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Abstract

We introduce a form of pre-play communication that we call "preopening". During the

preopening, players announce their tentative actions to be played in the underlying game.

Announcements are made using a posting system which is subject to stochastic failures.

Posted actions are publicly observable and players payo¤s only depend on the opening

outcome, i.e. the action pro�le that is posted at the end of the preopening phase. We show

that when the posting failures hit players idiosyncratically all equilibria of the preopening

game lead to the same opening outcome that corresponds to the most "sensible" pure

Nash equilibrium of the underlying game. By contrast preopening does not operate an

equilibrium selection when posting failure hits players simultaneously.
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1 Introduction

This paper studies an equilibrium model of pre-play communication that we call "preopening",

a term we borrow from the �nancial markets. During the preopening phase players continuously

submit tentative actions that are posted on a publicly observable screen. Players�actual payo¤s

only depend on the action pro�le that is posted at the end of the preopening phase, the "opening"

date. If the posting system is perfect, tentative actions can be instantaneously changed during

the preopening phase and the resulting game corresponds to a pure "cheap-talk" game (as in

Aumann and Hart (2003)). We consider the case where the posting system is ine¢ cient in the

sense that an action submitted at time t will be posted with some exogenous random delay.

Our objective is to identify the forms of posting ine¢ ciency guaranteeing that all equilibria

of the preopening game lead to the same opening outcome. We show that this happens when

there is nil probability that players�submitted actions are posted simultaneously ("idiosyncratic"

ine¢ ciency). Since the resulting opening outcome is one of the pure Nash equilibrium of the

underlying game, the preopening can be interpreted as an equilibrium selection device. Namely,

in games of common interests, preopening leads to the Pareto dominant action pro�le. In two-

action games of con�icting interests, preopening leads to select the underlying-game equilibrium

preferred by the player with (i) the strongest preference over the di¤erent equilibria, (ii) the

lower cost of miscoordination or (iii) the less e¢ cient posting system. By contrast, when the

posting failure is due to factors that simultaneously a¤ect all players ("systemic" ine¢ ciency),

many opening outcomes can be observed in equilibrium.

Consider for example the coordination game of Figure 1. This game has two pure-strategy

Nash equilibria, (U;L) which Pareto dominates (D;R), and one equilibrium in mixed strategies.

Traditional re�nements such as trembling hand (Selten (1975)) or properness (Myerson (1978))

are not e¤ective to eliminate the ine¢ cient equilibrium (D;R). Also, it is well known that

(D;R) remains an equilibrium even if actual play is preceded by a communication phase where

messages are neither costly nor binding (pure "cheap talk", Crawford and Sobel (1982)).1 The

1There always exists an ("babbling") equilibrium of the cheap-talk game in which players end up playing the

ine¢ cient Nash equilibrium fD;Rg irrespective of what is "said" during the pre-play communication phase.
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risk dominant equilibrium is (D;R), suggesting that uncertainty about the other player strategy

might lead to coordinate on a Pareto inferior Nash equilibrium. By contrast, we show that when

the posting ine¢ ciency is idiosyncratic, all equilibria of a long enough preopening game lead

players to play the Pareto dominant outcome (U;L) at the opening.

L R

U 4; 4 0; 2

D 2; 0 3; 3

Figure 1

Let the underlying game be any given �nite normal form game. A preopening game unfolds

as follows. The "preopening phase" lasts for a time interval [0; T ]. In this phase, at any moment

each player submits a tentative action chosen in the set of his actions in the underlying game.

A submitted action is meant to be posted on a publicly observable screen. We assume that

the posting system is imperfect in the following sense: if during the interval [t; t + �] a player

consistently submits the same action, this action is posted on the screen before t + � with an

exogenous probability that increases with � and, possibly, depends on the identity of the player.

With the complement probability, at instant t + � the submitted action is not posted on the

screen but the player�s posted action is identical to that posted at instant t. Players�payo¤s only

depend on the action pro�le that is actually posted on the screen at date T and correspond to

the underlying game payo¤s for that action pro�le.

Our preopening game and its name are inspired from the daily practice of some �nancial

markets, such as Nasdaq or Euronext for example, where half an hour before the opening of

the market, participants are allowed to submit orders which can be continuously withdrawn and

changed until opening time. These orders and/or the resulting (virtual) equilibrium trading

price are publicly posted during the whole preopening period. Only orders that are still posted

at opening time are binding and hence executed. In this framework it is natural to assume that

traders do not always manage to withdraw and submit new orders instantaneously. Delays can

be due either to technological failures (caused for example by a congestion or a temporary break-

down of the electronic communication system) or to human factors (as for instance: the time
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required to �ll in the new order faultlessly, lack of attention, etc.). In all these situations, the

time between the decision to submit an order and its actual posting is random. Our model can

also be a stylized representation of strategic interaction where communication and implementa-

tion of actions occur through mediators who are subject to mistakes and/or delays. For example

companies, governments or other institutions may announce their strategies through press re-

leases or press conferences, see how other parties react and possibly revise their announcements.

Another example could be the sequence of preparatory meetings used by government delegations

to negotiate the terms of a treaty that will be signed by heads of state at an international sum-

mit. A further example could be the case of two armies deploying their forces on a battleground,

knowing that redeployment time is uncertain and that the outcome of the battle depends on the

location of each party�s forces at the moment of impact.

A preopening game encompasses as special cases both the cheap-talk game, when the posting

system is perfectly e¢ cient, and the one shot game.2 When the underlying game has multiple

Nash equilibria, multiplicity of equilibria extends to both these speci�cations of the preopening

game. This paper aims at understanding whether and under which restrictions on the ine¢ ciency

of the posting system the preopening game leads players to select one single outcome at the

opening. We focus on two-player complete information normal form games. We show that when

the posting system is systemic ine¢ cient, any pure Nash equilibria of the underlying game can

be the opening outcome of a sub-game perfect equilibrium of the preopening game. On the other

hand, the preopening game is an e¤ective equilibrium selection tool when the posting ine¢ ciency

is idiosyncratic. In this case, all equilibria of a su¢ ciently long preopening game will lead players

to open at a one single pure Nash equilibrium of the underlying game. When in the underlying

game there is a strategy pro�le bx Pareto dominating all other outcomes (as for example in Figure
1), then preopening leads to play bx at the opening. For underlying games that have no Pareto
superior outcome, we focus on two-action two-player underlying games that have two pure Nash

equilibria. In these games players have opposite preferences over the two pure Nash equilibria

2The latter can be obtained when, after simultaneously choosing the initial posted action pro�le, players cannot

change their actions because of the extreme ine¢ ciency of the posting system.
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(see for instance the entry games of Figure 2, 3 and 4). Nevertheless, the opening outcome can

be easily deduced from the underlying game payo¤s matrix. For example, in Figures 2 and 3,

the preopening game will lead to open at fout; ing, i.e. column player�s preferred pure Nash
equilibrium.

in out

out 1; 3 0; 0

in 0; 0 2; 1

Figure 2

in out

out 1; 2 �1; 0
in �1; 0 2; 1

Figure 3

in out

out 1; � 0; 0

in 0; 0 �; 1

Figure 4

� > 1

In fact, in Figure 2 the column player is the one that has the strongest relative preference over

the two pure Nash equilibria fout; ing and fin; outg.3 In Figure 3, players�opposite preferences
over the two pure Nash equilibria are symmetric; however the column player is the one su¤ering

less in the event of miscoordination (fin;ing or fout;outg). In symmetric games with no payo¤
dominant equilibrium the payo¤structure is not su¢ cient to determine which equilibrium prevails

at the opening (see for example the game of Figure 4). However, we show that when the posting

e¢ ciencies are idiosyncratic but asymmetric, the preopening game leads to a single opening

outcome. The player with the least e¢ cient posting system is the one that can most credibly

commit on playing his preferred equilibrium at the opening. In fact, this is the equilibrium that

will be selected through the preopening game.

It is worth stressing that the emphasis of this paper is di¤erent from that which can be found

in the literature on equilibrium re�nements. In fact, we do not see the equilibrium selected

through preopening as that most likely to be observed in the absence of preopening. We rather

see the preopening game as a device that can help players to eliminate uncertainty regarding the

other players�strategies and select the "most sensible" Nash equilibria of the underlying game.

3The column player�s payo¤ in fout, ing is three times his payo¤ in fin,outg while for the row player, fin,outg
is only twice as good as fout, ing.
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1.1 Related literature

Whether pre-play communication can help players to coordinate their actions in games with mul-

tiple Nash equilibria is a question that has been extensively studied in economic theory over the

last twenty years. Two approaches analyze this problem when communication is "cheap-talk".

One approach pioneered by Farrell (1987) and further developed by Rabin (1994), among others,

has assumed that rational players share a pre-existing language they can use in communication

rounds which precede the actual play. This literature shows that there are equilibria where com-

munication enhances coordination; however other equilibria (the so-called "babbling" equilibria)

cannot be excluded. The second approach relates to communication games with non-equilibrium

models where players�behavior is adaptive rather than rational. In a variety of settings (see

for instance Kandori, Mailath and Rob (1993), Kim and Sobel (1995), Banerjee and Weibull

(2000), Demichelis and Weibull (2008)) it has been shown that applying evolutionary stability to

pre-play communication games tends to eliminate socially ine¢ cient outcomes.4 Our approach

di¤ers from these papers in three important aspects. First, while our pre-play communication

is not costly, it is binding with some exogenous probability. Second, we present an equilibrium

model of pre-play communication where players are fully rational and, third, we do not assume

there is a common language with meaning outside the model that can be used in the pre-play

stage.

Beyond the literature on cheap-talk, our work is related to studies where pre-play communi-

cation is binding (van Damme and Hurkens (1996)) or is not cheap (Caruna and Einav (2008)).

Van Damme and Hurkens (1996) study a "timing game" in which each player can choose whether

to move in either of two periods; once a player has moved, however, he cannot change his ac-

tion. They show that most mixed strategy equilibria of the underlying game cannot arise as

equilibrium outcomes of this timing game; however, Pareto dominated pure strategy equilibria

of the underlying game are also equilibria of the timing game. Caruna and Einav (2008) study

4A related method based on k-level thinking (Crawford (2007)) and dispersion of players�beliefs about other

players� strategies (Crawford (1995)) makes it possible to explain patterns that are observed in experimental

studies.
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players�ability to credibly commit to actions and apply their model to entry deterrence games.

In their setting players alternatively announce their intended �nal action and incur in exogenous

switching costs when changing the action. The switching cost increases as the end of the game

approaches. As opposite to van Damme and Hurkens (1996) and Caruna and Einav (2008), in

our framework players can change their actions continuously over time at no cost. Also, the

changes may not always be registered by the posting system, an event that is not contemplated

in van Damme and Hurkens (1996) or Caruna and Einav (2008).

Two other papers are particularly relevant to our work. In relation to the preopening in

�nancial markets our paper is related to Biais et al. (2008). They propose an experiment

simulating trade in a �nancial market where the actual play is preceded by one round of pre-play

communication. The underlying game is a two-player two-action game which represents a stylized

model of trade in �nancial markets. A key parameter in their model allows to cover the analysis

from a prisoner dilemma type of game to a coordination game (similar to the one in Figure 1).

The set up of their experiment di¤ers from our theoretical framework in two aspects. First,

they allow for only one round of pre-play communication. Second, they analyze two cases: one

where the pre-play actions are binding with certainty (as in Van Damme and Hurkens (1996));

and a second one where the pre-play actions are pure cheap-talk. In both speci�cations there

are multiple Nash equilibria. They show that pre-play communication signi�cantly improves

the subjects ability to coordinate on Pareto superior equilibria only when the communication is

binding. However, consistently with the existence of multiple equilibria, both Pareto superior

and Pareto inferior Nash equilibria are observed in both formats of the experiment.

Finally, our model is also related to the "Revision game II" in Kamada and Kandori (2008).

They study symmetric equilibria in N-player symmetric games where each player�s action space

is a closed interval and where the payo¤ function satis�es some regularity conditions. While the

family of underlying games they consider is di¤erent from ours, the way they de�ne a revision

game is in many perspectives close to our preopening game with systemic posting ine¢ ciency.

Their emphasis however is opposite to ours: they assume systemic ine¢ ciency and show that a

revision game can expand the set of equilibria of the underlying game. We rather focus on the
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opposite problem and show that, when payo¤s are generic, equilibrium selection can be obtained

with idiosyncratic posting ine¢ ciency.

The paper is organized as follows. Section 2 presents the model, the solution concept and

how best reply correspondences depend on the type of posting ine¢ ciency. In section 3 we show

that systemic ine¢ ciency does not help in selecting equilibria. In Section 4 we study the case of

idiosyncratic ine¢ ciency. Section 4.1 characterizes the equilibrium of short preopening phases.

In section 4.2 we study games of common interest. Section 4.3 studies two-action games of

con�icting interests. Section 5 presents some critical discussion and Section 6 concludes. All

proofs are collected in the Appendix. Formal proofs of more intuitive results are provided in the

supplementary material.

2 The model

The underlying game

Let the underlying game be a two-player �nite game in normal form. Let Xi be the set of

actions available to player i, X := X1 �X2 the set of action pro�les and ui : X ! R player i�s

payo¤ function. Let BRi : 4X�i ! 4Xi denote player i�s best reply correspondence, N� the

set of Nash equilibria of the underlying game and N � N� the set of pure Nash equilibria of
the underlying game (UGE henceforth). We will focus on games with N 6= ?. We denote with
player 1 (player 2) the row player (column player).

The preopening game

In the following we consider a situation where the underlying game is played over a continuous

time interval [0; T ] but players�payo¤s only depend on the action pro�le resulting at date T .

More precisely, we study an extended game which consists of the following three phases:

� The starting phase occurs at date 0: an initial action pro�le of the underlying game is
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arbitrarily determined.5 At instant 0 this initial action pro�le is posted on a screen that is

commonly observed by both players.

� The preopening phase is played in the time interval ]0; T ]. Let xi(t) 2 Xi be the action of

player i which is posted on the screen at instant t and x(t) 2 X the action pro�le posted (or

posted action pro�le, PAP henceforth) at instant t. In every instant t players commonly

observe the current PAP x(t) 2 X and submit an action pro�le y(t) = (y1(t); y2(t)), where

yi(t) 2 Xi denotes the action that player i chooses to submit in instant t. Conditionally

on players consistently submitting an action pro�le y 2 X between instant t and instant

t+� � T , let
Q(x(t); y; z;�) = Pr (x(t+�) = z)

where z 2 X is any given action pro�le. In words, Q(x(t); y; z;�) is the probability that

the PAP at instant t + � is z, given that the PAP at t is x(t) and that during the time

interval [t; t + �] players consistently submit the action pro�le y. These probabilities are

exogenous and depend on the form of ine¢ ciency in the posting system. We assume that

Q(:;�) is continuous in � and satis�es:

lim
�!0

Q(x; y; x;�) = 1;8x 2 X; y 2 X (1)

lim
�!1

Q(x; y; y;�) = 1;8x 2 X; y 2 X (2)

Condition (1) implies that, when submitting a new action, no player can instantaneously

change his current posted action. Condition (2) implies that an action pro�le consistently

submitted for a su¢ ciently long time is bound to be eventually posted on the screen.

� The opening phase. Let x(T ) be the PAP at T , i.e. at the end of the preopening phase.
At this instant, player i receives payo¤ ui (x(T )).

5For example the starting actions can be simultaneously chosen by each player. However we will show that

the way the initial action pro�le is determined is strategically irrelevant.
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Posting ine¢ ciencies in the preopening game

We consider di¤erent forms of ine¢ ciency of the posting system. In particular, the following

ones are natural ways to describe delays between the submission and the posting time:

� Systemic ine¢ ciency : the only source of posting ine¢ ciency a¤ects all players simulta-
neously. For example this can be due to a temporary slowdown (or breakdown) of the

centralized posting system. Formally, at instant t, player i�s submitted action is posted if

and only if player �i�s submission is also posted.

� Idiosyncratic ine¢ ciency : player 1 and player 2 posting delays are independently dis-
tributed. This happens, for example, when posting ine¢ ciency can be due to idiosyncratic

imperfections in the communication channels between each player and the centralized post-

ing system or in the player posting ability.

� Limited processing capacity: This corresponds to a situation in which the posting system
cannot process more than one submission at the time.

We formally de�ne the posting ine¢ ciency in a way that is tractable but general enough to

encompass the di¤erent forms of ine¢ ciency described above. To this purpose, we introduce

two vectors q1 and q2 and two random arrival Poisson processes p1 and p2. Let �1 (resp. �2)

denote the intensity of the Poisson process p1 (resp. p2) i.e. Pr(pi < t) = 1 � e��it. Let

qi := fqi11; qi10; qi01; qi00g be vectors of non-negative numbers satisfying qi11+ qi10+ qi01+ qi00 = 1, for
i = 1; 2.

Posting events are distributed as follows: conditional on arrival on process pi at instant t,

with probability qi11 both players�submissions y1(t) and y2(t) are instantaneously posted; with

probability qi10 the action submitted by player 1, y1(t), is posted while that of player 2, y2(t), is

not; with probability qi01, y2(t) is posted but y1(t) is not; with probability q
i
00 neither y1(t) nor

y2(t) are posted. Hence, if at instant t the PAP is x(t) = (x1; x2) and from t to t + � players
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submit actions (y1; y2) 6= (x1; x2), we have:

Q(x; y; y;�) = (1� e��1�)e��2�q111 + (1� e��2�)e��1�q211 + (1� e��1�)(1� e��2�)k11 (�)

Q(x; y; (y1; x2);�) = (1� e��1�)e��2�q110 + (1� e��2�)e��1�q210 + (1� e��1�)(1� e��2�)k10 (�)

Q(x; y; (x1; y2);�) = (1� e��1�)e��2�q101 + (1� e��2�)e��1�q201 + (1� e��1�)(1� e��2�)k01 (�)

Q(x; y; x;�) = 1�Q(x; y; y;�)�Q(x; y; (y1; x2);�)�Q(x; y; (x1; y2);�)

for some positive and bounded functions k11 (�), k10 (�) and k01 (�). Note that this speci�cation

of Q(:) satis�es properties (1) and (2). We then introduce variable r which can be interpreted

as the instantaneous probability of having both players submitted actions posted at t conditional

on at least one of the two submitted actions being posted at t:

r : = lim
�!0

Q(x; y; y;�)

Q(x; y; y;�) +Q(x; y; (y1; x2);�) +Q(x; y; (x1; y2);�)
=

=
�1q

1
11 + �2q

2
11

�1(q111 + q
1
10 + q

1
01) + �2(q

2
11 + q

2
10 + q

2
01)

Note that r 2 [0; 1] and r = 0 when the probability of simultaneous posting is nil while r = 1
when qi10 = q

i
01 = 0 for i = 1; 2.

Then systemic ine¢ ciency is obtained for q110 + q
1
01 = q210 + q

2
01 = 0 and implies r = 1;

idiosyncratic ine¢ ciency results for q111 = q
2
11 = 0 and implies r = 0; limited processing capacity

obtains for q110 + q
1
01 = q

2
10 + q

2
01 = 1 implying q

1
11 = q

2
11 = 0 and leading to r = 0.

6

2.1 Solution concept

In this section we introduce the concepts necessary to solve the preopening game, given the

characteristics of the underlying game and of the posting imperfections described above. For

6Further examples are the limit cases mentioned in the introduction: the one shot game can be obtained by

assuming that the starting PAP is determined by the simultaneous choice of the players and then �xing �i = 0

or qi00 = 1 for i = 1; 2 implying that the PAP cannot subsequently be changed. For �i =1, and qi11 = 1, i = 1; 2,
we obtain the continuous time version of a long cheap-talk game, in which all submissions before time T are not

binding and can be changed instantaneously. Note that one can reproduce a discrete time format by focusing on

strategies where the interval [0; T ] is partitioned in n sub intervals and y(t) does not change within a sub interval.
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expositional clarity, we shall focus on sub-game perfect Markov equilibria where players strategies

at date t only depend on the time remaining before the opening and on the current PAP. In

Section 6 however we will consider the wider class of Nash equilibria and analyze a form of

posting ine¢ ciency under which the set of Nash equilibria of the preopening game coincides with

the set of its Markov SPE.

Let � := T � t denote the time remaining before the opening. To avoid confusion, in the
following we shall refer to t as the calendar date and to � as the time left before the opening. With

an abuse of notation, we can denote with x(�) the PAP at time � to the opening. Henceforth

x(0) is the PAP at the opening. A Markov strategy for player i is a Borel-measurable mapping

�i : X � [0; T ]!4Xi. Then for any given Markov strategy pro�le � and any PAP x(�) at time

� , we denote with,

�i(x(�); �) := E [ui(x(0))jx(�); �] (3)

player i�s expected continuation payo¤ given the Markov strategy pro�le � and conditional on

the PAP at time � being x(�). Condition (1) implies that when the opening is close there is

little chance that the PAP will change. Hence, independently of the players�strategies, toward

the end of the preopening phase, it results that

lim
�!0

�i(x; �) = ui(x). (4)

Endowed with the de�nition of the expected continuation payo¤s in (3) we can now compute

the best reply for each player i at each time � in a Markov equilibrium. Consider time � to

the opening, and suppose that player �i�s currently posted action is x�i while he is submitting
action y�i. Denote with x�i (x�i; �) the best reply for player i to x�i in a one shot game where

his reward function is given by �i(x; �), x 2 X as in (3):

x�i (x�i; �) 2 arg max
xi2Xi

�i(xi; x�i; �)

In the following lemma we show that for extreme values of r the best reply of player i is to submit

either x�(x�i(�); �) (when r is close enough to zero) or x�(y�i(�); �) (when r is close enough to

one), i.e. his best reply to the other player�s currently posted action x�i(�) or to action y�i(�)
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which the other player is currently submitting, respectively. Notice that the optimal action

submitted at time � from the opening can be interpreted as the limit of the optimal action

submitted in a discrete-time version of the game as the time interval between two submissions

converges to zero. Then we have:

Lemma 1 : Let x(�) and y�i(�) be time � PAP and player �i�s submitted action, respectively.
There exist ri(�) and ri(�), with 0 � ri(�) � ri(�) � 1 such that player i best reply in a Markov
equilibrium is

�(x; y�i; �) :=

8<: x�i (x�i(�); �) if r � ri(�)
x�i (y�i(�); �) if r � ri(�)

The intuition of Lemma 1 is as follows. If r is close to 1 (resp. to 0), each player knows that

whenever his submitted action is posted, it is very likely (resp. unlikely) that his opponent�s

submission is also posted at the same time. In the case of r close to 1, each player applies a

conjectural argument which leads them to play the best reply to the opponent�s submitted action.

Quite to the opposite, when r is close to zero, such a conjectural argument is not correct: each

player knows that his opponent cannot change his own posted action from the one posted on the

current PAP if he himself is allowed to do so. Hence, he submits his best reply to the opponent�s

currently posted action. It is indeed this di¤erent logic behind the construction of each player�s

best reply during the preopening game that may or may not allow them to select a single Nash

equilibrium at the opening.

3 Systemic posting ine¢ ciency and multiple equilibria

In this section we show that when the source of posting ine¢ ciency a¤ects all players simultane-

ously, the preopening game has at least as many equilibria as the underlying game.

Proposition 2 : For any pure Nash equilibrium of the underlying game xN 2 N and any " > 0,

there exist r(") 2]0; 1] and T (") such that if r � r(") and T > T ("), it is a SPE of the preopening
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game to always submit the action pro�le xN during the whole length of the preopening phase.

This leads players to play xN at the opening with probability no smaller than 1� ".

The intuition of the result is as follows. Suppose the posting ine¢ ciencies of the two players

are perfectly correlated (i.e. r = 1). At time � , when choosing the action to be submitted,

player i knows that she can a¤ect her expected payo¤ only if her own action is posted. However,

this event occurs only when player �i�s submitted action is posted as well. Now �x any UGE
xN = (xN1 ; x

N
2 ). If at all time � and in all PAPs player �i submits xN�i, then at the end of the

preopening only two outcome are possible: either none of the two players�submitted action is

ever posted,7 or both players�submitted actions are posted and player �i opening action is xN�i.
Hence the best player i can do is to maximize ui(y(0); xN�i) always submitting x

N
i .

4 Idiosyncratic posting ine¢ ciency and equilibrium se-

lection

In this section we analyze preopening games where the ine¢ ciency of the communication system

is such that r is equal to zero. In this case q111 = q
2
11 = 0: the probability that the action of player

i is posted at some time � conditional on the action submitted by �i being posted at � is zero.

4.1 Short preopening phases

The preopening game has only one SPE when the opening date is su¢ ciently close. In such

equilibrium, at any � close enough to 0, each player submits the action that is the underlying

game best reply to the other player�s currently posted action. When both players adopt these

strategies they tend to stick to any of the pure Nash equilibria of the underlying game as soon as

the PAP forms one. For this reason we call such play in the preopening game the "equilibrating

scenario". Formally,

7In this instance players�payo¤s do not depend on their submissions during the preopening phase.
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De�nition 1: We say that player i adopts the "equilibrating strategy" at time � if

yi(�) 2 BRi(x�i(�))

The "equilibrating scenario" emerges when both players adopt the equilibrating strategy.

Then we have:

Proposition 3 : If r = 0 and the underlying game has more than one Nash equilibrium and

generic payo¤s, then there exists a �nite � � > 0 such that in all SPE:

(i) At any time � < � � the equilibrating strategy is strictly optimal for both players and

players�equilibrium continuation payo¤ only depends on � and x(�);

(ii) At time � > � � the equilibrating strategy is not optimal for at least one player.

Interestingly, the equilibrating scenario has the �avour of the communication symmetric equi-

librium in Farrell (1987). In Farrell�s communication phase players agree on a language stipulat-

ing that, �rst, as long as the message pro�le in the communication phase does not form a UGE,

players keep changing their messages with positive probability. Second, as soon as the message

pro�le in the communication game does form a UGE, players commit to that action pro�le until

the underlying game is played. The equilibrating scenario of our preopening game fully re�ects

this second feature. However, when the current PAP does not form a UGE, players do not use

mixed strategies as in Farrell (1987). They both submit di¤erent actions from the one currently

posted i.e. they try to move away from PAPs that are not in N . It is worth stressing that the

equilibrating scenario does not emerge because of an ex-ante agreement between the two players

on some language, but it results from strictly dominant strategies of the preopening game for �

small and r = 0.

Note that while the equilibrating scenario characterizes the play when � is su¢ ciently close

to 0, Proposition 3 does not tell us which of the UGEs is played at the opening. In fact, when

using the equilibrating strategies, players do not move away from any of the PAPs that form

a UGE. Proposition 3 also states that the equilibrating scenario is not an equilibrium when
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� > � �, provided that the underlying game has generic payo¤s and more than one UGE. To

understand why, consider for example the game in Figure 5:

L R

U 3; 3 0; 0

D 0; 0 1; 1
=)

Equilibrating dynamics

L R

U �  � �
D "�! �

Figure 5

In this game N = f(U;L); (D;R)g are the only sinks of the dynamics induced by the equilibrating
scenario. Suppose for the sake of contradiction that the equilibrating scenario is used during the

whole length of a long preopening game. If at some time � the PAP x(�) belongs to N , it will

not change and the opening will be at x(0) = x(�). Hence, �1(x, �) = ui(x) for x 2 N . When
the equilibrating scenario is expected to be used for enough time, the probability that before the

opening the PAP moves from any x =2 N to some x 2 N converges to one because of property

(2). Hence, for x =2 N in the game in Fig. 5 we have lim�!1 �i(x; �) 2]1; 3[. That is to say
that player i�s expected continuation payo¤ in x(�) =2 N is larger than his continuation payo¤

for x(�) = (D;R). When this happens, player 1 prefers to move from (D;R) to x(�) =2 N as

this would increases the chances of opening at his preferred UGE (U;L) and gain 3 instead of 1.

Thus, the equilibrating strategy stipulating y((D;R); �) = (D;R) is not optimal for � large.

4.2 Long preopening phases and Pareto optimal outcomes

Note that the dynamics of the posted action pro�le induced by the equilibrating scenario can be

non-trivial when the starting PAP is not in N . For instance the game in Figure 6 has only one

pure Nash equilibrium N = (D;R) that is a stable point in the dynamics of PAP induced by the

equilibrating scenario. However the cycle C := (U;L) ! (U;C) ! (M;C) ! (M;L) ! (U;L)

is also stable under the equilibrating scenario dynamics, while PAPs (D;L); (D;C); (U;R) and

(M;R) are not stable in the sense that players will submit actions that will eventually move the

PAP either to N or to a point in C. This example shows that it can be hard to characterize
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the optimal strategies preceding the equilibrating scenario for a generic game where players have

more than two actions.

L C R

U 3; 2 2; 3 0; 0

M 2; 3 3; 2 0; 0

D 0; 0 0; 0 4; 4
=)

Equilibrating dynamics

L C R

U �! #  � #
M "  �  � #
D "�! "�! �

Figure 6

However, we are able to provide a strong result in a special class of games, which we de�ne

as common interest games:

De�nition 2: A two-player normal form game is said to be of common interest if there is

a single Pareto optimal action pro�le bx.
We conclude this section by showing that for games of common interest, all SPE equilibria

of a su¢ ciently long preopening phase with idiosyncratic posting e¢ ciency almost surely open

at bx.
Theorem 4 : Consider a two-player common interest game and let bx 2 X be such that ui(bx) >
ui(x) for all i and x 6= bx. Then for any " > 0, there exists T (") such that if r = 0 and T > T ("),
then all equilibria of the preopening game lead players to open at bx with probability larger than
1� ".

Theorem 4 proves that in games of common interests, for a su¢ ciently long preopening game

with idiosyncratic posting ine¢ ciency, all SPE in the preopening game lead players to coordinate

on the Pareto-optimal outcome at the opening. Di¤erently from what happens in most of the

"cheap-talk" literature, this result does not rely on the possibility of communication through

an external language nor on the presence of non-rational/adaptive behavior. Also it is worth

pointing out that our result is independent from risk dominance considerations. For instance in

the game in Figure 1, action pro�le fU;Lg forms the Pareto dominant, payo¤ maximizing pure
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Nash equilibrium, whereas action pro�le fD;Rg is Pareto dominated but it is a risk dominant
equilibrium. Under the hypothesis of Theorem 4, the preopening phase will lead players to

coordinate on fU;Lg. This is quite natural since the risk dominance criterion �ts to situations
where players are uncertain of other player�s strategies, whereas the preopening game is meant

to indeed eliminate such uncertainty.

4.3 Idiosyncratic posting ine¢ ciency in 2�2 games

In this subsection we focus on two-player two-action games which have two pure strategy equilib-

ria, as illustrated in Figure 7. Player 1 chooses the row, X1 = fup;downg, while player 2 chooses
the column, X2 = fleft;rightg, and payo¤s are given by the following matrix:

left right

up a1; a2 b1; b2

down c1; c2 d1; d2

Figure 7

It is convenient to denote with A, B, C and D the action pro�les fup;leftg, fup;rightg,
fdown;leftg and fdown;rightg respectively; then x 2 fA;B;C;Dg.

Assumption 1: a1 > c1, d1 > b1, a2 > b2, d2 > c2.

Under Assumption 1 the underlying game has three Nash equilibria: two in pure strategies

(A and D) and one in mixed strategies. Within this class of games and assuming idiosyncratic

posting ine¢ ciency, we show that the preopening is a powerful equilibrium selection mechanism.

Considering generic payo¤s, we can distinguish games of common interest (as in De�nition 2)

from games of con�icting interests:

De�nition 3: In a con�icting interests game, a1 < d1 and a2 > d2. In a common interest

game, ai > di, i = 1; 2.

In games of common interest the two pure Nash equilibria are Pareto ranked implying that
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both players prefer the same equilibrium. In these games ai > maxfbi; ci; dig, hence Theorem 4

applies.

In the rest of the paper we focus on con�icting interests games, i.e. games where player 1

(player 2) prefers UGE D to UGE A (resp. UGE A to UGE D). With an abuse of notation, for

a given Markov strategy pro�le � of the preopening game, we denote ai(�) := �i(A; �) as player

i�s expected payo¤ given that at time � to the opening the PAP is x(�) = A. We shall denote

with
�
ai(�) := @ai(�)=@� the variation of ai(�) occurred by increasing the time to the opening by

an in�nitesimal amount @� . Quantities bi(�), ci(�), di(�) and
�
bi(�),

�
ci(�),

�
di(�) are de�ned in

the same way. Finally, notice that condition (4) becomes

ai(0) = ai, bi(0) = bi, ci(0) = ci, di(0) = di (5)

Throughout this session we will assume idiosyncratic ine¢ ciency in the posting system.

Assumption 2: q111 = q
2
11 = 0; q

1
10 = 1, q

2
01 = 1, hence r = 0:

Under Assumption 2 the posting times of the two players are independent, in the sense that

the time at which the action submitted by player i is posted is distributed according to a Poisson

process of intensity �i. We shall say that at time � player i keeps her action if she submits

yi(�) = xi(�) and she moves if she submits yi(�) 6= xi(�). Since we are considering a two-action
game, this is su¢ cient to completely describe players strategies at � in any given PAP.

4.3.1 Preopening game equilibrium in con�icting interest games

We know from Proposition 3 that when the opening time approaches and r is close to zero players

adopt the equilibrating strategy. Under Assumption 1 this means that players do not move from

PAPs A and D, while they try to move away from PAPs B and C as illustrated by the following
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picture.

x(�) = A

keep; keep

x(�) = B

move;move

x(�) = C

move;move

x(�) = D

keep; keep

=)

Equilibrating dynamics

x(�) = A

�
x(�) = B

 � �
x(�) = C

"�!

x(�) = D

�
Figure 8

Given Assumption 2, we can compute the law of motion of the expected continuation payo¤

�i(x(�); �) when both players adopt the equilibrating strategies. Obviously
�
a(�) =

�
d(�) = 0.

Suppose that at time � + � the current PAP is C. If players use the equilibrating strategies

between time � +� and � , then

ci(� +�) = ai(�)(1� e
��1�)e

��2� + di(�)(1� e
��2�)e

��1�

+ci(�)e
�(�1+�2)� + ki(�)(1� e

��2�)(1� e��1�)

where ki(�) is some weighted average of ai(�), bi(�), ci(�) and di(�). Compute the di¤erence

ci(t��)� ci(t) and take lim
�!0

ci(t��)�ci(t)
�

to obtain

�
ci(�) = �1 (ai(�)� ci(�)) + �2 (di(�)� ci(�))

Applying the same method for PAP B we have
�
bi(�) = �2 (ai(�)� bi(�)) + �1 (di(�)�1 � bi(�))

Considering the transversality condition (5), it follows that if both players adopt the equilibrating

strategy from time � until the opening, then at time � their expected payo¤s for each of the four

PAPs are

ai(�) = ai (6)

bi(�) =
ai�2 + di�1
�1 + �2

+

�
bi �

ai�2 + di�1
�1 + �2

�
e�(�1+�2)� (7)

ci(�) =
ai�1 + di�2
�1 + �2

+

�
ci �

ai�1 + di�2
�1 + �2

�
e�(�1+�2)� (8)

di(�) = di (9)
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Let us introduce � �1 and �
�
2 de�ned as

� �1 : = min
�
fc1 (�) = a1g

� �2 : = min
�
fc2 (�) = d2g

From the de�nition of con�icting interests games we have

� �1 =
1

�1 + �2
ln

�
�1(a1 � c1) + �2(d1 � c1)

�2(d1 � a1)

�
(10)

� �2 =
1

�1 + �2
ln

�
�1(a2 � c2) + �2(d2 � c2)

�1(a2 � d2)

�
(11)

Finally, let

� � : = minf� �1; � �2g

i� : = arg min
i2f1;2g

� �i

xi
�
: = arg max

x2fA;Dg
ui�(x)

In terms of Proposition 3, time � � is the closest time to the opening when both players adopt the

equilibrating strategy. They will hold to this strategy until the opening. However for � > � �,

player i� will not use the equilibrating strategy. In other words, i� is the last player adopting

the equilibrating strategy, i.e. at the date closest to the opening. Action pro�le xi
�
is the UGE

preferred by player i�.

Theorem 5 : Consider a 2�2 game of con�icting interests satisfying Assumption 1 and suppose
that the posting ine¢ ciency satis�es Assumption 2. Then for any " > 0, �1 > 0, �2 > 0 �nite,

there exists a T (") such that if T > T (") all Markov SPE of the preopening game lead players to

open at xi
�
with probability larger than 1� ".

In words, Theorem 5 states that if the preopening phase is long enough and r = 0, then at the

opening the two players coordinate on the UGE preferred by player i�, the player who is last in

adopting the equilibrating strategy. This result has a natural economic interpretation. In games
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of con�icting interests, the preopening game can be reinterpreted as a period in which players

bargain in order to determine which UGE they shall play at the opening. When a player starts

adopting the equilibrating strategy he is basically conceding the bargain, as in fact he is ready

to accept either of the two UGE as soon as it appears as the PAP. In this logic, the strongest

player is the one that waits the longest in conceding the bargaining, i.e. the one adopting the

equilibrating strategy at the latest date. Theorem 5 predicts that it is the UGE preferred by this

player that will prevail at the opening.

The intuition behind the proof of Theorem 5 goes as follows. When time to the opening is

equal to � � player i� stops following the equilibrating strategy. More precisely, at any equilibrium,

for � > � � player i� targets the UGE she prefers, i.e. irrespective of the PAP she submits the

action that is consistent with her preferred UGE. On the other hand, for some time player �i�

continues to play the equilibrating strategy. However, when � increases, at some point player �i�

also modi�es his behavior. The proof shows that at su¢ ciently distant times from the opening,

both players submit the actions that form UGE xi
�
. It is only when the opening is close enough

that they will adopt other strategies and eventually, the equilibrating strategy. This dynamic

behavior in turn assures that when T is large players have enough time to coordinate on xi
�
in the

early phase of the preopening. Once this happens, they will not change their action afterwards,

leading them to xi
�
as the opening outcome. We can now use Theorem 5 to study some classic

games of con�icting interests.

4.3.2 Asymmetric payo¤s and symmetric ine¢ ciency

Consider the case where players�payo¤s are not symmetric while �1 = �2 = � > 0 and q110 =

q201 = 1. This implies that players communicate with the posting system with instruments that

bear the same degree of ine¢ ciency; hence, the posting times are independently distributed

according to two identically distributed Poisson processes with intensity �. In this case i� does

not depends on � since (10)-(11) imply that � �1 � � �2 if and only if

a1 + d1 � 2c1
d1 � a1

� a2 + d2 � 2c2
a2 � d2
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The numerators of these expressions can be interpreted as each player�s average gain from playing

either A or D rather than playing action pro�le C. Notice that pro�le C would arise at the

opening if each player were continuously submitting the action corresponding to his preferred

UGE. The denominators re�ect each player�s gain from playing her preferred UGE rather than the

other UGE. Thus, ceteris paribus, when player i�s preferences over A and D are more pronounced

than those of player �i, and/or the cost of mis-coordination is lower for i than for �i, it is the
UGE preferred by i that will be selected during the preopening.

Suppose for instance that player 2�s preferences over the two UGEs are more pronounced

than those of player 1, as for example in the game in Figure 9

left right

up 1; � 0; 0

down 0; 0 �; 1

Figure 9

� > � > 1

In this case � �1 > �
�
2 and according to Theorem 5 the preopening phase will lead players to coordi-

nate on PAP fup; leftg as it seems natural to expect. Similarly, suppose that the miscoordination
cost for player 1 is larger than the miscoordination cost for player 2 as in the game of Figure 10

left right

up 1; � 0; 0

down �; 0 �; 1

Figure 10

� > 1,  > 0

Then player 1 will tend to engage in the equilibrating strategy earlier than player 2; as a result,

a su¢ ciently long preopening phase will lead almost surely to PAP fup; leftg at the opening.
Another example of game of con�icting interest is the "chicken game" illustrated below.

Straight Swerve

Swerve �1; 1 + � 0; 0

Straight �10;�10 1;�1
Figure 11
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In this example i� is the player that is going to swerve last when the PAP is fStraight, Straightg.
If � is positive, this player will be player 2, i.e. the player bene�tting more from winning the

race versus crashing. In this case players will coordinate on fSwerve, Straightg since the start of
the game.

When players di¤er in both their miscoordination costs and the strength of their preferences

over action pro�les A and D, the prediction on the opening PAP is less intuitive. However, the

comparison between � �1 and �
�
2 as given by expressions (10) and (11) readily provides the PAP

that shall be observed at the opening.

4.3.3 Symmetric payo¤s and asymmetric ine¢ ciency

When the underlying game payo¤ structure is perfectly symmetric (as for instance in Figure 4)

but the communication systems of the two players di¤er in their posting ine¢ ciency, i.e. �1 6= �2,
the preopening equilibrium leads to a single UGE. Namely, during the preopening, the PAP will

converge to the UGE preferred by the player with the lowest posting e¢ ciency �i. The economic

intuition for this result is simple. A less e¢ cient posting system has the same role as an exogenous

commitment device and provides the player who is using it with a strategic advantage. As a

result players coordinate on the UGE preferred by the most committed player. Consider for

example the symmetric game in Figure 4 similar to those studied in Farrell (1987) and recently

revisited in Crawford (2007). For this example, (10) and (11) become:

� �1 =
1

�1 + �2
ln

�
�1 + ��2
(�� 1)�2

�
� �2 =

1

�1 + �2
ln

�
��1 + �2
(�� 1)�1

�
and � �1 > � �2 if and only if �1 > �2: the player with the lower instantaneous e¢ ciency in his

posting system is the one adopting the equilibrating strategy at the latest moment. Another

example is the chicken game of Figure 11 when � = 0. The winner of the game is the player who

is known to have a less e¢ cient or slower "steering system".
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4.3.4 Symmetric payo¤s and symmetric ine¢ ciency

In con�icting interest games with perfectly symmetric payo¤s when players use equally (in)e¢ cient

communication systems, i.e. �1 = �2, a preopening game is not a perfect coordination tool even

if r = 0. In such a case8, the preopening game has multiple equilibria leading to di¤erent opening

outcome. Consider for instance the preopening game with �1 = �2 = � where the underlying

game is that of Figure 4. In this case � � = 1
2�
ln
�
�+1
��1
�
and the preopening game has three equi-

libria. One leading to open at A, another one leading to open at D and a third in which players

submit C until date T � � � and then adopt the equilibrating strategy until the opening. The
latter is the only symmetric equilibrium of the preopening game. In this equilibrium, players

are ready to signal to their opponent that they want to stick to their "best" action until few

moments (more precisely, � �) before the opening.9 In this symmetric equilibrium the probability

that players do not manage to coordinate on either A or D is (� � 1)=(� + 1), for any � �nite.
Interestingly, this is exactly the failure rate with abundant communication in Farrell (1987) (see

also Crawford (2007) page 10). Formally,

Proposition 6 Consider the underlying game of Figure 4. Let � � := 1
2�
ln
�
�+1
��1
�
with � = �1 =

�2. Then

(i) At any time � < � �, the equilibrium of the preopening round is unique, in strictly dominant

strategies and consists of both players using the equilibrating strategy.

(ii) There exists a symmetric equilibrium in the preopening game such that at any time � � � �,
players submits the action pro�le fin, ing

.
8This is clearly a non generic game in the space of preopening games.
9Recall that PAP C corresponds to the combination of actions that each player would play in his own preferred

UGE .
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5 Discussion

Theorem 4 and Theorem 5 allow us to conclude that when r = 0 the a generic preopening game

has a unique Markov SPE selecting a single UGE as the opening PAP. However, in order to

claim that the preopening can indeed be e¤ective in selecting equilibria, an additional step is

required. We still need to argue that the preopening game has no other Nash equilibria leading

to an opening PAP that di¤ers from the one selected by the Markov SPE. The objective of this

section is to prove that, for an appropriate family of posting ine¢ ciencies, all Nash equilibria

of the preopening game are observational equivalent to the Markov SPE we have characterized

above.

In the preopening game a player�s strategy in principle may depend on the entire history of

past PAPs. Thus, at any date t 2]0; T ] a history h(t) of the preopening game consists of two
elements: the sequence of the PAPs observed until t, each of them associated to the instant at

which these pro�les were posted. Formally, h(t) = f(x(tk); tk)gk=0;1;:::;n(t), with tn(t) � t, where
for any k � n(t), x(t0) = x(t00) for all t0; t00 2 [tk; tk+1[ and x(tk) 6= x(tk+1). Let H(t) be the set of
all possible histories of length t, while we denote with H the set of all possible histories of the

entire preopening game. A strategy �i for player i is any Borel-measurable function that maps

any history h(t) 2 H(t) into the possibly mixed action submitted by player i at date t. For a
given strategy pro�le � player i�expected continuation payo¤ after history h(t) is then10:

E [ui(x(T ))jh(t); �]

where now x(T ) denotes the PAP at the opening.

First note that focusing on sub-game perfect equilibria of the preopening game does not

arti�cially restricts the set of equilibria as long as we can choose the form of posting ine¢ ciency.

Namely, if posting ine¢ ciency is such that all Borel-measurable histories inH occur with positive

probability, then the set of Nash equilibria of the preopening game coincides with the set of sub-

game perfect equilibria. In order to obtain this result we generalize the transition probabilities

10This de�nition of expected continuation payo¤ for player i generalizes our previous de�nition (3) for any

strategy �, including also non-Markov strategies.
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Q(:) described in Section 2.

Assumption 3: Let

Q(x; y; z;�) : = (1� e��1�)e��2�q1xyz + (1� e��2�)e��1�q2xyz
+ (1� e��1�)(1� e��2�)kxyz (�) for z 6= x;

Q(x; y; x;�) : = 1�
X
z 6=x

Q(x; y; z;�)

where Q(:) has the same interpretation as in Section 2, kxyz (�) is a bounded function and�
qixyz

	
z2X 2 4

X .

Moreover, for any triple (x; y; z) 2 X �X �X and any i = 1; 2, we assume

1. qixyz = 0 if x1 6= z1 and x2 6= z2.

2. qixyz > 0 otherwise.

3. There exists " > 0 arbitrary small such that qixyz � " if z1 6= y1 or z2 6= y2.

The term qixyz � 0 can be interpreted as the conditional probability that, upon arrival of the
Poisson process pi, the PAP changes from x into z when players submit the action pro�le y. Note

that conditions (1) and (2) are veri�ed under Assumption 3. The second part of Assumption 3

imposes additional restrictions on parameters qi so that 1. the posted actions of both players

cannot change simultaneously; 2. the posted action of each player can change into any action

including those which are di¤erent from the submitted one; however 3. if a player�s posted action

changes, it is much more likely that the new PAP will re�ect the players�submitted actions rather

than another action.

If the transition probabilities satisfy Assumption 3 then, for any PAP x 2 X and any date

t > 0, the PAP at t is equal to x with a strictly positive probability, independently of players�

strategies. Notice that this would not be true if r = 011. Hence, if Assumption 3 holds the set

11However, the transition dynamics allowed under Assumption 3 may include those obtained with r = 0, namely

when " = 0.
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of SPE equilibria and the set of Nash equilibria of the preopening game coincide. Property 1. of

Assumption 3 is crucial in order to prove that all SPE of the preopening game have a Markov

structure but for a �nite number of instants. The formal statement of this result is contained in

our last Proposition.

Proposition 7 : Under Assumptions 1 and 3, every Nash equilibrium of the preopening game

is observationally equivalent to the Markov SPE of Theorem 5.

6 Conclusions

A preopening game is a model of pre-play communication inspired by a widely existing mechanism

in �nancial markets. During the preopening phase, players announce through a posting system

the action they intend to play in the underlying game. At the end of the preopening phase (the

opening) players are bound to play the last action pro�le posted on the system. We study the

case of a posting system that su¤ers from certain degree of ine¢ ciency, a¤ecting either both

players simultaneously or the two players independently.

We show that when posting system failures hit the two players idiosyncratically, in games

with common interest, the preopening selects the Pareto dominant Nash equilibrium. Thus a

su¢ ciently long preopening phase allows players to coordinate on Pareto dominant equilibrium

avoiding sub optimal equilibria that could arise for example due to strategy uncertainty (see for

instance risk dominant equilibria). With idiosyncratic ine¢ ciency in a con�icting interest game,

the preopening leads to the underlying game equilibrium preferred by the player that su¤ers the

least from miscoordination and/or has the sharpest preference over alternative equilibria and/or

has the least e¢ cient posting system.

On the contrary, when the posting system is a¤ected by systemic failures, the preopening

operates no equilibrium selection and the opening can occur at any of the Nash equilibria of

the underlying game. Our results have clear policy implications for the preopening in �nancial
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markets. For example on Xetra, the German computerized stock exchange, the exact time of

the opening can be random. In terms of our model, this corresponds to a situation in which

all players might not be able to change their posted action after some unknown period. Such

a form of posting ine¢ ciency a¤ects all participants simultaneously. According to our result,

this form of posting ine¢ ciency does not prevent market participants to coordinate on Pareto

inferior equilibria. The selection of a Pareto superior equilibrium (when this exists) would rather

be achieved by introducing some idiosyncratic delay in the posting system or by reducing the

system ability to simultaneously process changes in the tentative orders submitted during the

preopening. While in this paper we focus on two-player games with complete information, there

are two natural directions of future research. First, consider the robustness of our result to

the case of more than two players. Second, consider the case in which there is incomplete

information regarding players�underlying game payo¤s matrix. In the latter case, players might

want to delay adopting the equilibrating strategy in order to signal sharper preference over the

equilibrium outcome.
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Appendix

Proof of Lemma 1: The optimal action submitted at time � can be interpreted as the limit

as � goes to 0 of the optimal action submitted in a discretized-time version of the preopening

game in which players are restricted to submit constant actions over intervals of length �.

Suppose at some time � +� the PAP is x(� +�) = (x1; x2) and from time � +� until � player 2

consistently submits action y2. Then, in a Markov equilibrium, player 1�s expected payo¤ from

submitting action y1 in the same time interval is equal to

Q(x; (y1; y2); (y1; x2);�)�1(y1; x2; �) +Q(x; (y1; y2); (y1; y2);�)�1(y1; y2; �) +

+Q(x; (y1; y2); (x1; y2);�)�1(x1; y2; �) +Q(x; (y1; y2); x;�)�1(x1; x2; �).

where �1(:; �) is player 1�s equilibrium continuation payo¤if at time � . Note that sinceQ(x; (y1; y2); (x1; y2);�)

and Q(x; (y1; y2); x;�) do not depend on y1, maximizing the previous expression with respect to

y1 reduces to determine

y�1 (x; y2; � ;�) := arg sup
y12X1

Q(x; (y1; y2); (y1; x2);�)�1(y1; x2; �)+Q(x; (y1; y2); (y1; y2);�)�1(y1; y2; �)

When �! 0 the right hand side of the previous expression converges to zero because of property

(1); however it is easy to see that lim�!0 y
�
1 (x; y2; � ;�) is the y1 maximizing the following

expression:

lim
�!0

Q(x; (y1; y2); (y1; x2);�)�1(y1; x2; �) +Q(x; (y1; y2); (y1; y2);�)�1(y1; y2; �)

�
=

= (�1q
1
10 + �2q

2
10)�1(y1; x2; t) + (�1q

1
11 + �2q

2
11)�1(y1; y2; t) (12)

Finally, note that r = 1 implies qi10 = qi01 = 0 while, r = 0 implies �1q111 + �2q
2
11 = 0 for

i = 1; 2. Hence expression (12) is maximized for y1 = x�1(y2; t) if r = 1, and for y1 = x
�
1(x2; t) if

r = 0. Since (12) is continuous in qi the same maximizers apply when r is close to 1 and to 0,

respectively. �

Proof of Proposition 2: See supplementary material.
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Proof of Proposition 3: (i) Note �rst that property (4) implies that for any " > 0, there

exists some � 0 > 0 small, such that for � � � 0, no matter the actions submitted by players from
� until the opening, it results

jui(x)� �(x; �)j < "

We can apply Lemma 1 and deduce that for " small enough and generic payo¤s of the underlying

game, at time � and PAP x(�), player i strictly dominant action is to submit yi = BRi(x�i(�)).

Thus, when the opening date is close enough the equilibrium play is uniquely de�ned in a way that

only depends on the current PAP and corresponds to the equilibrating scenario. Hence in all SPE

we can express players i�s continuation payo¤ as a function �i(x(�); �). (ii) Let xN1 and xN2 be

two UGE. Generic payo¤s implies u1(xN1) > u1(xN2), without loss of generality. The proof is by

contradiction. Suppose that there is a SPE equilibrium where the equilibrating scenario is played

during the whole preopening game independently of its length. Then, �i(xN2; �) = ui(xN2) for all

i; � . Suppose now that at � the PAP is x0 = (xN11 ; x
N2
2 ). According to the equilibrating strategy,

player 1 submits y1(�) = BR1(x
N2
2 ) = xN21 while player 2 submits y2(�) = BR2(x

N2
1 ) = xN12 .

If r = 0, then the probability that the two submissions are posted simultaneously is nil. This

implies that PAP x0 will either evolve into PAP xN1 or into PAP xN2. Once either xN1 or xN2

is reached, players will stick to the posted action pro�le until the opening. Therefore, if the

equilibrating scenario is expected to be played for a su¢ ciently long period the probability that

the PAP during the preopening will eventually evolve from x0 to either xN1 or xN2 tends to

one; consequently �1(x0; �) converges to an average between u1(xN1) and u1(xN2). This in turn

implies that for � su¢ ciently large:

�1(x
N1; �) = u1(x

N1) > �1(x
0; �) > u1(x

N2) = �1(x
N2; �).

Recall that Lemma 1 shows that if r is su¢ ciently close to 0 player 1�s optimal submitted action

in � when the PAP is x0 is x�1(x
N2
2 ; �) = argmaxy1 �1(y1; x

N2
2 ; �). However �1(x

0; �) > �1(x
N2; �)

implies that x�1(x
N2
2 ; �) 6= xN21 contradicting the claim that the equilibrating strategy is used at

any � (as this would imply that at PAP x0 player 1 submits xN21 ). �

Proof of Theorem 4: To begin with we recall some properties of continuous time stochastic
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processes. Consider a continuous process D de�ning the stochastic transition dynamics of X into

itself. A subset S � X is said to be stable under D if a trajectory reaching S cannot exit this
set and if each point in S is reached in�nitely many times. Formally, S � X is stable under D

if: (S1) Pr(x(t) 2 Sjx(0) 2 S) = 1 and (S2) for any x 2 S, 9t0 > 0 and " > 0 such that for

all t0 > t, Pr(x(t) = xjx(0) 2 S) > ". For stable sets S we have that given a bounded function
f : X ! R, there exists bfD(S) 2 (minx2S f(x);maxx2S f(x)) satisfying

lim
t!1

E[f(D(x; t))] = bfD(S) for all x 2 S (13)

Let r = 0, then action pro�le bx is stable under all equilibrium dynamics of the preopening

game. In fact Lemma 1 implies that player i at time � from the opening will submit action

yi(�) = x�(x�i(�); �). When � is close to 0 condition (4) guarantees that x�(bx�i(�); �) = bxi
implying that �i(bx; �) = ui(bx) for � small. However, as long as �i(bx; �) = ui(bx), since ui(bx) >
�i(x; �) for any x 6= bx, we have that x�(bx�i(�); �) = bxi and �i(bx; �) = ui(bx) for all � . In other
words, once the PAP bx is reached, players will never submit actions di¤erent from bx.
Lemma 8 : Under the assumptions of Theorem 4, there exists � 0 �nite such that at � > � 0 from

the opening, bx is the only stable set of the equilibrium dynamics of PAPs.

Proof: The proof is by contradiction. Take any �nite � 0 � 0 and suppose there exists a set
C � X with bx =2 C that is stable under the equilibrium dynamics for all � � � 0. In other words,
for any � > � 0, whenever the PAP is in the set C, players submit actions that keep the following
PAP in C and as � goes to in�nity all PAPs in C are reached in�nitely many times between time
� and time � 0 (see for example the cycle depicted in Figure 6). Property (13) implies that for

any � > 0 there is �(�) > � 0 such that

max
x2C

�i(x; �(�))�min
x2C

�i(x; �(�)) < � (14)

In other words the expected continuation payo¤s from di¤erent PAPs in C converge to the same
value as �(�) goes to in�nity.
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Notice that for any (x1; x2) 2 X, we have (x1; bx2) =2 C and (bx1; x2) =2 C: in fact, x�i (bx�i(�); �) =bxi implies that when the PAP is (xi; bx�i) players submit y(�) = bx =2 C, hence (xi; bx�i) cannot
belong to C as it does not satisfy condition (S1) of a stable set.
Consider next PAP (xi; bx�i) where xi is chosen such that there exists a x�i for which (xi; x�i) 2

C (see for example the action pro�le (U;R) in Figure 6: xi = U , bx�i = R and x�i is L or C).

Then we have (x�i (bx�i; �); bx�i) = bx and (xi; x��i(xi; �)) 2 C.12 Since r = 0, the probability that
two submissions are posted simultaneously is nil. Hence, between an arbitrarily large time � � � 0

and time � 0, PAP (xi; bx�i) evolves with probability arbitrarily close to 1 into either PAP bx or
into an element of C before � 0. Let

� := lim
�!1

Pr (x (� 0) = bxjx(�) = (xi; bx�i)) > 0.
Now �x � > 0 such that � < �(ui(bx) � maxx2C �i(x; � 0)) and let �(�) > � 0 satis�es inequality

(14). Note that for any � 00 > �(�),

max
x2C

�i(x; �
00) � max

x2C
�i(x; �(�)) < � +min

x2C
�i(x; �(�)) (15)

where the �rst inequality follows from the fact that C is stable and � 00 > �(�), while the second
inequality follows from inequality (14). Note that there exists � 00 � �(�) such that the probability

that within time � 00 and �(�), PAP x(� 00) = (xi; bx�i) either evolves into bx or reaches C is arbitrarily
close to 1. Namely for � 00 large enough

�i(xi; bx�i; � 00) � �ui(bx) + (1� �)min
x2C

�i(x; �(�))

= �

�
ui(bx)�min

x2C
�i(x; �(�))

�
+min

x2C
�i(x; �(�))

� �

�
ui(bx)�max

x2C
�i(x; �(�))

�
+min

x2C
�i(x; �(�))

� �

�
ui(bx)�max

x2C
�i(x; �

0)

�
+min

x2C
�i(x; �(�)) > � +min

x2C
�i(x; �(�))

where the last inequality follows from the de�nition of �, and the relation before the last equal-

ity follows from the fact that C is stable and �(�) > � 0. Hence from equation (15) we have

12In fact, (xi; x��i(xi; �)) =2 C would imply that (xi; x�i) 2 C would possibly evolve into (xi; x��i(xi; �)) =2 C,
contradicting either that that C is a stable or that (xi; x�i) 2 C.
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�i(xi; bx�i; � 00) > maxx2C �i(x; � 00) � �i(xi; x�i; � 00) as (xi; x�i) 2 C. This implies that if x(� 00) =
(xi; x�i), player �i will submit x�(xi(�); �) = bx�i. This in turn means that for � large enough
the equilibrium dynamics of submissions can lead (xi; x�i) 2 C into (xi; bx�i) =2 C contradicting
the assumption of C being stable for all � > � 0. Hence for � large enough the only possible stable
set is bx. �
Lemma 8 implies that for some � 0 �nite, during the �rst T � � 0 part of the preopening the

equilibrium play is such that the players�optimal submissions lead the PAP to converge to bx.
Once bx is reached the PAP will not change until the opening. Hence to obtain the result of the
theorem it is su¢ cient to choose T (") large enough to guarantee that the PAP at time � 0 is bx
with probability larger than 1� ". �

Proof of Theorem 5:

We shall provide the proof for the case i� = 2 implying xi
�
= A. The case i� = 1 can be

obtained applying a symmetric argument.

Proposition 3 implies that the equilibrating strategy is strictly dominant for both players

starting from time � � until the opening. At time � � the equilibrating strategy is already optimal

for player 1, while player 2 keeps (moves) if x(� �) = A (resp. x(� �) = D) while he is indi¤erent

between moving and keeping if x(� �) = C or x(� �) = D. Hence at time � � from the opening the

following relations hold:

a1(�
�)� c1(� �) > 0; (16)

d1(�
�)� b1(� �) > 0; (17)

a2(�
�)� b2(� �) > 0; (18)

c2(�
�)� d2(� �) = 0: (19)

where the expected payo¤s are obtained from equations (6)-(9) and the de�nition of � �. Consider

now the equilibrium strategies at time � � + � from the opening. For � > 0 and arbitrarily small,

it must be that the strategies in the sub-game starting at � � + � re�ect either the equilibrating

scenario or one of the following three scenarios:
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Scenario 1:

A

keep; keep

B

move;move

C

move; keep

D

keep; keep

A

�
B

(�
C

"
D

�

(20)

Scenario 2:

St = A

keep; keep

St = B

move;move

St = C

move;move

St = D

keep;move

St = A

�
St = B

(�
St = C

"*
St = D

 �

(21)

Scenario 3:
A

keep; keep

B

move;move

C

move; keep

D

keep;move

A

�
B

(�
C

"
D

 �

(22)

The following Lemma shows that only Scenario 3 is an equilibrium at time � � + �.

Lemma 9 There exists a �nite � 0 > 0 such that Scenario 3 represents the unique equilibrium

play for time � � + � 0 until time � �.

Proof : From the previous discussion we know that an instant before time � �, either the

equilibrating scenario, Scenario 1, 2, or 3 is played. Consider time � = � � + � to the opening

with � > 0 and arbitrarily small. Suppose Scenario 1 is played at time � , then

�
ci(�) = �1(ai(�)� ci(�))
�
di(�) = 0
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Note that a2(� �) � c2(� �) = a2 � c2(� �) > 0 where the inequality holds since a2 is player 2�s

maximum payo¤ in the underlying game. Thus,
�
ci(�

�) > 0 and
�
di(�

�) = 0 and therefore, using

(19) we obtain c2(� � + �) > d2(�
� + �). Hence it is not optimal for player 2 to "keep" at

x(� � + �) = D. This in turn implies that Scenario 1 cannot be an equilibrium at time � � + �.

Suppose now that Scenario 2 is played at time � . In this case

�
ci(�) = �1(ai(�)� ci(�)) + �2(di(�)� ci(�))
�
di(�) = �2(ci(�)� di(�))

Since a2(� �)� c2(� �) > 0 and d2(� �) = c2(� �) by de�nition of � �; also in this case
�
c2(�

�) > 0 and
�
d2(�

�) = 0 implying that c2(� � + �) > d2(� � + �). Again, it is not optimal for player 2 to "move"

if x(� � + �) = C. As a consequence Scenario 2 cannot be an equilibrium at time � � + �.

Suppose then that the equilibrating scenario is played at time � . In this case

�
ci(�) = �1(ai(�)� ci(�)) + �2(di(�)� ci(�))
�
di(�) = 0

As in the previous cases case
�
c2(�

�) > 0 and
�
d2(�

�) = 0 implying that c2(� � + �) > d2(� � + �).

Then, it is not optimal for player 2 to "keep" if x(� � + �) = D. Thus, the equilibrating scenario

cannot be an equilibrium at time � � + �. Suppose �nally that Scenario 3 is played; then:

�
ai(�) = 0
�
bi(�) = �2(ai(�)� bi(�)) + �1(di(�)� bi(�))
�
ci(�) = �1(ai(�)� ci(�))
�
di(�) = �2(ci(�)� di(�))

which in turn imply that
�
ci(�

�) > 0 and
�
d2(�

�) = 0. Hence it must result that for � > 0 and
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su¢ ciently small we have

a1(�
� + �)� c1(� � + �) > 0;

d1(�
� + �)� b1(� � + �) > 0;

a2(�
� + �)� b2(� � + �) > 0

c2(�
� + �)� d2(� � + �) > 0

guaranteeing that Scenario 3 is optimal at time � �+�. If Scenario 3 is played between time � �+�

and time � �, then

ai(�
� + �) = ai(�

�)

bi(�
� + �) = ai(�

�)� (ai(� �)� bi(� �)� ci(� �) + di(� �))e�(�1+�2)� +

+(di(�
�)� ai(� �)) + (ai(� �)� ci(� �))

�
�1e

��1� � �2e��2�
�

�1 � �2
ci(�

� + �) = ai(�
�) + (ci(�

�)� ai(� �))e��1�

di(�
� + �) = ai(�

�)� (ai(� �)� di(� �)) e��2� � (ai(� �)� di(� �))
�2
�
e��2� � e��1�

�
�1 � �2

Recalling that ai = ai(� �), di = di(� �) and d2(� �) = c2(� �), we have

a1(�
� + �)� c1(� � + �) = (a1 � c1(� �)) e��1� > 0 (23)

d1(�
� + �)� b1(� � + �) = e��1�

�
c1(�

�)� a1 + (a1 � c1(� �) + d1 � b1(� �)) e��2� )
�

(24)

a2(�
� + �)� b2(� � + �) = e�(�1+�2)�

�
a2 � b2(� �) + �1 (a2 � d2)

e�1� � e�2�
�1 � �2

�
> 0 (25)

d2(�
� + �)� c2(� � + �) = �1(a2 � d2)

e��1� � e��2�
�1 � �2

< 0 (26)

Inequalities (23), (25) and (26) follow from a2 > d2 and from expression (16)-(19). Note that

as long as inequalities (23), (25) and (26) are satis�ed the equilibrium play in the switching game

is such that
A

keep; keep

B

?;move

C

move; keep

D

?;move

(27)
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while the sign of (24) determines player 1�s behavior in PAPs B and D. Note that the sign of

(24) is equal to the sign of

c1(�
�)� a1 + (a1 � c1(� �) + d1 � b1(� �)) e��2�

that is positive for � < � 0 := 1
�2
ln
�
a1�c1(��)+d1�b1(��)

a1�c1(��)

�
> 0 and negative for � > � 0. When (24)

is positive, player 1 will "move" in PAP B and "keep" in PAP D: hence Scenario 3 represents

the unique equilibrium play between time � � + � 0 and time � �. �

Now let us introduce � 00 := � 0 + � �. From Lemma (9) we know that at time � 00:

a1(�
00)� c1(� 00) > 0; (28)

d1(�
00)� b1(� 00) = 0; (29)

a2(�
00)� b2(� 00) > 0 (30)

c2(�
00)� d2(� 00) > 0 (31)

Consider then the equilibrium play at � 00 + � from the opening. For � > 0 and arbitrarily small,

the play has to be consistent with Figure (27). This happens if the play re�ects either Scenario

3 or one of the following three scenarios:

Scenario 4:

A

keep; keep

B

keep;move

C

move; keep

D

keep;move

A

�
B

(

C

"
D

(

(32)

Scenario 5:

A

keep; keep

B

move;move

C

move; keep

D

move;move

St = A

�
St = B

(�
St = C

"
St = D

(�

(33)
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Scenario 6:

A

keep; keep

B

keep;move

C

move; keep

D

move;move

A

�
B

(

C

"
D

(�

(34)

Lemma 10 : For any � > � 00, the unique equilibrium play at time � > � 00 is given by Scenario

6.

Proof : From the previous discussion we know that at time (� 00 + �) either Scenario 3, 4, 5,

or 6 is played. Suppose Scenario 3 is played at time � 00 + � with � > 0 arbitrarily small. In this

case d1(� 00 + �)� b1(� 00 + �) = d1(� � + � 0 + �)� b1(� � + � 0 + �) where the right hand side is given
by equation (24). However, from the de�nition of � 0 it follows that d1(� 00 + �) � b1(� 00 + �) < 0
implying that it is not optimal for player 1 to keep his action at � � + � if x(� � + �) = D. Hence

Scenario 3 cannot be an equilibrium at time � 00 + �.

Suppose then that Scenario 4 is played. Then

�
bi(�) = �2(ai(�)� bi(�))
�
di(�) = �2(ci(�)� di(�))

Considering that at � 00, b1(� 00) = d1(� 00), a1(� 00) = a1 > c1(� 00), we have
�
b1(�

00) = �2(a1�d1(� 00)) >
�2(c1(�

00)�d1(� 00)) =
�
d1(�). Hence b1(� 00+ �) > d1(� 00+ �), implying that if x(� 00+ �) = D, player

1 prefers to "move". This contradicts the claim that Scenario 4 is played at time � 00+ �. Suppose

now that Scenario 5 is played. Then

�
bi(�) = �2(ai(�)� bi(�)) + �1(di(�)� bi(�))
�
di(�) = �1(di(�)� bi(�)) + �2(ci(�)� di(�))

The two previous di¤erential equations, together with the fact that b1(� 00) = d1(� 00) imply that
�
b1(�

00) = �2(a1 � d1(� 00)) > �2(c1(� 00)� d1(� 00)) =
�
di(�). Hence b1(� 00 + �) > d1(� 00 + �), implying
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that if x(� 00 + �) = B, player 1 prefers to keep. This contradicts the claim that Scenario 5 is

played at time � 00 + �. Finally consider Scenario 6. Then:

�
ai(�) = 0
�
bi(�) = �2(ai(�)� bi(�))
�
ci(�) = �1(ai(�)� ci(�))
�
di(�) = �2(ci(�)� di(�)) + �1(bi(�)� di(�))

Remark that
�
bi(�

00) �
�
di(�

00) = �2(a1(�
00) � c1(� 00)) > 0. Hence from expressions (28)-(31), it

results that for � > 0 and su¢ ciently small

a1(�
00 + �)� c1(� 00 + �) > 0;

d1(�
� + �)� b1(� 00 + �) < 0;

a2(�
00 + �)� b2(� 00 + �) > 0

d2(�
00 + �)� c2(� 00 + �) < 0

guaranteeing that Scenario 6 is optimal at time � 00 + �. If Scenario 6 is played between time

� 00 + � and time � 00, then the dynamics of the continuation payo¤s are given by

ai(�
00 + �) = ai(�

00) = ai

bi(�
00 + �) = ai(�

00) + (bi(�
00)� ai(� 00))e��2�

ci(�
00 + �) = ai(�

00) + (ci(�
00)� ai(� 00))e��1�

di(�
00 + �) = ai(�

00) + (bi(�
00)� ai(� 00))e��2� + (ci(� 00)� ai(� 00))e��1�

+(ai(�
00)� bi(� 00)� ci(� 00) + di(� 00))e�(�1+�2)�
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Note that ai = a1(� 00), d1(� 00) = b1(� 00) from the de�nition of � 00. Hence we have

a1(�
00 + �)� c1(� 00 + �) = (a1 � c1(� 00)) e��1� > 0 (35)

a2(�
00 + �)� b2(� 00 + �) = (a2 � b2(� 00)) e��2� > 0 (36)

d1(�
00 + �)� b1(� 00 + �) = (c1(�

00)� a1)e��1� (1� e��2� ) < 0 (37)

d2(�
00 + �)� c2(� 00 + �) = e��2�

�
b2(�

00)� a2 + (a2 � b2(� 00)� c2(� 00) + d2(� 00))e��1�
�

< 0 (38)

where inequalities (35)-(37) follow from (28)-(31) while (38) follows from the fact that the sign

of d2(� 00 + �)� c2(� 00 + �) is equal to the sign of

b2(�
00)� a2 + (a2 � b2(� 00)� c2(� 00) + d2(� 00))e��1�

which is negative far all � � 0 because,�rst, it is negative for for � = 0 (because of (31)) and

second, it is either a decreasing function of � or a sum of negative terms. Inequalities (35)-(38)

hold for all � > 0 and imply that Scenario 6 must represent the only equilibrium play at any

time � > � 00. �

In order to conclude the proof of the Theorem note that the above Lemma shows that Scenario

6 is played when the time left until the opening is more than � 00, i.e. from date 0 until date T�� 00.
In Scenario 6 player 1 (resp. player 2) moves his action whenever his posted action is not "up"

(resp. "left"). Hence both players keep their posted action only if the PAP is A. Thus, for any

" > 0 there exists a su¢ ciently large T such that if Scenario 6 is played from time T to time � 00,

then Pr(x(� 00) = A) > 1� ". Once PAP A is reached players will not move away from it neither

in Scenario 3 (which, by Lemma 9 follows Scenario 6), nor in the equilibrating scenario that by

Proposition 4 and Lemma 9 follows scenario 3 until the opening. Hence the opening will be at

A. �

Proof of Proposition 6: See supplementary material.

Proof of Proposition 7: We denote with H(t; x) � H(t) the set of histories of length t
ending with a PAP equal to x. For any given history h(t) 2 H(t), let h(t; x) 2 H(t; x) be the
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history identical to h(t) for t0 < t and such that the PAP in t is x. Consider a Nash equilibrium

of the preopening game, and let h(t) 2 H(t; (:; x�i)) be a history of length t where player �i
posted action at date t is x�i. Let h(t; (yi; x�i)) be a history identical to h(t) for all t0 < t and

such that the posted action of player i at t is equal to yi. Let y�i (h(t)) be the yi that maximizes

player i�s expected continuation payo¤ after history h(t; (yi; x�i)):

y�i (h(t)) := arg max
yi2Xi

E [ui(x(T ))jh(t; (yi; x�i))] .

The following lemma shows that if for all h(t) 2 H(t; (:; x�i)), y�i (h(t)) is unique and it is equal
to some y�i (x�i), then it must be that at date t in equilibrium player i submits y

�
i (x�i) whenever

h(t) 2 H(t; (:; x�i)). Formally,

Lemma 11 : Under Assumption 3, if at date t for some x 2 X, there is a unique y�i (x�i) such
that y�i (h(t)) = y

�
i (x�i) for all h(t) 2 H(t; (:; x�i)), then in any Nash equilibria of the preopening

game player i submits y�i (x�i) after history h(t) 2 H(t; (:; x�i)).

We provide here a short intuition of the proof of Lemma 11. The formal proof is provided

in supplementary material. Consider player i at instant t after observing the history h(t) 2
H(t; (:; x�i)). If he submits action yi and his action is not posted, then his choice of yi does not

a¤ect his continuation payo¤. If his action is posted, then by Assumption 3 the other player�s

submission is not posted and i�s continuation payo¤ is equal to E [ui(x(T ))jh(t; (yi; x�i))], which
is maximized at yi = y�i (x�i) by hypothesis.

Note that condition (1) holds under Assumption 3: this in turn implies that when the opening

date is close enough the probability that the players succeed in changing their posted actions

before the opening gets arbitrarily close to zero. Hence, for t su¢ ciently close to T , independently

of their strategies, the players�equilibrium expected payo¤s are arbitrarily close to the payo¤s

obtained when the opening action pro�le is the one posted at t. Formally, for any strategy pro�le

� and any history h(t) 2 H(t):

lim
t!T

E [ui(x(T ))jh(t); �] = ui(x(t)). (39)
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where x(t) is the PAP at the end of history t.13 This implies that for t su¢ ciently close to T

and a generic payo¤ matrix ui, Lemma 11 applies and in all Nash equilibria players adopt the

equilibrating strategy. As a consequence, the equilibrium continuation payo¤ of each player at

time t depends only on the PAP x(t) and on the time remaining to the opening T � t. Hence
players�equilibrium strategies as well must depend only on the current PAP and the time to

the opening (i.e. Markov strategies). Moving backward the same argument applies so that

the submission preferred by each player at time � to the opening is unique and the backward

dynamics of players�continuation payo¤s is uniquely de�ned. Nevertheless, as it is illustrated in

the proof of Theorem 5, there two points in time (namely � � of Proposition 3 and � 00 of Lemma

10) at which a player i is indi¤erent between submitting di¤erent actions. For example at � �

Lemma 11 does not apply and the action submitted by player i might depend on the whole

history of past PAPs. However, the proof of Theorem 5 also shows that generically only one of

the submissions that are optimal at � � is also optimal slightly before, i.e. at time � �+". Hence a

Nash equilibrium of the preopening game can di¤er from the Markov SPE only for some actions

submitted at two precise dates. Since the probability that any action is instantaneously posted

is equal to zero, all Nash equilibria are observational equivalent to the Markov SPE we have

analyzed in the case r = 0. �

13Recall that Assumption 4 implies that for any x 2 X and t > 0, there is strictly positive probability that

h(t) 2 H(t; x).
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Supplementary Material to "Preopening and Equilibrium Selection"

Proof of Proposition 2

We prove the proposition for r = 1 and hence by continuity for r close to 1. W.l.o.g. �x

q111 = 1 and q211 = 1 and let �1 = �2 = �. In this case equality (12) in Lemma 1 implies that

player i chooses

yi(�) 2 arg max
yi2Xi

�i(yi; y�i; �).

Fix a pure strategies Nash equilibrium of the underlying game xN = (xN1 ; x
N
2 ) 2 N . We show

now that the strategy in which for all PAPs and all � , player 1 submits y1(�) = xN1 and player

2 submits y2(�) = xN2 is a Markov equilibrium of the preopening game. In other words, at any

time � and for all PAPs x(�) 2 X we have that if y�i(�) = xN�i, then player i�s best reply is to

submit yi(�) = xNi . Consider player i. We have to show that

8� � 0; xi 2 X; �i(x
N
i ; x

N
�i; �)� �i(xi; xN�i; �) � 0 (40)

Note that (4) implies that (40) is satis�ed for � close enough to 0 since xN 2 N . That is to
say that when the opening is close enough, it is an equilibrium for player i to submit xNi given

that the other player is submitting xN�i. This strategy pro�le induces the following backward

dynamics for players�expected continuation payo¤s at � from the opening:

@�i(x1; x2; �)

@�
:=

�
�i(x1; x2; �) = �(�i(x

N
1 ; x2; �)� �i(x1; x2; �) + �i(x1; xN2 ; �)� �i(x1; x2; �))

for any given PAP x(�) = (x1; x2). In particular, we have

�
�i(x

N
1 ; x

N
2 ; �) = 0

�
�i(x1; x

N
2 ; �) = �(�i(x

N
1 ; x

N
2 ; �)� �i(x1; xN2 ; �))

�
�i(x

N
1 ; x2; �) = �(�i(x

N
1 ; x

N
2 ; �)� �i(xN1 ; x2; �))

Considering that equality (4) imposes the �nal condition �i(x1; x2; 0) = ui(x1; x2), it results that
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for � close to 0 we have

�i(x1; x
N
2 ; �) = ui(x

N) + (ui(x1; x
N
2 )� ui(xN))e���

�i(x
N
1 ; x2; �) = ui(x

N) + (ui(x
N
1 ; x2)� ui(xN))e���

�i(x
N
1 ; x

N
2 ; �) = ui(x

N)

hence

�i(x
N
1 ; x

N
2 ; �)� �i(xi; xN�i; �) = �e��� (ui(xN)� ui(xi; xN�i)) � 0 (41)

where the last inequality follows from xN 2 N : in turn, (41) implies that condition (40) is satis�ed
for all � . In other words, it is an equilibrium for players to continuously submit xN during all the

preopening phase. If this phase is long enough, then assumption (2) implies that the probability

of having xN posted at the opening can be made arbitrarily close to one irrespective of the

starting action pro�le. In order to see that the same result applies for r su¢ ciently to 1, it is

su¢ cient to note the following: �rst, equation (12) varies continuously with r, implying that

when the opening is close and r is close to 1, submitting xN remains an equilibrium for both

players; second, the backward dynamics
�
�i(x1; x2; �) induced by such strategy is also continuous

in r, implying that the resulting �i(x1; x2; �) can be made arbitrarily close to the one obtained

in the case r = 1. These two last observations in turn guarantee that submitting xN remains an

equilibrium. �

Proof of Proposition 6

We refer here to the underlying game of Figure 4 where payo¤s are symmetric. The symmetry

in the payo¤ structure and �1 = �2 imply that � �1 = �
�
2 = �

�. This in turn implies that, at time

� � from the opening, c1(� �) = a1(� �) = a1 = 1 and c2(� �) = d2(� �) = d2 = 1 i.e. player 1 (resp.

player 2) is indi¤erent between keeping or moving his action at PAP A and C (resp. D and C).

However, d1(� �) > b1(�
�) and a2(� �) > b2(�

�): hence both players prefer to move at PAP B,

while player 1 (resp. player 2) keeps his action at PAP D (resp. at A). In order to determine

the equilibrium of the sub-game starting at time � 0 = � � + �, with � > 0 arbitrarily small, we
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have to analyze four possible scenarios for each player (we will derive the best reply of player 2

�xing the behavior of player 1, and obtain the reverse by symmetry):

PAP A

Player 1 action

PAP C

Player 1 action

Scenario 1 keep move

Scenario 2 keep keep

Scenario 3 move keep

Scenario 4 move move

Across all the four scenarios, recall that player 1 at time � 0 keeps at PAP D (and moves at PAP

B), since d1(� �) > b1(� �).

Scenario 1:

Player 1 uses the equilibrating strategy at � 0. We know that the equilibrating strategy cannot

be the best reply for player 2 since � 0 > � �. It is easy to verify that the best action for player 2

is actually to keep at PAP C and to move at PAP D. Indeed,

�
c2(�

�) = �(a2(�
�)� c2(� �)) > 0 if player 2 keeps in PAP C

�
c2(�

�) = �(a2(�
�)� c2(� �)) + �(d2(� �)� c2(� �)) if player 2 moves in PAP C

while
�
d2(�

�) = �(c2(�
�)� d2(� �)) = 0 if player 2 moves in PAP D

�
d2(�

�) = 0 if player 2 keeps in PAP D

Together with c2(� �) = d2(�
�) this ensures that c2(� 0) > d2(�

0). Thus player 2 keeps his

action at x(� 0) = C and moves when x(� 0) = D.

Scenario 2:

At time � 0 player 1 keeps his action in both x(� 0) = A and x(� 0) = C. Then the payo¤s

dynamics is
�
c2(�

�) = 0 if player 2 keeps in PAP C
�
c2(�

�) = �(d2(�
�)� c2(� �)) = 0 if player 2 moves in PAP C
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and
�
d2(�

�) = 0 irrespective of the choice of player 2 at x(� 0) = D. Given that c2(� �) = d2(� �) this

in turn implies that c2(� 0) = d2(� 0): hence player 2 is indi¤erent between keeping and moving at

� 0 when the game is in PAPs C or D.

Scenario 3:

Using the same reasoning as in the previous scenarios, we have:

�
c2(�

�) = 0 if player 2 keeps in PAP C
�
c2(�

�) = �(d2(�
�)� c2(� �)) = 0 if player 2 moves in PAP C

and for PAP D :

�
d2(�

�) = �(c2(�
�)� d2(� �)) = 0 if player 2 moves in PAP D

�
d2(�

�) = 0 if player 2 keeps in PAP D

which in turn shows that again player 2 is indi¤erent between keeping and moving at � 0 when

the game is in PAPs C or D.

Scenario 4:

Player 1 moves both in x(� 0) = A and x(� 0) = C. In this case

�
c2(�

�) = �(a2(�
�)� c2(� �)) > 0 if player 2 keeps in PAP C

�
c2(�

�) = �(a2(�
�)� c2(� �)) + �(d2(� �)� c2(� �)) > 0 if player 2 moves in PAP C

�
d2(�

�) = 0 if player 2 moves in PAP D
�
d2(�

�) = �(c2(�
�)� d2(� �)) = 0 if player 2 keeps in PAP D

so that c2(� 0) > d2(� 0) and for player 2 the best reply is to keep in PAP C and to move in D.

We can repeat the construction of the four scenarios by symmetry �xing the action of player

2 at x(� 0) = C and at x(� 0) = D and determining the best replies for player 1 in A and C.

Putting together the best replies of the two players, we �nd that the sub-game at � 0 has three

possible equilibria when the PAP at � 0 is C: "keep, keep", "keep, move" and "move, keep". Each

of the three equilibria then originates a possible scenario at � 0 = � � + � :
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Scenario (i) :

A

?; keep

B

?; ?

C

keep; keep

D

keep; ?

Scenario (ii) :

A

?; keep

B

?; ?

C

keep;move

D

keep; ?

Scenario (iii) :

A

?; keep

B

?; ?

C

move; keep

D

keep; ?

with question marks indicating that the best reply in the respective PAP still has to be charac-

terized.

Starting from PAPs A and D, it is easy to verify that both players are indi¤erent between

keeping and moving their actions when their opponent keeps his own. Indeed, in this case, given

that player 2 keeps in PAP A:

�
a1(�

�) = 0 if player 1 keeps in PAP A
�
a1(�

�) = �(c1(�
�)� a1(� �)) = 0 if player 1 moves in PAP A

while, given that player1 keeps in PAP D:

�
d2(�

�) = 0 if player 2 keeps in PAP D
�
d2(�

�) = �(c2(�
�)� d2(� �)) = 0 if player 2 moves in PAP D

There exists then an equilibrium at which both players keep their action when x(� 0) = A and

x(� 0) = D. As long as this is true, the continuation payo¤s ai(� 0) and di(� 0) are constant.

Moreover: a1(� 0) = 1, a2(� 0) = �, d1(� 0) = �, d2(� 0) = 1, where � is the maximum attainable
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payo¤ for both players. Since 8� � � � : b1(�) < d1(�) and b2(�) < a2(�) at equilibrium both

players move their action in PAP B. This allows us to show that only one of the following three

scenarios may arise at equilibrium at � 0 > � � :

Equilibrium (i) :

A

keep; keep

B

move;move

C

keep; keep

D

keep; keep

Equilibrium (ii) :

A

keep; keep

B

move;move

C

keep;move

D

keep; keep

Equilibrium (iii) :

A

keep; keep

B

move;move

C

move; keep

D

keep; keep

The text of the Proposition refers to the equilibrium (i) since the PAP C corresponds to the

action each player would play in their preferred UGE. �

Proof of Lemma 11

Suppose that (i) at some date t�� the history h(t��) 2 H(t��; x), i.e. the PAP at date
t�� is x, and (ii) from time t�� until t players consistently submit action pro�le y. Then the
payo¤ for player i isZ

h(t)2H(t)
Pr (h(t)jh(t��); y(t0) = y for t0 2 [t��; t])E [ui(x(T ))jh(t)]
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Dividing this expression by � and considering the limit for �! 0, we obtainX
z2X
(�1q

1
xyz + �2q

2
xyz) [ui(x(T ))jh(t; z)] = (�1q

1
xy(yi;x�i) + �2q

2
xy(yi;x�i)) [ui(x(T ))jh(t; (yi; x�i))]

+
X

z2X;zi 6=yi

(�1q
1
xyz + �2q

2
xyz) [ui(x(T ))jh(t; z)]

where the equality follows from Assumption 3. Note that the second term on the r.h.s. does not

depend on action yi: hence, after observing history h(t) player i optimally submits the action

that maximizes the �rst term. However, for the hypothesis of the lemma, y�i (x�i) is the unique

maximizer of E [ui(x(T ))jh(t; (yi; x�i))] for all h(t) 2 H(t; (:; x�i)). �
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