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Abstract

Three well-known solutions for cooperative TU-games are the Shapley value, the Banzhaf

value and the equal division solution. In the literature various axiomatizations of these

solutions can be found. Axiomatizations of the Shapley value often use efficiency which

is not satisfied by the Banzhaf value. On the other hand, the Banzhaf value satisfies

collusion neutrality which is not satisfied by the Shapley value. Both properties seem

desirable. However, neither the Shapley value nor the Banzhaf value satisfy both. The

equal division solution does satisfy both axioms and, moreover, together with symmetry

these axioms characterize the equal division solution. Further, we show that there is no

solution that satisfies efficiency, collusion neutrality and the null player property. Finally,

we show that a solution satisfies efficiency, collusion neutrality and linearity if and only if

there exist exogenous weights for the players such that in any game the worth of the ‘grand

coalition’ is distributed proportional to these weights.

Keywords: Efficiency, Collusion neutrality, Shapley value, Banzhaf value, Equal division

solution, Impossibility.

JEL code: C71



1 Introduction

A situation in which a finite set N = {1, . . . , n} of n players can generate certain payoffs by

cooperation can be described by a cooperative game with transferable utility (or simply a

TU-game), being a pair (N, v) where v: 2N → IR is a characteristic function on N satisfying

v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition S, i.e. the members of

coalition S can obtain a total payoff of v(S) by agreeing to cooperate.

A payoff vector x ∈ IRN of an n-player TU-game (N, v) is an n-dimensional vector

giving a payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for TU-games

is a function that assigns a payoff vector to every TU-game (N, v). Three well-known

solutions for TU-games are the Shapley value, the Banzhaf value and the equal division

solution. In the literature various axiomatizations of these solutions can be found. Most

axiomatic characterizations of the Shapley value use efficiency. For example, the original

characterization of the Shapley value characterizes it by efficiency, linearity, symmetry and

the null player property, see Shapley (1953). Various characterizations of the Banzhaf

value use some collusion neutrality axiom, see for example, Lehrer (1988), Haller (1994)

and Malawski (2002) who characterize the Banzhaf value by linearity, symmetry, the null

player property, the inessential game property and some collusion neutrality property.

Collusion neutrality properties state that the sum of payoffs of two players does not change

if these two players in some way ‘collude’ and act as one player. Both efficiency and

collusion neutrality seem to be desirable properties. Clearly, by the above mentioned

characterizations of the Shapley value and Banzhaf value, there does not exist a solution

satisfying efficiency, collusion neutrality, linearity, symmetry and the null player property.

A solution that does satisfy both efficiency and collusion neutrality is the equal division

solution. In fact, we show that together with symmetry these axioms characterize the

equal division solution if there are at least three players. Since the equal division solution

does not satisfy the null player property, the next question is whether there is a solution

that satisfies efficiency, collusion neutrality and the null player property. It turns out that

such a solution does not exist for games with at least three players. Finally, we show

that a solution satisfies efficiency, collusion neutrality and linearity if and only if there

exist exogenous weights for the players such that in any game the worth of the ‘grand

coalition’ is distributed proportional to these weights. Note that this implies that together

with symmetry these axioms characterize the equal division solution but, as argued above,

these axioms are not logically independent because we do not need linearity.

The paper is organized as follows. In Section 2 we discuss some preliminaries on TU-games.

In Section 3 we show that there is a unique solution satisfying efficiency, collusion neutrality

and symmetry, which is the equal division solution. In Section 4 we show that there is no
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solution satisfying efficiency, collusion neutrality and the null player property. In Section

5 we characterize a class of proportional solutions by efficiency, collusion neutrality and

linearity. Finally, in Section 6 we make some concluding remarks.

2 Preliminaries

In this paper we take the set of players N = {1, . . . , n} to be fixed, and therefore denote a

TU-game (N, v) just by its characteristic function v. We assume that the game has at least

three players2. The collection of all characteristic functions (which we will thus refer to as

games) on N is denoted by GN . The increase in worth when player i ∈ N joins coalition

S ⊆ N \ {i} is called the marginal contribution of player i to coalition S in game v ∈ GN

and is denoted by

mS
i (v) = v(S ∪ {i})− v(S).

Assuming that the ‘grand coalition’ N forms in a way such that the players enter the coali-

tion one by one, the Shapley value assigns to every player its expected marginal contribution

to the coalition of players that enter before him given that all orders of entrance have equal

probability. Thus, the Shapley value (Shapley (1953)) is the solution Sh:GN → IRN given

by

Shi(v) =
∑

S⊆N\{i}

(n− |S| − 1)!(|S|)!

n!
mS
i (v) for all i ∈ N.

On the other hand, the Banzhaf value (introduced by Banzhaf (1965) to measure voting

power in voting games and generalized by Owen (1975) and Dubey and Shapley (1979)

to general TU-games) is the solution Ba:GN → IRN that assigns to every player its ex-

pected marginal contribution given that every combination of the other players has equal

probability of being the coalition that is already present when that player enters. Thus, it

assigns to every player in a game its average marginal contribution, i.e.

Bai(v) =
1

2n−1

∑

S⊆N\{i}

mS
i (v) for all i ∈ N.

Players i, j ∈ N are symmetric in game v if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.

Player i ∈ N is a null player in game v if v(S ∪ {i}) = v(S) for all S ⊆ N \ {i}. For

v,w ∈ GN , the game (v + w) ∈ GN is defined by (v + w)(S) = v(S) + w(S) for all S ⊆ N .

For v ∈ GN and α ∈ IR, the game αv ∈ GN is defined by (αv)(S) = αv(S) for all S ⊆ N .

Haller (1994) introduces some collusion neutrality properties which state that the sum

2We make some remarks on two-player games in the final section.
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of payoffs of two players does not change if they ‘collude’. He used these properties to

axiomatize the Banzhaf value. Later, Malawski (2002) showed that several other collusion

neutrality properties can be used. In this paper we consider collusion between two players

where they agree to ‘act as one’ in the sense that they contribute to a coalition only when

they both are present. So, when players i, j ∈ N , i = j, collude in game v ∈ GN , then

instead of game v we consider the game vij ∈ GN given by

vij(S) =

{
v(S \ {i, j}) if {i, j} ⊆ S

v(S) if {i, j} ⊆ S.
(2.1)

Finally, a game v is called inessential if v(S) =
∑

i∈S v({i}) for all S ⊆ N , i.e. for every

player its marginal contribution to any coalition is the same. Various axiomatizations of the

Shapley value and the Banzhaf value have been given in the literature. Some axioms that

are used in these axiomatic characterizations are the following. A solution f :GN → IRN

satisfies

• efficiency if
∑

i∈N fi(v) = v(N) for all v ∈ G
N ;

• linearity if f(αv + βw) = αf(v) + βf(w) for all v, w ∈ GN and α, β ∈ IR;

• symmetry if fi(v) = fj(v) whenever i and j are symmetric players in v ∈ GN ;

• the null player property if fi(v) = 0 whenever i is a null player in v ∈ GN ;

• the inessential game property if fi(v) = v({i}) for all i ∈ N and inessential games v;

• collusion neutrality if fi(vij) + fj(vij) = fi(v) + fj(v) for all i, j ∈ N and v ∈ GN ,

with vij given by (2.1).

Most axiomatic characterizations of the Shapley value use efficiency. For example, the

original characterization in Shapley (1953) characterizes it by efficiency, linearity, symmetry

and the null player property3. The Banzhaf value satisfies linearity, symmetry and the null

player property, but it is not efficient. Malawski (2002) characterized the Banzhaf value by

linearity, symmetry, the null player property, the inessential game property and collusion

neutrality4.

3This axiomatization is more often presented in this way although Shapley (1953) combines efficiency

and the null player property into a carrier axiom.
4As mentioned, other collusion neutrality properties that are used to axiomatize the Banzhaf value are

stated in Haller (1994). The results in this paper also can be stated in terms of those neutrality properties.

An axiomatization of the Banzhaf value with collusion properties in terms of inequalities can be found in

Lehrer (1988).
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In van den Brink (2007) it is shown that in several axiomatizations of the Shapley value,

replacing an axiom about null players (such as the null player property) by a similar axiom

about nullifying players (being players whose presence in a coalition implies that the worth

of the coalition is zero) yields axiomatic characterizations of the equal division solution

ED:GN → IRN which is given by

EDi(v) =
v(N)

n
for all i ∈ N.

In this paper we find another axiomatization of the equal division solution by combining

axioms that characterize the Shapley value and the Banzhaf value. The proof of this

axiomatization uses the unanimity basis for TU-games. The unanimity game of coalition

T ⊆ N , T = ∅, is the game uT ∈ GN given by uT (S) = 1 if T ⊆ S, and uT (S) = 0

otherwise. It is well-known that the set of unanimity games form a basis of GN : every game

v ∈ GN can be written as a linear combination of unanimity games v =
∑

T⊆N

T �=∅
∆v(T )uT

with ∆v(T ) =
∑

S⊆T (−1)
|T |−|S|v(S) being the Harsanyi dividends, see Harsanyi (1959).

3 Dropping the null player property: an axiomatiza-

tion of the equal division solution

Both efficiency and collusion neutrality seem to be desirable properties. Clearly, by axiom-

atizations of the Shapley value and the Banzhaf value mentioned before, there does not

exist a solution satisfying efficiency, collusion neutrality, linearity, symmetry and the null

player property. It turns out that for games with at least three players, dropping the null

player property yields a characterization of the equal division solution. We can even state

a stronger characterization result without linearity.

Theorem 1 A solution f :GN → IRN satisfies efficiency, collusion neutrality and symme-

try if and only if it is the equal division solution.

Proof

It is easy to verify that the equal division solution satisfies the three properties. To show

uniqueness, we proceed by induction on the smallest cardinality of the coalitions with non-

zero dividend in a game. Before starting to show uniqueness, we introduce the following

notation. For any game v ∈ GN , define H(v) = {T ⊆ N | ∆v(T ) = 0} as the set

of coalitions with non-zero dividend, d(v) = minT∈H(v) |T | as the smallest cardinality of

coalitions with non-zero dividend, and h(v) = |{T ∈ H(v) | d(v) = |T |}| as the number of

coalitions of smallest cardinality with non-zero dividend.
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Next we start the proof of uniqueness. Consider game v ∈ GN . First, if d(v) = |N | then

v is a scaled unanimity game of the ‘grand coalition’, i.e. v = ∆v(N)uN with ∆v(N) = 0.

(Note that in this case ∆v(N) = v(N).) Symmetry implies that all players earn the same

payoff. Efficiency then determines that fi(v) =
∆v(N)
n

= v(N)
n
= EDi(v) for all i ∈ N .

Proceeding by induction, assume that f(v′) is uniquely determined for all v′ ∈ GN with

d(v′) > d(v).

In order to use collusion neutrality, we use the following result from Malawski (2002)

concerning collusion between two players in unanimity games. For every coalition R ⊆ N

and two players i, j ∈ N , i = j, it holds that

(uR)ij =

{
uR if either [i, j ∈ R] or [i, j ∈ N \R]

uR∪{i,j} otherwise.
(3.2)

We now start induction on h(v). First, assume that h(v) = 1. Then there is a unique

T ∈ H(v) with |T | = d(v), i.e. T is the (unique) smallest cardinality coalition with

non-zero dividend. Take a specific j ∈ T and h ∈ N \ T . Collusion neutrality implies that

fi(v) + fj(v) = fi(vij) + fj(vij) for all i ∈ N \ T, (3.3)

and

fh(v) + fg(v) = fh(vhg) + fg(vhg) for all g ∈ T \ {j}, (3.4)

while efficiency requires that

∑

i∈N

fi(v) = v(N). (3.5)

By (3.2) it follows that

(i) (uT )ij = uT∪{i} for all i ∈ N \ T ,

(ii) (uR)ij is either equal to uR or uR∪{i,j} for every R ⊆ N and i ∈ N \ T ,

(iii) (uT )hg = uT∪{h} for all g ∈ T \ {j}, and

(iv) (uR)hg is either equal to uR or uR∪{h,g} for every R ⊆ N and g ∈ T \ {j}.

Therefore, d(vij) > d(v) for all i ∈ N \ T , and d(vhg) > d(v) for all g ∈ T \ {j}, and thus

by the induction hypothesis, the equations (3.3) and (3.4) become

fi(v) + fj(v) = EDi(vij) + EDj(vij) =
2vij(N)

n
=
2v(N)

n
for all i ∈ N \ T, (3.6)
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and

fh(v) + fg(v) = EDh(vhg) + EDg(vhg) =
2vhg(N)

n
=
2v(N)

n
for all g ∈ T \ {j}. (3.7)

Since the 1 + (n − |T |) + (|T | − 1) = n equations given by (3.5), (3.6) and (3.7) are

linearly independent5, the values fi(v), i ∈ N , are uniquely determined and given by

fi(v) =
v(N)
n
= EDi(v).

Next, proceeding by induction on h(v), assume that the result holds for every v′ ∈ GN

with d(v′) ≥ d(v) and h(v′) < h(v). Similar as above, take a T ∈ H(v) with |T | = d(v).

(Note that now there are h(v) > 1 of such coalitions.) Collusion neutrality, the induction

hypothesis and efficiency yield the same equations (3.5), (3.6) and (3.7), and it can be

similarly shown that f(v) is uniquely determined by f(v) = ED(v) whenever H(v) = ∅.

Finally, we have to consider game v ∈ GN with H(v) = ∅. Then, v is the null game, i.e.

v(S) = 0 for all S ⊆ N . Symmetry implies that all players earn the same payoff. With

efficiency it then follows that fi(v) = 0 = EDi(v) for all i ∈ N . �

Logical independence of the axioms of Theorem 1 is shown by the following solutions.

1. The Shapley value satisfies efficiency and symmetry. It does not satisfy collusion

neutrality.

2. The Banzhaf value satisfies collusion neutrality and symmetry. It does not satisfy

efficiency.

3. The solution f :GN → IRN that assigns all payoff to player 1, i.e. f 1(v) = v(N) and

f i(v) = 0 for all i ∈ N \ {1}, satisfies efficiency and collusion neutrality. It does not

satisfy symmetry.

4 Dropping symmetry: an impossibility

In the previous section we saw that dropping the null player property from our set of

desirable properties yields an axiomatization of the equal division solution. The next

question is what happens if we drop symmetry instead of the null player property. It turns

out that there is no solution satisfying efficiency, collusion neutrality and the null player

property. Note that for this impossibility result we do not need linearity.

Theorem 2 There is no solution on GN satisfying efficiency, collusion neutrality and the

null player property.

5This follows from some easy but tedious computations.
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Proof

By contradiction, suppose that solution f :GN → IRN satisfies efficiency, collusion neutrality

and the null player property.

Consider unanimity games uT , ∅ = T ⊆ N . The null player property implies that

fk(uT ) = 0 for all k ∈ N \ T, (4.8)

and with efficiency it then follows that

∑

k∈T

fk(uT ) = 1. (4.9)

Thus, if |T | = 1, i.e. T = {i} for some i ∈ N , then the null player property and efficiency

determine the payoffs fj(uT ) = 0 for j ∈ N \ {i} and fi(uT ) = 1.

If |T | = 2, i.e. T = {i, j} for some i, j ∈ N with i = j, then the null player property and

efficieny imply that fh(uT ) = 0 for h ∈ N \ {i, j}, and fi(uT ) + fj(uT ) = 1. (Note that the

same is implied by collusion neutrality and the case |T | = 1 considered above.)

Next consider the case |T | = 3, i.e. T = {i, j, h} with i, j and h being three different

players. (Recall that we only consider classes of games with at least three players.) By

(4.9) we have that fi(uT ) + fj(uT ) + fh(uT ) = 1. In order to apply collusion neutrality,

notice that
(
u{i,j}

)
hi
=
(
u{i,j}

)
hj
=
(
u{i,h}

)
ji
=
(
u{i,h}

)
jh
=
(
u{j,h}

)
ij
=
(
u{j,h}

)
ih
= uT .

Then, collusion neutrality implies that

fi(uT ) + fj(uT ) = fi(u{i,h}) + fj(u{i,h}) = fi(u{j,h}) + fj(u{j,h}) (4.10)

fi(uT ) + fh(uT ) = fi(u{i,j}) + fh(u{i,j}) = fi(u{j,h}) + fh(u{j,h}) (4.11)

and

fj(uT ) + fh(uT ) = fj(u{i,j}) + fh(u{i,j}) = fj(u{i,h}) + fh(u{i,h}). (4.12)

By (4.8) we have that this system of equations can be reduced to

fi(uT ) + fj(uT ) = fi(u{i,h}) = fj(u{j,h}) (4.13)

fi(uT ) + fh(uT ) = fi(u{i,j}) = fh(u{j,h}) (4.14)

and

fj(uT ) + fh(uT ) = fj(u{i,j}) = fh(u{i,h}). (4.15)

It follows that fi(uT ) + fj(uT ) = fi(u{i,h}) = 1 − fh(u{i,h}) = 1 − fj(uT ) − fh(uT ), where

the first equality follows from (4.13), the second equality follows from (4.9) and the third

equality follows from (4.15). By (4.9) we then have that fj(uT ) = 0.
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Similar we can derive from the other equations that fi(uT ) = fh(uT ) = 0, which contradicts

efficiency. So, there does not exist a solution satisfying efficiency, collusion neutrality and

the null player property6. �

5 Dropping the null player property and symmetry: a

characterization of a class of proportional solutions

From the original axiomatization of the Shapley value given by Shapley (1953) combined

with collusion neutrality, we might still consider what solutions are left if we drop both the

null player property and symmetry. It turns out that in that case we are left with a class of

proportional solutions for which there exist exogenous weights for the players such that in

any game the worth of the ‘grand coalition’ is distributed proportional to these weights7.

Define XN := {λ ∈ IRN |
∑

i∈N λi = 1}. For λ ∈ X
N we define

fλi (v) = λiv(N) for all i ∈ N. (5.16)

Theorem 3 A solution f :GN → IRN satisfies efficiency, collusion neutrality and linearity

if and only if there exists a vector of weights λ ∈ XN such that f = fλ.

Proof

It is easy to verify that fλ, λ ∈ XN , satisfies the three properties. To show uniqueness,

assume that solution f :GN → IRN satisfies the three properties. We first prove uniqueness

for unanimity games uT , ∅ = T ⊆ N . We do this by induction on |T |. If |T | = n, i.e.

T = N , then efficiency implies that there exists a vector λ ∈ XN such that f(uN) = λ =

fλ(uN ).

Proceeding by induction, suppose that f(uT ′) = λ for all T
′ ⊆ N with |T ′| > |T |. Take a

specific j ∈ T and h ∈ N \ T . Since (uT )ij = uT∪{i} when i ∈ N \ T , collusion neutrality

implies that

fi(uT ) + fj(uT ) = fi(uT∪{i}) + fj(uT∪{i}) for all i ∈ N \ T (5.17)

and since (uT )hg = uT∪{h} when g ∈ T \ {j}, collusion neutrality also implies that

fh(uT ) + fg(uT ) = fh(uT∪{h}) + fg(uT∪{h}) for all g ∈ T \ {j}. (5.18)

6One also obtains the impossibility by showing directly that the system of six equations (4.10), (4.11)

and (4.12) together with the four efficiency equalities fi(uT ) + fj(uT ) + fh(uT ) = fi(u{i,j}) + fj(u{i,j}) =

fi(u{i,h}) + fh(u{i,h}) = fj(u{j,h}) + fh(u{j,h}) = 1 has no solution.
7Although we use linearity, this theorem also can be stated by using the weaker additivity axiom.
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With the induction hypothesis the above two equations yield

fi(uT ) + fj(uT ) = λi + λj for all i ∈ N \ T (5.19)

and

fh(uT ) + fg(uT ) = λh + λg for all g ∈ T \ {j}. (5.20)

Then

∑

i∈N

fi(uT ) =
∑

g∈T\{j}

fg(uT ) + fj(uT ) +
∑

i∈N\(T∪{h})

fi(uT ) + fh(uT )

=
∑

g∈T\{j}

(λh + λg − fh(uT )) + fj(uT ) +
∑

i∈N\(T∪{h})

(λi + λj − fj(uT )) + fh(uT )

=
∑

g∈T\{j}

λg + (|T | − 1)(λh − fh(uT )) + fj(uT )

+
∑

i∈N\(T∪{h})

λi + (n− |T | − 1)(λj − fj(uT )) + fh(uT )

=
∑

i∈N

λi + (|T | − 2)(λh − fh(uT )) + (n− |T | − 2)(λj − fj(uT )),

where the second equality follows from (5.19) and (5.20). With efficiency it follows that∑
i∈N fi(uT ) = 1 =

∑
i∈N λi, and thus

(|T | − 2)(λh − fh(uT )) + (n− |T | − 2)(λj − fj(uT )) = 0. (5.21)

For j ∈ T and h ∈ N \ T , (5.19) yields that

fj(uT ) + fh(uT ) = λj + λh. (5.22)

Solving (5.21) and (5.22) yields fj(uT ) = λj, fh(uT ) = λh, and with (5.19) and (5.20) this

yields that fi(uT ) = λi for all i ∈ N .

Since every game v ∈ GN can be written as a linear combination of unanimity games

v =
∑

T⊆N

T �=∅
∆v(T )uT , with ∆v(T ) =

∑
S⊆T (−1)

|T |−|S|v(S) being the Harsanyi dividends,

uniqueness for arbitrary v ∈ GN then follows since linearity of f implies that fi(v) =

fi(
∑

T⊆N

T �=∅
∆v(T )uT ) =

∑
T⊆N

T �=∅
∆v(T )fi(uT ) =

∑
T⊆N

T �=∅
λi∆v(T ) = λi

∑
T⊆N

T �=∅
∆v(T ) = λiv(N)

for all i ∈ N . �

Note that as a corollary it follows that adding symmetry to the axioms of Theorem 3 yields

that all weights λi should be equal, and thus characterizes the equal division solution.
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However, these axioms are not logically independent. In Section 3 we showed that for this

characterization linearity is not necessary since it is sufficient to require efficiency, collusion

neutrality and symmetry.

Also note the difference between the solutions characterized in this section for TU-

games and the (unique) proportional solution for bankruptcy problems. In that solution

the total estate is distributed proportionally to the claims of the agents, while in the pro-

portional solutions defined by (5.16) for TU-games, the weights that are used are exogenous

and need not be related to the game.

Logical independence of the axioms of Theorem 3 is shown by the following solu-

tions.

1. The Shapley value satisfies efficiency and linearity. It does not satisfy collusion

neutrality.

2. The Banzhaf value satisfies collusion neutrality and linearity. It does not satisfy

efficiency.

3. The solution f̂ :GN → IRN given by f̂(v) = f(v) if v(N) ≤ 10 and f̂(v) = ED(v) if

v(N) > 10, with f as given at the end of Section 3, satisfies efficiency and collusion

neutrality. It does not satisfy linearity.

A final question we consider is what solutions satisfy efficiency and collusion neutrality. The

answer is that these are kind of proportional solutions, but the weights λ that determine

what share in the worth of the grand coalition the players get depends on the worth of the

grand coalition.

Theorem 4 A solution f satisfies efficiency and collusion neutrality if and only if there

is a function L: IR→ XN such that f = fL(v(N)).

So, in two games v, w ∈ GN with v(N) = w(N) the payoff distributions are the same. The

proof of this theorem goes along similar lines as the proof of Theorem 1 and is therefore

omitted.

6 Concluding remarks

In this paper we have studied the possibilities of having solutions for TU-games that

satisfy efficiency and collusion neutrality. We have seen that for games with at least

three players, additionally requiring the symmetry property characterizes the equal division

solution. So, the equal division solution is the unique symmetric solution that satisfies

these two properties (that distinguish the Shapley value and Banzhaf value from each
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other). Additionally requiring the null player property instead of symmetry yields an

impossibility. In both results linearity of the solution is not necessary. Other relations

between the Shapley value and equal division solution are given in van den Brink (2007).

Finally, we showed that a solution satisfies efficiency, collusion neutrality and linearity if

and only if there exist exogenous weights for the players such that in any game the worth

of the ‘grand coalition’ is distributed proportional to these weights. We summarize these

results in Table 1.

Properties/Solutions Sh Ba ED fλ, λ ∈ XN Impossibility

Efficiency x x x x

Collusion neutrality x x x x

Symmetry x x x

Null player property x x x

Linearity x x x

Table 1: Characterizing properties of solutions

We remark that collusion neutrality can be replaced by other (but similar) axioms

that reflect collusion between two players going to ‘act’ as one, see also Footnote 4.

Note that the multiplicative normalization of the Banzhaf value (i.e. dividing the

worth of the ‘grand coalition’ proportional to the Banzhaf values of the players) as axiom-

atized in van den Brink and van der Laan (1998) does not satisfy collusion neutrality nor

linearity, while the additive normalization of the Banzhaf value (i.e. adding or subtract-

ing from the Banzhaf value of every player the same amount to obtain an efficient payoff

vector) as considered in Ruiz, Valenciano and Zarzuelo (1998) does not satisfy collusion

neutrality nor the null player property.

In the proofs of Theorems 1 and 2 we needed the player set to contain at least

three players. For two-player games there are more solutions satisfying efficiency, collusion

neutrality and symmetry (and linearity). An example is the Shapley value which on the

class of one- and two-player games is equal to the Banzhaf value. Moreover, for two player

games there exist solutions satisfying efficiency, collusion neutrality and the null player

property (and linearity), which is again illustrated by the Shapley value.

References

Banzhaf, J.F. (1965), “Weighted Voting Doesn’t Work: A Mathematical Analysis”, Rut-

gers Law Review , 19, 317-343.

11



Brink, R. van den (2007), “Null players or nullifying players: the difference between

the Shapley value and equal division solutions”, Journal of Economic Theory , 136,

767-775.

Brink, R. van den, and G. van der Laan (1998) “Axiomatizations of the Normal-

ized Banzhaf Value and the Shapley Value”, Social Choice and Welfare, 15, 567-582.

Dubey, P., and LS. Shapley (1979), “Mathematical Properties of the Banzhaf Power

Index”, Mathematics of Operations Research, 4, 99-131.

Haller, H. (1994), “Collusion Properties of Values”, International Journal of Game The-

ory , 23, 261-281.

Harsanyi, J.C. (1959), “A Bargaining Model for Cooperative n-Person Games,” in Con-

tributions to the Theory of Games IV (A.W. Tucker and R.D. Luce, Eds.), pp. 325-

355. Princeton: Princeton UP.

Lehrer, E. (1988), “An Axiomatization of the Banzhaf Value”, International Journal of

Game Theory , 17, 89-99.

Malawaski, M. (2002), “Equal Treatment, Symmetry and Banzhaf Value Axiomatiza-

tions”, International Journal of Game Theory , 31, 47-67.

Owen G. , (1975), “Multilinear Extensions and the Banzhaf Value”, Naval Research Lo-

gistics Quarterly , 22, 741-750.

Ruiz, L., F. Valenciano, and J.M. Zarzuelo (1998) “The family of least-square val-

ues for TU games”, Games and Economic Behavior 24, 109-30.

Shapley, L.S. (1953), “A Value for n-Person Games”, Annals of Mathematics Studies 28

(Contributions to the Theory of Games Vol.2) (eds. H.W. Kuhn and A.W. Tucker),

Princeton University Press, 307-317.

12


