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Abstract

Many seasonal macroeconomic time series are subject to changes in their means and variances
over a long time horizon. In this paper we propose a general treatment for the modelling of
time-varying features in economic time series. We show that time series models with mean and
variance functions depending on dynamic stochastic processes can be sufficiently robust against
changes in their dynamic properties. We further show that the implementation of the treatment
is relatively straightforward. An illustration is given for monthly U.S. Industrial Production.
The empirical results including estimates of time-varying means and variances are discussed in
detail.

Some Keywords: Common stochastic variance; Kalman filter; State space model;
Unobserved Components Time Series Models.

JEL classification: C22, C51, C53, E23

1 Introduction

The analysis of macroeconomic time series requires a sufficiently large number of time series ob-
servations for identifying stable dynamic relationships between the economic variables. Seasonal
economic time series become increasingly available at much longer time horizons. However, time
series with long time horizons are also more likely to be subject to slow shifts and sudden breaks
which can be due to changes in economic behaviour, in data collection, in variable definitions and,
most importantly, changes in economic and fiscal policy decision making. Such changes are not
always easy to capture in a model representation of the time series. As a result, a sequence of
noisy observations can become part of the dataset and groups of observations may be less reliable
since they have been subject to particular events that cannot be treated explicitly in the model.
Therefore, the model specification needs to be modified to allow for data irregularities and breaks.



In this paper we present and discuss an approach that is able to account for changes in the mean
and variance of time series. In this way, the observations will not be weighted equally in the anal-
ysis. A strong feature of our approach is that we do not require to formulate the changes in the
time series explicitly. Furthermore, these changes in the time series will be accounted for as an
integrated part of the analysis. This robust approach to time series modelling is illustrated by a
time series analysis of monthly growth in U.S. industrial production (IP) between 1960 and 2009.
This series is of interest as it is a key indicator of economic activity in the U.S.

The monthly IP time series is available at a long time span and has been subject to different
economic settings. In the 1970s large variations in the series are related to several crises mainly
caused by limited oil supply. In the 1990s smaller variations over time are observed due to tighter
monetary policies and related control mechanisms, an effect which Stock and Watson (2002) terms
the Great Moderation. The credit crunch in 2007-2008 and the resulting economic decline in 2008-
2009 have led to various large negative shocks in the monthly growth of IP. These events illustrate
the challenge of formulating an overall model for forecasting IP. The forecasting studies in Bruno
and Lupi (2004) and Kawasaki and Franses (2004) focus on the suitability of specific linear and
seasonal specifications. Heravi et al. (2004) compare the forecasting performance of linear models
against the performance of a neural network. The study reported in Franses and Van Dijk (2005)
considers non-linear models that account for seasonal unit roots, for smooth transitions in seasonal
effects, and for deterministically or stochastically time-varying autoregressive coefficients.

The studies by Kim and Nelson (1999), Stock and Watson (1999) and Hendry and Clements
(2000), and more recently Ewing and Thompson (2008), argue for introducing changes in the overall
variance of the model. In this paper we confirm the importance of allowing for changes in the
overall variance and propose a general method for its implementation. It is based on stochastically
time-varying functions for the common variance of the model. We introduce a stochastic scaling
mechanism for the time series of interest. As an illustration for modelling monthly IP growth,
we consider a basic unobserved components time series model that includes a stationary growth
process, a persistent seasonal component and an irregular. The model provides an effective base
for the description of the salient features in IP growth. It is shown that an additional feature of
the time series is characterised by a time-varying variance which is modelled by an unobserved
stochastic component as well. The estimation method of Koopman and Bos (2004) can be adopted
for state space models with a common stochastic time-varying variance. As part of this analysis, we
estimate the model by maximum likelihood using an adapted version of the simulation techniques
for the evaluation of the likelihood function by importance sampling methods, see Durbin and
Koopman (2001).

The inclusion of time-varying variances in an unobserved components model has been considered
earlier by e.g. Bos et al. (2000), Aguilar and West (2000), Cecchetti et al. (2007) and Stock and
Watson (2007). In this paper we provide more empirical evidence of the importance of time-varying
variances and we provide a framework in which several time-varying specifications for mean and
variance functions can be treated simultaneously in a unified way. It also implies that formal tests
for model specifications can be carried out as part of the presented methodology.

The paper is organised as follows. Section 2 introduces the industrial production time series data
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set and discusses various characteristics of the series. The basic modelling framework is presented
in Section 3. The robustness of the model is obtained by the introduction of a common time-varying
variance component in Section 3.2. The associated estimation methods are detailed in Section 3.3.
The results of our empirical study for the U.S. industrial production time series are presented in
Section 4, including a description of the extracted components in Section 4.2. In this section it is
also seen how the observation weights for different periods vary due to the changing volatility in
the model. Whether we reach stability of the recursive parameter estimates is discussed in Section
4.4. Conclusions are given in Section 5.

2 Industrial production data

The monthly time series of U.S. industrial production is obtained from the website of the Board
of Governors of the Federal Reserve System1 for the period between 1960:1 and 2009:9 (596 ob-
servations). Figure 1 presents the actual data (in panel (i)), in logs (panel (ii)), and the monthly
differences of the logged data times 100 (panel (iii)). The latter series is interpreted as the monthly
IP growth and will be the input for the analysis below. The time series plot of growth reveals that
the variability of the series, and especially of the seasonality, is lower after the early 1980s.
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Figure 1: The U.S. monthly industrial production 1960:1 and 2009:9: (i) in levels, (ii) in logs and
(iii) in percentage growth.

Figure 2 plots the correlation of the returns (in panel (i)) and of the squared returns (panel
(ii)). Both panels indicate a strong yearly seasonal pattern in the data. Furthermore, even without
accounting for the seasonality, there is a strong indication of non-seasonal correlation in the squared
returns. This suggest that we need to account for a time-varying variance in the model. Further
evidence of a time-varying variance in the time series is provided by the third panel of Figure 2,
where the yearly average squared return is depicted. The observations in the years before 1980
exhibit up to twice the variability of the observations after 1980 in this dataset. An adequate model
for this series should take this drop in the variance into account.

1Source: Federal Reserve, Board of Governors d.d. November 2009, Industrial Production – Market Group – Total

Index – Not Seasonally Adjusted. Series b500001 ipnsa.
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Figure 2: Autocorrelation of U.S. monthly industrial production between 1960:1 and 2009:9: (i)
for the returns, and (ii) for the squared returns, with (iii) the yearly averaged squared return.

3 Decomposition model with stochastic volatility

3.1 The mean equation

To analyse the monthly time series of IP growth, we consider the unobserved components time
series model consisting of a constant growth term c, a stochastic seasonal component γt, a business
cycle component ψt and an irregular component εt. The model is given by

yt = c+ γt + ψt + εt, εt
i.i.d.∼ N (0, σ2

Irr), t = 1, . . . , n, (1)

where yt is the observed IP growth at time t. The notation in (1) implies that the irregular is
independently and normally distributed with mean zero and variance σ2

Irr.
The seasonal component γt is modelled by the trigonometric seasonal process

γt =
bs/2c∑
j=1

γ+
j,t, with

(
γ+

j,t+1

γ∗j,t+1

)
=

(
cosλj sinλj

− sinλj cosλj

)(
γ+

j,t

γ∗j,t

)
+

(
ω+

j,t

ω∗j,t

)
, (2)

where s is the seasonal length (in the case of monthly data, s = 12) and bxc is the function which
truncates x to the nearest integer value ≤ x. The seasonal frequencies are given by λj = 2πj/s
and the seasonal disturbances are modelled by(

ω+
j,t

ω∗j,t

)
i.i.d.∼ N

((
0
0

)
, σ2

SeasI2

)
, for j = 1, . . . , bs/2c,

where I2 is the 2× 2 identity matrix.
Economic time series are also often subject to business cycle features and to capture these we

also include a stochastic cycle component in the mean equation. The stationary stochastic cycle
process is given by(

ψ+
t+1

ψ∗t+1

)
= ϕCyc

(
cosλCyc sinλCyc

− sinλCyc cosλCyc

)(
ψ+

t

ψ∗t

)
+

(
κ+

t

κ∗t

)
,

(
κ+

t

κ∗t

)
i.i.d.∼ N (0, σ2

CycI2). (3)

with cycle frequency λCyc = 2π/pCyc. The cycle period pCyc typically ranges from 3 to 8 years
(36 to 96 months) and the discounting factor 0 < ϕCyc < 1 ensures the stationary behaviour of
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ψt. For this component the cycle variance σ2
Cyc, the discounting factor ϕCyc and the cycle period

pCyc will be estimated. Harvey (1989, Sec. 2.5.3) shows that the cycle process (3) can be reduced
to a stationary autoregressive moving average process. If λCyc ↓ 0 or pCyc → ∞, the component
simplifies to a simple autoregressive process of order one.

The disturbance series εt, κ+
t , κ

∗
t and ω+

j,t, ω
∗
j,t(j = 1, . . . , bs/2c) are mutually independent. The

model (1)–(3) is a special case of an unobserved components time series model. A detailed discussion
of this class of models is given in Harvey (1989).

We provide empirical evidence in Section 4 that the unobserved components model (1) allows for
most of the variation and serial correlation in the time series of IP growth. The seasonal dynamics
in the time series are estimated simultaneously with the stationary dynamics represented by the
cycle and irregular components. The mean equation of the model describes the typical features in
seasonal macroeconomic time series.

3.2 The variance equation

The three variances in the model (1)–(3) can be specified as

σ2
Irr = qIrrσ

2, σ2
Seas = qSeasσ

2, σ2
Cyc = qCycσ

2, (4)

where the common variance σ2 is strictly positive while the scaled variances qIrr, qSeas and qCyc

are strictly non-negative. The common variance can be interpreted as the scaling coefficient of the
time series yt.

In the empirical analysis we will treat the common variance σ2 either as a fixed unknown
coefficient, or we consider it as a (unknown) time-varying parameter. In the latter case, σ2 is
replaced by σ2

t which is a (possibly stochastic) function of time. As a consequence, the variances
σ2

Irr, σ
2
Seas and σ2

Cyc also become time-varying as they are set equal to σ2
t times their respective q

values in (4). We consider the following time-varying functions for the common variance:

Case 1: Break in variance A single break of the common variance can be specified as the step-
function

σ2
t =

{
σ2

I if t ≤ bτT c,
σ2

II if t > bτT c,
0 < τ < 1, (5)

where both σ2
I and σ2

II are strictly positive and τ is a coefficient governing the timing of the
break.

Case 2: GARCH A well-known time-varying variance specification is proposed by Bollerslev
(1986) and is usually referred to as the generalised autoregressive conditional heteroskedas-
ticity (GARCH) model. In combination with the unobserved componets model (1), we use
the specification

σ2
t+1 = ω + δσ2

t + αu2
t , t = 1, . . . , n, (6)

where ut is the mean/variance-corrected observation and ω, α and δ are fixed coefficients with
0 < ω, 0 < α < 1, 0 ≤ δ < 1 and α + δ < 1. The formal definition of ut is given below. The
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GARCH recursion is started with σ2
1 ≡ ω/(1− α− δ), which is effectively the unconditional

expectation of σ2
t .

The mean/variance-corrected observation ut in (6) determines the variance σ2
t . In case of

the stochastic mean equation in our unobserved components model, it may not be clear
immediately how to correct yt. Since the GARCH model determines the variance σ2

t only
from past ut’s, we will also determine ut using past observations only. More specifically, we
define ut as the rescaled standardized one-step ahead prediction error which is given by

ut ≡
νt√
Ft
σt, νt = yt − E(yt|y1, . . . , yt−1) Ft = var(yt|y1, . . . , yt−1).

The prediction error νt and variance Ft are evaluated by the Kalman filter, see Durbin and
Koopman (2001). Detailed discussions of incorporating a GARCH specification into an un-
observed components time series model are given by Harvey et al. (1992) and Broto and Ruiz
(2006).

Case 3: Stochastic Variance The time-varying common variance can alternatively be specified
as a stochastic volatility model, see Harvey et al. (1994) and Jacquier et al. (1994). The
common log-variance evolves over time as a stationary autoregressive process, that is

σ2
t = σ2

h exp(ht), ht+1 = φht + ξt, ξt
i.i.d.∼ N (0, σ2

SV), (7)

where h1 ≡ 0 and with 0 < φ < 1. The disturbance series ξt is independent of all disturbances
in the mean equation. The parameter σ2

h is used to govern the overall level of the variance
process.

When the model contains a common time-varying variance σ2
t , a restriction is needed for iden-

tification. In all cases we set the initial common variance equal to 1. This implies either σ2 ≡ 1
(for the constant variance case), σ2

I ≡ 1 (for the variance break), ω ≡ 1 − δ − α and σ2
1 ≡ 1 (for

GARCH) or σ2
h ≡ 1 (for SV).

3.3 Estimation procedure for the models

Both the mean and variance equations consist of parameters that need to be estimated. In case
σ2

t = σ2 = 1 is fixed, we only have parameters in the mean equation including qIrr, qSeas, qCyc,
λc and ϕCyc. We estimate these parameters by the method of maximum likelihood in which the
common variance is concentrated out of the likelihood function together with the unknown constant
c. The prediction error decomposition allows the loglikelihood function to be evaluated by means
of the Kalman filter, see Harvey (1989). We have implemented this approach of estimation using
Ox (Doornik, 2009) and SsfPack (Koopman et al., 2008). Once the parameters are estimated,
the unobserved components can be estimated using the Kalman filter and associated smoothing
algorithms.

In case the common variance is subject to a break (case 1), the same methods can be used for
estimation and signal extraction since the Kalman filter is sufficiently flexible to deal with different
variances for different time periods. The GARCH specification for the common variance (case 2) is
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also a deterministic function of mean-corrected observations that are evaluated by the Kalman filter.
The Kalman filter can still be used for likelihood evaluation but the filter cannot be regarded as
a linear filter since parameters in the model depend directly on (squared) observations. Therefore
the well-known optimal properties of the Kalman filter are lost. Also, in this case the Kalman
filter evaluates a quasi-likelihood function. A more detailed discussion is provided by Harvey et al.
(1992).

In case the stochastic volatility specification is adopted for the common variance (case 3), the
model is clearly not a linear Gaussian model, as the likelihood function must account for the
uncertainty in the common variance. A closed-form expression for the likelihood function is not
available and therefore we need to rely on numerical methods. Methods based on Monte Carlo
integration have been regarded as the most feasible approach to likelihood evaluation for non-
linear unobserved component time series models. We adopt the methodology that is described
in detail by Koopman and Bos (2004) and is based on importance sampling. In this approach
we repeatedly apply the Kalman filter to evaluate the likelihood function conditional on different
random draws for the common variance sequence σ2

t , t = 1, . . . , n. The draws are obtained from
an approximating linear Gaussian model for log σ2

t . The likelihoods from the Kalman filter are
weighted by normalised importance sampling corrections. This Monte Carlo estimate of likelihood
function is a consistent estimator of the true likelihood function of the model but is clearly subject
to Monte Carlo error. However, the method can be used for maximum likelihood estimation since
the likelihood is guaranteed to be smooth when a fixed random seed is used for each Monte Carlo
likelihood evaluation.

4 Empirical results

4.1 Estimation results for main class of models

The first aim of our empirical study is to investigate how well the different model specifications
are able to estimate the monthly growth of U.S. industrial production (IP) introduced in Section
2. The seasonal features of IP growth are clearly presented in the third panel of Figure 1. We
therefore consider first a model that contains only seasonal and irregular components in the state
space framework (1), that is our model without the cycle component ψt of (3) and with a fixed
common variance σ2

t = 1.
Table 1, in the first set of columns labelled Seas, reports estimation results for this model.

The results indicate that the standard deviation of the seasonal component is small but it is
clearly different from zero. Hence the seasonal component is changing slowly over time. Test
statistics include the normality test of Doornik and Hansen (1994, based on the 3rd and 4th
moment of the residuals, asymptotically following a χ2

2 density under the null of normality), the
Box-Ljung Q-statistic for residual correlation (Ljung and Box, 1978, using a = b

√
nc = 24 lags,

with asymptotically a χ2
a+1−p density, with p the number of parameters in the model), Engle’s

(1982) test for ARCH-type behaviour in the squared residuals (leading to a χ2
1 density, using one

lag of squared returns) and a general heteroskedasticity test H(n/3) comparing variability in the
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first and last n/3 observations (resulting in an Fn/3,n/3 density). All four statistics are reported
with their p-values in Table 1. For this first model, the diagnostics indicate a strong rejection of
the null hypotheses of normality, of no-correlation, and constant variance.

A first step to improve our initial results is to include the cyclical component (3) in the model.
The results are presented in the second set of columns with label Cyc-Seas. The cycle component
leads to a lower residual variance and it also leads to a strong increase in the likelihood. The
discounting factor ϕCyc ≈ .90 provides the expected persistence in U.S. growth of industrial pro-
duction, with a cycle period pCyc of close to 50 months (over 4 years). The test statistics indicate
that residual correlation disappears, but some evidence of non-normality and heteroskedasticity
remains.
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Figure 3: Prediction residuals of the estimated model Cyc-Seas with cyclical, seasonal and irregular
components: (i) plot of standardised residuals; (ii) autocorrelogram of residuals (solid lines) and
squared residuals; (iii) scaled cumulative sum of squared residuals.
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Figure 4: Residuals of the Cyc-Seas-SV model with cyclical, seasonal, irregular and common SV
components: (i) plot of standardised residuals; (ii) autocorrelogram of residuals (solid lines) and
squared residuals; (iii) scaled cumulative sum of squared residuals.

Figure 3 presents the standardised residuals of the model (panel (i)), with the autocorrelations
of the residuals and of the squared residuals (panel (ii)) and the cumulative sum of the squared
residuals. The residuals themselves show several outliers in the first half of the sample, with
possibly too many ‘inliers’ in the second part. The squared residuals depict significant first order
autocorrelation, and also the plot of the cumulative squared residuals indicates that around 1974
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there was a first clear increase in variability in the series, with a drop in variability occurring around
1984.

Instead of adapting manually for atypical observations (by including structural changes at pre-
specified time periods), we modify the specification of the model further. The most general option
proposed in the previous section was to introduce a common stochastic variance component (7),
allowing the variance to change over time. In the columns with label Cyc-Seas-SV the relevant
results are presented. The first indication that the model is preferred for this data set over the
Cyc-Seas specification is the likelihood score that is found: An increase of 30.6 points is a clear
indication of a better fit. The cycle becomes relatively more pronounced, with a smaller estimated
variance and a larger estimated discounting factor. These estimates indicate a smoother and more
persistent cycle component in the time series. The estimated autoregressive coefficient of the log-
variance component ht is estimated as φSV = 0.91, indicating a persistence in the time-varying
variance process. However the estimated standard deviation σSV = 0.25 allows for some amount of
flexibility in the variance process such that it can move upwards and downwards over time.

The test statistics indicate that the normality, the (lack of) autocorrelation, and the equality
of variance between the first and last third of the sample of residuals2 are acceptable, but the test
for ARCH effects is still rejected. Figure 4 displays similar panels of estimated components for the
present model as Figure 3 did for the components of the model Cyc-Seas. The first and last panel
indicate that volatility of the standardized residuals seems constant, with possibly a large residual
around 1975.

The middle panel of Figure 4 displays the autocorrelation of residuals and squared residuals.
For the squared residuals, at both the first and twelfth lag the ACF still fall slightly outside
the confidence bounds. However, in comparison with the corresponding panel in Figure 3, the
autocorrelations have become much smaller.
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Figure 5: Residuals of the Cyc-Seas-GARCH model with cyclical, seasonal, irregular and GARCH
components: (i) plot of standardised residuals; (ii) autocorrelogram of residuals (solid lines) and
squared residuals; (iii) scaled cumulative sum of squared residuals.

Alternatively, we can allow the variance to change over time via a GARCH specification. The
2The residuals are extracted by iteratively running the importance smoother for the likelihood evaluation and

construction of the unobserved state, keeping only the one step ahead out-of-sample predictions. Alternative results,

using a particle filter (Pitt and Shephard, 1999; Christophe and Doucet, 2002), are similar.
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results for this option are presented in the fourth set of columns in Table 1 (labelled Cyc-Seas-
GARCH). The final likelihood is in between the likelihoods of the model with SV and the Cyc-Seas
model. The estimates for the GARCH coefficients in the model indicate that δ + α ≈ 1, implying
that the so-called integrated GARCH model might be preferred for this data set. These estimation
results indicate a strong autocorrelation in the variance series and, therefore, a very slow mean-
reverting variance series.

The diagnostic test statistics indicate that the Cyc-Seas-GARCH model passes the test of equal
variance of the standardised residuals in the first and last third of the sample. The test for serial
correlation in the residuals is passed with a p-value of 7%, but both the ARCH and the normality
tests are rejected. It may be due to the fact that the GARCH model adapts slowly to the altered
variability of the series. This can also be seen from Figure 5. The residual plot in the first panel
shows that some of the standardised residuals are too large for assuming normality. Possibly the
time-varying variance needs to adapt faster to account for the increasing variance at the end of
the sample. This can result in a remaining first-order autocorrelation of the squared residuals,
and in turn leads to the rejection of the ARCH test-statistic. However, the third panel of the
figure indicates that the GARCH model is adequate for describing the overall level of time-varying
variance. For example, the scaled cumulative squared residuals do not deviate much from the 45
degrees line.

In Table 1 we also report the estimation results for a model in which a simple one-time break
in the variance component is specified. The date of the break has to be known in advance, whereas
the other earlier models have variance series that adapt automatically. In this case, the break in
variance is set to January 1984. The estimated variance break is highly significant and it even leads
to a slightly higher likelihood compared to the value obtained from the model with GARCH.

4.2 Signal extraction of mean and variance components

The main differences between our models are the manner in which the variance adapts over time.
In case of GARCH, the time-varying variance is specified as a deterministic function of past ob-
servations. The model with a common SV component has a stochastically time-varying variance
that is unobserved. Once the model parameters are estimated, we can estimate the variance using
all observations (smoothing) or using past observations (filtering). The filtered SV estimates can
be compared with the variance estimates from the GARCH specification since these estimates also
depend only on past observations.

Figure 6 displays the standard deviations of the irregular component, σIrrσt of the Cyc-Seas,
filtered Cyc-Seas-SV, Cyc-Seas-GARCH and Cyc-Seas-∆σ models. For the SV model, both a
filtered and a smoothed estimate are presented in the bottom panel. We see that both SV and
GARCH models adapt to the changing situations of the mid-seventies and the lower variability
starting after 1985. However, the GARCH estimates adapt more slowly than the (filtered) SV
estimates. Taking future observations into account, by means of the smoothed SV estimate in
the bottom panel, leads to an even clearer and more swiftly reacting signal for the time-varying
variance. This is coherent with the finding in the literature that the GARCH volatility estimates
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Figure 6: Filtered standard deviations of the irregular component according to Cyc-Seas, Cyc-Seas-
SV, Cyc-Seas-GARCH and Cyc-Seas-∆σ models (top panel), and comparison between the filtered
and the smoothed standard deviations using the Cyc-Seas-SV model.

tend to show higher persistence than SV estimates, see Carnero et al. (2004).
Figure 6 presents the estimates of standard deviations of the different models. We clearly

observe the drop of the variance around 1984. This motivated the model Cyc-Seas-∆σ with two
different variances, before and after 1984. Although this model is simple, we can only find an
appropriate location for the break in the variance when the complete sample of observations is
available. Therefore, the model is not appropriate for forecasting. We cannot predict a new break in
the variance. For example, the variance estimates for the GARCH and SV models increase strongly
after 2008:7. The model with a single variance shift cannot accommodate changing patterns in the
variance.

The standard deviations are not the only components that can be extracted from the model.
Figure 7 displays the estimated smoothed seasonal and cycle components in the Cyc-Seas-SV
model. They display the main characteristics of the dynamics in U.S. growth. The cycle component
exhibits the typical business cycle features. The severe recessions in 1974-1975 (oil crises) 2008-
2009 (financial and credit crises) are clearly present in this component. The estimated seasonal
component in the second panel shows the smooth changes in the seasonality over time which may
be due to the changing structure of the U.S. economy.

Time-varying variances have an impact on signal extraction: observations in a low variance
period are given (relatively) more weight and observations from a more volatile period are given
less weight. For example, the IP series in 1984 becomes less volatile than in the years before 1984.
The effect of this on signal extraction is illustrated in Figure 8. The weights are displayed that
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Figure 7: Smoothed estimation results for the industrial production model Cyc-Seas-SV: (i) esti-
mated cycle, (ii) estimated seasonal.

are given to observations for the signal extraction of the component γt + ρt (smooth estimate) in
January 1984 based on a model with a fixed and with a stochastic variance. Koopman and Harvey
(2003) provides the algorithm to compute the observation weights.

In case of a model with a fixed variance, the weights (as displayed in the first panel of Figure 8)
display a symmetric pattern. The observations receive relatively the same weights in the pre- and
post-1984 periods. In case of a model with a common stochastic variance, most weights are clearly
higher for the post-1984 observations compared to the weights for the pre-1984 observations. These
differences are due to the time-varying common variance in the model. The additional flexibility
of the SV model provides the ingredients that can lead to the more successful modelling of a time
series over a long horizon.
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Figure 8: Weights for the Cyc-Seas (i) and Cyc-Seas-SV (ii) models, around the period 1984:1.

4.3 Estimation results for alternative specifications

To investigate whether other specifications within our model class can lead to improved or more
parsimonious descriptions of the dynamic features in the data, we have considered the following
model extensions.

1. Cyc-Seas-ISV: In Table 1, the parameter φSV was restricted into the stationary region, but its
estimate was found close to 1. In the first set of columns of Table 2 it is shown that the unit
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root restriction leading to the integrated stochastic volatility (ISV) model results in virtually
the same loglikelihood value, and a likelihood ratio test between the ISV and standard SV
model would indeed not reject the hypothesis that φSV = 1. The Box-Ljung test statistic for
remaining autocorrelation in the residuals however now rejects the null hypothesis at the 5%
level.

2. Cyc-Seas-SV-∆σ: A combination of the stochastic volatility model with the volatility break.
Instead of fixing φSV to one, the common SV model could be extended by allowing for an
additional volatility break. This leads to a strong further increase in the loglikelihood as a
result of combining the models; the single break parameter leads to an improvement of the
loglikelihood of 7.6 points. Both the ARCH test and the test for residual correlation reject
the null however. The remaining SV effect seems to be less important than before, with larger
confidence bounds around the parameters φSV and σSV.

3. Cyc-Seas-SV-SVSeasTr, Cyc-Seas-SV-SVSeasD: In the original data description, it was found
that the seasonalitity of this data series was of great importance. One could expect that the
volatility likewise contains a seasonal pattern. The last two sets of columns propose to add
an extra seasonal component within the stochastic variance component, as in

σ2
t = exp(ht + gt).

The first set of columns, labelled SVSeasTr, consider a deterministic trigonometric pattern,

gt = A sin
[
2π
(
B +

t

s

)]
, s = 12,

with amplitude A and shift B are treated as two unknown coefficients that need to be esti-
mated. The last set of columns, labelled SVSeasD, consider a set of seasonal dummies,

g1 = 0, g2, . . . , g12 unknown, gt = gt−12, t = 13, . . . , T.

in which the eleven dummy coefficients g2, . . . , g12 need to be estimated.

The estimation results for the trigonometric model, Cyc-Seas-SV-SVSeasTr do not present
tangible improvements over the original SV model. Also, the amplitude A is estimated as not
significant. The alternative specification using seasonal dummies leads to an improvement
of the log-likelihood by 18.2 points using 11 additional parameters; a likelihood-ratio test
would still indicate that the seasonal dummies do not lead to a significant increase of the fit.
However, some individual volatility dummies gSV,i are estimated as significant; the estimated
seasonal coefficients are presented in Figure 9.

The alternative specifications do not lead to clear improvements in the fit over our more par-
simonious and robust Cycle-Seasonal-Stochastic Volatility model specified in Sections 3.1-3.2. It
appears that a break in the variance has occurred. Allowing for this break does not change our
earlier findings significantly. The Cyc-Seas-SV model can be considered as a reasonable and robust
model for fitting the most important characteristics of the data set.
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Figure 9: Monthly log-variance offsets gSV,i with 95% confidence bounds for the Cyc-Seas-SV-
SVSeasD model.

4.4 Recursive parameter estimation

To investigate the robustness of our empirical results, we have re-estimated the parameters in
the different model specifications for an increasing window of observations. From these recursive
estimation results we can learn how parameter estimates vary across different samples.
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Figure 10: Recursive parameter estimates σIrr, σCyc, pCyc and ϕCyc in panels (i) – (iv), for the
Cyc-Seas (solid line) and Cyc-Seas-SV (dotted line) models.

Figure 10 displays the recursive estimates of four parameters in the mean equation of the model.
Estimation starts with the sample 1960:1-1980:1, and repetitively an observation is added to the
sample until the full sample of 1960:1-2009:9 is reached. The first panel displays the estimate of
σIrr for the Cyc-Seas (solid line) and σIrrσ for the Cyc-Seas-SV (dotted line) models. For the latter
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Figure 11: Recursive parameter estimates σSV and φSV in panels (i) – (ii), for the Cyc-Seas-SV
model.

model, σIrr was multiplied by σt, the average time varying standard deviation.
The levels and shapes of the estimate of σIrr are fully comparable for both models. The main

difference is found in the estimates for the model including the common stochastic variance being
more volatile; the added uncertainty in the estimation of having to extract the variance sequence
as well leads to much more pronounced parameter uncertainty, especially for smaller sample sizes.
For σSeas (not displayed in the figure) and σCyc (in panel (ii)), the overall shape of the recursively
estimated parameter plot is similar between the two models, though for longer samples the season
and cycle standard deviation is lower for the model including SV.

The parameter governing the period, pCyc, displays a different effect. For smaller samples,
the data effectively is not informative enough to estimate the cycle period, and estimates tend to
infinity. This would imply that for samples shorter than approximately 1960:1–1985:1, an AR(1)
component instead of the cycle would suffice. For these smaller sample sizes, the cycle (or: AR(1))
autocorrelation parameter ϕCyc is estimated around 0.75. For longer sample sizes, and more pro-
nounced cycles, the parameter increases to 0.9–0.95, especially for the model including the SV.

Figure 11 displays the resulting parameters for the SV component. It is relatively hard to
estimate these parameters, as seen from the large variability of successive estimates. σSV steadily
drops to a level of around 0.2 at the end of the sample, when the autocorrelation of the volatility
φSV moves up towards the limit of 1. As seen before, it seems that the restriction of having φSV ≡ 1
cannot be rejected for larger sample sizes.

When a similar exercise of reestimating the model is performed using the Cyc-Seas-GARCH
specification, the shape of the basic parameters is similar. The GARCH parameters however show
how pre-1994 only an ARCH-model is found in the data, with α ≈ 0.3. In 1994 there is a series of
years where the data cannot decide on the best parameter values, and starting 1995 it settles on a
GARCH specification, with δ ≈ 0.95, α ≈ 0.05. This sudden alteration in the parameter estimates
is a sign of a lack of robustness for this specification.
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5 Concluding remarks

The introduction of time-varying variances in a model can lead to clear improvements in the fit
of a time series. In this paper we have given evidence of such improvements in the context of an
unobserved components time series model for the analysis of monthly growth in U.S. Industrial
Production over a long horizon. We have shown that the inclusion of a stochastically time-varying
common variance component can lead to substantial improvements in the fit of the time series.
The adaptation of the variance enables the use of observations in volatile and non-volatile periods
although observations from different periods will be weighted differently. At a more volatile period,
the model assigns relatively more weight to observations that originate from a low volatile period.
The implementation of this methodology is straightforward within our model-based approach to
time series analysis. The empirical illustration has shown the effectiveness of our approach. In
particular, we have shown that our basic decomposition model is appropriate over a long time
period that includes the major economic crises (1974-1975 and 2008-2009) and the great moderation
of volatility after 1985.

References

Aguilar, O. and M. West (2000). Bayesian dynamic factor models and portfolio allocation. Journal
of Business and Economic Statistics 18 (3), 338–357.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo-
metrics 31 (3), 307–327.

Bos, C. S., R. J. Mahieu, and H. K. Van Dijk (2000). Daily exchange rate behaviour and hedging
of currency risk. Journal of Applied Econometrics 15 (6), 671–696.

Broto, C. and E. Ruiz (2006). Unobserved component models with asymmetric conditional vari-
ances. Computational Statistics and Data Analysis 50 (9), 2146–2166.

Bruno, G. and C. Lupi (2004). Forecasting industrial production and the early detection of turning
points. Empirical Economics 29 (3), 647–671.

Carnero, M. A., D. Peña, and E. Ruiz (2004). Persistence and kurtosis in GARCH and stochastic
volatility models. Journal of Financial Econometrics 2 (2), 319–342.

Cecchetti, S. G., P. Hooper, B. C. Kasman, K. L. Schoenholtz, and M. W. Watson (2007). Under-
standing the evolving inflation process. U.S. Monetary Policy Forum 2007.

Christophe, A. and A. Doucet (2002). Particle filtering for partially observed Gaussian state space
models. Journal of the Royal Statistical Society, Series B 64 (4), 827–836.

Doornik, J. A. (2009). Ox6: An Object-Oriented Matrix Programming Language. London: Tim-
berlake Consultants Ltd.

18



Doornik, J. A. and H. Hansen (1994). An omnibus test for univariate and multivariate normality.
Technical report, Nuffield College, Oxford, UK.

Durbin, J. and S. J. Koopman (2001). Time Series Analysis by State Space Methods. Oxford:
Oxford University Press.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance
of United Kingdom inflations. Econometrica 50, 987–1008.

Ewing, B. T. and M. A. Thompson (2008). Industrial production, volatility, and the supply chain.
International Journal of Production Economics 115 (2), 553–559.

Franses, P. H. and D. Van Dijk (2005). The forecasting performance of various models for seasonality
and nonlinearity for quarterly industrial production. International Journal of Forecasting 21 (1),
87–102.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge: Cambridge University Press.

Harvey, A. C., E. Ruiz, and E. Sentana (1992). Unobserved component time series with ARCH
disturbances. Journal of Econometrics 52 (1-2), 129–157.

Harvey, A. C., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. Review
of Economic Studies 61 (2), 247–264.

Hendry, D. F. and M. P. Clements (2000). Economic forecasting in the face of structural breaks. In
S. Holly and M. Weale (Eds.), Econometric Modelling: Techniques and Applications, Chapter 2,
pp. 3–37. Cambridge University Press.

Heravi, S., D. R. Osborn, and C. R. Birchenhall (2004). Linear versus neural network forecasts for
European industrial production series. International Journal of Forecasting 20 (3), 435–446.

Jacquier, E., N. G. Polson, and P. E. Rossi (1994). Bayesian analysis of stochastic volatility models
(with discussion). Journal of Business and Economic Statistics 12 (4), 371–417.

Kawasaki, Y. and P. H. Franses (2004). Do seasonal unit roots matter for forecasting monthly
industrial production? Journal of Forecasting 23 (2), 77–88.

Kim, C.-J. and C. R. Nelson (1999). Has the U.S. economy become more stable? a Bayesian
approach based on a Markov-switching model of the business cycle. Review of Economics and
Statistics 81 (4), 608–616.

Koopman, S. J. and C. S. Bos (2004). State space models with a common stochastic variance.
Journal of Business and Economic Statistics 22 (3), 346–357.

Koopman, S. J. and A. C. Harvey (2003). Computing observation weights for signal extraction and
filtering. Journal of Economic Dynamics and Control 27 (7), 1317–1333.

19



Koopman, S. J., N. Shephard, and J. A. Doornik (2008). SsfPack 3.0: Statistical Algorithms for
Models in State Space Models. London: Timberlake Consultants Ltd.

Ljung, G. M. and G. E. P. Box (1978). On a measure of lack of fit in time series models.
Biometrika 65 (2), 67–72.

Pitt, M. K. and N. Shephard (1999). Filtering via simulation: Auxiliary particle filters. Journal of
the American Statistical Association 94 (446), 590–599.

Stock, J. H. and M. W. Watson (1999). Business cycle fluctuations in U.S. macroeconomic time
series. In T. J. B. and W. Michael (Eds.), Handbook of Macroeconomics, Volume 1a, Chapter 1,
pp. 3–64. Amsterdam: Elsevier Science Publishers.

Stock, J. H. and M. W. Watson (2002). Has the Business Cycle Changed and Why?, Volume 17,
pp. 159–218. The University of Chicago Press.

Stock, J. H. and M. W. Watson (2007). Why has U.S. inflation become harder to forecast? Journal
of Money, Credit, and Banking 39 (s1), 3–33.

20


