmkt −EP
zδβσmkt −EP

zδ
ESzδ

.

In Proposition 1, we use the specific structure for the cross-dependency from

the single index model. We can also consider the cross-dependency structure of

Statman (1987, 2004), where it is assumed that the standard deviation, σ, of

each n stocks, all correlations, ρ, between pairs of stocks and expected returns,

R, are identical. Recall the standard deviation (1) of an n stock portfolio. By

increasing the portfolio size n, we get that

σn = σ

√(
1

n

)
+

(
n− 1
n

)
ρ→ σ

√
ρ.

The benefits of diversification (4) can then be simplified for large m to

Bstdvn∞ =

(√
1

nρ
+

(
n− 1
n

)
− 1

)
×EP.

The effects of diversification are as follows:
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Corollary 1 Suppose that the acceptable risk level δ is below 50%. Under as-

sumptions of Statman’s (1987, 2004) and if the {ri} are normally distributed,

then the diversification benefits of Bstdvn∞ , B
V aR
n∞ and BESn∞ are identical to the

extent that the ratios Bstdvn∞ / BV aRn∞ and Bstdvn∞ / BESn∞ do not depend on n.

Proof. From (3),

Bstdvn∞ = (σn − σ
√
ρ)

(
EP

σ
√
ρ

)

Under normality,

BV aRn∞ = (σn − σ
√
ρ)

(
zδEP

zδσ
√
ρ−EP

)

and

BESn∞ = (σn − σ
√
ρ)

(
ESzδEP

ESzδσ
√
ρ−EP

)
.

For the mean-variance based diversification benefits one does not need the

normality assumption. This is not possible for the mean-VaR or mean-ES mod-

els, since one needs a distributional assumption to estimate the VaR or ES. The

following Corollary makes this precise for Bstdvn∞ .

Corollary 2 Suppose asset returns {ri} follow the single index model ri =

βirmkt + qi, where qi ∼
(
Q,σ2q

)
, rmkt ∼

(
R,σ2mkt

)
and where qi and rmkt are
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independent. Then the diversification speed of the variance of r(n) is

V ar [r(n)]− β2σ2mkt = O(n−1)

Proof. See the Appendix C.

If, however, the tail of the distribution of returns is fat-tailed, then the speed

of the diversification benefits is different for different types of investors. Thus

while the result for Bstdvn∞ still pertains under other distributional assumptions,

as long as the variance is finite, the results for the other downside risk measures

BV aRn∞ and BESn∞ change.

If the market portfolio is large, the benefits (18) simplify as follows

BV aRn∞ ≡ lim
m→∞

BV aRnm

=

{[
v1 + v2n

−1 + v3n
1−α +O

(
n−2

)]1/α
[1 + o(1)] +Rf

v
1/α
1 [1 + o(1)] +Rf

− 1
}
×EP,

(26)

We will now show that this measure gives a different diversification speed than

the standard deviation measure if α > 2, that is, if the variance exists.

For the measure of ES, we can derive a similar expression as for the case

of VaR under fat-tailed distribution. The benefits expressed in (20) can be
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simplified if the market portfolio m is large

BESn∞ ≡ lim
m→∞

BESnm

=





α
α−1

[
v1 + v2n

−1 + v3n
1−α +O

(
n−2

)]1/α
[1 + o(1)] +Rf

α
α−1v

1/α
1 [1 + o(1)] +Rf

− 1



×EP

(27)

We do the comparison in terms of how the benefits of diversification change as

the number of assets included in the portfolio increases.

Proposition 2 Suppose that the tail of the distribution of r(n) satisfies (14).

Moreover, assume α > 2. Then

∂Bstdvn∞

∂n
=
EP

(
σ2mktβ

2 +O(n−1)
)−1/2

2βσmkt

[
−σ2β

(
σ2mkt +R

2
)
n−2 − σ2qn−2

]

while

∂BV aRn∞

∂n
=
EP

(
v1 +O

(
n−1

))1/α−1
[1 + o(1)]

αv
1/α
1 [1 + o(1)] + αRf

[
−v2n−2 + (1− α) v3n−α +O

(
n−3

)]

and

∂BESn∞
∂n

=
EP

(
v1 +O

(
n−1

))1/α−1
[1 + o(1)]

v
1/α
1 [1 + o(1)] + (α− 1)Rf

[
−v2n−2 + (1− α) v3n−α +O

(
n−3

)]
.
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Proof. From (23) straightforward differentiation gives

∂Bstdvn∞

∂n
= −EP 1/2

βσmkt

σ2mktσ
2
β +R

2σ2β + σ
2
q√

σ2mktβ
2 + 1

n

(
σ2mktσ

2
β +R

2σ2β + σ
2
q

)
1

n2
. (28)

We proceed in a similar fashion for the other two measures. Differentiating

BV aRn∞ with respect to n, using (17), gives

∂BV aRn∞

∂n
=

EP

v
1/α
1 [1 + o(1)] +Rf

∂V aRn
∂n

=
EP 1

α

(
v1 + v2n

−1 + v3n
1−α +O

(
n−2

))1/α−1
[1 + o(1)]

v
1/α
1 [1 + o(1)] +Rf

×

[
−v2n−2 + (1− α) v3n−α +O

(
n−3

)]
. (29)

Analogously,

∂BESn∞
∂n

=
EP

α
α−1v

1/α
1 [1 + o(1)] +Rf

α

α− 1
∂V aRn
∂n

=
EP 1

α−1

(
v1 + v2n

−1 + v3n
1−α +O

(
n−2

))1/α−1
[1 + o(1)]

α
α−1v

1/α
1 [1 + o(1)] +Rf

×

[
−v2n−2 + (1− α) v3n−α +O

(
n−3

)]
. (30)

Thus BESn∞ and BV aRn∞ behave similarly with respect to increases in n, while

Bstdvn∞ just has the diversification speed 1/n.

Thus the change in the diversification benefits as n increases differs as mea-

sured by Bstdvn∞ vis-a-vis the changes in the benefits as measured through BV aRn∞

and BESn∞. In particular, from the Proposition (2) the following result is imme-
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diate:

Corollary 3 The changes in the diversification benefits as measured through

the downside risk measures BV aRn∞ and BESn∞ are identical up to a scalar multiple

∂BV aRn∞

∂n
/
∂BESn∞
∂n

=
αv

1/α
1 [1 + o(1)] + (α− 1)Rf
αv

1/α
1 [1 + o(1)] + αRf

. (31)

Proof. Divide (29) by (30).

Eventually when n grows large, the diversification benefits decline to zero,

i.e.

Bstdv
∞∞

= BV aR
∞∞

= BV aR
∞∞

= 0.

For large but finite n, we have

Corollary 4 Suppose that the tail of the distribution of r(n) satisfies (14).

Moreover, assume α > 2. Then there exist positive constants V , U , Z, such

that8

Bstdvn∞ /V ∼ n−1

while

BV aRn∞ /U = BESn∞/Z ∼ v2n−1 + v3n1−α +O
(
n−2

)
.

Hence

V BV aRn∞ /UBstdvn∞ = V BESn∞/ZB
stdv
n∞ ∼ v2 + v3n2−α +O

(
n−1

)
.

8Recall that u(n) ∼ v(n) stands for limn→∞ u(n)/v(n) = 1.
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Proof. From the derivatives (28), (29) and (30) and noting ∂n−1/∂n =

−n−2 and

∂

∂n

[
v2n

−1 + (1− α) v3n1−α +O
(
n−2

)]
= −v2n−2+ (1− α) v3n−α+O

(
n−3

)
,

one shows that Bstdvn∞ /n
−1, BV aRn∞ /

[
v2n

−1 + (1− α) v3n1−α +O
(
n−2

)]

and BESn∞/
[
v2n

−1 + (1− α) v3n1−α +O
(
n−2

)]
tend to fixed limits V , U and Z

by using l’Hospital’s rule.

In the end, the comparison between Bstdvn∞ , BV aRn∞ and BESn∞ in the limit or

for very large n is of lesser interest than the comparison at moderate values of

n, since the point of the paper is that the benefits have to be balanced with the

costs. For small n, the result (31) definitely applies as well. The comparison

with Bstdvn∞ is more involved, since BV aRn∞ and BESn∞ have two parts changing at

different rates with respect to n. The idiosyncratic part vanishes at rate n1−α,

while the market part, due to the influence of the different βi, vanishes at rate

n−1. This is in contrast to the result for Bstdvn∞ , where both parts have the same

diversification speed 1/n.

In the expressions for the variance, VaR and ES, we look at the speed of

convergence due to the idiosyncratic part and market part together. As assets

in the portfolio are drawn randomly, the average of βi is random as well. The

average of the βi converges to their mean, but this speed of convergence is slower

than the idiosyncratic part. It dominates in the end under heavy tails as the

Proposition 2 shows. To make this distinction clear, suppose that assets are
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drawn from the class of assets with the same quantity of market risk, i.e. have

the same beta. Then we have the following result:

Proposition 3 Assume the conditions of Proposition 2 and V ar [βi] = 0 for

all i, then the speed of diversification benefits of BV aRn∞ and BESn∞ are higher than

Bstdvn∞ , since

BV aRn∞ = O(n−α+1), BESn∞ = O(n−α+1)

but

Bstdvn∞ = O(n−1).

Proof. From (28), (29) and (30) in case σ2β = 0

∂Bstdvn∞

∂n
= −EP 1/2

βσmkt

σ2q√
σ2mktβ

2 + 1

nσ
2
q

n−2,

and since σ2β = 0 implies that v2 = 0

∂BV aRn∞

∂n
=
EP

(
v1 + v3n

1−α
)1/α−1

[1 + o(1)]

αv
1/α
1 [1 + o(1)] + αRf

(1− α) v3n−α,

and analogously,

∂BESn∞
∂n

=
EP

(
v1 + v3n

1−α
)1/α−1

[1 + o(1)]

αv
1/α
1 [1 + o(1)] + (α− 1)Rf

(1− α) v3n−α.

Thus ∂Bstdvn∞ /∂n = O(n
−2), while ∂BV aRn∞ /∂n = ∂BESn∞/∂n = O(n

−α). These

results then imply the claims for the level of the diversification benefits.

We provide some intuition for this result. Under independence the variance
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of the sum is the sum of the variances, since the expectations operator is linear in

the squares, regardless the distribution (as long as second moment is bounded).

Since the (tail) shape of the normal distribution is entirely determined by its

variance, the speed of diversification is the same for the global risk measure and

the downside risk measure under normality. Holding the risk level constant,

diversification in case of the normal distribution then requires that the loss level

x is reduced by the square root of the number of assets, since this is how the

standard deviation changes; recall that the ratio of the squared loss level x to

the variance determines the tail shape of the normal density exp
(
−x2/2σ2

)
.

But the tail shape of the distribution of a convolution needs not be linear in

the number of the elements in the sum. If returns are heavy tailed distributed,

the tail risk changes nonlinearly, even though the variance is still linear in the

number of securities. In the case of heavy tails, the tail risk is shaped like the

power of the Pareto distribution x−α. An equally weighted sum of heavy tailed

random variables has the same tail shape, but with a different scale: n1−αx−α,

see (11) or (14). Holding the risk level p constant then requires that the loss

level x must be reduced by n1−1/α (upon inversion x ≃ n1−1/αp−1/α). Since

for stocks and bonds it is an empirical fact that the tail shape parameter α is

larger than two (consistent with a finite variance), the diversification speed is

higher than the square root of the normal case (i.e. 1− 1/α > 1/2).

This result may appear to conflict with the fact that the normal distribution

has exponentially light tails, while the Pareto distribution has power like fat

tails. This difference in type of tails indeed explains why by lowering the risk
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level sufficiently, any power rate is eventually always beaten by the exponential

decline of the normal distribution. But for the diversification result, one holds

the risk level constant and evaluates by how much the loss level (VaR) has to

change. The diversification result operates differently on light and heavy tails.

For the light tails, the power is changed, for the heavy tails the scale changes. In

the normal case, the power changes through the (linear) change in the variance.9

For heavy tails, the scale changes by one minus the tail shape parameter. In the

case that the variance is finite, this scale declines more rapidly than the variance.

This gives the perhaps somewhat counter intuitive higher diversification speed

in the case of fat tails and downside risk when assets are drawn from the class

with the same quantity of market risk.

In general for low values of diversification (small n), we can not determine

a priori which measure delivers the larger speed of diversification benefits. This

is determined by the scaling constants in (28), (29) and (30). But the results

above suggest that if the idiosyncratic risk term dominates, then the speed may

be higher as n1−α declines more rapidly than n−1 if α > 2. It is therefore an

empirical question as to which factor dominates. To this issue we turn next.

9For other light tailed distributions, it is still true that diversification changes the power.
But this is generally not a linear function of the variance, e.g. as in the case of the exponential
distribution (where diversification would be better than in case of heavy tails, since the sum
of exponentially distributed random variables is a gamma distribution).
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6 Empirical Analysis: Historical Simulation

In the previous section the low level of portfolio diversification by investors can

be explained by the mean-VaR safety first investors in combination with the

fact that returns follow a Pareto-type fat tail distribution. In this section we

investigate the empirical relevance of those assumptions by examining historical

data. For the empirical analysis we randomly select equally weighted n stock

portfolios.

From the empirical distribution of n stock portfolio return we calculate the

VaR, ES and variance measures. This means that we do not rely on any prior

distributional assumption regarding the distribution of the returns as in (10),

nor do we rely on a specific assumption regarding the cross-dependency between

stock returns as in (12). Note that a portfolio construction by random selection

assures the assumption of identical ex ante expected returns. In the second part

of this section we also consider more able investors than just the random stock

picker.

We choose 888 stocks from the NYSE and 425 stocks from the NASDAQ

(a total 1313 stocks). We use daily returns (close-to-close data), including cash

dividends. The data were obtained from the Datastream. The data spans

the period from January 1, 1985, through February 15, 2005, giving a sample

size of 5251. Thus more than 20 years of daily data are considered, including

the short-lived 1987 crash. These particular stock series10 were selected as

10Thus there is some selection bias towards thinner tails as the worst performing stocks are
omitted; this is partly balanced by the fact that newly listed companies are also excluded.
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these have a complete record span during the period. We construct equally

weighted n-stock portfolio P (n) by randomly selecting stocks from the 1313

stocks without replacement. The averages of the standard deviation, historical

VaR and ES from 1000 different portfolios with n-stocks are calculated for each

n = 1, 2, ..., 1313.

6.1 Random and Equal weights

We calculate the corresponding incremental benefits from diversification as per

formulas (3), (7) and (9) at the δ = 0.05, 0.01, 0.025 and 0.001 risk levels.

Note that an event with probability δ = 0.001 corresponds to an extreme event

that may occur about once every five years. The δ-level 0.05 reflects events

that occur about every month. This is also approximately the level where the

(fitted) normal distribution and the (fat tailed) empirical distribution cross. So

for investors with a genuine concern for downside risk, only the δ-levels below

5% should be relevant. The optimal level of diversification depends on where

these incremental benefits equate with the incremental costs. To this end we

use Statman’s (2004) estimate of 0.06 percent additional net cost when moving

from a small n-stock portfolio to the fully diversified portfolio11 . As mentioned

before, this presents some conceptual difficulty since the additional net costs

should go down to zero. As a check on consistency we therefore also investigate

11Statman (2004) assumes that the cost of holding the fully diversified portfolio can be
approximated by the expense ratio of the Vanguard Total Stock Market Index Fund, which at
the time was 0.20 percent per annum (these run currently at 0.15%). Furthermore, Statman
used 0.14 percent as a conservative estimate of the expected annual costs of buying and
holding portfolios of individual stocks. The difference between these two estimates then yields
the imputed 0.06% incremental costs, which assumed to be independent of n.

38



by how much the portfolio size increases if we allow for a linear decline of these

costs. Furthermore, as in the Statman (2004), we use an equity premium of

3.44% and the risk-free rate is 2.19%.

The results in Table 1 show that in the case of mean-variance model the

optimal level of diversification is about 400 stocks. In the mean-VaR model,

the optimal level of diversification is 250 stocks when the risk level is δ = 0.05,

while this declines to a mere 50 stocks at δ = 0.001. In the mean-ES model,

the optimal level of diversification is 250 stocks if δ = 0.05, and 75 stocks when

δ = 0.001.12 Figure 2 demonstrates this graphically, for the two cases with

δ = 0.05 and 0.001 risk levels for the downside risk measures.

Over the moderate range between the 0.05 and the 0.01 δ-levels, the op-

timal level of diversification varies from 175 to 400 different stocks. Thus at

moderate risk levels, the amount of diversification is considerable under all cri-

teria. For the more extreme risk levels with δ equal to 0.025 and 0.001, there

is a large difference in the amount of diversification between the mean-variance

investor and the safety first investors who rely on the mean-VaR or mean-ES

criteria. The optimal levels chosen by these safety first investors approach the

levels observed in practice. Since the mean-variance criterion underestimates

12A perhaps somewhat puzzling fact in Table 2 is that the excess benefits for some entries
fall below −0.06 for the δ = 0.0025 and 0.001 entries. This implies that the incremental
benefit (7) can be negative as one increases the number of stocks from n to m. As (15) and
(24) show, if n < m then necessarily V aRn > V aRm, so that the benefits are always positive
in theory. The phenomenon stems from the coarseness of the empirical distribution in the tail
area. Due to the limited number of observations, it can easily happen that V aRn < V aRm,
whereas the underlying distributions do not generate this behavior. A simple example is two
draws of three loss returns (8, 5, 4) and (5, 1, 7). Consider Pr{X > V aR} ≤ 1/3. For both
sets of returns the V aR = 5. But for the averaged portfolio Pr{X > V aR} ≤ 1/3 has a V aR
of 5.5.
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Table 1. Excess Benefits of Diversification

# STDV VaR5 VaR1 VaR025 VaR01 ES5 ES1 ES025 ES01 

1 10.24 9.24 9.42 8.23 7.56 9.03 8.47 7.35 6.48

2 7.22 6.56 6.49 5.46 4.86 6.21 5.62 4.66 3.97

3 5.73 5.18 5.03 4.05 3.52 4.80 4.23 3.39 2.83

4 4.71 4.27 4.08 3.19 2.75 3.90 3.36 2.63 2.14

5 4.08 3.70 3.47 2.66 2.29 3.32 2.82 2.17 1.72

6 3.59 3.26 3.03 2.23 1.89 2.90 2.42 1.81 1.42

8 2.94 2.65 2.40 1.70 1.39 2.30 1.89 1.39 1.09

10 2.44 2.22 1.94 1.29 1.02 1.87 1.48 1.04 0.79

15 1.77 1.60 1.34 0.77 0.57 1.30 0.98 0.66 0.49

20 1.39 1.24 1.00 0.49 0.37 0.98 0.71 0.47 0.35

30 0.96 0.83 0.64 0.23 0.17 0.64 0.44 0.28 0.20

40 0.72 0.61 0.45 0.12 0.06 0.46 0.30 0.17 0.10

50 0.58 0.48 0.33 0.06 0.00 0.35 0.22 0.13 0.06

75 0.38 0.28 0.20 -0.03 -0.07 0.21 0.12 0.06 0.01

100 0.26 0.18 0.12 -0.07 -0.09 0.13 0.06 0.02 -0.02

125 0.19 0.12 0.07 -0.09 -0.09 0.08 0.03 0.00 -0.03

150 0.15 0.08 0.05 -0.09 -0.10 0.06 0.01 -0.01 -0.04

175 0.11 0.06 0.03 -0.09 -0.12 0.04 0.00 -0.02 -0.05

200 0.09 0.04 0.01 -0.10 -0.12 0.02 -0.01 -0.03 -0.05

250 0.06 0.01 -0.00 -0.10 -0.11 0.00 -0.02 -0.03 -0.05

300 0.03 0.00 -0.02 -0.11 -0.12 -0.01 -0.03 -0.04 -0.05

400 0.01 -0.02 -0.04 -0.10 -0.11 -0.03 -0.04 -0.04 -0.06

500 -0.02 -0.04 -0.04 -0.11 -0.10 -0.04 -0.05 -0.05 -0.06

1000 -0.05 -0.06 -0.05 -0.10 -0.07 -0.06 -0.06 -0.06 -0.06
1313 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

Value at Risk Expected Shortfall

Note: STDV, VaR and ES denote standard deviation, quantile and expected shortfall which are 

calculated at given probabilities such as 0.05, 0.01, 0.0025 and 0.001. Equity premium and risk-

free rate based on Statman (2004)'s values.
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Figure 2: Excess Benefits of Diversification
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the downside risk far into the tails of the distribution, the benefit of diversi-

fication is overestimated. The non-parametrically implemented downside risk

measures do remove this bias and come closer to actual portfolio sizes.

We also implemented the case of decreasing incremental cost. As discussed

in section 2.1 Statman (1987, 2004) assumes the constant additional net cost.

Suppose, however, that the additional net cost declines as n increase. It turns

out that this hardly increases the portfolio sizes under the extremal risk consid-

eration. For example, we found that the optimal level of diversification increases

from 300 to 350 stocks when the risk level is δ = 0.05, while there are no differ-

ences when δ = 0.0025 or 0.001 in the mean-VaR model. Therefore we do not

repeat these results (but are available upon request).
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6.2 Judicious Portfolio selection

In practice, at least a subset of investors does better than the random stock

picker (by implication some others must do worse). Whether this is due to skill

or luck is hard to tell. According to Jacob (1974), Johnson and Shannon (1974)

and others, an investor can reduce unsystematic risk significantly with only a

few securities if he or she chooses stocks sensibly. Per contrast, Goetzmann and

Kumar (2005) do not find any significant evidence of diversification improvement

by active means, such as, picking less correlated stocks. Risk reduction through

proper stock selection may thus reflect the investor’s skills, but may also just be

an artifact. Whatever the case may be, it is of interest to investigate the effects

of judicious stock selection on portfolio diversification.

In our experiment, the "active and skilled" investor still constructs an "equally

weighted portfolio", but supposedly is able to select stocks from a subset to at-

tain a lower risk level than is possible under pure random selection from the

universe of all stocks. We imagine this can be done in one of two alternative

ways.

In the first case the investor draws 1000 different random portfolios, and

subsequently chooses a portfolio that is 5 or 10 percentiles in terms of risk size

(δ-level). We denote these portfolios as ’Top 5’ or ’Top 10’ investment strategies.

We do not deal with the case in which an investor can pick a portfolio with the

minimum risk level. Otherwise, as the number of stocks in such a portfolio

increases, the risk will be increasing instead of decreasing. In a sense, we are

assuming partial ignorance or limited knowledge on part of the investor, as the
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investor is able to do better than the random stock picker but is unable to select

the lowest risk portfolio.

Alternatively, a sophisticated investor is someone who randomly picks a port-

folio from a collection of low beta stocks. Low beta stocks naturally have lower

downside risk stemming from the market factor.

We start with the first type of sophisticated investment behavior. For clarity

we only report the results for the mean variance investor and the safety first

investor who uses the VaR criterion. The VaR is evaluated at the δ = 0.05

and 0.001 risk levels. Results are reported in Table 2. The columns Average

give the same information as the corresponding columns in Table 1.13 The

previous analysis showed that at the δ = 0.05 risk level the safety first investor

and the mean variance investor diversify widely under random stock picking

(respectively 400 and 250 different stocks). Lowering the risk level to δ = 0.001

reduces the optimal level of diversification of the safety first investor to n = 50.

Introducing judicious portfolio selection lowers the amount of diversification,

because the investor already selects from a subset of stocks that are less risky.

In case of the mean-variance criterion the portfolio size reduces to about 75.

The Top 5 and Top 10 portfolios under the safety first criterion at the 0.001

risk level require less than ten stocks. This comes very close to the revealed

preference diversification that is observed in practice. The same information is

displayed graphically in Figure 3.

13But note that values of columns ’Average’ of Table 2 are differ slightly from the values that
are reported in Table 1. In Table 2 we excluded the cases with no-price changes. Infrequently
traded stocks would otherwise dominate the judiciously chosen portfolios (as no trade implies
zero risk empirically).
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Table 2. Excess Benefits of Average, Top10 and Top5

# Average Top10 Top5 Average Top10 Top5 Average Top10 Top5

1 12.86 4.52 3.75 11.44 3.72 2.97 8.97 2.32 1.62

2 7.74 3.07 2.49 6.98 2.65 2.06 5.33 1.37 0.84

3 5.95 2.48 1.92 5.36 2.22 1.58 3.65 0.86 0.35

4 4.86 2.17 1.78 4.39 1.83 1.50 2.77 0.59 0.14

5 4.20 1.92 1.47 3.79 1.71 1.27 2.29 0.40 -0.03

6 3.70 1.76 1.46 3.35 1.56 1.21 1.89 0.26 -0.03

8 3.03 1.55 1.20 2.73 1.35 1.05 1.39 0.11 -0.15

10 2.52 1.38 1.08 2.29 1.19 0.93 1.02 -0.02 -0.24

15 1.84 1.04 0.83 1.66 0.84 0.67 0.57 -0.19 -0.36

20 1.45 0.79 0.64 1.28 0.62 0.46 0.37 -0.29 -0.44

30 1.01 0.51 0.41 0.87 0.37 0.27 0.17 -0.42 -0.54

40 0.76 0.39 0.32 0.64 0.24 0.16 0.06 -0.43 -0.54

50 0.61 0.30 0.21 0.50 0.16 0.07 0.00 -0.43 -0.51

75 0.40 0.15 0.08 0.30 0.03 -0.04 -0.07 -0.46 -0.54

100 0.27 0.04 -0.01 0.19 -0.06 -0.13 -0.09 -0.47 -0.54

125 0.20 0.02 -0.03 0.13 -0.09 -0.15 -0.09 -0.42 -0.52

150 0.15 -0.01 -0.06 0.09 -0.11 -0.16 -0.10 -0.40 -0.49

175 0.12 -0.03 -0.09 0.06 -0.12 -0.17 -0.12 -0.41 -0.49

200 0.09 -0.05 -0.09 0.04 -0.13 -0.18 -0.12 -0.39 -0.48

250 0.06 -0.07 -0.09 0.01 -0.13 -0.17 -0.11 -0.37 -0.44

300 0.04 -0.07 -0.10 -0.00 -0.13 -0.17 -0.12 -0.35 -0.43

400 0.01 -0.08 -0.11 -0.02 -0.13 -0.16 -0.11 -0.31 -0.38

500 -0.02 -0.10 -0.12 -0.04 -0.13 -0.16 -0.10 -0.28 -0.34

1000 -0.05 -0.09 -0.09 -0.06 -0.11 -0.13 -0.07 -0.15 -0.18

1313 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

STDV VaR5 VaR01

Note: STDV and VaR denote standard deviation and quantile which are calculated at given 

probabilities such as 0.05 and 0.001. Equity premium and risk-free rate based on Statman 

(2004)'s values. Data with no price change excluded from calculation.
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Figure 3: Excess Benefits of Diversification under Judicious Selection

-0.05 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0 50 100 150 200 250 300 350 400 450 500

Number of Stocks in Portfolio

STDV Average

STDV Top10

STDV Top5

VaR01 Average

VaR01 Top10

VaR01 Top5

We now turn to the second type of investor sophistication. We perform an

alternative experiment of judicious portfolio selection whereby the investor can

choose from the subset of low beta stocks. We estimated all betas and consider

the subset of stocks that have a beta in the range of [0.5, 0.9]. From this subset,

we randomly selected equally weighted n stock portfolios. From the empirical

distribution of n stock portfolio return we calculate the VaR, ES and variance

risk measures. The results in Table 3 show that in the case of mean-variance

model the optimal level of diversification is about 35 stocks, considerably lower

than the 400 stocks in Table 1. The standard deviation entries in the first

column are lower than the same entries in the first column of Table 1, due to

the fact that the stocks in the subset all have a beta less than one. In the mean-

VaR model, the optimal level of diversification is 35 stocks at the δ = 0.05 risk
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Table 3. Excess Benefits of Diversification (with Low Beta)

# STDV VaR5 VaR1 VaR025 VaR01 ES5 ES1 ES025 ES01 

1 10.03 9.27 9.39 8.05 7.34 8.98 8.27 7.03 6.07

2 6.90 6.36 6.28 5.28 4.57 5.99 5.36 4.35 3.61

3 5.30 4.94 4.72 3.78 3.19 4.51 3.87 2.99 2.36

4 4.31 4.00 3.73 2.90 2.42 3.57 2.99 2.24 1.69

5 3.64 3.37 3.08 2.29 1.88 2.95 2.40 1.72 1.24

6 3.08 2.85 2.54 1.80 1.43 2.43 1.91 1.29 0.86

7 2.71 2.50 2.19 1.48 1.14 2.09 1.59 1.01 0.62

8 2.34 2.17 1.85 1.17 0.85 1.76 1.28 0.75 0.39

9 2.13 1.96 1.64 0.99 0.69 1.57 1.11 0.60 0.28

10 1.90 1.74 1.43 0.79 0.52 1.36 0.92 0.45 0.14

11 1.74 1.59 1.28 0.66 0.38 1.22 0.79 0.34 0.05

12 1.56 1.42 1.12 0.52 0.24 1.06 0.66 0.22 -0.04

13 1.44 1.31 1.01 0.42 0.17 0.96 0.56 0.14 -0.11

14 1.29 1.18 0.86 0.29 0.05 0.83 0.44 0.05 -0.18

15 1.18 1.07 0.77 0.22 -0.03 0.73 0.36 -0.01 -0.23

16 1.07 0.96 0.68 0.14 -0.12 0.64 0.28 -0.08 -0.29

17 0.97 0.86 0.59 0.05 -0.18 0.55 0.21 -0.13 -0.32

18 0.90 0.81 0.53 -0.00 -0.24 0.50 0.15 -0.19 -0.37

19 0.83 0.73 0.47 -0.05 -0.28 0.43 0.10 -0.22 -0.38

20 0.75 0.66 0.39 -0.11 -0.34 0.36 0.04 -0.28 -0.44

21 0.68 0.59 0.34 -0.16 -0.37 0.31 -0.00 -0.31 -0.46

25 0.46 0.38 0.14 -0.33 -0.50 0.12 -0.16 -0.42 -0.53

30 0.27 0.19 -0.03 -0.46 -0.58 -0.04 -0.29 -0.50 -0.60

35 0.12 0.04 -0.15 -0.55 -0.63 -0.16 -0.38 -0.56 -0.64
40 -0.01 -0.08 -0.25 -0.62 -0.70 -0.26 -0.45 -0.61 -0.68
50 -0.17 -0.25 -0.39 -0.71 -0.75 -0.39 -0.55 -0.67 -0.73

100 -0.56 -0.64 -0.65 -0.90 -0.85 -0.67 -0.73 -0.79 -0.82

300 -0.84 -0.91 -0.81 -1.08 -0.86 -0.85 -0.86 -0.85 -0.86

Value at Risk Expected Shortfall

Note: STDV, VaR and ES denote standard deviation, quantile and expected shortfall which are 

calculated at given probabilities such as 0.05, 0.01, 0.0025 and 0.001. Equity premium and risk-

free rate based on Statman (2004)'s values. Include stocks with low Beta (0.5~0.9), comparing 

340 stocks out of 1313 stocks

level, while this declines to 14 stocks when δ = 0.001. In the mean-ES model,

the optimal level of diversification is 25 stocks if δ = 0.05, and just 11 stocks

when δ = 0.001. This alternative judicious strategy lowers the optimal portfolio

sizes to a range between 11 to 17 respectively, at the more extreme risk levels

of δ = 0.001 and 0.0025. Such risk levels of the safety first investor are at least

consistent with revealed investor preference of low portfolio diversification as

are reported in the literature.

In summary, the safety first investor with some skill for stock picking and
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with a risk appetite of δ = 0.001, composes portfolios of about ten stocks for

proper diversification. The safety first criterion paired with such a low δ-level

may not be the only criterion in the universe that can explain the observed low

diversification. Nevertheless, our analysis shows that downside risk measures

are able to go a long way towards an explanation, whereas this is not possible

with mean variance type utility functions (unless the subset of stocks from

which the portfolios can be composed is severely limited). The reason is that

downside risk criteria are sensitive to qualitative differences in the tail of the

return distributions, whereas the variance measure is not.

7 Conclusion

In this paper we analyze the benefits of portfolio diversification under alternative

risk measures. In particular we consider the standard mean-variance criterion

and two popular downside risk measures. The latter measures are sensitive

to the qualitative behavior of the tail of the return distribution, whereas the

variance measure is not. Given that returns are not normally but fat tailed

distributed, our main result shows that the downside risk measures imply a

higher speed of diversification than under normality or under the mean variance

criterion. This may appear counterintuitive, as indeed for sufficiently low the

risk levels any power rate (of the heavy tailed distribution) is dominated by the

exponentially declining tail of the normal distribution.

For the diversification result, though, one holds the risk level constant and
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evaluates by how much the loss level (VaR) has to change. The diversification

result operates differently on light and heavy tails. For the light tails, the power

is changed, for the heavy tails the scale changes. In the normal case, the power

changes through the (linear) change in the variance (and hence the square root

for the standard deviation). For heavy tails, the scale changes by one minus the

tail shape parameter. In the case that the variance is finite, this scale declines

more rapidly than the variance as the tail shape parameter exceeds two. At a

given risk level, this implies that diversification reduces the loss level at a rate

equal to one minus the inverse of this power. Since for stocks and bonds it is

an empirical fact that this power is larger than two (consistent with a finite

variance), the diversification speed is higher than the square root of the normal

case.

The incremental benefits of diversification were balanced against an incre-

mental cost measure and optimal portfolio sizes were derived, theoretically and

empirically by means of a simulation study using actual return data. If investors

have some skill in selecting the lower risk stocks, the apparent low level of di-

versification observed in practice emerges from the analysis, while this is much

harder to rationalize by using the mean-variance framework. Our downside risk

measures may not be the only avenues to rationalize revealed investor prefer-

ence for low diversification. But in some form the downside risk criterion may

be necessary to pick up the fat tail phenomenon that leads to the increased

speed of diversification to explain the empirically observed small sized portfo-

lios. Conversely, from a normative perspective, our theory suggests that safety
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first investors should hold focussed portfolios given the fat tailed nature of asset

return distributions.
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Appendix

In this Appendix we derive the expressions of the VaR and ES measures for the

levered portfolio P (nm), and give the Breiman and Feller lemmas used in the

main text. We also provide the proof of Corollary 1 and Corollary 2.

A. Value-at-Risk and ES of the P (nm)

First, we show that V aRnm = ωV aRm − (1− ω)Rf . Let the levered portfolio

P (nm) be constructed from the m-stock portfolio P (m) with weight ω and

the risk-free asset with weight (1− ω). Then V aRnm for given probability δ is

defined by

V aRnm =: Pr {rnm ≤ −V aRnm} = δ,

52



where rnm = ωrm + (1− ω)Rf , rm and Rf are the returns of P (m) and the

risk-free asset. Similarly V aRm is defined as

Pr {rm ≤ −V aRm} = δ.

Now

Pr {ωrm + (1− ω)Rf ≤ −V aRnm} = Pr
{
rm ≤ −

V aRnm + (1− ω)Rf
ω

}
.

Thus

V aRm =
V aRnm + (1− ω)Rf

ω
,

which implies (5) from the main text.

For the expected shortfall, we can derive ESnm = ωESm − (1− ω)Rf by

using a similar method. The ESnm for given probability δ is defined by

ESnm = −E [rnm |rnm ≤ −V aRnm ] .

Now

E [rnm |rnm ≤ −V aRnm ] = E [ωrm + (1− ω)Rf |rnm ≤ −V aRnm ]

= ωE [rm |rnm ≤ −V aRnm ] + (1− ω)Rf

= ωE [rm |rm ≤ −V aRm ] + (1− ω)Rf

= −ωESm + (1− ω)Rf ,

53



where

rnm ≤ −V aRnm ⇐⇒ rm ≤ −ωV aRm

since rnm = ωrm + (1− ω)Rf and V aRnm = ωV aRm − (1− ω)Rf .

B.1 Breiman’s Lemma

Let X, Y be independent non-negative random variables. Suppose X has a

distribution with a regularly varying upper tail such that for x ≥ q

P{X > x} = x−αL(x), α > 0 (A1)

and where L(x) is a slowly varying function; that is

lim
t→∞

L(tx)

L(t)
= 1, for any x > 0.

Assume Y has a distribution G(y) with support [0, a]; furthermore Y has con-

tinuous density g(y). Then as t→∞

P{XY > t} = t−αL(t)E[Y α] (1 + o (1)) .

Proof. By the conditioning argument of Breiman (1965) and since Y ≤ a,
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as t→∞

P{XY > t}
P{X > t} =

Ey[P{X > t/y}]
P{X > t}

=

∫ 1

0

P{X > t/y}
P{X > t} g(y)dy +

∫ a

1

P{X > t/y}
P{X > t} g(y)dy

≤
∫ 1

0

1dG(y) +

∫ a

1

P{X > t/a}
P{X > t} g(y)dy

= G(1) +
P{X > t/a}
P{X > t} [1−G(1)]

= G(1) +
(t/a)−α

t−α
L(t/a)

L(t)
[1−G(1)]

= G(1) + aα
L(t/a)

L(t)
[1−G(1)]

→ G(1) + aα[1−G(1)] <∞.

Thus by the Lebesgue Convergence Theorem, we may interchange the limit and

the integral in

lim
t→∞

P{XY > t}
P{X > t} = lim

t→∞

∫ a

0

P{X > t/y}
P{X > t} g(y)dy

=

∫ a

0

lim
t→∞

P{X > t/y}
P{X > t} g(y)dy

=

∫ a

0

yαg(y) lim
t→∞

L(t/y)

L(t)
dy

=

∫ a

0

yαg(y)dy

= E[Y α].

55



B.2 Feller’s Theorem

We briefly introduce Feller’s convolution theorem (1971, VIII.8). This is needed

to calculate convolutions of heavy tailed random variables. The convolution re-

sult is also used to determine the downside interdependence. The Feller theorem

holds that if two independent random variables A and B satisfy (A1)

P {A > t} = P {B > t} = t−αL(t),

then their convolution satisfies

lim
t−→∞

P {A+B > t}
2t−αL(t)

= 1,

and where L(t) is slowly varying (i.e. lim
t−→∞

L(at)/L(t) = 1, for any a > 0). In

other words, the theorem implies that for large failure levels t, the convolution

of A and B can be approximated by the sum of the marginal distributions of

A and B. All that counts for the probability of the sum is the (marginal)

probability mass that is located along the two axes above the points where the

line A+B = t cuts the axes.

To show this, first note that since A and B are independent Pareto distrib-

uted

1− P {A ≤ t, B ≤ t} = 1−
[
1− t−α

]2
= 2t−α − t−2α ≃ 2t−α
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as limt→∞

(
2t−α − t−2α

)
/t−α = 2. Since (for positive random variables)

P {A+B > t} > 1− P {A ≤ t, B ≤ t} ,

we have the bound P {A+B > t} > 2t−α. The Feller theorem maintains that

P {A+B > t} is in fact approximately 2t−α as t becomes large. To verify this,

we demonstrate that

P {A+B > t} − [1− P {A ≤ t, B ≤ t}] ,

which comprises the probability mass in the triangle above the line A+B = t

(with vertices (0, t), (t, 0) and (t, t)), is of an order smaller than t−α. Note that

by independence, for λ ∈ (0, 1)

P {A > λt,B > (1− λ) t} =
(

1

λ (1− λ)

)α
t−2α.

Thus for any slab above the line A + B = t and with vertex at (λ, 1− λ) on

the line A + B = t, the probability mass is of an order smaller than t−α (i.e.

limt→∞ t
−2α/t−α = 0). Note that this slab partly covers the triangle. By

varying λ, this shows that the entire triangle must carry probability mass of an

order smaller than t−α.

B.3 Expansion of expectation

We make an assumption regarding the distribution of the beta’s.
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Condition 1 The βi are positive and finite. As a result for the random stock-

picker the βi are i.i.d with all moments finite.

It is not directly easy to see what the order of magnitude of

Eβ

[(
1

n

n∑

i=1

βi

)α]

is.14 Denote the first moment by

β = Eβ [βi] ,

and note that

Eβ

[
1

n

n∑

i=1

βi

]
= β.

Denote the variance by

Eβ

[
(βi − β)2

]
= σ2β;

hence

Eβ



(
1

n

n∑

i=1

βi − β
)2


 = 1

n
σ2β.

Define the rescaled random variables

β̂i =
βi − β
β

14We are grateful to Laurens de Haan and Zhou Chen for insightful suggestions and discus-
sions on this part.
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and

Qn =
1

n

n∑

i=1

β̂i.

By the assumption on the moments of β, all moments of Qn are finite as well.

In particular Eβ [Qn] = 0 and Eβ
[
Q2n

]
= σ2β/

(
nβ2

)
. Further

Eβ
[
Q3n

]
=

1

n3β3

(
nEβ

[
(βi − β)3

]
+ 3

(
n2 − n

)
Eβ

[
(βi − β)2

]
Eβ [(βi − β)]

+
(
n3 − 3n2 + 2n

)
(Eβ [(βi − β)])3

)

=
1

n2
Sβ
β3
,

where Sβ = Eβ

[
(βi − β)3

]
∈ R denotes the third moment. Lastly

Eβ
[
Q4n

]
=

1

n4β4

(
nEβ

[
(βi − β)4

]
+ 4

(
n2 − n

)
Eβ

[
(βi − β)3

]
Eβ [(βi − β)]

+ 3
(
n2 − n

)
Eβ

[
(βi − β)2

]
Eβ

[
(βi − β)2

]

+ n (n− 1) (n− 2) (n− 3) (Eβ [(βi − β)])4
)

=
1

n3
Kβ
β4

+
3(n− 1)
n3

σ4β
β4

where Kβ = Eβ

[
(βi − β)4

]
is the fourth moment of β. In general, note that for

any integer j > 0

Eβ
[
Qjn

]
= O

(
1/nj−1

)
.

Note that by the Condition 1 the positive support implies that 1 +Qn ≥ 0.

For the lower bound use that for α > 2, by Jensen’s inequality and Taylor’s
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theorem for some ϕ ∈ [0, 1]

Eβ

[(
1

n

n∑

i=1

bi

)α]
= βαEβ [(1 +Qn)

α]

= βαEβ

[(
(1 +Qn)

2
)α/2]

≥ βα
(
Eβ

[
(1 +Qn)

2
])α/2

= βα

{
1 +

σ2β
β2
1

n

}α/2

= βα



1 +

α

2

σ2β
β2
1

n
+

α
2

(
α
2
− 1

)

2

(
σ2β
β2
1

n

)2(
1 + ϕ

σ2β
β2
1

n

)α

2
−2





= βα + βα
α

2

σ2β
β2
1

n
+O

(
1

n2

)
.

For the upper bound we proceed as follows. Let k be the integer clos-

est to α, such that k ≥ α. By the result on the lower bound, we have that

Eβ [(1 +Qn)
α] > 1. From this and Jensen’s inequality, we have that

Eβ

[
(1 +Qn)

k
]
= Eβ

[
((1 +Qn)

α)
k/α

]
≥ (Eβ [(1 +Qn)α])k/α > Eβ [(1 +Qn)α] > 1.

By the binomial theorem

Eβ
[
(1 +Qn)

k
]
= Eβ

[
1 + kQn +

k (k − 1)
2

Q2n + ...+

(
k

j

)
Qjn + ...+Q

k
n

]

= 1 +
k (k − 1)

2

σ2β
β2
1

n
+ ...+

(
k

j

)
E

[
Qjn

]
+ ...+E

[
Qkn

]
.
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Since Eβ
[
Qjn

]
= O

(
1/nj−1

)
,

Eβ
[
(1 +Qn)

k
]
= 1 +

k (k − 1)
2

σ2β
β2
1

n
+O

(
1

n2

)
.

To conclude, we can sandwich Eβ [(1 +Qn)
α] as follows

1 +
k (k − 1)

2

σ2β
β2
1

n
+O

(
1

n2

)
≥ Eβ [(1 +Qn)α] ≥ 1 +

α

2

σ2β
β2
1

n
+O

(
1

n2

)
.

Thus for some W ∈ [k (k − 1) , α]

Eβ [(1 +Qn)
α] = 1 +

W

2

σ2β
β2
1

n
+O

(
1

n2

)
.

This gives

Eβ

[(
1

n

n∑

i=1

βi

)α]
= βα

{
1 +

W

2

σ2β
β2
1

n
+O

(
n−2

)
}
.

C. Proof of Corollary 2

Assume that all means and variances exist. So let

E[βi] = β; E[(βi − β)2] = σ2β,

E[qi] = Q; E[(qi −Q)2] = σ2q ,

and

E[rmkt] = R; E[(rmkt −R)2] = σ2mkt.
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Then by the independence of the three random variables

E[ri] = E[βirmkt + qi] = βR+Q.

And

V ar[ri] = σ
2
mktσ

2
β +R

2σ2β + β
2σ2mkt + σ

2
q .

For the portfolio

V ar

[
1

n

n∑

i=1

ri

]
=
1

n
σ2mktσ

2
β +

1

n
R2σ2β + β

2σ2mkt +
1

n
σ2q → β2σ2mkt

as n→∞.

In effect we get the result that both the idiosyncratic part σ2q/n and the

part due to the uncertainty in the betas
(
σ2mktσ

2
β +R

2σ2β

)
/n vanish at the

same speed. Note again that for this result we do not have to assume normality.
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