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(a) Booth School of Business, University of Chicago
(b) Department of Econometrics, VU University Amsterdam

(c) Department of Finance, VU University Amsterdam, Duisenberg school of finance
(d) Tinbergen Institute, Amsterdam

March 15, 2010

Abstract

We propose a new class of observation-driven time-varying parameter models for

dynamic volatilities and correlations to handle time series from heavy-tailed distributions.

The model adopts generalized autoregressive score dynamics to obtain a time-varying

covariance matrix of the multivariate Student’s t distribution. The key novelty of our

proposed model concerns the weighting of lagged squared innovations for the estimation

of future correlations and volatilities. When we account for heavy tails of distributions,

we obtain estimates that are more robust to large innovations. The model also admits

a representation as a time-varying heavy-tailed copula which is particularly useful if the

interest focuses on dependence structures. We provide an empirical illustration for a panel

of daily global equity returns.
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1 Introduction

We contribute to the literature on multivariate modeling of volatilities and correlations by

introducing a class of observation-driven time-varying parameter models with heavy tailed

distributions. In particular, we consider a multivariate Student’s t model with time-varying

volatilities and correlations for which the multivariate Gaussian model is a special case. To

anticipate the needs of different users, we introduce two levels of flexibility in the model.

First, we propose a copula version of the model which treats the marginal distributions of

each of the series separately from the dependence structure. The copula model enables the

optimization problem to be broken into more manageable pieces. Secondly, we modify the model

to accommodate alternative covariance matrix specifications. For example, we can consider the

square root of the correlation matrix in terms of hyperspherical coordinates. The general

model formulation enable us to impose a factor structure on either or both of the time-varying

volatilities and correlations.

Modeling the conditional distribution of a large group of assets is an important challenge in

modern financial time series analysis. Empirical evidence indicates that both the conditional

volatilities and correlations of assets change over time. Time-varying volatilities and correlations

among assets have practical implications for risk management and asset pricing. To capture

these features of the data, two classes of models are generally considered in the literature. The

first class comprises observation-driven models which include multivariate extensions of the

univariate generalized autoregressive conditional heteroskedastic (GARCH) family of models

introduced by Engle (1982) and Bollerslev (1986). The second class are parameter-driven

models such as the multivariate stochastic volatility models of Chib, Nardari, and Shephard

(2006) and Gourieroux, Jasiak, and Sufana (2009). This paper focuses on observation-driven

models for time-varying correlations. Time-varying correlation GARCH models were originally

developed by Ding and Engle (2001), Engle (2002), Engle and Sheppard (2001), and Tse and

Tsui (2002). Bauwens, Laurent, and Rombouts (2006) present a survey on multivariate GARCH

models covering time-varying correlation models as well as models for time-varying covariances.

When modeling the time-varying covariance matrix of a multivariate time series, it is well-

known that the number of static as well as time-varying parameters grows quickly as more series

are added. The increasing dimensionality of the parameter space creates challenging numerical
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problems and some of the additional parameters may be statistically insignificant. Various

trade-offs have been recognized between building models that lead to a better fit of the data

statistically and balancing practical considerations. Many alternative models and estimation

procedures are proposed to address these challenges.

A popular device is the use of time-varying multivariate Gaussian copulas in which the

variances/standard deviations are modeled separately from the correlations. The numerical

optimization problem is then separated into more manageable pieces. Another key device is to

impose restrictions on the parameter space and to limit the number of parameters that control

the dynamics of the correlation matrix. Both of these strategies are taken by Engle (2002)

in the successful dynamic conditional correlation (DCC) model. The modeling approach is

motivated by pragmatic reasons as the DCC is intended to scale well when the cross-sectional

dimension increases. In related models a factor structure is imposed on the volatilities and

correlations; see, for example, Tsay (2005) and Fan, Wang, and Yao (2008). A factor structure

reduces the number of time-varying parameters and potentially allows the user to extract more

information from the data. Factor structures also allow us to pose interesting questions such as

which series share common features and what economic factors drive correlations. For example,

common macroeconomic shocks as well as arbitrage opportunities generally force some common

dynamics on groups of assets. Ultimately, the appropriateness of a model and its associated

estimation procedure depends upon the application.

This paper presents the details of how time-varying volatilities and correlations can be

incorporated in the multivariate Student’s t density using the generalized autoregressive score

(GAS) framework of Creal, Koopman, and Lucas (2010). The resulting model is shown to be

effective in treating different dynamic features simultaneously in a unified way. In our empirical

illustration, we analyze daily return data for a group of global equity indices over a period of

15 years. We show that our Student’s t GAS model accounts for outliers when updating the

correlations and volatilities over time.

The remainder of the paper is organized as follows. In Sections 2 and 3 we present the

basic model specification and updating equation. Section 4 proposes alternative specifications

and factor model structures. Section 5 discusses maximum likelihood estimation and carries

out a Monte Carlo study to compare its performance with other dynamic correlation models.

Section 6 contains our illustration. Section 7 concludes.
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2 The basic model and general result

2.1 Multivariate Student’s t density

Let observation vector yt ∈ Rk follow a standardized Student’s t distribution with ν degrees of

freedom. To simplify the notation, we set the location parameter µt of yt to zero. If µt 6= 0, yt

is replaced by yt−µt below. The model can thus easily be extended to allow for regressors and

dynamics in the mean. The variance matrix of yt is denoted by Σt. We assume that ν > 2, such

that the variance matrix exists. This assumption is made to conform our notation as much as

possible to the volatility clustering literature. It is straightforward, however, to generalize the

model below to the case 0 < ν ≤ 2 by taking the scaling matrix of the Student’s t distribution,

rather than its variance matrix as the key parameter.

The observation density of yt is given by

p(yt|Σt; ν) =
Γ

(
ν+k

2

)

Γ
(

ν
2

)
[(ν − 2)π]k/2 |Σt|1/2

[
1 +

y′tΣ
−1
t yt

(ν − 2)

]−(ν+k)/2

, (1)

where the variance matrix Σt is strictly positive-definite and can be a function of time-varying

factors. For reference purposes below, we consider two special cases of the density (1). In case

ν−1 → 0, the density reduces to the multivariate Gaussian density as given by

pG(yt|Σt) =
1

(2π)k/2|Σt|1/2
exp

(
−1

2
y′tΣ

−1
t yt

)
. (2)

In the univariate case k = 1, density (1) reduces to the Student’s t density given by

p(yt|σ2
t ; ν) =

Γ
(

ν+1
2

)

Γ
(

ν
2

) √
(ν − 2)πσ2

t

[
1 +

y2
t

(ν − 2)σ2
t

]−(ν+1)/2

, (3)

where σ2
t > 0 is a time-varying scalar.

2.2 Generalized Autoregressive Score model

The generalized autoregressive score (GAS) model is an observation-driven model that allows

parameters to change over time using information from the score of the observation density.
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We collect the time-varying parameters of a model density in the vector ft and we specify the

autoregressive updating function by

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjft−j+1, (4)

where ω is a vector of constants, coefficient matrices Ai and Bj have appropriate dimensions

for i = 1, . . . , p and j = 1, . . . , q, while st is an appropriately scaled function. The unknown

coefficients in (4) are functions of the parameter vector θ, that is ω = ω(θ), Ai = Ai(θ), and

Bj = Bj(θ) for i = 1, . . . , p and j = 1, . . . , q. The coefficient matrices B1, . . . , Bq determine the

persistence of the vector ft over time.

The GAS framework is developed by Creal, Koopman, and Lucas (2010) who let the driving

mechanism st be the scaled derivative of the density function at time t with respect to the

parameter vector ft, that is

st = St∇t, ∇t =
∂ log p(yt|ft,Ft−1; θ)

∂ft

, (5)

where p(yt|ft,Ft−1; θ) is the observation density function, Ft collects all relevant information

up to time t (including covariates, yj and fj for j = 1, . . . , t) and St is a scaling matrix of

appropriate dimension. For a given density function, the equations (4) and (5) constitute our

generalized autoregressive score model of orders p and q. We abbreviate it by GAS(p, q).

Different choices for the scaling matrix St can be considered and will lead to different GAS

models. An intuitive choice is to base the scaling on the curvature of the logarithm of the

observation density (1) at time t. For example, we can have St equal to the inverse of the

Fisher information matrix, that is

St = I−1
t|t−1, It|t−1 = Et−1 [∇t∇′

t] , (6)

such that Var(st) = I−1
t|t−1. The resulting recursion in (4) can then be interpreted as a Gauss-

Newton algorithm for estimating ft through time.

Different choices for St are possible. For example, Nelson and Foster (1994) derive optimal

filtering properties for the GARCH updating equation when the scaling is based on I−1/2
t|t−1 rather
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than I−1
t|t−1. Our choice to set St = I−1

t|t−1, however, brings our GAS model closest to the familiar

standard GARCH specification. For example, consider the case of a univariate series yt that

is normally distributed, yt ∼ N (0, σ2
t ). We let ft = σ2

t and adopt the scaling (6) such that

∇t = −1
2
f−1

t + 1
2
f−2

t y2
t and St = 2f 2

t . When we scale by the inverse information matrix, the

updating equation (4) with p = q = 1 becomes

ft+1 = ω + A1(y
2
t − ft) + B1ft, (7)

which is equivalent to the GARCH model of Bollerslev (1986). The GARCH(1, 1) model is

usually presented by ft+1 = ω + α1y
2
t + β1ft so that α1 = A1 and β1 = B1 − A1 in relation to

(7). A similar argument holds in the multivariate context.

When we consider the Student’s t density (3) for yt and let ft = σ2
t with scaling (6), we

obtain the updating equation

ft+1 = ω + A1 ·
(
1 + 3ν−1

) ·
(

(1 + ν−1)

(1− 2ν−1)(1 + ν−1y2
t / ((1− 2ν−1) · ft))

y2
t − ft

)
+ B1ft, (8)

which is different from the Student’s t-GARCH(1,1) model of Bollerslev (1987). The standard

t-GARCH(1,1) model is also based on (3) but has updating equation (7). The denominator of

the second term in the right-hand side of (8) causes a more moderate increase in the variance

for a large realization of |yt| as long as ν is finite. Hence a large absolute realization of yt does

not always result in a substantial increase in the variance. The intuition for this specification is

clear. If the density of yt is heavy-tailed, a large value of y2
t is not necessarily due to an increase

in variance. It may also be due to the heavy-tailed feature of the distribution. The functional

form in (8) automatically corrects for this. Large values of y2
t have a bounded influence on

ft+1. This feature is not imposed explicitly, but it follows from the choice of the GAS model

to excite the factor recursions by the scaled density score. Similar univariate models have been

derived by, for example, Nelson and Foster (1994) and Harvey and Chakravarty (2008). The

models presented in the current paper, however, are inherently multivariate and applicable to a

range of different specifications. Other extensions such as considering asymmetric multivariate

Gaussian or Student’s t distributions for the modeling of leverage in financial return series are

also possible.
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Creal et al. (2010) demonstrate that the GAS framework based on the Fisher information

matrix (6) also nests many other successful econometric models, including the autoregressive

conditional duration model for the exponential distribution of Engle and Russell (1998) and

the multiplicative error model for the gamma distribution of Engle and Gallo (2006).

2.3 Matrix notation and definitions

To develop our results below, we adopt the following matrix notation and definitions. The

Kronecker product is denoted by A ⊗ B for two matrices A and B. In case B = A, we define

A⊗ = A ⊗ A. The operator vec(A) vectorizes matrix A into a column vector while vech(A)

vectorizes the lower triangular part of matrix A into a column vector. The unit matrix is

denoted as I. We also define the operator ⊕ for two matrices A and B as

A⊕B = (A⊗B) + (B ⊗ A).

The duplication matrix Dk and the elimination matrix Bk are defined as

Dkvech(A) = vec(A), Bkvec(A) = vech(A), (9)

for a symmetric k × k matrix A and with Bk = (D′
kDk)

−1D′
k. A duplication matrix consists of

ones and zeros only and has more rows than columns. The elimination matrix clearly has more

columns than rows. The commutation matrix Ck is defined as

vec(B) = Ckvec(B′), (10)

for any k × k matrix B. An introductory but detailed treatment of matrix calculus in econo-

metrics is presented by Abadir and Magnus (2005).

To introduce the GAS updating function for the density in (1) we specify the variance

matrix Σt in (1) as a function Σt(ft) of the time-varying factor ft in (4). The precise functional

form of the link between ft and Σt is elaborated below. Typically, it differs between models

that concentrate on correlations only (as in the copula specification), and model specifications

for correlations and volatilities jointly.

7



2.4 General result

The theorem presented below forms the basis for the model specifications in Sections 3 and 4.

Define

Ψt = Ψ(ft) =
∂vech(Σt)

∂f ′t
, Σt = Σt(ft). (11)

Theorem 1 For density (1) and time-varying factor ft in (4), we have

∇t =
∂pt(yt|Σt; ν)

∂ft

=
1

2
Ψ′

tD′
kΣ

−1
t⊗ [wtyt⊗ − vec(Σt)] , (12)

It|t−1 = E[∇t∇′
t] =

1

4
Ψ′

tD′
kJ

′
t⊗ [gG− vec(I) vec(I) ′] Jt⊗DkΨt , (13)

with matrix Dk defined in (9), scalar wt = (ν+k) / (ν−2+y′tΣ
−1
t yt), matrix Jt defined implicitly

as Σ−1
t = J ′tJt, scalar g = (ν + k) / (ν + 2 + k) and matrix G defined in (35) of the Appendix.

The square root matrix Jt can be obtained from any convenient matrix decomposition procedure.

Proof: See Appendix.

Theorem 1 reveals a number of important features. First, irrespective of the model specifi-

cation and whether we use the model as a copula or as a complete density, the dynamics of ft

are driven by the deviations of the (vectorized) weighted outer product wtyty
′
t from the local

covariance matrix Σt. For the normal distribution, the weights wt collapse to 1 and we obtain

the familiar driving mechanism of a multivariate GARCH model.

Second, Theorem 1 shows that potentially different specifications of Σt are accounted for

by the matrix function Ψt, which gathers the derivatives of the full covariance matrix Σt with

respect to the dynamic factors ft. The core of the updating scheme implied by Theorem 1

is not affected when a different specification is chosen for the correlations and/or volatilities;

only the definition of Ψt needs to change in that case. The GAS framework therefore can

accommodate a wide class of models for time-varying covariance matrices or, alternatively, for

time-varying correlation matrices under a copula specification with known variances. Some

further illustrations of alternative correlation specifications are discussed in Sections 3 and 4.

Third, the weight wt in (12) also appears in the univariate specification of (8) with k = 1.

If the density of the observations yt is heavy-tailed (ν−1 > 0), large values in yty
′
t (in absolute

terms) do not automatically lead to dramatic changes in the elements of Σt. Such large values
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may be due to the heavy-tailed feature of the distribution of yt rather than to an increase in

volatility. The weight wt in (12) automatically accounts for extreme values since it decreases if

y′tΣ
−1
t yt is large.

Fourth, as ∇t is the score of the density function with respect to ft, it follows immediately

that Et−1(st) = 0 and that st forms a martingale difference sequence. The process ft can then

be written as an infinite moving average of martingale differences. In case of the GAS(1,1)

model, we have

ft = ω +
∞∑
i=1

Bi−1
1 A1st−i. (14)

If the conditional variance of st is constant over time, the process of ft is covariance stationary

when the roots of B1 lying inside the unit circle. Generally, however, with inverse information

matrix scaling, that is St = I−1
t|t−1, the conditional variance of st will not be constant and

formulating conditions for a stationary process is much harder. Creal et al. (2010) solve this

issue by scaling with St = I−1/2
t|t−1 instead. In the developments below, we like to stay close to

the multivariate GARCH framework which requires the score to be scaled by I−1
t|t−1 as shown

for the univariate case in section 2.2.

Fifth, the model uses unexpected deviations wtyty
′
t−Σt to drive the evolution of volatilities

and correlations. Unexpected large or small cross-products are taken into account as well as

unexpected large or small squared observations. The intuition is as follows. Consider the

bivariate case k = 2 with fixed unit variances and a time-varying correlation ft = ρt for the

normal distribution (ν−1 = 0). We have vec(Σt) = (1, ρt, ρt, 1)′. The key component in updating

the time-varying correlation is the score ∇t in Theorem 1 for which it follows that Ψ′
tD′

k =

(0, 1, 1, 0). It does not imply that only the second and third elements of wtyt⊗ − vec(Σt) (the

cross-product terms) are taken into account. Since Ψ′
tD′

k is first post-multiplied by Σ−1
t ⊗Σ−1

t ,

we obtain

st =
2

(1− ρ2
t )

2

[
(1 + ρ2

t )(y1ty2t − ρt)− ρt(y
2
1t + y2

2t − 2)
]
, (15)

where yit is the ith element of yt for i = 1, 2. The first term in (15) enforces an increase

in the correlation when y1ty2t exceeds ρt. The second term is less intuitive. This term with

expectation zero implies that if y2
1t + y2

2t is large compared to its expected value of 2, the

correlation should move towards zero due to the multiplication of this difference by −ρt. To

illustrate the effect, assume that ρt = 0.5. Consider two different scenarios where we observe
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(y1t = 1, y2t = 1) or alternatively (y1t = 0.25, y2t = 4). In both scenarios, the first term in

(15) is the same and implies that the correlation should increase in the next period. For the

first observation, the second term in (15) equals zero. For the second observation, however, the

second term is negative and completely off-sets the effect of the first term. Hence, the second

observation carries a much stronger signal that the observations are uncorrelated. By contrast,

if the observation vector is (y1t = 4, y2t = 4), the first term off-sets the second step and the

correlation increases even though y2
1t + y2

2t is large.

3 Update equations for volatilities and correlations

We develop the GAS updating equations for density (1) with different specifications for the

time-varying variance Σt. In all cases, Theorem 1 applies since a different specification only

affects how Σt depends on ft. In this section we decompose the variance matrix in (1) by

Σt = DtRtDt, (16)

where Dt is the diagonal standard deviation matrix and Rt is the (symmetric) correlation

matrix. Either one of or both the matrices Dt and Rt can be time-varying depending on the

needs of the user. The decomposition (16) closely follows the DCC model of Engle (2002),

though other decompositions might be followed as well, see Section 4.

3.1 Time-varying volatilities and correlations

We consider here the multivariate Student’s t density (1) with time varying Dt as well as Rt.

We decompose the correlation matrix Rt as

Rt = ∆−1
t Qt∆

−1
t , (17)

where Qt is a symmetric positive definite matrix, ∆t is a diagonal matrix whose non-zero

elements equal the square root of the diagonal elements of Qt. The transformation (17) ensures

that the correlation matrix Rt is positive definite and symmetric with off-diagonal elements

between [−1, 1]. The specification (17) is the same as for the DCC model of Engle (2002) and
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Engle and Sheppard (2001), see also Tse and Tsui (2002). In case of the DCC model, the

updating equation for the correlations is specified directly in terms of Qt and is given by

Qt+1 = Ωdcc(I− Adcc −Bdcc) + Adcc ¯ yty
′
t + Bdcc ¯Qt, (18)

where ¯ is the Hadamard product (element by element multiplication) and k × k matrices

Ωdcc, Adcc and Bdcc are fixed and unknown. It can be shown that matrix Qt+1 remains positive

definite when matrices Ωdcc, Adcc and Bdcc are positive definite. It is common practice to

reduce the parameter space by replacing Ωdcc with the sample correlation matrix of yt and by

restricting Adcc = adcc · ιι′ and Bdcc = bdcc · ιι′ where adcc and bdcc are scalars, and ι is the vector

of ones.

We specify our factor as

ft =


 diag(D2

t )

vech(Qt)


 . (19)

with Qt from (17). Our proposed updating equation (4) is given in Theorem 1, with

Ψt =
∂vech(Σt)

∂f ′t
= Bk

∂vec(Σt)

∂f ′t
= Bk

∂vec(DtRtDt)

∂f ′t

= Bk(I⊕DtRt)
∂vec(Dt)

∂f ′t
+ BkDt⊗

∂vec(∆−1
t Qt∆

−1
t )

∂f ′t

= Bk(I⊕DtRt)
∂vec(Dt)

∂f ′t
+ BkDt⊗∆−1

t⊗

(
Dk

∂vech(Qt)

∂f ′t
− (∆t ⊕Qt)∆

−1
t⊗

∂vec(∆t)

∂f ′t

)
.

Define the matrices W∆t, WDt, S∆, SD, and SQ as follows. The matrix W∆t is constructed

by having a k2 × k2 diagonal matrix with diagonal elements 0.5vec(∆−1
t ) and then dropping

the columns containing only zeros. Similarly, the matrix WDt is constructed from the k2 × k2

diagonal matrix with diagonal elements 0.5vec(D−1
t ) and then dropping the columns containing

only zeros. The matrices S∆, SD, and SQ are selection matrices containing only ones and zeros

such that diag(∆2
t ) = S∆vech(Qt), diag(D2

t ) = SDft, and vech(Qt) = SQft. Using these matrix

definitions, we obtain

Ψt = Bk(I⊕DtRt) ·WDtSD + BkDt⊗∆−1
t⊗

[Dk − (∆t ⊕Qt)∆
−1
t⊗W∆tS∆

]SQ. (20)
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The updating equation (4) follows from Theorem 1 with Ψt given by (20). If only the corre-

lations in Rt are time-varying, SD = 0 and the first term in (20) drops out. Similarly, if only

the volatilities are time-varying and the correlations are constant, (20) gives the appropriate

specification by setting SQ = 0 and the second term in (20) vanishes.

3.2 Comparisons with DCC

Our correlation updating based on the GAS model shares some features with the DCC updating

based on (18). For example, the number of parameters in the model can be limited substantially

by setting ω in (4) equal to

ω = (I−B1 − . . .−Bq) · vech(Q̄), (21)

with Q̄ being equal to the (unconditional) sample correlation matrix. The matrix Q̄ is typically

computed from the standardized (pre-filtered) residuals. In addition, the number of parameters

can be reduced by having coefficient matrices in (4) as scaled identity matrices or diagonal

matrices. The GAS model, however, does not reduce to the DCC model. This is mainly

due to the presence of the weighting term wt in (12). It limits the impact of observations

corresponding to large values of y′tΣ
−1
t yt on the updating of correlations. Such a mechanism

is absent in the DCC model. Our current specification therefore differs substantially from

the DCC specification with Student’s t distributed error terms. Also, when we consider the

normal distribution (ν−1 = 0 and wt ≡ 1), our updating equation for the current specification

ft = vech(Qt) does not reduce to the DCC model.

To illustrate our different updating equation compared to the one of DCC, we consider

Dt = I and return to the bivariate case k = 2 from Section 2.4 which has led to equation (15).

We then have

Ψ′
t =

1

2
√

Q11,tQ22,t



−Q12,t/Q11,t

2

−Q12,t/Q22,t




(
0 1 0

)
, (22)

where Qij,t is the (i, j) element of Qt for i, j = 1, 2. The updating for all elements in ft =

vech(Qt) is driven by the single driver (15) that is multiplied by the three elements in the first

vector in (22). By contrast, the drivers in the DCC model for Q11,t, Q12,t and Q22,t are given
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by y2
1t, y1ty2t, and y2

2t, respectively. We thus have three different drivers for the DCC instead

of one for the GAS model. We justify our single driver by the notion that matrix Qt is an

auxiliary parameter and its diagonal elements are not of core interest. The driver of the GAS

model takes this into account by postulating that there is only one function (rather than three

separate functions) of the data containing information on changes in the correlation parameter.

The numerical intuition was provided at the end of Section 2.4.

The current specification ft with vech(Qt) has obvious drawbacks that it shares with DCC.

In particular, the dimension of SQft is higher than the number of unique elements in Rt, i.e. ft

contains an additional k factors. The Fisher information matrix for (17) is therefore singular

and we need to replace I−1
t|t−1 in (6) by the Moore-Penrose pseudo-inverse of It|t−1, that is I+

t|t−1.

Since the diagonal elements of Qt are effectively redundant, its corresponding elements in ω in

(4) are not identified. In particular, the elements of ω corresponding to the diagonal elements

of Qt can be multiplied by any arbitrary positive number without changing the decomposition.

In our empirical work, this is resolved by using the normalization (21).

3.3 A time-varying copula specification

It is straightforward to transform the general framework of Section 3.1 to a copula specification.

Assume that a univariate time series model for each series in the vector yt has been estimated

separately. Let uit denote the probability integral transform of yit, which is the ith series in

yt. The density (1) then operates on the k × 1 vector ỹ′t = [P−1
ν (u1t), . . . , P

−1
ν (ukt)]

′ via Sklar’s

theorem in Sklar (1959), where P−1
ν (·) is the univariate inverse Student’s t distribution with

ν degrees of freedom. In the copula specification, the decomposition (16) simplifies because

Dt ≡ I. We obtain

Ψt = BkDt⊗∆−1
t⊗

[Dk − (∆t ⊕Qt)∆
−1
t⊗W∆tS∆

]SQ, (23)

where SQ = I because ft = vech(Qt). Note that the marginal densities drop out from the

expression for the GAS step st in Theorem 1 as they do not depend on Rt. They therefore

vanish when taking derivatives of the log-density with respect to ft. To evaluate the likelihood

and estimate the parameters, however, the marginal densities have to be considered as well.

The main reason is that they depend on the unknown parameter ν, which has to be estimated.
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4 Alternative specifications for the covariance matrix

In this section, we consider alternative specifications for the time-varying covariance matrix Σt.

We also extend the basic specification by imposing a factor structure on the covariance matrix.

In all cases, the only change necessary for the GAS driving mechanism st provided in Theorem

1 is the matrix Ψt.

4.1 Time-varying log-volatilities

To impose positive standard deviations in the decomposition (16), we can, for example, define

the vector of factors ft as

ft =


 log (diag(D2

t ))

vech(Qt)


 . (24)

In the log-variance specification with correlation matrix given by (17), we obtain

Ψt = Bk(I⊕DtRt)WDtD
2
tSD + BkDt⊗∆−1

t⊗
[Dk − (∆t ⊕Qt)∆

−1
t⊗W∆tS∆

]SQ (25)

which is the same as Ψt in (20) except its first term is multiplied by D2
t . The multiplication by

D2
t accounts for the log transformation in the derivative of diag(D2

t ) with respect to ft. In the

setting where Rt = R, SD is the identity matrix and SQ = 0.

4.2 Time-varying correlations based on hyperspherical coordinates

In this section we provide an alternative specification for Rt. The variance matrix decomposition

Σt = DtRtDt remains as in (17). The difficulty with specifying a correlation matrix is that

three necessary conditions are needed: (i) the matrix Rt has to be positive (semi) definite; (ii)

the off-diagonal elements of Rt all lie in the interval [−1, 1]; and (iii) the diagonal elements of Rt

are equal to one for all values of t. To satisfy (i), we can adopt the Cholesky decomposition of

Rt rather than Rt itself. The Cholesky decomposition, however, by itself does not automatically

satisfy (ii) and (iii). An alternative specification and decomposition that satisfies all conditions

(i)-(iii) simultaneously is based on hyperspherical coordinates and is given by

Rt = X ′
tXt,
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where Xt is an upper-triangular matrix given by

Xt(φt) =




1 c12t c13t . . . c1kt

0 s12t c23ts13t . . . c2kts1kt

0 0 s23ts13t . . . c3kts2kts1kt

0 0 0 . . . c4kts3kts2kts1kt

...
...

...
. . .

...

0 0 0 . . . ck−1,kt

∏k−2
`=1 s`kt

0 0 0 . . .
∏k−1

`=1 s`kt




, (26)

with scalar cijt = cos(φijt), scalar sijt = sin(φijt), and scalar φijt as the time-varying angle

measured in radians. The vector φt contains the k (k − 1) / 2 angles φijt for i, j = 1, . . . , k.

The columns of Xt consist of hyperspherical coordinates with unit length. This decomposition

has been used by Jaeckel and Rebonato (2000) with constant angles over time as a device to

model term structure data. The GAS framework is ideally suited to allow the angles, and

therefore the correlations, to be time-varying. In this case, we define the vector of factors as

f ′t = [diag(D2
t )
′, φ′t]. The general structure of Theorem 1 automatically provides the functions

of the data to drive the angles φt through the GAS updating variable st.

As before, the only change needed compared to the previous specifications is the form of

Ψt. Below we use the derivatives

∂xijt

∂φ`mt

=





0 if i > j, ` ≥ m, ` ≥ i, or j 6= m,

−xijt · tan(φijt) if i = ` and i 6= j,

xijt/ tan(φ`jt) otherwise,

(27)

for i, j, `, m = 1, . . . , k and where xijt is the (i, j) element of Xt. These derivatives induce the

elements in the k2 × [k (k − 1) / 2] derivative matrix

Zt =
∂vec(Xt)

∂φ′t
.
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In the GAS framework, define the selection matrix Sφ such that φt = Sφft. Also note that

∂vec(Rt)

∂f ′t
=

∂vec(X ′
tXt)

∂φ′t
Sφ = [(I⊗X ′

t) + (X ′
t ⊗ I)Ck] ZtSφ. (28)

with the commutation matrix Ck as defined in (10). Combining these results, we obtain

Ψt = Bk(I⊕DtRt)WDtSD + BkDt⊗ [(I⊗X ′
t) + (X ′

t ⊗ I)Ck] ZtSφ. (29)

The decomposition of the correlation matrix into hyperspherical coordinates can also easily be

combined with the log-variance specification of the volatility matrix discussed in section 4.1.

The hyperspherical specification has the advantage relative to the decomposition of Rt in

(17) that the number of correlations in Rt is the same as the number of unique elements in

Xt. As a result, all parameters in the vector ω are identified and the scaling matrix St in (6) is

nonsingular. Also, when the dimension k of yt increases, the number of elements in ft for the

hyperspherical specification is smaller than for the specification (17). A possible disadvantage

relative to (17) is the interpretation of the factors as angles. Each angle is only identified

within the region [0, 2π]. This constraint can be imposed on the factors via a transformation.

However, in practical cases our experience is that numerical problems do not occur when such

constraints are omitted.

4.3 Common dynamic factors

In our time-varying specifications, the number of factors coincides with the number of time-

varying volatilities and correlations in the model. In the correlation specification (17) the

number of factors is even larger than the number of correlations. However, the time-varying

features may be shared between different volatilities and different correlations (indeed, even

between volatilities and correlations). To allow for common dynamic features, we can impose

a dynamic factor structure on the volatilities and correlations. Consider partitioning ft as in

(19), that is f ′t = [diag(D2
t )
′, vech(Qt)

′]. With a slight abuse of notation, we have

diag(D2
t ) = a + SDft, vech(Qt) = b + SQft, (30)
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with vectors a and b, and where SD and SQ are defined as full matrices rather than selection

matrices. We assume that all vectors and matrices have the appropriate dimensions, are fixed,

may depend on unknown coefficients, and are subject to identification restrictions. Extensions

to non-linear factor structures are straightforward. The form of Ψt is now the same as in (20).

For the hyperspherical coordinate specification, the result remains (29) with Sφ specified as a

real-valued matrix rather than a selection matrix consisting of zeros and ones. For multivariate

GARCH models, factor structures have been imposed by Tsay (2005) and by Bauwens et al.

(2006) in their survey article.

A low-dimensional ft reduces the number of time-varying factors but it typically raises

the number of unknown coefficients in the factor loading matrices SD and SQ or Sφ. In the

multivariate GARCH cases, it is common practice to estimate the constant vectors a and b

initially using sample variances and sample correlations. Furthermore, it is possible to impose

additional structure on the correlation matrix Rt. For example, a specification of Rt similar

to the dynamic equicorrelation (DECO) model of Engle and Kelly (2009) can be considered.

In our case the equicorrelation structure can be enforced by having a single factor driving

all the correlations and having unit values in the matrix (here, vector) SQ. This structure

imposed on Rt may introduce both statistical and computational advantages when modeling

very high-dimensional systems.

5 Estimation and Monte Carlo evidence

In this section we carry out a Monte Carlo study to investigate the performance of our modeling

framework. We verify whether parameter estimation can be successful without knowing the

evolution of the time-varying factor ft. We first briefly discuss the estimation of fixed and

static parameters in the model using the method of maximum likelihood. Then the Monte

Carlo design is presented and our results are discussed.
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5.1 Parameter estimation

Given a set of n realizations for the observation vector yt with mean zero and for t = 1, . . . , n,

the log-likelihood function for the multivariate Student’s t model is given by

L =
n∑

t=1

{
log

[
Γ

(
ν + k

2

)]
− log

[
Γ

(ν

2

)]
− 1

2
log |Σt|

− k

2
log [(ν − 2)π]− (ν + k)

2
log

[
1 +

y′tΣ
−1
t yt

(ν − 2)

]}
, (31)

where the time variation of Σt is determined by the GAS updating equations for Dt and Rt. For

given values of ν in (1) and of ω, Ai and Bi in (4), the log-likelihood function can be evaluated

in a straightforward way. The unknown coefficients are collected in the parameter vector θ and

its estimation is based on the maximization of (31) with respect to θ. Maximization can take

place via a standard quasi-Newton numerical optimization procedure.

5.2 Monte Carlo study

The design of our Monte Carlo study is similar to the study conducted by Engle (2002). We

simulate a series of n = 1000 observations from a bivariate Student’s t distribution with unit

variance and time-varying correlation ρt. The following time-varying patterns for ρt will be

considered:

1. Constant 0.9;

2. Sine 0.5 + 0.4 cos (2πt / 200);

3. Fast Sine 0.5 + 0.4 cos (2πt / 20);

4. Step 0.9− 0.5 (t > 500);

5. Ramp mod(t / 200);

6. Model exp(ht) / [1 + exp(ht)] where

ht = −0.4(1− 0.99) + 0.99ht−1 + 0.14ηt, ηt ∼ N (0, 1).

Graphs depicting each of these patterns can be found in Engle (2002). Given one of these

patterns, the data generation process is given by

yt ∼ p (yt|Σt; ν) , Σt = Rt =
ν − 2

ν


 1 ρt

ρt 1


 , ν = 5, (32)
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where p (yt|Σt; ν) is the bivariate Student’s t density (1) with k = 2. In the Monte Carlo study,

we simulate 500 bivariate series for each of the six time-varying patterns ρt.

For a realized bivariate time series, we consider the model with density (1) and the GAS(1, 1)

recursion (4) for ft. We consider both the specification of Rt given by (17) and given by the

hyperspherical coordinates in (26). For both models, we estimate the unknown parameters

ν, A1 and B1 by maximum likelihood while ω is estimated using the (unconditional) sample

correlation. Given the parameter estimates, we obtain ρ̂t from ft using the GAS(1, 1) updating

equation (4). Our two measures of accuracy are the mean absolute error (MAE) and the mean

squared error (MSE) as given by

MAE =
1

n

n∑
t=1

|ρ̂t − ρt|, MSE =
1

n

n∑
t=1

(ρ̂t − ρt)
2 .

Once the two GAS specifications are treated for a simulated series yt, we consider alternative

approaches of estimating ρt for comparison purposes. In particular, we benchmark the two GAS

models against the DCC model. Also, we consider as a benchmark the exponentially weighted

moving average (EWMA) recursion for Qt in (17) given by

Qt+1 = λQt + (1− λ) yty
′
t, (33)

where the smoothing parameter is set to λ = 0.96. Given the insights obtained from the GAS

updating and the impact of the weighting term wt, our final benchmark is an adjusted EWMA

scheme with an additional penalty term, that is

Qt+1 = λQt + (1− λ)
(ν∗ + 2)

ν∗ − 2 + y′tΣ
−1
t yt

yty
′
t, (34)

with ν∗ = 10.

The results from this Monte Carlo study are presented in Table 1, where we take the DCC

model as the benchmark and report all MAE and MSE values relative to it. The reported MAE

and MSE values are based on the means of the MAE and MSE for each Monte Carlo repetition.

The GAS(1, 1) model with the hyperspherical specification (26) appears to be preferred to the

other models for 5 out of the 6 different correlation paths. The improvements in MSE or MAE

19



Table 1: Mean absolute error and mean squared error results: in-sample

The table contains the mean absolute error (MAE) and mean squared error
(MSE) for the estimated dynamic correlation patterns for six different models
and six different correlation processes. The details of the t-GAS method are in
Section 3.1. The t-GAS-h method is based on the hyperspherical coordinates
specification of Section 4.2. The results for t-DCC are obtained from the
method of Engle (2002) using a Student’s t likelihood function. The methods
EWMA and adj-EWMA refer to equations (33) and (34), respectively. The
MAE and MSE measures are presented relative to the t-DCC model.

Constant Sine Fast Sine Step Ramp Model
MAE
t-GAS 0.7909 0.9159 1.0320 0.8954 0.9736 0.9233
t-GAS-h 0.7455 0.9066 1.0455 0.8844 0.97786 0.9224
t-DCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
EWMA 3.2364 1.2473 1.1243 1.0243 1.1138 1.0750
adj-EWMA 2.3545 1.2608 1.0973 0.8966 1.1396 0.99041

MSE
t-GAS 0.54545 0.88406 1.0391 0.88652 0.98020 0.85446
t-GAS-h 0.5000 0.8579 1.0560 0.8582 0.9743 0.8499
t-DCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
EWMA 11.909 1.4348 1.3229 1.0638 1.2020 1.1690
adj-EWMA 5.1818 1.4087 1.2227 0.8794 1.2693 0.9765

are typically in the range of 10% to 15% improvement in forecasting accuracy, except for the

ramp and fast sine DGP. The results for the GAS(1, 1) model based on (17) are second best.

The DCC model only performs best in terms of minimizing MAE and MSE when the true DGP

is the Fast Sine.

The results from Table 1 can be regarded as indicative of in-sample performance of the

different models. To verify the different approaches in terms of short-term forecasting, we

elaborate upon the Monte Carlo study as follows. We extend the simulation of a bivariate

series to 1005 observations from which we use the first n = 1000 for parameter estimation and

the last 5 for out-of-sample forecasting. After estimation, the out-of-sample forecasts for ρn+j

from each model are computed for j = 1, . . . , 5. In case of the GAS model, the forecasts are

obtained from (4) with t = n + 1, n + 2, . . . and with sn+j = 0 for j = 1, 2, . . .. The forecast

performance measures are based on the absolute and squared errors as given by

AEf (h) = |ρ̂n+h − ρn+h|, SEf (h) = (ρ̂n+h − ρn+h)
2 ,
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for forecast horizon h = 1, . . . , 5. The results are presented in Table 2 for forecast horizons 1

and 5 days. The reported MAEf (h) and MSEf (h) values are the means of AEf (h) and SEf (h)

over the 500 Monte Carlo repetitions, respectively.

The forecast results in Table 2 show that the t-GAS models remain convincingly superior

for the Constant, Sine and Model correlation patterns. The performance of the t-GAS model

for constant correlations over time is convincing. It implies that the t-GAS models is robust

to model misspecification when time-varying correlations are imposed while the underlying

correlations are constant. The forecasts of Fast Sine correlation patterns is most successful for

the t-DCC model for h = 1 although the t-GAS performance is close and best for MSEf (5).

The results for Step and Ramp patterns are close for all models with the adjusted EWMA

method being most successful.

6 Empirical illustration: global equity returns

In this section, we adopt the models developed in Sections 2 to 4 for a panel of daily global

equity returns from January 1, 1989 to March 18, 2009 obtained from Datastream. The data

set consists of 5,272 time series observations for the six countries Australia, France, Germany,

Hong Kong, the United Kingdom and the United States. The data are in U.S. Dollars and have

been adjusted for dividends and splits.

In the empirical study we consider GARCH/DCC and GAS classes of models. For the

GARCH/DCC models, we specify GARCH models for the marginal variances of each series and

a DCC model for the correlation process between series. The long-run variances and correlations

within each of the GARCH and DCC models are pre-estimated using the sample variances and

sample correlations for the entire series. All remaining parameters of the model are estimated

jointly in one-step. Each individual GARCH model has two parameters governing its dynamics

(these are traditionally labeled as α and β as in the discussion below equation (7).) The DCC

model was estimated with two common parameters as well; one parameter for each matrix Adcc

and Bdcc in (18). The variance and correlation parameters of the GAS model are estimated

simultaneously as follows. The first factors in vector ft represent the variances; for example,

diag(D2
t ) in the decomposition (16). The remaining factors in ft represent the correlations,

either by means of elements in Qt as defined in (17) or by means of hyperspherical angles in φt
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Table 2: Mean absolute error and mean squared error results: out-of-sample

The table contains the mean absolute error (MAEf (h)) and mean squared
error (MSEf (h)) for the correlation forecasts from six different models and six
different correlation processes; see Table 1 for further details. The results are
presented for the forecast horizons of 1 and 5 days. The measures are reported
relative to the measure of t-DCC.

Constant Sine Fast Sine Step Ramp Model
MAEf (1)
t-GAS 0.6948 0.6597 1.0147 1.0548 1.0050 0.9245
t-GAS-h 0.6392 0.6781 1.0400 1.0352 1.0173 0.9251
t-DCC 1 1 1 1 1 1
EWMA 3.0218 1.2751 1.0762 1.1567 0.9752 0.9901
adj-EWMA 2.1865 1.3202 1.0452 0.9901 0.9733 0.9244

MSEf (1)
t-GAS 0.4302 0.3963 1.0075 1.1151 1.0057 0.8628
t-GAS-h 0.3681 0.4338 1.0436 1.0832 1.0308 0.8642
t-DCC 1 1 1 1 1 1
EWMA 11.1348 1.4087 1.2333 1.3424 0.9507 1.0294
adj-EWMA 4.6311 1.3721 1.1206 0.9935 0.9446 0.8759

MAEf (5)
t-GAS 0.7030 0.6862 0.9067 1.0547 0.9832 0.9303
t-GAS-h 0.6559 0.6824 0.9094 1.0318 1.0037 0.9287
t-DCC 1 1 1 1 1 1
EWMA 3.1351 1.0705 1.1705 1.1620 0.9991 1.0003
adj-EWMA 2.2685 1.1083 1.0050 0.9946 0.9971 0.9409

MSEf (5)
t-GAS 0.4389 0.4227 0.7958 1.1101 0.9603 0.8703
t-GAS-h 0.3878 0.4387 0.7906 1.069 1.0011 0.8699
t-DCC 1 1 1 1 1 1
EWMA 12.1572 1.0889 1.9560 1.3551 0.9957 1.0327
adj-EWMA 5.0565 1.0583 1.3752 1.0029 0.9890 0.8934

as defined below (26). We specify ft by the GAS(1, 1) model with diagonal coefficient matrices

A1 and B1 where their first diagonal elements have different values for different variances while

the remaining diagonal elements associated with the correlations have the same value. The

long-run variances and correlations for all the GAS models are pre-estimated using the sample

variances and sample correlations for the entire series, just as in the GARCH/DCC models

described above. In our example with six series, the diagonal elements of A1 and B1 are then

given by a1, . . . , a6, a7, a7, . . . , a7 and b1, . . . , b6, b7, b7, . . . , b7, respectively.

Table 3 reports the estimated parameters as well as the (maximised) log-likelihood values,

the Akaike (AIC) and Schwartz’s Bayesian (BIC) information criteria for eight different models.
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In the DCC case, the parameters a1, . . . , a6 and b1 . . . , b6 relate to the univariate GARCH models

while a7 = adcc and b7 = bdcc as discussed below (18). The first two columns in Table 3 present

the estimates for the DCC model with Gaussian and the Student’s t likelihood specifications

but with the same DCC updating (18). As expected for stock return data, the Student’s t

specification produces a huge improvement in the log-likelihood value at its maximum.

The remaining columns of Table 3 consider the GAS(1, 1) model with different densities and

different specifications of the variance matrix. The columns with headings g-GAS and t-GAS

are based on Gaussian and Student’s t densities, respectively, with variance specification (16)

and (17), and with vector ft given by (19). The number of parameters are the same as for

the DCC model. The g-GAS model performs worse when compared to its DCC counterpart

while the t-GAS model performs best when compared to the DCC and g-GAS model. Hence

we conclude that the assumption of normality is clearly rejected by the data. The t-GAS

specification outperforms the t-DCC model by more than 60 points with the same number

of parameters. It illustrates the flexibility of the t-GAS model to adapt itself to changing

volatilities and correlations. The estimated autoregressive parameter values bi, i = 1, . . . , 7,

for the t-GAS model are all very close to unity. It indicates that the estimated factors from

t-GAS are highly persistent. These results also indicate that a more parsimonious model may

be obtained by restricting the coefficients b1, . . . , b6 to be equal.

The fifth, sixth and seventh columns in Table 3 present the estimation results for GAS

models with three alternative specifications for the vector ft and/or the variance matrix. The

model t-GAS-h refers to the t-GAS model with a hypersphere specification of the variance

matrix Σt = DtX
′
tXtDt where Xt is given by (26) in Section 4.2. The t-GAS-l model is the

t-GAS model as described above but with the log-volatility factors of Section 4.1. The t-GAS-hl

model is the combination of the two. On the basis of the log-likelihood values, the combination

t-GAS-hl model appears to work best. The log-likelihood improvement in comparison with t-

GAS is small. We therefore conclude that for our data set of daily returns, the variance matrix

specification is less important for the formulation of volatility and correlation dynamics.

The estimated correlations for a selection of three return series Germany, Hong Kong, and

United States are presented in the left-hand side plots in Figure 1. The right-hand side plots

present the three observed return series. The two series of estimated correlations in each left-

hand side plot are based on g-GAS-h and t-GAS-h models with correlation matrix Rt = X ′
tXt
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Table 3: Parameter estimates, Likelihoods, and Information Criteria

The table contains the estimated parameters and their standard errors for nine alternative models
including the DCC. The prefix “t” on t-DCC and t-GAS is for a Student’s t density while “g” is
for the Gaussian density. The hypersphere specification of Rt is denoted by the suffix ‘h’ while the
logarithmic specification for the variances is denoted by the additional suffix ‘l’. The prefix “tg” on
tg-GAS denotes a GAS model where the likelihood is a Student’s t density, while the factor recursion
in (4) is based on the Gaussian (ν−1 = 0) density. The first six parameters ai and bi relate to the
volatility dynamics. The parameters a7 and b7 relate to the correlation dynamics.

g-DCC t-DCC g-GAS t-GAS t-GAS-h t-GAS-l t-GAS-h-l tg-GAS
a1 0.0678 0.0437 0.0632 0.0405 0.0405 0.0365 0.0366 0.0401

(0.0078) (0.0055) (0.0068) (0.0046) (0.0046) (0.0038) (0.0039) (0.0049)
a2 0.0581 0.0411 0.0522 0.0374 0.0376 0.0341 0.0343 0.0366

(0.0046) (0.0040) (0.0042) (0.0032) (0.0032) (0.0027) (0.0027) (0.0035)
a3 0.0612 0.0444 0.0560 0.0410 0.0412 0.0371 0.0372 0.04

(0.0046) (0.0041) (0.0042) (0.0033) (0.0033) (0.0028) (0.0028) (0.0037)
a4 0.0930 0.0663 0.0831 0.0503 0.0504 0.0484 0.0484 0.0582

(0.0070) (0.0061) (0.0058) (0.0044) (0.0045) (0.0041) (0.0041) (0.0052)
a5 0.0651 0.0439 0.0594 0.0392 0.0394 0.0365 0.0366 0.0396

(0.0058) (0.0048) (0.0052) (0.0038) (0.0038) (0.0034) (0.0034) (0.0043)
a6 0.0643 0.0498 0.0595 0.0459 0.0459 0.0437 0.0437 0.0465

(0.0068) (0.0051) (0.0059) (0.0040) (0.0040) (0.0037) (0.0037) (0.0046)
a7 0.0087 0.0077 0.0054 0.0079 0.0080 0.0081 0.0081 0.0055

(0.0008) (0.0007) (0.0003) (0.0007) (0.0007) (0.0007) (0.0007) (0.0003)
b1 0.9214 0.9475 0.9837 0.9920 0.9920 0.9924 0.9924 0.9892

(0.0091) (0.0068) (0.0032) (0.0020) (0.0020) (0.0018) (0.0018) (0.0023)
b2 0.9351 0.9520 0.9894 0.9934 0.9932 0.9920 0.9918 0.9918

(0.0054) (0.0048) (0.0018) (0.0013) (0.0013) (0.0014) (0.0014) (0.0015)
b3 0.9322 0.9498 0.9891 0.9936 0.9935 0.9919 0.9917 0.9923

(0.0052) (0.0047) (0.0017) (0.0012) (0.0012) (0.0014) (0.0014) (0.0014)
b4 0.9026 0.9294 0.9856 0.9945 0.9944 0.9915 0.9915 0.9911

(0.0072) (0.0064) (0.0021) (0.0012) (0.0012) (0.0017) (0.0017) (0.0016)
b5 0.9287 0.9499 0.9891 0.9935 0.9934 0.9923 0.9921 0.9921

(0.0063) (0.0056) (0.0018) (0.0013) (0.0013) (0.0015) (0.0015) (0.0015)
b6 0.9329 0.9482 0.9930 0.9960 0.9960 0.9945 0.9944 0.9955

(0.0070) (0.0053) (0.0013) (0.0009) (0.0009) (0.0013) (0.0013) (0.0010)
b7 0.9897 0.9912 0.9988 0.9988 0.9987 0.9987 0.9986 0.9991

(0.0010) (0.0009) (0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0002)
ν - 8.2062 - 8.9238 8.9261 8.8269 8.8243 8.1122

(0.3062) (0.3714) (0.3716) (0.3650) (0.3648) (0.2979)

Log-like -40781.6 -39841.2 -40824.1 -39779.5 -39776.3 -39777.8 -39774.9 -39869.0
AIC 81591.2 79712.5 81676.2 79589.0 79582.6 79585.6 79579.9 79767.9
BIC 81683.2 79811.0 81768.2 79687.5 79681.2 79684.1 79678.4 79866.5

of Section 4.2. They illustrate the differences between GAS models with Gaussian and with

Student’s t densities for the errors. Several large outliers are present in the return series during

the 1990’s. In this period the correlation estimates from the two GAS models are substantially

different. For both GAS models, the estimated correlations appear to be volatile. More smooth
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estimates can be obtained by increasing q and by setting the coefficient matrices A1, . . . , Aq

equal to each other in the GAS model (4).

In Figure 1, the outliers appear to have a strong effect on the estimated correlations when

based on the Gaussian density whereas correlations based on the Student’s t density appear to

be robust against the outliers. The major difference in the factor recursions between the two

models is the weighting factor wt = (ν + k) / (ν − 2 + y′tΣ
−1
t yt), which is part of the score in

the Student’s t model. At the end of the sample, we observe fewer outliers in the individual

time series. As a result, the differences between the estimated correlations from the different

model specifications become smaller. However, differences remain visible for the Germany-US

correlations during the years 2002, 2003, and 2008.

An important question relates to the contribution of the new factor recursion under the

Student t distribution to the fit of the model. It can be argued that the improved fit compared

to the Gaussian case is only due to the switch to the Student’s t distribution rather than to

the new form of the GAS factor recursion based on Theorem 1. To verify this, we consider a

final model which is referred to as the tg-GAS model. The likelihood function is based on the

Student’s t density while the recursion for the factor is based on the Gaussian density. In effect,

we adopt the specification of st from the expressions in Theorem 1 for ν−1 = 0 rather than for

the estimated (finite) value of ν from the likelihood maximization. The estimation results are

presented in the last column of Figure 3. Comparing the results of t-GAS with those of tg-GAS,

we find that the new form of the Student’s t-based GAS recursion substantially contributes to

the model fit. The log-likelihood value is increased approximately by 90 points with the same

number of parameters. The log-likelihood value of the tg-GAS model is closer to the one of the

t-DCC model. We conclude that it is not only important to account for fat-tails of the error

distribution, but also for the effect of the fat-tails on volatility and correlation dynamics.

Finally, the estimated coefficients b1, . . . , b7 have lower values for the tg-GAS specification

compared to those of the t-GAS model. This finding is probably due to large errors that have

an impact on the Gaussian factor recursions. Since incidental large squared errors enter the

Gaussian factor recursion without the weight wt in Theorem 1, the maximum likelihood proce-

dure downplays their impact on future volatilities and correlations by reducing the persistence

parameters b1, . . . , b7. By contrast, the weight wt plays a role in the Student’s t-based factor

recursion and, hence, it takes care of these observations in a natural way. As a consequence,
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Figure 1: Estimated correlations

The left hand panels contain a comparison of the estimated correlations from the t-GAS(1,1) copula model
versus the g-GAS(1,1) copula model both with the hypersphere specification of Rt. The three rows contain the
correlations between the different possible pairs of Germany, Hong Kong, and the United States. The right-hand
panels display the return data.

there is no further need to reduce the persistence parameters to increase the fit of the model.

It underlines the importance of a robust form of the factor updating equation as illustrated by

the comparison between the t-GAS and the tg-GAS models.

7 Conclusion

We have introduced the multivariate Student’s t GAS model for volatilities and correlations,

where the multivariate normal distribution is included as a special case. The models include

two levels of flexibility. First, we propose a copula version of the model such that the marginal

26



distribution of the individual time series can be treated separately from the correlations. It

enables the optimization problem to be broken into more manageable pieces. Secondly, we

show how the GAS framework can accommodate alternative specifications of the covariance

matrix. The model formulation is sufficiently general to impose a factor structure on either

the time-varying volatilities or correlations, or both. We have focused on the decomposition of

the conditional covariance matrix into a volatility matrix and a correlation matrix. In future

we can explore alternative decompositions of the covariance matrix. For example, Cholesky

or spectral decompositions will lead to new GAS formulations for dynamic volatilities and

correlations. Another extension is to consider the multivariate skewed Student’s t distribution

that is recently proposed by Bauwens and Laurent (2005). By incorporating asymmetry in

the updating recursion for the correlations, we account for the notion of leverage in financial

returns. Such and other extensions provide interesting avenues for further research.
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Sklar, A. (1959). Fonctions de répartition á n dimensions et leurs marges. Publications de l’Institut de Statis-

tique de L’Université de Paris 8, 229–231.
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Appendix

The following two results are straightforward to prove.

Result 1: Let z ∈ Rk and z ∼ N(0, a I) for some scalar a > 0, then the fourth (cross-)moments are given by

E [zizjz`zm] = a2 (δijδ`m + δi`δjm + δimδj`) , for i, j, `,m = 1, . . . , k,

where zi denotes the ith element of z and where Kronecker delta δij is unity when i = j and zero otherwise.

The k2 × k2 matrix G is implicitly defined by

E [(zz′)⊗] = a2G,

where the element G[·, ·] of matrix G is given by

G [(i− 1) · k + ` , (j − 1) · k + m] = δijδ`m + δi`δjm + δimδj`, (35)

for i, j, `, m = 1, . . . , k.

Result 2: Let the random variable u ∼ χ2
ν where χ2

ν is the Chi-square distribution with ν degrees of freedom.

For any scalar a < ν, we have

E
[(ν

u

)a/2
]

=
Γ

(
ν−a

2

)

Γ
(

ν
2

)
(ν

2

)a/2

. (36)

Proof of Theorem 1: From the basic matrix calculus results in Abadir and Magnus (2005) and based on the

notation and definitions in section 2.4, it is straightforward to derive (12) as

∂ log p(yt|Σt; ν)
∂vech(Σt)

=
1
2
D′k

(
Σ−1

t ⊗ Σ−1
t

)
[

(ν + k)(
ν + y′tΣ

−1
t yt − 2

)yt ⊗ yt − vec(Σt)

]

=
1
2
D′kJ ′t⊗ [wtȳt⊗ − vec(I)] , wt =

(
1 + ν−1k

)

(1 + ν−1(ȳ′tȳt − 2))
, (37)

where ȳt = Jtyt follows a Student’s t distribution with zero mean, covariance matrix Ik, and ν degrees of

freedom. The derivative of vech(Σt) with respect to ft is denoted by Ψt and completes the result for ∇t.

To obtain the expression for E[∇t∇′t], we need to show that

E[(wtȳt⊗ − vec(I))(wtȳt⊗ − vec(I))′] = gG− vec(I)vec(I)′.
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Since we take expectations with respect to the density p(yt|Σt; ν) in (1), we have

E
(
w2

t ȳtȳ
′
t ⊗ ȳtȳ

′
t

)
=

(ν + k)2

(ν − 2)2

∫
Γ

(
ν+k

2

)

Γ
(

ν
2

)
[(ν − 2)π]k/2

ȳtȳ
′
t ⊗ ȳtȳ

′
t

(1 + ȳ′tȳt/(ν − 2))(ν+4+k)/2
dȳt

=
(ν + k)2

(ν − 2)2
Γ

(
ν+k

2

)

Γ
(

ν
2

) Γ
(

ν+4
2

)

Γ
(

ν+4+k
2

)E [x̄tx̄
′
t ⊗ x̄tx̄

′
t] , (38)

where x̄t has a Student’s t distribution with zero mean, covariance matrix (ν−2) I / (ν +2), and ν +4 degrees of

freedom. Also, since x̄t = xt /
√

u/(ν + 4) with xt a zero mean normal with covariance matrix (ν−2) I / (ν +4),

and u an independent χ2
ν+4 random variable, we use Result 1 and 2 as stated at the beginning of this appendix

to express (38) as

(ν + k)2

(ν − 2)2
(ν + 2)ν

(ν + 2 + k)(ν + k)
· (ν − 2)2

(ν + 4)2
· (ν + 4)2

(ν + 2)ν
·G =

ν + k

ν + 2 + k
G. (39)

This completes the proof. Theorem 1 also applies to the multivariate normal density by setting ν−1 = 0.
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