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Abstract 
It is a common finding in empirical discrete choice studies that the estimated mean relative values 
of the coefficients (i.e. WTP’s) from multinomial logit (MNL) estimations differ from those 
calculated using mixed logit estimations, where the mixed logit has the better statistical fit. 
However, it is less clear under exactly what circumstances such differences arise, whether they 
are important, and if they can be seen as biases in the WTP estimates from MNL. We use datasets 
created by Monte Carlo simulation to test, in a controlled environment, the effects of the different 
possible sources of bias on the accuracy of WTP’s estimated by MNL. Consistent with earlier 
research we find that random unobserved heterogeneity in the marginal utilities does not in itself 
biases the MNL estimates. Furthermore, whether or not the unobserved heterogeneity is 
symmetrically shaped also does not affect the accuracy of the WTP estimates of MNL. However, 
we find that if two heterogeneous marginal utilities are correlated then the WTP’s from MNL 
may be biased. If the correlation between the marginal utilities is negative, then the bias in the 
MNL estimate is negative, whereas if the correlation is positive the bias is positive.  

 
Keywords: Discrete Choice, Biases in WTP’s, Multinomial Logit, Correlated Heterogeneous Marginal Utilities 

 

 
1 Introduction 
Multinomial Logit (MNL) models are often used in empirical discrete choice studies. However, 
as Bhat (1998a) notes, if there is heterogeneity in the marginal utilities and/or in the alternative 
specific constants, then ignoring this, by estimating a MNL, could lead to biased parameter 
estimates. With MNL it is only possible to control for observed heterogeneity. For example, the 
marginal utility of a price attribute depends on income. To control for unobserved heterogeneity, 
a mixed logit can be used. Still, ignoring heterogeneity by using MNL does not necessarily result 
in biased estimates. Rizzi and Ortúzar (2006) find that the Values of Risk Reduction (i.e. the 
WTP’s for Risk) in the three surveys they analyse are somewhat lower with MNL. Still, the 
average WTP’s from their mixed logits are within the 95% confidence intervals of the WTP’s of 
the respective MNL’s. Train (1998) concludes that there is probably no general answer to 
whether or not MNL gives correct estimates when heterogeneity is present. Hence, it remains 
unclear under what circumstances MNL gives biased mean estimates of a Willingness-To-Pay 
(WTP) (i.e. the ratios of marginal utilities).  

This paper examines some circumstances under which heterogeneous marginal utilities might 
cause biased WTP estimates from MNL. We analyse three cases of heterogeneity, using discrete 
choice datasets created by Monte Carlo simulation. The first is symmetric random heterogeneity 
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in the marginal utility. The second is asymmetric heterogeneity. Thirdly, we consider what 
happens when two heterogeneous marginal utilities are correlated.  

Because we create the datasets by means of simulation, we can test the effects of 
heterogeneous marginal utilities in a clean laboratory-type setting. Conversely, with real world 
empirical datasets, there are a large number of issues at play, making it difficult to analyse 
separate issues.  

 On the simulated datasets we perform MNL estimates. The WTP from a MNL is given by the 
coefficient of some attribute divided by the coefficient of price. The resulting WTP’s are then 
compared to their design values. The design level for a dataset is calculated by dividing the mean 
of the simulated marginal utility of an attribute by the mean of marginal utility of price. This is 
also what Horowitz (1980) compares when he studied how well MNL could approximate a probit 
with random heterogeneity in the parameters. Given that the true model has random 
heterogeneity, the coefficients of the MNL estimation should equal the means of the random 
marginal utilities, ignoring the arbitrary scaling.  

Hence, we first simulate the choices with random heterogeneity in the marginal utilities. Then, 
we do MNL estimates on these simulated datasets. We have not performed mixed logit estimates. 

Section 2 begins by discussing some of the literature. Section 3 studies the effect of (non-
symmetric) heterogeneity in the marginal utilities and discusses the basic set up of the Monte 
Carlo simulation, which is also used in the following section. Section 4 studies what happens 
when two heterogeneous marginal utilities are correlated. Finally, Section 5 concludes.  
 

2 Literature discussion 
Bhat (1998a) finds for his dataset that the WTP’s from mixed logit are on average slightly larger 
than with MNL. Further, the absolute value of the elasticity of the choice probability to costs is 
larger with mixed logit than with MNL. Similarly, Bhat (2000) finds that MNL underestimates 
the WTP’s for out-of- and in-vehicle travel time. Bhat (1998b) notes that the WTP’s for out-of- 
and in-vehicle travel time are somewhat smaller with his MNL than with his mixed logit. 

Train (1998) finds that for his data the WTP’s are larger with mixed logit than with MNL. 
However, the WTP’s from his mixed logit with correlated marginal utilities are smaller than 
those from MNL or the mixed logit without free correlation. He concludes that there is probably 
no general conclusion as to whether MNL gives good estimates for the WTP’s in a given dataset: 
that the performance of MNL will be different for each dataset.  

Algers et al. (1999) note that for their dataset the mean WTP for travel time differs 
significantly between the MNL and mixed logit. Hensher et al. (2008) find that, for their dataset, 
the mean price elasticities with nested logit are for some alternatives higher and for others lower 
than with mixed logit. Van den Berg, Kroes and Verhoef (2009) find for their dataset that MNL 
underestimates the WTP for travel time compared with mixed logit, but overestimates the WTP’s 
for the other attributes.  

The empirical papers often find that MNL estimations give different estimates of the WTP’s to 
mixed logits. However, there is no clear pattern in whether MNL over- or underestimates WTP’s. 
One study finds an overestimation, a second finds an underestimation and a third finds no real 
difference. These empirical results do, however, contradict the results of the theoretical analysis 
of Horowitz (1980) using simulated datasets. He analyses the performance of MNL when there is 
random heterogeneity in the marginal utilities and finds that the ratio of the two coefficients he 
estimates on his simulated datasets (i.e. the WTP) is for all amounts of heterogeneity in the 
marginal utilities almost identical to the design value. He concludes that the ratio of the 
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coefficients is unbiased when one does not control for heterogeneity in the marginal utilities. He 
finds, however, that the MNL choice probabilities are biased by heterogeneity. The question is: 
why would unobserved heterogeneity cause biased WTP estimates from MNL? Further, if there 
is a bias, in what direction will it be? 

This paper focuses on the effect of heterogeneity on WTP estimates from MNL. An interesting 
question, though beyond the scope of this paper, is whether a mixed logit estimation will result in 
correct WTP estimates. Hess et al. (2005) note that the mean WTP for travel time for their dataset 
is sensitive to the assumed distribution of the random unobserved components of the cost and 
time parameters: the mean WTP differs substantially across the different distributions they use. 
Sillano and Ortúzar (2005) find that the mean WTP can also depend on the used estimation 
procedure (i.e. Maximum simulated likelihood or Bayesian). Daly, Hess and Train (2009) show 
that if the price coefficient has a normally distributed random element, and the model is estimated 
in utility space, then the mean WTP is undefined. This is because the price coefficient then has 
non-zero probability of being zero and one cannot divide by zero. This issue arises for any 
distribution of the price coefficient that has a non-zero probability of being zero.  

 

3 Non-symmetric marginal utilities  
This section tests whether (non-symmetric) heterogeneity in the marginal utilities could bias the 
WTP’s from MNL. The idea is that asymmetry in the heterogeneity might not middle out to the 
mean of the distribution; for example, because the logit probability function is non-linear.  
 
3.1 Set-up of the dataset simulations 
We investigate this through dataset simulations in Gauss 6.0, in which we use several different 
design forms of the random elements of two marginal utilities. Hereby, we test whether the 
differences in the WTP’s from MNL increase as the random elements of the marginal utilities 
become more skewed. We simulate 2000 datasets per version of the marginal utilities and then 
perform MNL estimates on these simulated datasets. Each dataset in a version has the same 
design. The datasets of another version has, for example, a more skewed distribution of a 
marginal utility. Each simulated dataset has 500 individuals, who all face one choice situation.  

Symmetric triangular distributions for random elements were first applied in a discrete choice 
study by Train (2001). The triangular distribution is increasingly used in empirical studies using 
mixed logit (Hensher et al., 2008). In a more general form, the triangular distribution can also 
allow for non-symmetric distributions. Figure 1 gives an example of a general triangular. The a is 
the minimum of the distribution, b the maximum and c the mode. With a non-symmetric 
distribution, the mode is not the same as the mean. The mean of the distribution equals (a+b+c)/3. 
If (c-a) < (b-c), then the mean is larger than the mode. If (c-a) > (b-c), it is smaller. 
 
Figure 1: The general triangular distribution 
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With a symmetric triangular (i.e. with (c-a)=(b-c)), the c-a is called the spread, as it gives the 
spread of the distribution. We define dk=ck−ak (i.e. the (negative) spread to the left) and ek=bk−ck 
(i.e. the spread to the right). For the non-symmetric version, the marginal utilities (βkq) are given 
by (1). In the formula ck is the mode of kth marginal utility. Skq is a standard uniform draw for the 
kth marginal utility of individual q. 
 

     
*( )*( )             /  ( )

(1 )*( )*         /  ( )

kq k kq k k k k kq k k k

kq k k kq k k k kq k k k

c S e d d d if S d e d

c e S e d e if S d e d





     

      
         (1) 

 
We now introduce the layout of the datasets we create by simulation. We use general 

triangular distributions for the marginal utilities (i.e. the marginal utilities can be non-symmetric). 
There are three alternatives. The utility of alternative i for individual q depends on three 
explanatory variables (vector Xiq), an unobserved element εiq and the individual q specific 
parameter vector (βq). The parameters are the same for all alternatives. The parameters are also 
referred to as marginal utilities. The utility functions are given in (2a-c). 

(2) 
U1q= β1q * X11q + β2q * X21q + ε1q         (2a) 
U2q= β1q * X12q  + β2q * X22q + β3q * X32q+ ε2q + ASC2     (2b) 
U3q= ε3q + ASC3          (2c) 

 
The first number in subscript behind the X variables (k=1,2,3) indicates which variable is 

used (e.g. whether it is the price or travel time). The second number indicates the alternative 
(i=1,2,3). Finally, q (q= 1,2,..,500) indicates the individual. For ease of interpretation, we view 
X1iq as the price. The εiq’s are randomly generated to be Independently and Identically 
Distributed, with an Extreme Type I distribution form. Discrete choice models use the 
assumption of utility maximization. Thus, a simulated individual chooses the alternative which 
gives the highest utility. The utility of the third alternative is not influenced by any attribute. The 
alternative can be seen as an “opting out” alternative. 

The X11q and X12q (i.e. price) variables are created from the variable Z1q and the X21q and X22q 
variables from the variable Z2q. The X1iq (i= 1 or 2) variables are created from Z1q by a randomly 
generated difference variable, which can take the values of 10%, 20%, 30% and 40%. Hence, Z1q 
times the difference variable gives the difference between the two X1iq variables. This difference 
is allocated to an increase relative to Z1q for X11q and a decrease for X12q. This allocation is 
determined by the standard uniform random variable r1q. For X21q and X22q these variables are 
difference relative to Z2 (i.e. diff2q) and r2q. Here diff2q can take four values, namely 0%, -10%,  -
20% and -30%.  Hence, the X21q for alternative one is always lower or equal to the X22q for 
alternative two. The variables are determined by the formulas (3a-d). The design levels and forms 
for Z1q and Z2q and X32q are shown in Table 1. Note that X32q has a uniform distribution, which 
starts at mean – spread/2 = 5 and ends at mean + spread/2 = 25.  
 

X11q=Z1q + Z1q * diff1q * r1q  (3)       (3a) 
X12q=Z1q – Z1q * diff1q *(1– r1q)        (3b) 
X21q=Z2q + Z2q * diff2q * r2q  

       (3c) 
X22q=Z2 q– Z2q * diff2q *(1 – r2q)        (3d) 
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Table 1: The design of the variables of the simulated datasets 
 
 
 
 
 

 
The marginal utilities and Alternative Specific Constants (ASC’s) are determined by the 

design in Table 2. The spread to the left follows from the design variable Min_k, the spread to the 
right follows from Max_k. The spread to the left is given by Min_k * mode_k and to the right by 
Max_k * mode_k. The mode of a distribution is set so that, given the spread, the mean of the 
marginal utility equals the design mean. Thus, the expected value of a marginal utility is the same 
for each design version of the dataset, which helps with interpreting the results.  
 
Table 2: The designs of the marginal utilities and ASC’s 

 
 
 
 
 
 
 

 
3.2 Calculation of the design levels of the WTP’s 
Table 3 shows that we use 18 different combinations of the Min_k and Max_k design variables. 
We generate 2000 different datasets per version, where each dataset has new values for the 
explanatory variables, marginal utilities and unobserved elements. Hence, for Table 3 we 
performed 36000 MNL estimations. Each dataset contains 500 individuals, who face one choice 
situation. Each version has a different design. In this section the difference between versions is in 
the skewedness of the heterogeneous marginal utilities.  We simulated the datasets in Gauss 6.0 
using the pseudo-random number generator and performed MNL estimates with the maxlik 
module. The starting values for the coefficients and ASC’s were, for each dataset, set randomly 
within certain bounds. The bounds were different for each coefficient and ASC.  

We calculate for each dataset the WTP’s for X2i and X32 (i.e. β2/β1 and β3/β1), and then 
calculate the averages per version. These averages are reported in Table 3. We also give the 
average design levels of the WTP’s and the average relative sizes of the two. This last figure 
equals the mean of the estimated WTP divided by the design WTP.  

The design level of a WTP for a dataset is calculated by dividing the dataset mean of βkq by 
the mean β1q. Given the assumption that the true model has heterogeneous marginal utilities, the 
coefficients of the MNL estimation should be equal to the means of the heterogeneous marginal 
utilities. Hence, a WTP for an attribute from a MNL should equal the mean of the simulated 
marginal utility of that attribute divided by the mean marginal utility of price (i.e. it should equal 
E[βkq]/E[β1q]). Accordingly, the WTP from MNL is not necessarily the same as the mean WTP 
from mixed logit. The mean WTP of an attribute with mixed logit is given by the average of the 
division of its marginal utility by the marginal utility of price (i.e. by E[βkq/β1q]). The WTP from 
a MNL estimate equals the coefficient of the attribute divided by the price coefficient. 

 Mean Standard Deviation Spread Distribution shape 

Z1q 10 5 . Lognormal 

Z2q 70 40 . Lognormal 

X32q 15 . 20 Uniform 

 Mean Spread to the left Spread to the right Distribution shape 

β1q – 0.15 Varies  Varies  Triangular 

β2q – 0.025 Varies  Varies  Triangular 

β3 – 0.02 0 0 Fixed 

ASC2 – 0.4 0 0 Fixed 
ASC2 – 4.5 0 0 Fixed 
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Table 3: Results of estimations on the datasets with non-symmetric random marginal utilities. 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Design variables                 

Min_1 0 0.1 0.2 0.3 0.5 0.6 0.8 0.9 0.999 1 1.1 1.2 1.4 1.5 1.6 2 2.5 3 

Min_2 0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Max_1 0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Max_2 0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

WTP variable X2iq  (β2/ β1)                        

Estimated 0.170 0.169 0.169 0.170 0.170 0.170 0.170 0.175 0.176 0.172 0.176 0.176 0.178 0.175 0.176 0.175 0.175 0.177 

Design value 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 
Relative value 1.018 1.012 1.015 1.017 1.020 1.022 1.023 1.049 1.055 1.032 1.056 1.056 1.067 1.048 1.053 1.050 1.050 1.061 

WTP variable X32q (β3/ β1)                      

Estimated 0.135 0.137 0.142 0.132 0.136 0.134 0.137 0.137 0.140 0.135 0.141 0.142 0.139 0.139 0.134 0.140 0.141 0.141 

Design value 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 
Relative value 1.013 1.027 1.065 0.992 1.023 1.008 1.030 1.028 1.047 1.010 1.061 1.064 1.045 1.045 1.006 1.050 1.058 1.060 

Note: Min_1 multiplied by the mode gives the spread to the left for β1q. Hence, the minimum is at (1−Min1)*mode1. The spread to the right for the second random parameter is 
equal to Max_2 multiplied by the mode of the random parameter. 

 
Figure 2: Relative values estimated WTP’s in Table 3 to their design values over the values of Min_1 
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Note: Min_1 multiplied by the mode gives the spread to the left for β1q. Hence, the minimum is at (1-Min1)*mode1. In the most left column there is not heterogeneity in the 
marginal utilities. In the other columns, if Min_1 is smaller than one, the distribution of the marginal utility of price is skewed to the left. If Min_1 is larger than one it is skewed to 
the right. If it equals one, then the distribution is symmetric. 
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3.3 Results of the dataset simulations with non-symmetric heterogeneity 
The first part of Table 3 shows that β2q is given a symmetric triangular distribution. The marginal 
utility of X1q (i.e. β1q) is given an asymmetric distribution. The spread to the right equals 
0.999*mode (except in the most left column) and the spread to the left varies from 0 to 3. In the 
most left column, all simulated marginal utilities are fixed and there is no heterogeneity. In the 
other columns, if Min_1 is smaller than one, the distribution of the marginal utility of price is 
skewed to the left. If Min_1 is larger than one it is skewed to the right. If it equals one, then the 
distribution is symmetric. Both marginal utilities remain negative because the maximum is 
(1−0.999)*modek and we use a negative mode. The second part of the table gives, for each 
version of heterogeneity, the means of the estimated WTP’s for variable X2q, the design level of 
this WTP and the relative size of the two. The third part does the same for the WTP of X3q. 

Figure 2 depicts the relative sizes of the estimated WTP’s to their design levels. It also shows 
the 90% interval of the estimates, that is the interval within which 90% of the WTP estimates lie. 
This range gives an indication of the accuracy of the simulation and helps in determining whether 
a mean estimated WTP is really different from its design value.  

How skewed the distributions are seems to have no effect on the mean of the WTP’s of the 
2000 datasets per version. For relatively strong asymmetry, the estimated WTP’s are 
approximately equal to the design values, and for small amounts of asymmetry this is also the 
case. The mean WTP’s vary a bit over the table. However, there is no clear pattern of effect of 
(non-symmetric) heterogeneity. Further, heterogeneity in itself also does not seem to bias the 
MNL estimates. The heterogeneity does cause the estimates to have a larger spread and makes 
the standard errors of the estimates larger. 

This exercise suggests that the estimated WTP’s of a MNL estimation are not affected by 
heterogeneity in a marginal utility, even if this heterogeneity is asymmetric.  These results are 
consistent with Horowitz (1980), who finds that heterogeneity in itself does not necessarily bias 
WTP’s from estimations that ignore the heterogeneity (such as MNL)  

 

4 Correlation between two heterogeneous marginal utilities  
The previous section showed that heterogeneity in itself should not bias MNL estimates, even if 
the heterogeneity is non-symmetric. This section studies the effect of correlated heterogeneous 
marginal utilities. For this we perform MNL estimates on 4000 simulated datasets per version of 
the strength of the relation between the two heterogeneous marginal utilities. Thereafter, we 
compare the means and 90% intervals of the estimated WTP’s to the design levels. We first 
consider some examples of correlated marginal utilities. Thereafter, we examine the set-up of the 
dataset simulations and then the results of the simulations. 
 
4.1 Examples of correlated heterogeneity in marginal utilities  
Consider the value of statistical life. Suppose that for richer people the marginal utility of money 
is lower, because of a decreasing marginal utility of income. Further, suppose that the marginal 
disutility of the risk of an accident increases with income, because richer people perceive that 
they have more to lose. Then, of course, these two marginal utilities are correlated. Similarly, the 
marginal utility of travel time could be correlated with the marginal utility of price.  

In a study on the purchase of appliances (see Revelt and Train (1998) for a study on 
refrigerator purchase) the marginal utility of the monetary saving due to the efficiency of the 
appliance might be correlated with the marginal utility of the efficiency level of the appliance. 
Train (2007) studies the choice of electricity supplier and finds significant covariance between 
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the marginal utility of whether the rates are differentiated over the day and the marginal utilities 
of price, whether the electricity supplier is a known company and if the electricity price differs 
over the year. Train (1998) notes that, for his dataset, the WTP’s from mixed logit with correlated 
marginal utilities (i.e. free-covariance mixed logit) are lower than the WTP’s from regular (no-
covariance) mixed logit and MNL. Hence, not controlling for correlation can have an effect.  

 
4.2 Set-up dataset simulations with correlated heterogeneity 
This section analyses the effects on a MNL estimate of unobserved heterogeneity in the marginal 
utilities when there is correlation between the marginal utilities. For this we use the same basic 
set up as in Section 3 and the utility functions in (3a-c). The random elements of the parameters 
are again determined by Table 1. The means of the marginal utilities are the same as before. 
However, now we only use symmetric distributions for the marginal utilities, with the design 
spreads equal to the mean. The difference with Section 3 is that now the heterogeneous marginal 
utilities of X1iq and X2iq are related. In particular they are given by (4) and (5). 
 

1 1 1 1*q qa Spread T               (4) 

      2 2 2 2 2

1 1

* 1 * *
*mean 1/

q q

q q

a a Spread T
 

 

 
    
 
 

    (5) 

 
The a2 is the design mean of the marginal utility of X2iq (i.e. β2q) and spread2q gives the spread 

of the random element of this marginal utility. The strength of the relationship between β2q and 
β1q is given by ρ, which is between zero and one. The Tkq is a random variable with a triangular 
distribution, with -1≤Tkq≤1 and a zero mean1. Formula (5) shows that the larger ρ, the stronger 
the negative correlation between the marginal utility of X1iq and X2iq.  

 
4.3 Results with an decreasing relation between the simulated marginal utilities 
To facilitate interpretation, X1iq is again seen as the price. To analyse the effect of the correlated 
heterogeneous marginal utilities, we compare the estimated WTP’s from MNL with the design 
WTP’s. The design levels of the WTP’s are found by dividing the dataset mean of βiq by the 
mean β1q. Table 5 shows the results of the 4000 datasets per level of ρ. There are eight different 
values for ρ, hence there are eight versions. Thus, we performed 32000 dataset simulation and 
MNL estimates for Table 5. In each dataset there are 500 individuals. Figure 5 shows the relative 
values of the estimated WTP’s for X2iq to the design values of the WTP. The dashed lines in the 
figure give the area in which 90% of the estimations lie. Figure 6 does this for the WTP of X32q. 

Table 5 also gives the average correlation between β1q and β2q per value of ρ. Even for ρ=1 the 
linear correlation coefficient is not −1, as β2q is related to the inverse of β1q. The strongest 
correlation we simulate is −0.6. Revelt and Train (1998) find correlations between the 
heterogeneous marginal utilities as large as +0.59 and −0.68. Train (2007) finds correlations 
etween 0.1 and 0.94, with three correlation coefficients being larger than 0.9.  This indicates that 
the strength of the correlation patterns we simulate can occur in the empirical real world.  

The negative effect on the accuracy of MNL estimates of the correlated heterogeneous 
marginal utilities is not limited to the non-linear (inverse) relation. When we reran the simulation 

                                                 
1 The Spread2 (i.e. the spread of the random triangular of β2q) is different for each level of ρ. This to compensate for the effect of 
the correlation with β1q on the total spread of β2q and to keep the total spread the same for each version. 
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using a linear decreasing relationship between β1q and β2q, we found that this could also bias the 
WTP’s from MNL. 

 
Table 5: MNL estimations when the heterogeneous marginal utilities are negatively correlated 

 
Figure 5: Relative sizes estimated WTP’s for X2iq to their design values for different strengths of 
the decreasing relation between the heterogeneous marginal utilities 

0.7

0.8

0.9

1

1.1

0 0.2 0.333 0.4 0.5 0.666 0.8 1

R
el

at
iv

e 
si

ze

WTP  X2i  
(β2/ β1)

90% level of 
β2/ β1

10% level of 
β2/ β1

estimated=
design

 
 

The estimated WTP’s for the third attribute X32q in Figure 6 and Table 5 seem to be somewhat 
above the design levels. However, for this WTP there is no clear pattern in the effect of the 
correlation between the two marginal utilities. Furthermore, the unity line, at which estimated 
divided by the design is one, is well inside the 90% interval. Hence, we cannot conclude that this 
WTP is affected by the correlation between the heterogeneous marginal utilities. The fixed 
marginal utility of X32q is of course uncorrelated with the marginal utility of price. Again, the 
90% interval for the WTP’s of X32q is larger than the 90% interval for the WTP’s of X2iq. This 
seems to be caused by the larger variance in the estimates of the coefficient of X32q. 

The stronger the relationship between the two random marginal utilities, the larger the 
difference between the design values and the MNL estimates of the WTP’s of X2iq seems to be 
and the larger estimated WTP.  Figure 5 shows that if the relationship between the two 
heterogeneous marginal utilities is not that strong (say ρ<0.4) then the MNL estimates are not 
that strongly affected. Conversely, for larger values of ρ there is a clear underestimation.  

However, the relationship between the two marginal utilities has to be rather strong (ρ≥ 0.8) 
for the entire 90% interval of relative values of estimated WTP’s to be below the 

 1 2 3 4 5 6 7 8 

Design variables         
Strength of relation between β1q and β2q  (ρ) 0 0.2 0.333 0.4 0.5 0.666 0.8 1 
Resulting correlation between  β1q and β2q   −0.00 −0.32 −0.46 −0.51 −0.55 −0.57 −0.57 −0.60

WTP  variable (X2iq)  (β2/ β1)     

Estimated 0.168 0.168 0.164 0.165 0.160 0.155 0.151 0.143

Design value 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167

Relative value 1.007 1.008 0.983 0.991 0.959 0.930 0.903 0.860

WTP variable X32q (β3/ β1)       

Estimated 0.152 0.143 0.143 0.142 0.137 0.137 0.139 0.150

Design value 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133

Relative value 1.138 1.070 1.070 1.068 1.029 1.031 1.045 1.126
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“estimated=design” line (i.e. where the relative value is 1). This indicates that correlated 
heterogeneous marginal utilities can bias WTP’s estimated with MNL, where the problem is most 
likely to occur if the relationship between the two marginal utilities is strong. 
 
Figure 6: Relative sizes estimated WTP’s for X32q to their design values for different strengths of 
the decreasing relation between the heterogeneous marginal utilities 
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4.4 Results with an increasing relation between the simulated marginal utilities 
Table 5 shows that if the marginal utility of X2iq is, following formula (5), a decreasing function 
of the marginal utility of X1iq, a MNL can result in an underestimation of the WTP of X2iq (i.e. 
β2/β1). Conversely, if β2q is an increasing function of β1q, following (6), this can result in an 
overestimation by a MNL of this WTP.  
 

      2 2 2 2 2

1 1

1
* * 2 1 * *

*mean 1/
q q

q q

a a Spread T  
 

  
      
  

  

   (6) 

 
Table 6: MNL estimations when the heterogeneous marginal utilities are positively correlated 

 
The results of this simulation, with 4000 different created datasets per level of ρ, are shown in 

Table 6 and Figure 7. A stronger (increasing) effect of β1q on β2q raises the estimated WTP of 
X2iq, even though the design value of the WTP is always the same. Unlike the previous 

 1 2 3 4 5 6 7 8 

         
Strength of the relationship between β1q 
and β2q  (ρ) 0 0.2 0.333 0.4 0.5 0.666 0.8 1 
Resulting correlation between  β1q and β2q   −0.00 0.32 0.47 0.51 0.54 0.59 0.59 0.60 

WTP variable X2iq  (β2/ β1)     

Estimated 0.169 0.170 0.172 0.172 0.176 0.181 0.186 0.191 

Design value 0.167 0.167 0.167 0.167 0.167 0.167 0.166 0.167 

Relative value 1.012 1.017 1.033 1.034 1.058 1.089 1.116 1.147 

WTP variable X32q (β3/ β1)       
Estimated 0.152 0.157 0.158 0.153 0.161 0.156 0.161 0.158 

Design value 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 

Relative value 1.139 1.178 1.184 1.148 1.211 1.167 1.208 1.186 
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Subsection 4.2, the 90% interval of the estimated values is now only above the design value line 
(i.e. one) for the strongest relationships between the marginal utilities (ρ=1). Thus, the correlation 
now has to be rather strong for the estimated WTP to substantially differ from its design value.   

A solution to the problem caused by correlated marginal utilities might be to estimate a mixed 
logit that allows the marginal utilities to be correlated (i.e. with free-covariance). For future 
research it would be interesting to study how mixed logit without free covariance performs when 
the heterogeneous marginal utilities are correlated.  
 
Figure 7: Relative sizes estimated WTP’s for X2i to their design values for different strengths of 
the increasing relation between the heterogeneous marginal utilities 
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4.5 Conclusions on the effect of correlated marginal utilities 
This section found that if two heterogeneous marginal utilities are correlated with each other, this 
can bias the WTP’s from MNL estimations. The absolute value of this bias seems to increase 
with the strength of the correlation. If the heterogeneous marginal utility of the attribute to be 
valued (e.g. travel time) is an increasing function of the marginal utility of the monetary variable, 
this seems to cause a positive bias in the WTP from MNL. Conversely, if there is a decreasing 
relationship between the two heterogeneous marginal utilities, this can result in a negative bias in 
the WTP. This is for both linear and non-linear relationships between the marginal utilities. The 
strengths of the correlations between the marginal utilities we simulated, with maximum 
correlation coefficients of ±0.60, have also been observed in empirical studies using free-
covariance mixed logit.  

 

5 Conclusion  
This paper studied three situations in which using MNL models might result in biased 
Willingness-To-Pay (WTP) estimates. First, random heterogeneity in the parameters. Second, 
non-symmetric heterogeneity. Third, correlation between the heterogeneous marginal utilities.  

To study the effect of heterogeneous marginal utilities on the WTP estimates from MNL, we 
compare the MNL estimates of the WTP’s with the design WTP’s of a large number of simulated 
datasets. We find that if two heterogeneous marginal utilities are related, this can result in biased 
WTP estimates by MNL. In contrast, uncorrelated heterogeneity in the marginal utilities seems to 
have no detrimental effect on the MNL estimations. This is the case for both symmetric and non-
symmetric heterogeneity. We find that the stronger the relationship between two heterogeneous 
marginal utilities is, the larger the bias in the WTP from MNL. This is the case for both linear 
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and non-linear relations between the marginal utilities. If the relationship between the two 
marginal utilities is increasing (i.e. if the two marginal utilities are positively correlated), the 
resulting bias is positive. If the relation is decreasing, the bias is negative.  

This could explain the different results reported in the empirical literature as to whether MNL 
estimates give different WTP estimates to mixed logit. Our results suggest that if the MNL 
estimates are biased, the sign and size of this bias could be determined by the correlation pattern 
of the heterogeneous marginal utilities in the population. Thus, if the correlation pattern is 
different, one will find a different bias. If there is no correlation between the heterogeneous 
marginal utilities the MNL estimates of the WTP’s might be unbiased. An interesting extension 
of this paper is testing if using a no-covariance or free-covariance mixed logit eliminates the bias 
caused by correlated marginal utilities. 
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