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Abstract 
In studying congestion tolling, it is important to account for heterogeneity in preferences of 
drivers, as ignoring it can bias the welfare gains. We analyse the effects of tolling, in the 
bottleneck model, with continuous heterogeneity in the value of time and schedule delay. The 
welfare gain of a time-variant toll increases with heterogeneity in the value of schedule delay. 
With heterogeneity, tolling makes the arrival ordering more efficient, and this lowers scheduling 
costs. If there is not much more heterogeneity in the value of time than in the value of schedule 
delay, then first-best tolling decreases the generalised price for most users. In our model, first-
best tolling is not most detrimental for the lowest values of time and schedule delay: it raises 
prices more for users with an average value of schedule delay and a slightly larger value of time. 
Further, the lowest values of time are among those who gain most from a public pay-lane.  
JEL codes: R41, R48, H23 
Keywords: biases in calculated welfare effects, bottleneck model, distributional effects, heterogeneity in the 
value of schedule delay, heterogeneity in the value of time, second-best tolls 

1. Introduction  
Traffic congestion is an important problem in many societies. A possibility to alleviate this issue 
is to toll the congestion externalities caused by drivers. In analysing tolling, it can be dangerous 
to ignore heterogeneity: Arnott et al. (1988) find that ignoring heterogeneity, by just using the 
mean parameters, biases the welfare effects of tolling. Arnott et al. (1994) use two group 
heterogeneity. They find that first-best tolling has distributional effects: it raises prices of the 
lowest value of time, while prices for the highest value of time are unaffected or decrease. 
Lindsey (2004) notes that the congestion costs a user imposes on other users decreases with her 
value of time. Hence, heterogeneity not only causes tolling to have distributional effects, it also 
affects the congestion externalities and the welfare effects of tolling. 

Vickrey (1973) analyses the case where the values of time, schedule delay early and schedule 
delay late vary proportionally (i.e the ratios of the three parameters are the same for all drivers). 
All drivers except those with the lowest values are better off with first-best (FB) tolling. Xiao et 
al. (2009) use the same assumption for the parameters as Vickrey (1973). They find that one-step 
(coarse) tolling has higher welfare gain with heterogeneity set-up and is Pareto-improving.  

Small and Yan (2001) and Verhoef and Small (2004) use static flow congestion. They find 
that public pay-lane’s relative efficiency increases with heterogeneity in the value of time. The 
highest values of time use the pay-lane. The pay-lane’s mean value of time increases with 
heterogeneity, making the pay-lane’s travel time savings more valuable. Relative efficiency is the 
welfare gain of a policy from the no-toll situation relative to the public first-best toll’s gain. 

Conversely, Van den Berg and Verhoef (2009) note that, with bottleneck congestion, a pay-
lane’s relative efficiency decreases with the heterogeneity in the value of time. Further, with a 
more heterogeneous value of time, no-toll equilibrium congestion externalities are smaller. 
Hence, there is less to gain from first-best and pay-lane tolling, and their welfare gains are lower. 

This is a pre-print version of the article: van den Berg, V., Verhoef, E.T., 2011. Winning or Losing from
Dynamic Bottleneck Congestion Pricing? The Distributional Effects of Road Pricing with Heterogeneity in Values
of Time and Schedule Delay. Journal of Public Economics, 95(7–8), 983–992, available from
http://dx.doi.org/10.1016/j.jpubeco.2010.12.003.



2 

We analyse how first-best public tolling and public and private pay-lanes are affected by 
heterogeneity in value of schedule delay and in the relative size of the value of time to the value 
of schedule delay (�). A type i driver faces a schedule delay if she does not arrive at her preferred 
arrival time (t*). The value of earlier arrival (schedule delay early) is �i and of later (schedule 
delay late) it is �i. There is no heterogeneity between the values of schedule delay early and late. 
Type i’s value of time (�i) is �i��i. Van den Berg and Verhoef (2009)’s model is a special case of 
our model where the value of schedule delay is homogeneous. Vickrey (1973)’s model can be 
interpreted as a version of our model with the relative size of the value of time (�) fixed. 

Arnott et al. (1998) indicate that, in an equilibrium with a queue, users arrive ordered on �i. 
The larger �i is, the further i arrives from t*. With an optimal time-variant toll, the entire queue is 
eliminated. Then, users arrive ordered on their value of schedule delay, with the highest-�-users 
arriving closest to t*. Before the tolling, there were users with high values of schedule delay that 
were forced to arrive far from t*, whereas with tolling they arrive close to t*. Hence, tolling 
makes the arrival ordering more efficient, and this decreases average scheduling costs.  

We find that the gain from this reordering increases with the heterogeneity in the value of 
schedule delay. The average generalised price can be lower with first-best tolling than without 
tolling. For this to be the case, the value of time distribution must not be too much more 
heterogeneous than the value of schedule delay distribution. The idea that tolling can be good for 
the average consumer is surprising, as the common thought is that tolling is harmful for 
consumers. The distributional effects of tolling in our model can also be surprising. The lowest 
values of time and schedule delay are among those who gain most from the public pay-lane. With 
a private pay-lane, the low values of schedule delay lose relatively little; the free-lane users with 
larger values, and even some pay-lane users, face larger price increases.   

The next section describes the demand and generalised price equations. Section 3 analyses the 
no-toll (NT) and tolling equilibria with M discrete user groups. Then, the case of continuous 
heterogeneity is studied. For this, Section 4 describes the numerical model set up. Section 5 
studies the NT equilibrium, Section 6 the first-best public (FB) toll and Section 7 the pay-lanes. 
Section 8 gives the sensitivity analysis and Section 9 concludes. Table 1 summarises the policies.  

Table 1: Abbreviations of the policies  
Abbreviation Description 
NT No toll equilibrium 
FB Welfare maximizing public first-best time-variant toll 
PL Welfare maximizing public pay-lane, with a time-variant toll 
PPL Profit maximizing private pay-lane, with a time-variant toll 

2. The demand and generalised price functions  
One road connects the origin and destination. All users have the same preferred arrival time (t*), 
which is normalised to arrival time (t) is zero. Because the bottleneck’s capacity (s) is lower than 
demand, a queue develops. Drivers face a trade off between travel time costs and scheduling
costs, due to arriving before (schedule delay early) or after (schedule delay late) t*. We use 
square brackets to indicate that something is a function of the variables listed inside brackets. We 
use round brackets for arithmetic. Equation (1) gives the generalised total price for a type i driver. 

[ ] [ ] [ ] [ ] ( [ ] ) ( , ) [ ]i i D fi i i i iP t CT t CSD t t T t T Max t t tυ τ μ β β γ υ τ= + + + = ⋅ + + − + +     (1) 
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The price is the sum of travel time costs (CTi[t]), schedule delay costs (CSDi[t]), toll (�[t]) and 
operating costs (�). Operating costs are the same for all users. Travel time is the sum of free-flow 
travel time (Tf) and travel delay (TD[t]). The latter follows from the queue length (q[t]) by 
TD[t]=q[t]/s. The analytical models ignore free-flow travel time and operating costs, the numerical 
models include them. The toll consists of the time-variant toll (�t[t]) and time-invariant toll (τ ). 
The value of schedule delay late (�i) is a linear function of the value of schedule delay early (�i), 
following �i=��i. The relative size of the value of time is �i. The term type indicates all users with 
the same values of time and schedule delay. Types can be continuously or discretely distributed. 
For a deterministic equilibrium, the inequality �i>1 must hold for all users (Arnott et al., 1991).  

Equation (2) gives the inverse demand function. A+Ai is the constant in type i’s demand 
function: A is common to all and Ai is type specific. The slope is determined by B and bi[�i,�i]. 
The bi[�i,�i] is assumed to integrate to one, for algebraic ease.  

[ , ]
i i i

i i i

BD A A n
b μ β

= + −          (2) 

          
3. Equilibria with discrete heterogeneity  
3.1 No-toll (NT) equilibrium with discrete heterogeneity 
It is illustrating to start with the case of discrete heterogeneity, as this makes it easier to explain 
the effects of heterogeneity. This section assumes that each user group has a different �i and �i. If 
two groups have the same �i, they share their NT arrival period and this complicates the 
mathematical notation. The subsequent sections relax this assumption. The groups are ordered on 
their �i. Arnott et al. (1988) find that, group 1, with the lowest �i, arrives closest to t*. Group M 
drivers, with the highest �i, arrive at the greatest distance from t*.  

A group’s equilibrium price is constant during the period this group arrives. Outside this 
period the price is higher. A group’s isocost curve gives the combinations of schedule delay and 
queuing time for which prices are constant over time. Obviously, a different isocost curve applies 
for a different cost level. The slope of an isocost curve is 1/�i before t* and – �/�i after. Figure 1 
gives the equilibrium isocost curves with three groups. At ts and te, the first and last driver arrive, 
whereas tsi and tei indicate when group i starts and ends to arrive. If i’s equilibrium isocost curve 
is above the curves of the other groups and not below the x-axes, then at this moment only group 
i drivers arrive. Hence, group 3 users arrive between ts and ts2, and between te2 and te. Group 1 
arrives between ts1 and te1. In equilibrium, the bottleneck operates at capacity during the entire 
peak. Thus, the peak duration (te–ts) equals N/s. Here N is the number of users. At ts and te group 
M users arrive and face a zero queue length.  

Figure 1: The isocost curves for three groups of drivers.  
Slopes of the curves:
for t<0: 1/μi

for t≥0:–η/μi

Group 3

Group 1

Group 2
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Using the above discussion, group M’s price can be derived. Then, the price for group M–1 
can be found, and so on for each group. Equations (3) and (4) give the generalised formulas for 
i’s queuing and scheduling costs at tsi and tei. For arrivals closer to t* a group i user’s scheduling 
cost is lower, whereas the queuing cost is higher. The scheduling costs of i increase with the 
number of users with a smaller relative size of the value of time (μj), while queuing costs increase 
with the number of drivers with a larger μj. Both costs increase with i’s value of schedule delay. 

1
[ ] [ ]  

(1 )
j ii

i si i ei jj
CSD t CSD t n

s
βη

η
=

=
= =

+ �        (3) 

( )
1

[ ] [ ] /
(1 )

j M

jj
j i

i
i si i ei iCT t CT t n

s
βη μ μ

η
=

= +
= = �

+
       (4)
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[ ] [ ]  /
(1 )

j M

jj
j i

j ii
i i i j ij

P CSD t CT t n n
s
βη μ μ

η
=

= +

=

=
= + = + �

+ �       (5) 

The NT price of i in (5) is the sum of i’s queuing and scheduling costs. It increases with μi and 
�i. Group M’s price is �	N	�M/((1+�)s). This is the same price as in the homogeneous user model 
with a value of schedule delay of �M. Group M−1 gains from the heterogeneity. Group M’s 
higher relative size of value of time induces them to build up the queue slower than group M−1 
drivers would. Hence, group M drivers impose lower congestion costs than group M−1 users. 
Group M−2 enjoys a larger price advantage, because group M and M−1 drivers build up the 
queue slower than group M−2 users.  

3.2 Tolling equilibrium with discrete heterogeneity
With first-best tolling, the time-variant toll eliminates all queuing and the time-invariant toll is 
zero. As de Palma and Lindsey (2000) discuss, both a private and a public pay-lane‘s time-variant 
toll eliminates all queuing on the pay-lane, since queuing is always wasteful.  

A queue eliminating toll changes the arrival ordering: groups now arrive ordered on their 
value of schedule delay. The highest-�-users are group 1 and arrive closest to t*. The lowest-�-
users are group K and arrive furthest from t* (Arnott et al, 1992). Figure 2 gives an example FB 
toll schedule for the same set-up as Figure 1. Groups 2 and 3 have switched in the arrival order, 
since group 3 has a higher �i. Group 1 has the highest �i and lowest μi. Hence, Group 1 arrives 
closest to t* with and without tolling. The queue eliminating toll makes all users indifferent, as 
long as there is no queue, between all arriving moments in the period that their group arrives in 
the new ordering. Outside that period, their price must be higher. The time-variant toll is by 
definition zero at ts. Its slope is �i before t* and –yi after.  

Figure 2: The toll schedule for three groups of drivers. 

Slopes of the curves:
        for t≤0: βi
        for t>0: –γi

Group 2 Group 3

Group 1
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Using the above discussion, equations (6) and (7) for i’s schedule delay cost and toll can be 
derived. For type i arrivals closer to t*, scheduling costs are lower, while the toll is higher. The 
sum of the scheduling cost and toll is constant during the entire period a group arrives. The 
resulting price formula is given in (8).  

( )[ ] [ ]  
(1 )

k Kii si i ei kk i
CSD t CSD t n

s
βη

η
=

=
= =

+ �        (6) 

( )1

1
[ ] [ ]  

(1 )
k i

si ei k kk
t t n

s
ητ τ β τ

η
= −

=
= = +

+ �        (7)

( )1

1 1

1[ ] [ ]  
(1 )

k K k i
ii i k k kk i k

P t CSD t n n
s

ητ β β τ
η

= = −

= + =
= + = + +

+ � �      (8) 

4. Numerical set-up 
This section discusses the numerical set up of the base case. The bottleneck’s capacity is 3600 
cars per hour. The operating costs per trip are €7.3 and free-flow travel time is 30 minutes.  

Figure 3 shows the NT density function of � and �. It is based on two univariate symmetric 
triangular distributions: f[�i,�i]=g[�i]�h[�i]. A symmetric triangular distribution is defined by its 
minimum and maximum. The minimum value per hour of schedule delay early (β ) is €2, the 
maximum (β ) is €8. The minimum relative size of the value of time (μ ) is 1.01, the maximum (μ ) 
is 3.01. The value of time is always larger than the value of schedule delay early. The mean value 
of time is €10.05. In this paper we only use weighted averages. The relative size (�) of �i to �i is 
3.9. This is the same value as in Arnott et al. (1992).  

The inverse demand function is created, following equation (2), so that three goals hold. First, 
the total number of NT users is 9000. Second, the weighted average of the NT equilibrium 
elasticity to the total price is –0.4. Total price is the price including free-flow travel time and 
operating costs. Third, the discussed density function holds in the NT case1.  

Figure 3: The multivariate distribution  

5. Continuous heterogeneity no-toll (NT) equilibrium
Now we analyse the continuous heterogeneity no-toll case. This paper first studies the analytical 
models and then illustrates these by the numerical results as calculated in Mathematica 5.0. There 

���������������������������������������� �������������������
��To achieve these goals we set bi[�i,�i] equal to the density function (f[�i,�i]), and Ai to the NT total price (PiNT). The mean elasticity depends on B
and the average total price. The average price is a function of the density function and the total number of users. Hence, we can calibrate the 
aggregate elasticity with B. If bi[�i,�i]=f[�i,�i] and Ai=PiNT, then equating  inverse demands to prices, and rewriting, results in NNT=A/B. Hence, we 
set the aggregate number of users with A. The A and B we use equal 53.1841 and 0.0059094. 
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are no closed-form solutions for the tolling policies. Hence, in these cases we give the analytical 
results to the extent that they exist and then describe the numerical solution. 

5.1 Analytical model for the no-toll (NT) equilibrium 
The continuous heterogeneity price formula proofed a straightforward generalisation of the 
discrete version. The NT users arrive ordered on their relative size of the value of time (�i). The 
lowest-�-users arrive closest to t*. Schedule delays increase and queuing times decrease with the 
relative size of the value of time, whereas they are independent of the value of schedule delay. 
All NT users with the same �j behave in the same way. Thus, as (9) shows, we aggregate all users 
with the same �j to miNT[�i], by integrating over �i the number of the NT drivers.  

To get the continuous heterogeneity price equation (10) from the discrete version, we replace 
the summation signs by integrals and ni by miNT[�i] (since there are now multiple types with the 
same �i). Equation (10) is rewritten to equation (11) by replacing miNT[�i] with h[�i]�NNT (i.e. �’s
density function multiplied with the number of NT users). H[�i] is the cumulative distribution 
function of �i and NNT is the number of NT users. We use a multivariate probability density 
function (PDF) of � and � that is the product of two independent PDF’s: f[�i,�i] equals h[�i]g[�i]. 
The g[�i] and h[�i] are the univariate density functions of � and �. Our model also works with a 
multivariate density function that is not based on two unconditional density functions. Then, 
however, our equations require more integrals and look more cluttered.  

[ ]iNT i lNT lm n d
β

β
μ β= �           (9) 

[ ]
[ ] [ ] [ ]

1
ii

i
i

j

jNT j
i iiNT jNT j j ju

m
P CSD t CT t m d d

s
μ μ

μ

μη β μ μ μ μ
η μ

� �
= + = +� �� �+ � 	

� �     (10)  

[ ]
[ ]

1 i
i

j

jNT i iiNT j

hNP H d
s

μ

μ

μη β μ μ μ
η μ

� �
= +� �� �+ � 	

�        (11)  

Scheduling costs are given by the left term in the brackets in (11) multiplied by the term 
outside the brackets: by �	NNT	�i	H[μi]/((1+�)s). The right term in the brackets multiplied gives 
the scheduling costs. Although schedule delays and queuing times are independent of �i, prices 
increase linearly with �i. A given delay is more valuable with a higher �i. The value of time 
equals �i ��i. Thus, a given queuing time is more valuable with a higher �i. As prices depend 
linearly on �i, ignoring heterogeneity in � should not bias the average price. In the linear in �
case, E[��k[μ]] equals E[�]�E[k[μ]]; while the non-linear E[k[μ]/�] does not equal E[k[μ]]/E[�]. 
Prices increase non-linearly with the relative size of the value of time (�i). 

5.2 Congestion externalities and heterogeneity 
Following Lindsey (2004), equation (12) gives the congestion cost effect of a type j driver on a 
type i: it is the derivative of i’s price to the number of type j users. On all drivers with a larger �i
than j (i.e. with �i
�j), type j causes a congestion effect of (�i/s)��/(�+1), which is independent of 
�i and �j. On all users with a smaller �i, j causes a smaller congestion effect. This smaller effect 
decreases with j’s relative size of the value of time (�j) and increases with i’s �i.  

       

  

                                       
1/

                               
1

j

i j

i
i

iNT jNT
i i

j

sP n

s

βη μ μ
η
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The congestion effect of j also increases with i‘s value of schedule delay, j’s value of schedule 
delay has no effect. A higher �j means that j’s isocost curve becomes flatter. This implies that j
builds up the queue less quickly. This decreases the price for all users with a smaller �i than j, 
while prices for users with a larger �i than j are unaffected. 

The marginal external cost of i in (13) is the integral of i’s congestion effect on j multiplied by 
nj over all values of �j and �l. It is the sum of all congestion effects i imposes. The marginal 
external cost of i in (13) is the integral of i’s congestion effect on j multiplied by nj, it is the sum 
of all effects i imposes. E[�] is the mean value of schedule delay. Only the mean value of 
schedule delay affects externalities. The heterogeneity middles out2, as congestion effects depend 
linearly on �i. The larger �i is, the smaller i‘s externality. The lowest-�-users cause the highest 
externality. For any distribution with the same E[�], the highest externality equals the externality 
of all users in the homogeneous user model of E[�](�/(1+�))�NNT/s. Consequently, the mean 
externality is lower with heterogeneity in μ than without. With more heterogeneity, there are 
higher highest-�-types, who impose lower externalities than all other types, and/or more high-�-
users, who cause low externalities. The externalities of the low-�-users cannot exceed 
E[�](�/(1+�))�NNT/s. Hence, with a more heterogeneous �, the mean externality is lower. This 
result is also found by Van den Berg and Verhoef (2009a) and is hence not discussed further.  

Since, the mean externality decreases with heterogeneity, the mean prices also decreases. 
Hence, if one just uses the mean value of time, the mean price is positively biased.  

mec ( / )

 1       [ ] [ ] [ ]
1

 1       1 [ ] [ ] [ ]
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j j l
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j j j j j
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s
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s
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η
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� �
= − +� �+ � 	

� �
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Figure 4: Schedule delay costs (left) and queuing costs (right) per user

5.3 Base case numerical model for the no-toll (NT) equilibrium 
In the numerical NT base case, average queuing and scheduling costs are €3.97 and €4.97. The 
average total price (including free-flow travel time and operating costs) is €21.27. Total 
consumer surplus is €239,332. Average travel time is 54 minutes. Minimum travel time equals 
the free-flow travel time of 30 minutes, the maximum is 77 minutes. 

���������������������������������������� �������������������
2 Comparison of line two and three of equation (9) also shows this. In line two we find the term �l	g[�l], which contains the heterogeneity in �. In line three, the term is 
integrated out to E[�], and i’s mec is a function of E[�], �i and the distribution of �. 
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Figure 4 shows that scheduling and queuing costs increase linearly with �. Scheduling costs 
increase non-linearly with �. Queuing costs decrease with � for all, but the lowest-�-users. The 
lowest-�-drivers face the longest queue. Yet, with their low values of time, these long delays are 
not that costly. Figure 5 depicts the NT prices. Prices increases linearly with the value of 
schedule delay; they increase non-linearly with �i.  

Summarising this section, the average externality decreases with heterogeneity in the relative 
size of the value of time. Hence, the average NT price also decreases. Ignoring heterogeneity in 
�, by just plugging in the mean parameter, biases the average price. Since prices depend linearly 
on �i, ignoring heterogeneity in � should not bias the average price. 

Figure 5: No-toll equilibrium price excluding free-flow travel time and operating costs 

6. Continuous heterogeneity and first-best public (FB) tolling
The first-best public toll maximises welfare, which is the sum of total consumer surplus and toll 
revenues. The optimal time-variant toll eliminates all queuing. It slopes upward with t before t*
by �i and downward by –�i after t*. The optimal time-invariant toll is zero. FB tolling changes the 
arrival ordering. Before the toll, users arrived ordered on μi. Now they arrive ordered on �i. All 
high-�-users now arrive close to t*, whereas before some had to arrive far from t* (Arnott et al, 
1992). Thus, not only does tolling eliminate the queuing, it also decreases scheduling costs. 

6.1 Analytical model for the first-best public (FB) equilibrium 
We derive the FB price equation (14) from the discrete version, by replacing the summation signs 
by integrals. qjFB[�j] is the number of FB users with a value of schedule delay of �j. It is the 
integral over �i of the number of users with �j. In the FB equilibrium, all users with the same 
value of schedule behave in the same way regardless of their μi. The toll i faces increases with i’s 
value of schedule delay; because the higher it is, the closer i arrives to t* where the toll is the 
highest. The effect on scheduling costs of �i is ambiguous: schedule delays decrease with �i, 
whereas the value of a given delay increases with �i. Nevertheless, FB prices increase with �i. 
Different from in the no-toll equilibrium, prices are now independent of �i. 

( )  

1[ ] [ ] [ ]  [ ]
(1 )

i

i
iiFB t i jFB j j j jFB j jP CSD t t q d q d

s
β β

β β

ητ β β β β β β
η

= + = +
+ � �    (14)  

6.2 Numerical base case model for the first-best public (FB) equilibrium 
There is no closed-form solution of the FB equilibrium. Still, for a given starting distribution of 
the FB users, there is a solution for prices, total number of users and implied distribution of the 
number of users. Unless, however, we exactly chose the equilibrium distribution as the starting 



9 

distribution, the implied distribution and starting distribution are not equal. We can directly 
calculate NT prices, because we know the NT distribution of users. 

Still, this discussion does suggest a simple solution method. Starting with some distribution of 
FB users (we use the NT user distribution).  Using this distribution, we calculate prices and the 
distribution of demands implied by these prices. This distribution is not equal to the starting 
distribution, as demands and prices are not in equilibrium. By continuing this procedure until 
convergence, using the new distribution of demand as the starting distribution, we find the FB 
equilibrium3. The convergence criterion is a maximum absolute difference in the number of users 
of 10-20% between iterations. 

Figure 6 plots the FB schedule delay costs and tolls. The sum of the two (i.e. the price) 
concavely increases with �. Scheduling costs increase with � for all but the lowest-�-users. These 
lowest-�-drivers do face the largest delays. Yet, with their low values of schedule delay, costs are 
lower. Figure 7 shows difference between the NT and FB prices, the left panel depicts the change 
in 3D and the right panel in contourplot. It does this in value of schedule delay and value of time 
space; because the distributional effect are easier understood in the way than if the results are 
plotted in � and � space. The darker the contourplot is, the lower the graph. The levels of the 
(white) contourlines are indicated in the figure.  

Users with a high to intermediate �i and �i gain from FB tolling. In the no-toll case, these users 
faced high queuing costs. In the FB case, these costs are replaced by substantially lower tolls. 
Drivers with a low �i and/or �i face higher costs with FB tolling than without a toll.  

Figure 6: Schedule delay costs and tolls per user 

Figure 7: Change in price in 3D (left) and in contourplot (right) in value of schedule delay 
and value of time space 

Note: the contourlines are, from left to top right, change in price is 1.5, 0, –1.5, –3, –4.5 and –6 euros. The conversion to � and � space is easily 
attained by defining �i =�i / �i.

���������������������������������������� �������������������
3 We approximate the distribution of demand between iterations by a cubic spline with 200 points. This spline is used as the next starting 
distribution. It is possible to use the demand as the starting distribution and not the spline. Then, however, the starting distribution’s equation 
grows exponentionally complex with the number of iterations. This makes the integrations slow and often causes them to break down.  

Scheduling costs 
plus tolls

Tolls

Scheduling
        costs
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It is interesting that it is not the lowest value of time who lose most. The intermediate type 
users, with a value of schedule delay early of €5 and a slightly larger value of time, lose more. In 
the NT case, a lowest value of time and schedule delay user arrived on t*. With her low value of 
time, the long queue she faced was not that costly. Her generalised price was the lowest of all 
users. Her FB price is also the lowest. Now, she faces a zero toll and the longest schedule delay 
of all FB users. This long delay is, with her low �i, not that costly. Hence, her price only increases 
slightly. In the NT case, an intermediate type user arrived on t*. With her higher value of time, 
this long queue was more costly than for the lowest value of time. With FB tolling, the 
intermediate type arrives halfway the peak. She faces the average toll, and her scheduling costs 
are slightly higher than those of a lowest value of time and schedule delay user. Thus, the 
intermediate type’s price increases substantially, and her price increase is the largest of all types. 

Verhoef and Small (2004) and Van den Berg and Verhoef (2009) analyse continuous 
heterogeneity in the value of time respectively using static flow and bottleneck congestion. 
Verhoef and Small (2004) find that with FB pricing all users lose; but the larger the value of time 
is, the smaller the loss. Their public pay-lane has similar distributional effects as our FB toll: the 
intermediate values of time lose most, the lowest values of time less, and the highest values gain. 
In Van den Berg and Verhoef (2009) the highest values of time slightly gain and the lowest 
values lose most from a FB toll. This differs from our results, thus allowing for heterogeneity in 
the value of schedule delay has a large effect on the distributional impact of FB tolling. 

In the base case, the average FB toll is €4.32. The number of users increases from the NT 
equilibrium with 0.6% to 9057. Consumer surplus goes up by 1.4% to €242,571. Welfare 
increases by 17.7% to €281,708. Average travel time decreases by 24 minutes. Average 
scheduling costs decrease with 13.1%, even though the number of users increases. Thus, FB 
tolling makes the arrival order substantially more efficient. The average total price (including 
free-flow travel time and operating costs) decreases with 1.2% to €21.01. Further, 55% of the NT 
users would now face lower prices. Hence, in our base case numerical model, FB tolling is good 
for the average consumer. If one only uses the mean value of schedule delay, one misses this 
point: for instance, with homogeneous users, tolling has no effect on prices.  

7. Continuous heterogeneity and the pay-lane 
With a pay-lane, a share (�) of capacity is made a separate lane, and to use this lane one has to 
pay a toll. The remainder of road is the untolled free-lane. We also refer to the pay-lane as lane 1 
and the free-lane as lane 2. The pay-lane’s time-variant toll eliminates all queuing on the pay-
lane. The private operator adds a time-invariant toll that maximises total toll revenue. The public 
operator adds a negative time-invariant toll (i.e. subsidy) that maximises welfare.  

The subsidy attracts extra drivers to the public pay-lane. Hence, the pay-lane peak last longer 
than on the free-lane, and schedule delays are higher on the pay-lane. The higher the subsidy is, 
the lower free-lane travel delays, but the higher total schedule delays. The optimal subsidy is at 
the point where, for a marginal subsidy increase, the welfare gain from lessening queuing equals 
the loss from higher schedule delays.  

Because of the positive time-invariant PPL toll, the private pay-lane is used by relatively 
fewer drivers than the free-lane. Hence, the free-lane has the longer peak and schedule delays. 
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7.1 Analytical pay-lane model 
The pay-lane’s price equation (15) is basically the same as in the FB case. qj1[�j] is the number of 
pay-lane users with a value of schedule delay of �j. The free-lane price equation (16) is basically 
the same as the NT price formula. The mj2[�j] is the number of free-lane users with �j. Finally, 
there is a critical �*[�i] curve that separates the free-lane and pay-lane users. The users on the 
�*[�i] curve are indifferent about using the pay-lane or free-lane. All the users that, for their �i, 
have a higher �i than �*[�i] drive on the pay-lane. 
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7.2 Base case numerical model for the public pay-lane (PL)  
The pay-lane equilibria have no closed-form solutions. The numerical solution is more difficult 
than for the FB toll, because now there are also no closed form solutions for the �*[�i] curve and 
optimal time-invariant toll (τ ). The numerical solution method is discussed in the Appendix. 

The optimal time-invariant toll is −€5.36. Hence, arrivals at the outside of the pay-lane peak 
receive a subsidy of €5.36. The mean time-variant toll is €6.25. Consumer surplus increases 
7.0% from the NT case to €256,142. Welfare increases with 8.7% to €260,237. The number of 
users increases, with 3.4%, to 9309.8. Of these users, 4619.1 use the pay-lane and 4690.7 the 
free-lane. Thus, although the pay-lane has only a third of capacity, almost equal amounts of 
traffic use the pay-lane and free-lane. Hence, the pay-lane’s mean schedule delay is higher.  

Figure 8: Differences between PL and NT prices in 3D (left) and contourplot (right) in 
value of schedule delay and value of time space

Note: the critical �*[�i] curve is given in the contourplot, all users to the right of the curve use the Pay-lane. The white contourlines are, from left 
to top right, change in price is: –1, –2, –3, –4, and –5 euros. 

Figure 8 shows the difference between PL and NT prices. Again we plot the results is value of 
time and value of schedule delay space, as this makes it easier to interpret the results. In Figure 
8’s contourplot, the �*[�i] curve separates the pay-lane and free-lane users. All users to the right 
of the curve use the pay-lane. Surprisingly, not only the high values of time and schedule delay 
use the pay-lane, but also the low values of time and schedule delay. Moreover, all lowest-�-users
use on the pay-lane. This is counterintuitive: one would expect that only the highest values of 
time and schedule delay would use the tolled lane. The low-�-users arrive at the outside of the 
pay-lane peak. They face negative tolls and large schedule delays. With their low values of 
schedule delays, these large delays are not costly. Hence, they can enjoy the negative tolls and 
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attain a large price decrease. Having the low-�-users driving on the pay-lane improves the PL’s 
welfare gain, as the pay-lane’s higher schedule delays are imposed on the lowest-�-users. 

All users are better off under the PL than in the NT case. In the Van den Berg and Verhoef 
(2009) study, with only heterogeneity in the value of time, the 31% lowest value of time users 
lost due to the PL. Hence, the fact that, with heterogeneity in �, tolling lowers schedule delays 
makes consumers better off. The distributional effects of the public pay-lane are surprising.  

Although, the users with a high μi and �i gain most; the lowest values of time and schedule 
delay also gain. The users with an intermediate �i and a low μi gain the least. In contrast, the 
conventional view is that a pay-lane is bad for the lowest values of time (before revenue 
recycling), since these users cannot afford the pay-lane and have to use the free-lane.  

7.3 Base case numerical model for the private pay-lane (PPL)  
Figure 9 depicts the differences between PPL and NT prices. Due to the positive time-invariant 
toll, the peak lasts shorter on the pay-lane than on the free-lane. The PPL’s �*[�i] curve, in Figure 
9, has a more expected shape than the PL’s: only the high � and � users drive on the pay-lane. 
For the users close to the �*[�i] curve prices increase most. Hence, there are pay-lane users that 
are hurt considerably by the PPL. For the free-lane users that are further from the �*[�i] curve the 
PPL is less detrimental. On the pay-lane, as a type is further away from the �*[�i] curve the PPL 
becomes rapidly more beneficial. Nevertheless, for most pay-lane users the PPL raises the price.  

The PPL has some distributional surprises. It is not the low values of time and schedule delay 
that lose most, but the middle group (those who are almost indifferent about using the pay-lane or 
the free-lane). Further, this last group also contains pay-lane users. There are thus pay-lane users 
for who the PPL is more harmful than for the lowest-�-users. These results are similar to Verhoef 
and Small (2004)’s, where also the intermediate users, who are almost indifferent between using 
the pay-lane and free-lane, lose most, and the lowest value of time loses little.  

The time-invariant PPL toll is €3.87 and the mean time-variant toll is €4.34. The number of 
users decreases with 1.7% to 8846.8, because the PPL raises the price for most users. 
Nevertheless, the PPL increases welfare by 4.1%. Its relative efficiency is 0.23.  

Figure 9: Difference between PPL and NT prices in 3D (left) and contourplot (right) in 
value of schedule delay and value of time space

Note: the critical �*[�i] curve is also given in the contourplot, all users above the curve travel on the Pay-lane. The values for the difference in 
price (PiPL−PiNT) of the contourlines are, from top to bottom, change in price is:  −2, − 1, 0, and 1 euros. 

7.4 Concluding the pay-lane models
A public pay-lane lowers prices of all users. Prices with a private pay-lane are higher than no-toll 
prices for all free-lane users and for some pay-lane drivers. The public pay-lane is not only used 
by the high values of time and schedule delay, but also by the low values of schedule delay. The 
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low-�-users arrive on the outside of the peak. They face large schedule delays and negative tolls 
(i.e. subsidies). For these users the large schedule delays are not that costly, and thus they can 
enjoy the subsidies. The lowest values of time and schedule delay are among those who gain the 
most from the PL. Moreover, these users lose relatively little with the PPL. 

8. Sensitivity analysis 
This section focuses on the effect of different distribution of μ and � on the policies. We study 
five cases: homogeneity, the base case, less heterogeneity in μ, less heterogeneity in � and a
uniform distribution. In all cases the mean value of schedule delay early is €5 and the mean 
relative size of the value of time is 2.01. The base case’s spread of the triangular distribution of μ
is 2 and of � it is €6. With the less heterogeneity in μ, the spread of triangular distribution of μ is 
reduced to 1. In the case with less heterogeneity in �, the spread of � equals €2. With the uniform 
distribution, we test whether our results depend on the used triangular distribution. For 
comparability, the uniform distribution has the same variance as the base case. Finally, in the 
homogeneity case, all users have the same parameters4.  

8.1 Effect of heterogeneity on the no-toll (NT) case 
Table 2 studies the effect of heterogeneity in μ and � on the NT equilibrium. The mean price is 
lower in the base case than in the less heterogeneity in μ case. This suggests that the mean price 
decreases with heterogeneity in the relative size of the value of time. The mean congestion 
externality decreases with heterogeneity in μ, thereby lowering queuing costs. As section 5 
predicted, heterogeneity in � has no effect on average NT prices. The base case and less 
heterogeneity in � case have the same average externality and price. This signifies that this 
heterogeneity has no aggregate effect on the NT equilibrium. 

By design, all five cases have the same NT consumer surplus. The advantage of this is that the 
effect of tolling is more comparable over cases than when surplus would differ across the cases.  

Comparison of the base case triangular and uniform distribution indicates that the choice of 
NT user distribution has no significant effect on aggregate results. The average total price only 
differs a cent between the two cases, whereas mean queuing and scheduling costs do not even 
differ a cent. With both distributions, prices non-linearly increase with �i and linearly with �i.   

Table 2: Effect of heterogeneity in the no-toll (NT) equilibrium 

a: This uniform distribution has the same variance and mean as the base case triangular distribution of NT users.   

���������������������������������������� �������������������
4 We do not present sensitivity analyses on the price elasticity or pay-lane’s capacity share. Van den Berg and Verhoef (2009) discuss these 
analyses. Their results are in line with the homogeneous user literature. Also in this research, these sensitivity analyses give unsurprising results.  

 Homogeneity Base case Less heterogeneity 
in �

Less heterogeneity 
in �

Uniform 
distributiona

Spread of the � distribution - 2 1 2 1.414 
Spread of the � distribution - 6 6 2 4.243 
Mean schedule delay cost €4.97 €4.97 €4.97 €4.97 €4.97 
Mean travel delay cost €4.97 €3.97 €4.44 €3.97 €3.97 
Mean total price €22.27 €21.27 €21.74 €21.27 €21.26
Mean marginal external cost  €9.95 €8.95 €9.42 €8.95 €8.94 
Total NT consumer surplus €239,332 €239,332 €239,332 €239,332 €239,332 
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8.2 Effect of heterogeneity on first-best public (FB) tolling  
Table 3 shows the results of the sensitivity analysis for FB tolling. Tolling is more beneficial for 
consumers in the base case than with homogeneity. The price decreases due to FB tolling in the 
base case; whereas under homogeneity, prices are unaffected. Still, the welfare gain is higher 
under homogeneity, since toll revenues are considerably higher.  

With more heterogeneity in μ, externalities are lower, and thus there is less to gain from 
tolling. Therefore, consumer surplus, toll revenues and welfare are higher with a less 
heterogeneous μ. In the less heterogeneity in μ case, the FB welfare gain is 19.5% of NT welfare, 
whereas in the base case it is 17.7%, and with homogeneity 18.7%.  

With FB tolling, scheduling costs are lower in base case than with the less heterogeneity in �,
since the gain of a more efficient arrival ordering increases with heterogeneity in �. FB welfare 
gain is higher in the base case than in the less heterogeneity in � case. This suggests that the FB 
welfare gain increases with heterogeneity in �. Conversely, this gain decreases with the 
heterogeneity in μ. If there is not too much more heterogeneity in the value of time than in the 
value of schedule delay, then FB tolling can be good for the average consumer5. For example, in 
the base case, 55% of the NT users would gain. With homogeneity, FB tolling has no effect on 
prices. In the less heterogeneity in μ case, 66% of NT users would gain from FB tolling, and with 
the less heterogeneity in � case 39%. The share of NT users that would gain seems to increase 
with heterogeneity in � and decrease with heterogeneity in μ. 

FB welfare in the base case is lower than with homogenous users. For welfare to be higher 
with heterogeneity than with homogeneity, the value of schedule delay must be more 
heterogeneous (for a given NT μ distribution) than the base case. An example of such a situation 
is the less heterogeneity in � case, where FB welfare is higher than with homogeneity. 

The differences between the results for the uniform and base case distribution are small. The 
mean total price differs by a cent. The discrepancy between the total numbers of users is 0.6 user. 
The percentage welfare gain differs by 0.003 percentage points. A difference is that in the 
uniform case 53% of the NT users would gain, while in the base case 55%. These results seem to 
justify the view that the used distribution form has not an important effect on aggregate results.  

In our model, there are always users that lose due to the FB toll. Conversely, in Vickrey 
(1973), FB tolling is Pareto improving. The difference lies in: (1) we also have heterogeneity in 
the relative size of the value of time, and this makes tolling more harmful for the average 
consumer. And (2) we use elastic demand, which means that the types that gain increase their 
demand, which increases the price for all types.  

���������������������������������������� �������������������
5 The value of time always has at least as much heterogeneity as the value of schedule delay, because μi must be larger than one. If μ is 
homogeneous and the � heterogeneous, then the value of time and schedule delay are perfectly correlated and are equally heterogeneous.  

 Homogeneity Base case Less 
heterogeneity in �

Less 
heterogeneity in �

Uniform 
distribution 

Spread of the � distribution - 2 1 2 1.414 
Spread of the � distribution - 6 6 2 4.243 
Mean schedule delay cost €4.97 € 4.32 € 4.36 €4.70 €4.32 
Mean FB toll €4.97 € 4.32 € 4.36 €4.70 €4.32 
Mean total price €22.27 €21.01 € 21.07   €21.75 €21.00 
Number of FB users 9000 9054.6 9122.3 8922.8 9055.3
Toll revenues  €44,770 €39,137 €39,746 €41,970 €39,094 
Total FB consumer surplus €239,332 €242,571 €246,180 €235,352 €242,606 
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Table 3: Effect of heterogeneity on the first-best public (FB) toll  

8.3Effect of heterogeneity on the public (PL) pay-lane 
Table 4 gives the sensitivity analysis for the PL. In all five cases, all users gain due to the PL’s 
time-invariant subsidy. In Van den Berg and Verhoef (2009)’s model (which is a constrained 
version of our model with no heterogeneity in �) there are users that lose from the PPL. This 
indicates that if the value of schedule delay is almost homogeneous, there will be some users that 
are disadvantaged by the PL.  
 The less heterogeneity in � case has a higher welfare gain and relative efficiency than the 
base case, indicating that these measures decrease with the heterogeneity in �. In the base case, 
the time-invariant toll is higher than in the less heterogeneity in � case. Thus, in the base case, 
the pay-lane has relatively fewer users compared with the free-lane. Hence, free-lane queuing is 
worse in the base case. As Van den Berg and Verhoef (2009) discuss, it is apparently social 
optimal to allow more wasteful queuing with more heterogeneity, because of the lower 
congestion externalities, and this decreases the PL’s relative efficiency. 

The more heterogeneous � is, the more efficient tolling makes the arrival ordering, thereby 
increases PL’s welfare gain. Surprisingly, the PL’s relative efficiency also increases with the 
heterogeneity of �. One would expect that this relative efficiency would decrease with 
heterogeneity, as the pay-lane imposes the more efficient arrival order on only a part of the users. 
The public pay-lane has a larger maximum and mean schedule delay than the free-lane. These 
large delays are faced by the lowest-�-users. The high-�-users have the lowest delays. With more 
heterogeneity, the mean value of schedule delay of the pay-lane’s high-�-users is higher, making 
the PL’s schedule delay savings more valuable. The mean value of schedule delay of the pay-
lane’s low-�-users decreases with heterogeneity in �, making the PL’s extra schedule delays less 
costly. This explains why the PL relative efficiency increases with the heterogeneity in �.  

The differences between the base case and uniform distribution are larger than in the NT and 
FB cases. Nevertheless, the differences are still minor. The time-invariant toll is a cent lower with 
the uniform distribution; the PL’s percentage welfare gain is 0.22 percentage point lower.   

Welfare under the FB €284,102 €281,708 €285,926 €277,323 €281,701 
Percentage welfare gain from 
the NT case 18.7% 17.7% 19.5% 15.9% 17.7%
Percentage NT users that would 
have a lower price with FB tolling 

Price is 
unchanged 

   
55% 66% 39% 53% 

 Homogeneity Base case Less 
heterogeneity in �

Less 
heterogeneity in �

Uniform 
distributiona

Spread of the � distribution - 2 1 2 1.414 
Spread of the � distribution - 6 6 2 4.243 
Time-invariant part of the toll −€6.37 −€5.36 −€5.40 −€5.38 −€5.35 
Mean time-variant part of the toll €7.27 €6.25 €6.29 €6.72 €6.31 
Number of users 9302.8 9309.8 9356.4 9205.5 9293.9 
Toll revenues  €3917 €4095 €4153 €5680 €4439 
Total PL consumer surplus €255,706 €256,142 €258,692 €250,408 €255,260 
Welfare under the PL €259,623 €260,237 €262,845 €256,089 €259,699 
Relative efficiency 0.453 0.493 0.505 0.441 0.481 
Percentage welfare gain from 
the NT case 8.48% 8.73% 9.82% 7.00% 8.51%
Percentage NT users that would      
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Table 4: Effect of heterogeneity with the public (PL) pay-lane 
a: This uniform distribution has the same variance and mean as the base case triangular distribution of NT users.   

8.4 Effect of heterogeneity on the private (PPL) pay-lane 
Table 5 shows the final sensitivity analysis for the PPL. It indicates that the PPL welfare gain and 
relative efficiency decrease with heterogeneity in �; as in the less heterogeneity in � case these 
measures are higher than in the base case. Van den Berg and Verhoef (2009) suggest that with a 
more heterogeneous value of time, it is profit maximizing to allow more wasteful queuing and 
schedule delay on the free-lane, lowering the PPL’s relative efficiency and welfare gain.  

The PPL’s welfare gain and relative efficiency are lower in the less heterogeneity in � case
than in the base case. This indicates that these measures increase with heterogeneity in �. With a 
more heterogeneous �, the average value of schedule delay on the pay-lane is higher, and on the 
free-lane it is lower. This makes the schedule delay savings on the pay-lane more valuable and 
the free-lane’s extra schedule delays less costly. Thus, the PPL is more beneficial with a more 
heterogeneous �. This reasoning follows the same train of thought as Verhoef and Small (2004) 
used to explain why, with static flow congestion, the pay-lane’s relative efficiency increases with 
heterogeneity in the value of time.  

With homogeneity, all users are worse off with a PPL than in the NT case. Conversely, in all 
heterogeneity cases there are some users who gain. The share of NT users that would face lower 
prices with the PPL decreases with heterogeneity in �. In opposition to FB tolling, the PL’s share 
that would gain slightly decreases with heterogeneity in �. This seems to be because with more 
heterogeneity in the value of time, the free-lane congestion externalities are worse. This makes 
the free-lane a less attractive good, enabling the PPL operator to ask a higher profit maximizing 
time-invariant toll. This is also why relatively more users use the pay-lane in the less 
heterogeneity in � case than in the base case, even though the time-invariant toll is higher in the
less heterogeneity in � case. Hence, with welfare maximization, the share of users that gains from 
tolling increases with heterogeneity in �; with profit maximization it decreases.  

In all heterogeneity cases, the lowest values of time and schedule delay lose because of the 
PPL. Yet, they lose less than the users that are (almost) indifferent between the free-lane and pay-
lane. For the lowest values of time and schedule delay, the price heightening decreases with the 
heterogeneity in � and raises with the heterogeneity in �.  

The differences between the base case triangular and uniform distribution are larger than for 
the NT or FB equilibrium. Again, however the differences are not over all result changing.  

have a lower price with the PL  100% 100% 100% 100% 100% 

 Homogeneity Base case Less 
heterogeneity in �

Less 
heterogeneity in �

Uniform 
distributiona

Spread of the � distribution - 2 1 2 1.414 
Spread of the � distribution - 6 6 2 4.243 
Time-invariant part of the toll €3.03 €3.87 €3.97 €3.14 €3.96 
Mean time-variant part of the toll €4.64 €4.34 €4.48 €3.97 €4.37 
Number of users 8855.9 8846.8 8855.4 8836.1 8837.4 
Toll revenues  €16,201 €17,964 €18,619 €16,288 €18,133 
Total PPL consumer surplus €231,729 €231,279 €231,724 €230,701 €230,790 
Welfare under the PPL €247,930 €249,243 €250,343 €246,989 €248,923 
Relative efficiency 0.192 0.234 0.236 0.202 0.226 
Percentage welfare gain from     
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Table 5: Effect of heterogeneity with the private (PPL) pay-lane 
a: This uniform distribution has the same variance and mean as the base case triangular distribution of NT users.   

8.5 Concluding the sensitivity analysis
NT queuing costs are lower with a more heterogeneous relative size of the value of time, because 
congestion externalities are lower. Hence, there is less to gain from tolling, and the FB welfare 
gain is lower. Heterogeneity in � does not affect NT prices. Nevertheless, the welfare gain of FB 
tolling increases with heterogeneity in �; because, with heterogeneity, tolling makes the arrival 
ordering more efficient. With increased heterogeneity in �, the relative efficiency of the pay-lane 
is higher, while it is lower with a more heterogeneous relative size of the value of time.  

The relative efficiencies of the pay-lanes are higher in the heterogeneous user base case than 
with homogeneous users. If the base case had a more heterogeneous � or a less heterogeneous �, 
then the relative efficiencies could be higher with homogeneity than with heterogeneity. The FB 
welfare gain is lower with the base case than with homogeneity. Nevertheless, also in this case, if 
the calibration of the model would be different (e.g. a more heterogeneous �), this result might 
change. Whether a policy is more or less beneficial with heterogeneity than with homogeneity 
depends on the empirical question what distribution heterogeneity has: how much more 
heterogeneous is the value of time than the value of schedule delay?  

9. Conclusion 
This paper analysed how, in the bottleneck model, heterogeneity affects the effects of congestion 
tolling. The heterogeneity is in the value of schedule delay early (�) and relative size of the value 
of time to the value of schedule delay (�). The value of time of a type i user is �i��i.  

We focused on time-variant tolling. In reality, tolls are uniform over the peak or are step tolls. 
For future research, it seems attractive extend the research on how heterogeneity affects these less 
flexible tolls. One might also look at what effects other types of heterogeneity (e.g. in the value 
of uncertainty or between the value of schedule delay early and late) have on second-best tolling.  

A more heterogeneous relative size of the value of time lowers the average no-toll equilibrium 
congestion externality. Hence, there is less to gain from tolling, and the welfare gains of tolling 
are lower. With a more heterogeneous value of schedule delay, the welfare gain of tolling is 
higher. With more heterogeneity, the gain from the more efficient arrival ordering tolling causes 
is higher, meaning that tolling lowers mean schedule delays costs more.  

With a pay-lane, only a part of the road is tolled, the remainder (the free-lane) remains toll 
free. The pay-lane toll consists of a time-invariant and a time-variant part. The public pay-lane 
has a negative time-invariant toll (i.e. subsidy) that maximises welfare. The public pay-lane is 
used by highest values of time and schedule delay and by all the lowest values of schedule delay 
early (�). These low-�-users arrive on the outside of the pay-lane peak. They enjoy the negative 
tolls at the outside of the peak, whereas the large schedule delays then are not that costly. Hence, 
the negative toll at the outside of the peak causes the surprising result that the low values of 
schedule delay use the pay-lane. The private pay-lane has a positive time-invariant toll that 
maximises revenue. It is used by the highest values of time and schedule delay. The relative 
efficiency of a pay-lane increases with heterogeneity in the value of schedule delay, it decreases 
with heterogeneity in the relative size of the value of time. 

the NT case 3.59% 4.14% 4.60% 3.19% 4.00%
Percentage NT users that would 
have a lower price with the PPL  none 6.0% 5.7% 0.6% 5.0% 
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If there is not too much more heterogeneity in the value of time than in the value of schedule 
delay, then the mean travel price can be lower with first-best public tolling than without tolling. 
The share of NT users that would face lower prices with first-best tolling increases with the 
heterogeneity in the value of schedule delay, while it decreases with the heterogeneity in the 
relative size of the value of time. For the private pay-lane, the share that would gain reduces with 
both the heterogeneity in the value of schedule delay and time. The first-best toll and private pay-
lane are never a Pareto improvement. For most distributions of the heterogeneity, the public pay-
lane is a Pareto improvement. Only if the value of schedule delay is (almost) homogeneous are 
there users who lose. 

The distributional effects of tolling can be surprising. First-best tolling is most harmful for 
users with an average value of schedule delay and a slightly larger value of time, while it raises 
the price less for the lowest values of time and schedule delay. The lowest values of time and 
schedule delay are among those who gain most from a public pay-lane. Further, these users lose 
relatively little with the private pay-lane, while higher value of time and schedule delay free-lane 
users and even some pay-lane users lose more. Hence, in our model, tolling is not most harmful 
for the lowest values of time and schedule delay.  

Acknowledgements  
This research was financially supported by Transumo. Transumo (TRANsition SUstainable MObility) is a Dutch 
platform for companies, governments and knowledge institutes that cooperate in the development of knowledge with 
regard to sustainable mobility. The authors are grateful for the comments of Eva Gutiérrez-i-Puigarnau. 

Literature 
Arnott, R., de Palma, A. and Lindsey, R. (1988). Schedule delay and departure time decisions with  

heterogeneous commuters. Transportation Research Record 1197, 56–67. 
Arnott, R., de Palma, A. and Lindsey, R. (1991). A temporal and spatial equilibrium analysis of  

commuter parking. Journal of public economics 45, 301-335. 
Arnott, R., de Palma, A. and Lindsey, R. (1992). Route choice with heterogeneous drivers and group- 

specific congestion costs. Regional Science and Urban Economics 22, 71–102.  
Arnott, R., de Palma, A., Lindsey, R. (1994). The welfare effects of congestion tolls with  

heterogeneous commuters. Journal of Transport Economics and Policy 28, 139–161. 
de Palma, A. and Lindsey, R. (2000) Private toll roads: Competition under various ownership  

regimes. The Annals of Regional Science 34(1), 13-35.  
Lindsey, R. (2004). Existence, uniqueness, and trip cost function properties of user equilibrium in the  
 bottleneck model with multiple user classes. Transportation Science 38(3), 293-314.  
Small, K.A. and Yan, J. (2001) The value of “value pricing” of roads: Second-best pricing and product 
 differentiation. Journal of Urban Economics 49(2), 310-336. 
van den Berg, V. and Verhoef, E.T. (2009). Second-best congestion tolling in the bottleneck model with  

continuous heterogeneity in value of time. VU University working paper; available on request.   
Verhoef, E.T. and Small, K.A. (2004). Product differentiation on roads. Journal of Transport             
 Economics and Policy 38, 127-156. 

Appendix: Numerical solution method for a pay-lane equilibrium 
This appendix discusses the numerical solution procedure for the pay-lanes. Three iterative 
procedures are used: the second is around the first and the third procedure around the second. We 
begin with some starting time-invariant toll, critical �*[�i]0 curve and distribution of users. The 
first iterative procedure searches for the distributions for which the prices and inverse demands 
are equal. The starting distribution is used to calculate prices and the demands implied by these 
prices. The next iteration uses this iteration’s demand, approximated by a cubic spline, as the 
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starting distribution. The convergence criterion is a maximum absolute percentage change in the 
number of pay-lane and free-lane drivers of 10-12% from one iteration to the next.  

For now, however, prices on the pay-lane and free-lane for �*[�i] curve users are not equal. 
Hence, a new curve is sought for which these price differences are smaller. This switches some of 
pay-lane drivers that face lower prices on the free-lane to the free-lane; and vice versa for the 
free-lane. After this, the first iterative procedure is repeated again to find the new equilibrium 
user distribution. The convergence criteria for the second procedure is a maximum absolute 
percentage difference between pay-lane and free-lane prices for �*[�i] curve users of 0.075%. 

The third procedure searches for the optimal time-invariant toll. For the public pay-lane, we 
start with calculating welfare for three time-invariant tolls (−€1.50, −€2.00 and −€2.50). Next, we 
fit a second-order polynomial to the tolls and their welfare. This polynomial is maximised to find 
the predicted toll ( pτ ). Next iteration’s toll is 1 (1 )i i pss ssτ τ τ+ = − ⋅ + ⋅ , where ss is the step size. 
Then, welfare resulting from this new toll is calculated. We fit a polynomial on the last two tolls 
(i.e. −€2.00 and −€2.50) and this iteration’s toll and the welfares corresponding to these tolls, to 
find the next iteration’s toll. If there is no increase in welfare from one iteration to the next, the 
step size is halved. Both consumer surplus and toll revenue seem globally concave in the time-
invariant toll. Therefore, this procedure should converge to the welfare maximizing toll.  

We repeat this third procedure until the absolute in welfare between iterations is below 0.25, 
on a PL welfare of around €260,000. After convergence, we use the time-invariant toll with the 
highest welfare in the series of calculations as the optimal toll. The procedure for the PPL is 
basically the same as for the PL, only now toll revenues are maximised instead of welfare. 
�
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