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Abstract

We study di¤erent determinants of real-life R&D decisions within a net present value
framework. Besides entry threat, Bertrand competition and multi-stage R&D with an
abandonment option, our model includes demand uncertainty and technical uncertainty,
both modelled as a lottery. Each lottery becomes more divergent when the di¤erence
between the outcomes of the lottery increases. We derive under which lottery probabilities
more divergent demand and supply lotteries positively or negatively a¤ect the decision to
start R&D. Using CIS IV data for about 2400 German �rms, we �nd that for �rms facing
lotteries where the good state is more likely to prevail (i) a 10% increase in the degree
of divergence of the demand lottery increases the likelihood of undertaking R&D by 1.7
percentage points and (ii) a change from a low to a high degree of divergence of the supply
lottery increases the likelihood of undertaking R&D by 14.1 percentage points. For �rms
facing a demand lottery where the bad state is most likely to prevail, a 10% increase in the
degree of divergence of the demand lottery decreases the likelihood of undertaking R&D by
4.9 percentage points. Having the option to abandon R&D projects signi�cantly increases
the likelihood of undertaking R&D.
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1 Introduction

The decision to start a Research and Development (R&D) project is one of the most challeng-
ing �rm decision problems. R&D projects usually take time to complete, their investments are
irreversible and therefore represent sunk costs and they are highly uncertain. The factors that
in�uence the �rm�s decision to undertake R&D activities have attracted the attention of policy
makers, business leaders and researchers for a long time. From the theoretical and empirical
literature, we can classify these factors into (i) �rm characteristics, (ii) industry characteristics
and (iii) project characteristics. The �rst category includes �rm size (Cohen and Levin, 1989),
corporate variables such as product diversi�cation (Gabrowski, 1968), absorptive capacity (Co-
hen and Levinthal, 1989), appropriability (Cassiman and Veugelers, 2002) and technological
advantage (Segerstrom, 2007), and �nancial variables such as �nancial constraints (Fazzari and
Athey, 1987) and internal cash�ow (Jorgenson, 1963; Eiser and Nadiri, 1968). The second
category includes market structure which is determined by market power (Levin et al., 1985),
competition (Grenadier, 2000; Huisman et al., 2005) and entry pressure (Etro, 2006; Acemoglu,
2008; Aghion et al., 2009), and general industry conditions (Acs and Audretsch, 1987; Dorfman,
1987). The third category includes di¤erent types of options such as a timing option (Dixit and
Pindynck, 1994; Trigeorgis, 1996) and an abandonment option (Myers and Majd, 1990; Berger
et al., 1996), and di¤erent types of uncertainty such as input cost uncertainty (Pindynck, 1993),
technical uncertainty (Pindyck, 1993) and market uncertainty (Tyagi, 2006).

Technical uncertainty and market uncertainty are of particular interest for our analysis. Tech-
nical uncertainty implies that, although the input prices are known, the �rm does not know
at the beginning the amount of time, e¤ort and materials ultimately needed to complete the
project. Importantly, this type of cost uncertainty can only be solved by starting the R&D
project. Market uncertainty is related to the future value of the innovation which is strongly de-
termined by market demand. For example, if �rms have successfully developed the new product
or production technology, uncertainty still exists about market acceptance and hence innovation
rents.

Despite considerable empirical evidence on the impact of uncertainty on �rm-level investment
(Dorfman and Heien, 1989; Leahy and Whited, 1996; Bell and Campa, 1997; Guiso and Parigi,
1999; Henley et al., 2003; Bulan, 2005; Bloom et al., 2007), there is little empirical research
that investigates the role of di¤erent types of uncertainty on R&D decisions. In particular, the
existing empirical evidence only focuses on market uncertainty. In general, market uncertainty
reduces R&D investments. However, Czarnitzki and Toole (2009, 2010) show that the negative
e¤ect is mitigated when �rms receive R&D subsidies or patent their innovations.

In this paper, we develop a generalized version of the model of Lukach et al. (2007) that contains
many aspects of real-life R&D decisions within a net present value (NPV) framework. Besides
entry threat, Bertrand competition and multi-stage R&D with an abandonment option, our
model includes demand (market) uncertainty as well as supply (technical) uncertainty. We
deduct testable hypotheses on the basis of which we empirically analyze the non-traditional
factors driving the decision to start an R&D project. The uniqueness of our data lies in the
availability of proxies for demand and supply uncertainty, the abandonment option as well as
perceived entry threat.

We model an R&D project as a multi-stage game where the incumbent must decide at the �rst
stage to start and at the second stage to continue R&D. The decision to start is in�uenced
by on the one hand demand uncertainty, modelled as a lottery between a proportional increase
(=good state) and decrease (=bad state) in demand, and on the other hand technical uncertainty,
modelled as a lottery between a decrease (=good state) and increase (=bad state) in the cost to
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continue R&D. A lottery becomes more divergent when the di¤erence between the outcomes of
the lottery increases. We derive under which lottery probabilities more divergent demand and
supply lotteries positively or negatively a¤ect the decision to start R&D. For empirical testing,
we use data from the fourth Community Innovation Survey (CIS IV) in Germany for about 2400
�rms to explain the decision to start R&D. Our main results, strongly con�rming our model
predictions, are that for �rms facing lotteries where the good state is more likely to prevail (i)
a 10% increase in the degree of divergence of the demand lottery increases the likelihood of
undertaking R&D by 1.7 percentage points and (ii) a change from a low to a high degree of
divergence of the supply lottery (captured by a shift in the value of a dummy variable) increases
the likelihood of undertaking R&D by 14.1 percentage points. For �rms facing a demand lottery
where the bad state is most likely to prevail, a 10% increase in the degree of divergence of the
demand lottery decreases the likelihood of undertaking R&D by 4.9 percentage points. For a
subset of �rms that are more likely to face a bad demand state than a good demand state,
having the option to abandon R&D projects signi�cantly increases the likelihood of undertaking
R&D.

We believe that our article contributes to the current state of research on both the theoretical
and empirical side. From a theoretical point of view, we model uncertainty as a lottery rather
than a stochastic process (Dasgupta and Stiglitz, 1980; Weeds, 2002) to capture the uncertainty
resolving nature of multi-stage R&D. Lukach et al. (2007) only consider supply lotteries and
use the variance-based concept of a mean preserving spread to distinguish lotteries in terms
of uncertainty. Our analysis studies a broader class of both demand and supply lotteries. An
increase in the degree of divergence still symmetrically a¤ects the good/bad state but the prob-
ability that the good/bad state occurs can take any value between 0 and 1. As a result, our set
of lotteries cannot be ordered completely in terms of uncertainty. Instead, we order lotteries in
terms of lottery premia. A lottery premium equals the amount of money that the incumbent
is willing to pay (or has to receive) to undergo the lottery. The use of a lottery premium is
particularly suitable in a NPV framework since the lottery premium and the NPV of an R&D
project are calculated in a similar way. From an empirical point of view, we believe that ex-
ploiting �rm heterogeneity in demand and supply lotteries credibly provides empirical evidence
of the uncertainty-R&D investment relationship at the �rm level. This is motivated by the
observation that the determinants of real-life R&D decisions greatly vary across studies as soon
as the analysis is performed using more aggregated data (Ferderer, 1993; Darby et al., 1999
using country data; Caballero and Pindyck, 1996; Ghosal and Loungani, 1996; Huizinga, 1993
using industry data) or taking less �rm heterogeneity regarding uncertainty into account (see
references on �rm-level investment mentioned above).

The remaining part of the article is organized as follows. Section 2 provides a theoretical analysis
of the determinants of R&D decisions. The comparative statics of Section 3 allow us to derive
testable hypotheses on the relation between a change in the degree of divergence of demand
and supply lotteries and the decision to start R&D. Section 4 presents the empirical analysis.
Section 5 concludes.

2 A theoretical analysis of the determinants of R&D de-
cisions

2.1 The model

The incumbent is producing a homogeneous good at unit cost c 2 [0; P ], where P 2 [0; 1] denotes
the normalized output price. A potential entrant is endowed with a superior technology that,
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for simplicity, allows him to produce at zero unit cost. He faces an entry cost equal to ! 2 R++.
Upon entry, both �rms engage in Bertrand competition.

We model an R&D project as a multi-stage game where the incumbent must decide at the
�rst (second) stage to start (continue) R&D. This captures more realistically R&D outcomes
as a sequence of successive decisions rather than as a result of an irreversible one-shot decision.
Furthermore, by allowing the incumbent to abandon the R&D project in the second stage, we
are able to study the e¤ect of an abandonment option on optimal investment decisions. In our
model, two types of uncertainty, one on the demand side and one on the supply side, in�uence
the decision to start. The incumbent has a time lead over the potential entrant. When the
incumbent starts and continues R&D, he obtains the same superior technology as the potential
entrant before the latter can enter the market. Figure 1 illustrates the game tree.
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Figure 1 Game tree. At t=0, the incumbent decides whether to start R&D. Before t=1, nature (N)
reveals the good/bad state (G/B) on the demand and supply side (the true state on the supply side is of
no in�uence when the incumbent decides not to start R&D). At t=1, the incumbent decides whether to
continue R&D. At t=2, the potential entrant, fully informed about the incumbent�s decisions, decides
whether to enter. At t=3, �nal outcomes are realized.

At time zero, the incumbent has to decide whether to start R&D at a known cost I0 2 R++ but
under an unknown state of the world. There are four possible states of the world, depending on
the combination of a good/bad state on the demand and supply side. On the demand side, the
good/bad state manifests itself as a proportional increase or decrease in demand, parameterized
by � 2 [0; 1]. A priori, true demand is a lottery, i.e. the inverse market demand function D(P; �)
equals (1 + �) (1� P ) with probability p� 2 [0; 1] and (1� �) (1� P ) with probability (1� p�).
On the supply side, the good/bad state manifests itself as a decrease or an increase in a known
cost I1 2 R++ to continue R&D, parameterized by � 2 [0; I1]. A priori, the true cost to continue
R&D is a lottery, i.e. equal to (I1 � �) with probability p� 2 [0; 1] and (I1 + �) with probability
(1� p�). We assume that all parameters are known beforehand and that both lotteries are
independent. Before time one, nature (N) reveals the true state of the world.

At time one, the incumbent makes the decision whether to continue R&D.

At time two, the incumbent obtains the superior technology if he continued R&D. Having perfect
knowledge about the incumbent�s decisions, the potential entrant makes his entry decision. Upon
a positive entry decision, the entrant enters the market, producing at zero unit cost.

At time three, the �nal market structure is realized and the game ends.
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2.2 Optimal entry decision and payo¤s

The �nal market structure is never a duopoly.1 Indeed, if the incumbent does not possess the
superior technology, the potential entrant can push the incumbent out of the market by setting
the price slightly under the incumbent�s unit production cost, i.e. P (c) = c � " with " > 0.
However, entry is only optimal when monopoly pro�ts are higher than or equal to the entry
cost !. If the potential entrant does not enter, the incumbent stays a monopolist who sets
P (c) = 1+c

2 . The corresponding pro�ts are �(c) =
(1�c)2
4 for all c 2 [0; P ]. If the incumbent

does possess the superior technology, entry is never optimal. After all, the potential entrant
knows that if he would enter, price equals marginal cost in equilibrium (P (0) = 0), and hence
pro�ts equal zero (�(0) = 0), which do not cover the entry cost.

In order to characterize the optimal R&D decisions of the incumbent, we present the incumbent�s
payo¤s that correspond with the bottom row outcomes of Figure 1. We ignore the incumbent�s
monopolistic pro�ts at t = 0 and t = 1 since they are the same for any outcome of the game
and hence do not a¤ect the incumbent�s investment decision.

Under scenarios 1, 3, 5 and 7, the incumbent possesses the superior technology and entry is
never optimal. Therefore, we only present the incumbent�s payo¤s under b, which equal:

1b : (1 + �)�(0)� I0 � (I1 � �) 5b : (1� �)�(0)� I0 � (I1 � �)
3b : (1 + �)�(0)� I0 � (I1 + �) 7b : (1� �)�(0)� I0 � (I1 + �)

Under scenarios 2, 4, 6, 8, 9 and 10, the incumbent does not possess the superior technology.
Hence, entry can be optimal. Therefore, we present the incumbent�s payo¤s valid under a (when
entry is optimal (�(0) � !)) and b (when entry is not optimal (�(0) < !)).

2a : �I0 2b : (1 + �)�(c)� I0
4a : �I0 4b : (1 + �)�(c)� I0
6a : �I0 6b : (1� �)�(c)� I0
8a : �I0 8b : (1� �)�(c)� I0
9a : 0 9b : (1 + �)�(c)
10a : 0 10b : (1� �)�(c)

2.3 Optimal R&D decisions

We determine the optimal R&D decisions of the incumbent by backward induction. We start
at t = 1. We denote the four possible states of the world by fGG;GB;BG;BBg, where the
�rst character re�ects the good (G) or bad (B) demand state and the second character re�ects
the good (G) or bad (B) supply state. Let the incumbent�s pro�t gain from innovation be
�� = �(0)� �(c). This pro�t gain is higher when the entrant enters the market than when the
entrant does not enter the market, since �(c) = 0 for the incumbent in the former case, whereas
�(c) > 0 for the incumbent in the latter case. This immediately clari�es the strategic role of
the entrant in our model compared to a monopoly model without entry threat. If the entry cost
is low enough to make entry optimal, the incumbent gets additional bene�ts from investing in
the superior technology. This strategic e¤ect is known in the literature as Arrow�s replacement
e¤ect (Arrow, 1962).

For each possible state of the world s 2 fGG;GB;BG;BBg, we calculate �sNPV , i.e. the di¤er-
ence between the net present value (NPV ) of continuing R&D and the NPV of not continuing
R&D:

1Since Bertrand competition results in a monopoly in our model, it is not meaningful to distinguish between
drastic and non-drastic innovation (contrary to Cournot competition).
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�GGNPV = (1 + �)�� � (I1 � �)
�GBNPV = (1 + �)�� � (I1 + �)
�BGNPV = (1� �)�� � (I1 � �)
�BBNPV = (1� �)�� � (I1 + �).

The incumbent continues R&D if and only if this di¤erence is positive under the true state of
the world, taking the entrant�s entry decision into account.

Optimal decision to continue r&d: For each possible state of the world s 2 fGG;GB;BG;BBg,
the incumbent continues R&D if and only if �sNPV � 0.

Let  = ( GG;  GB ;  BG;  BB), where  s = 1 when �
s
NPV � 0 and  s = 0 when �sNPV < 0

for all s 2 fGG;GB;BG;BBg, be the vector that comprises the optimal decision to continue
R&D under every possible state of the world. Notice that �GGNPV � �sNPV � �BBNPV for s 2
fGB;BGg. Therefore 2 	 = f (1; 1; 1; 1) ; (1; 1; 1; 0) ; (1; 1; 0; 0) ; (1; 0; 1; 0) ; (1; 0; 0; 0) ; (0; 0; 0; 0) g.

At t = 0, for every  2 	, we calculate � NPV , i.e. the di¤erence between the NPV of starting
R&D and the NPV of not starting R&D. For every  2 	, we determine the NPV of starting
R&D by calculating the weighted sum of the incumbent�s payo¤s when starting R&D in every
possible state of the world (using the probabilities of a good/bad state on the demand and supply
side as weights). We determine the NPV of not starting R&D by calculating the weighted sum
of the incumbent�s payo¤s when not starting R&D (using the probabilities of a good/bad state
on the demand and supply side as weights). The NPV of not starting R&D is the same for
every  2 	.

Hence, we get:

�
(1;1;1;1)
NPV = p�p� [(1 + �)�(0)� I0 � (I1 � �)]

+p� (1� p�) [(1 + �)�(0)� I0 � (I1 + �)]
+ (1� p�) p� [(1� �)�(0)� I0 � (I1 � �)]
+ (1� p�) (1� p�) [(1� �)�(0)� I0 � (I1 + �)]
� [p� [(1 + �)�(c)] + (1� p�) [(1� �)�(c)]]

= p�p��
GG
NPV + p� (1� p�)�GBNPV + (1� p�) p��BGNPV

+(1� p�) (1� p�)�BBNPV � I0.

From this, we calculate:

�
(1;1;1;0)
NPV = �

(1;1;1;1)
NPV � (1� p�) (1� p�) [(1� �)�(0)� I0 � (I1 + �)]

+ (1� p�) (1� p�) [(1� �)�(c)� I0]

= �
(1;1;1;1)
NPV � (1� p�) (1� p�)�BBNPV

= p�p��
GG
NPV + p� (1� p�)�GBNPV + (1� p�) p��BGNPV � I0.

Similarly, we get:

�
(1;1;0;0)
NPV = p�p��

GG
NPV + p� (1� p�)�GBNPV � I0;

�
(1;0;1;0)
NPV = p�p��

GG
NPV + (1� p�) p��BGNPV � I0;

�
(1;0;0;0)
NPV = p�p��

GG
NPV � I0;

�
(0;0;0;0)
NPV = �I0.
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Clearly, �(0;0;0;0)NPV < 0 and the incumbent does not start R&D.

The incumbent starts R&D if and only if there exists a positive � NPV for  2 	nf (0; 0; 0; 0) g.
Note that these � NPV �s cannot be ordered. For example, take �

(1;1;1;1)
NPV and �(1;1;1;0)NPV . We can

write �(1;1;1;1)NPV = �
(1;1;1;0)
NPV + (1� p�) (1� p�)�BBNPV . If �BBNPV > 0, then �(1;1;1;1)NPV > �

(1;1;1;0)
NPV

and it is possible to have �(1;1;1;1)NPV > 0, while �(1;1;1;0)NPV < 0. On the other hand, if �BBNPV < 0,

then �(1;1;1;1)NPV < �
(1;1;1;0)
NPV and it is possible to have �(1;1;1;1)NPV < 0, while �(1;1;1;0)NPV > 0. A similar

argument can be made for any other comparison.

Therefore, let � = maxf�(1;1;1;1)NPV ;�
(1;1;1;0)
NPV ;�

(1;1;0;0)
NPV ;�

(1;0;1;0)
NPV ;�

(1;0;0;0)
NPV g.

Optimal decision to start r&d: The incumbent starts R&D if and only if � � 0.

3 Comparative statics

In this section, we investigate how changes in demand and supply lotteries a¤ect the incumbent�s
decision to start R&D. We therefore assume that entry is not optimal, because if entry were
optimal, the entrant would drive the incumbent out of the market (cfr. Section 2.2). Throughout
the remaining analysis, we use the following terminology. A lottery is de�ned to be favorable
(unfavorable) if the probability of the good state is higher than or equal to (lower than) the
probability of the bad state. In comparing two lotteries, a lottery is de�ned to be more favorable
(more unfavorable) than another lottery if the probability of the good state of the former is higher
(lower) than the probability of the good state of the latter. However, we do not only distinguish
between lotteries in terms of probabilities but also in terms of outcomes. In comparing two
lotteries with equal probabilities, a lottery is de�ned to be more divergent (less divergent) than
another lottery if the di¤erence between the good and the bad state is larger (smaller) in the
former than in the latter. In our model, the degree of divergence depends on � and �: a demand
(supply) lottery becomes more divergent than another demand (supply) lottery when, ceteris
paribus, � (�) increases and a demand (supply) lottery becomes less divergent than another
demand (supply) lottery when, ceteris paribus, � (�) decreases.

3.1 Relating divergence to lottery premia

Let us �rst explain how a change in the degree of divergence of the demand (supply) lottery
relates to a change in the lottery premium. We de�ne the lottery premium of a demand (supply)
lottery as the amount of money the incumbent is willing to pay (or has to receive) to undergo the
lottery. In our model, it equals the di¤erence between the expected outcome of undergoing the
demand (supply) lottery and obtaining demand equal to 1�P (facing the cost I1 of continuing
R&D). The lottery premium of a favorable lottery is positive whereas the lottery premium of an
unfavorable lottery is strictly negative, irrespective of the degree of divergence of both lotteries.
The lottery premium of favorable lotteries with probability 1

2 of the good/bad state (i.e. mean-
preserving lotteries) is equal to 0, irrespective of their degree of divergence. When comparing
two favorable, non mean-preserving lotteries with equal probabilities, the more divergent lot-
tery entails a more positive lottery premium. Similarly, when comparing two unfavorable, non
mean-preserving lotteries with equal probabilities, the more divergent lottery entails a more
negative lottery premium. However, we cannot always conclude that the more divergent lottery
entails a more positive (a more negative) lottery premium when the lotteries are favorable (un-
favorable) but have unequal probabilities. It depends on the trade-o¤ between (i) exactly how
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much more/less favorable (unfavorable) one lottery is compared to the other and (ii) how much
less/more (more/less) divergent one lottery is compared to the other.

Having established the relationship between divergence and lottery premia, it remains to show
how a change in the lottery premium a¤ects the decision to start R&D.

3.2 Relating lottery premia to the decision to start R&D

In Section 2, we derive that it is optimal for the incumbent to start R&D if and only if � � 0.
This decision depends on the vector of parameters (c; I0; I1; �; p�; �; p�). We now focus on how
the e¤ect of an increase in � on the decision to start R&D depends, ceteris paribus, on p�. A
completely similar reasoning, here omitted for reasons of parsimony, holds for how the e¤ect of
an increase in � depends, ceteris paribus, on p�.

An increase from � to �0 can, ceteris paribus, either have one of the three e¤ects on the decision
to start:

(i) a positive e¤ect, i.e. when �(�) < 0 and �(�0) � 0,
(ii) a negative e¤ect, i.e. when �(�) � 0 and �(�0) < 0 or
(iii) no e¤ect, i.e. when �(�) < 0 and �(�0) < 0 or �(�) � 0 and �(�0) � 0.

Our approach aims at comparing �(�) and �(�0) for any �; �0 2 [0; 1] where � < �0. We want to
make explicit which e¤ects are found for every p� 2 [0; 1], while restricting the parameter space
of (c; I0; I1; �; p�) as little as possible.

Ceteris paribus, it is impossible to compare �(�) and �(�0) for any �; �0 2 [0; 1] where � < �0

without �nding no e¤ect, since �(�) is a continuous function in �.

Our �rst two propositions are straightforward. Proposition 1 states that a more divergent
demand lottery never positively a¤ects the decision to start R&D when the demand lottery is
most unfavorable. In other words, a decrease in the demand lottery premium never positively
a¤ects the decision to start R&D for these lotteries. After all, for a demand lottery that
excludes the good state to happen, an increase in � corresponds to a worsening of the bad state,
which never positively a¤ects the decision to start. Proposition 2 states that a more divergent
demand lottery never negatively a¤ects the decision to start R&D when the demand lottery
belongs to the set of favorable demand lotteries. In other words, an increase in the demand
lottery premium never negatively a¤ects the decision to start R&D for these lotteries. After
all, for demand lotteries where the good state is more likely to happen than the bad state, an
increase in � a priori increases the attractiveness of the R&D project and hence never a¤ects
the decision to start negatively. Both Propositions 1&2 hold over the complete parameter space
of (c; I0; I1; �; p�). Remember that the same results are obtained by replacing p� and � by p�
and � respectively. All proofs are relegated to Appendix A.

Proposition 1: If p� = 0, there does not exist a �; �0 2 [0; 1], where � < �0, such that �(�) < 0
and �(�0) � 0 for all (c; I0; I1; �; p�) 2 [0; 1]� R3++ � [0; 1].
Proposition 2: If p� 2 [ 12 ; 1], there does not exist a �; �0 2 [0; 1], where � < �0, such that
�(�) � 0 and �(�0) < 0 for all (c; I0; I1; �; p�) 2 [0; 1]� R3++ � [0; 1].
It remains to show how more divergent demand lotteries a¤ect the decision to start R&D when
the demand lottery is unfavorable. From Proposition 1, the open question is from which value of
p� on, it is possible to �nd a positive e¤ect. Similarly, from Proposition 2, the question remains
from which value of p� on, it is not possible to �nd a negative e¤ect. In other words, we aim at
extending Propositions 1&2 by respectively �nding the minimal values x 2 (0; 1] and y 2 [0; 12 ]
such that the following results hold:
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If p� 2 [0; x), there does not exist a �; �0 2 [0; 1], where � < �0, such that �(�) < 0 and
�(�0) � 0.

If p� 2 [y; 1], there does not exist a �; �0 2 [0; 1], where � < �0, such that �(�) � 0 and
�(�0) < 0.

The additional question becomes over which domains these extensions of Propositions 1&2 hold.
Necessary conditions to obtain a positive (negative) e¤ect are that, ceteris paribus, there exists
a � 2 [0; 1] such that �(�) � (<)0. Obviously, these necessary conditions cannot be ful�lled
over the complete parameter space of (c; I0; I1; �; p�). The intuition is that if the total cost
of undertaking the R&D project � which depends on (I0; I1; �; p�)� exceeds by far (is much
smaller than) the total gain of the R&D project � which depends on (c; �; p�)� , then � will
always be negative (positive).

We impose two assumptions on the model, relating (in the absence of technical uncertainty) the
cost of starting R&D to the cost of continuing R&D and the total cost of the R&D project to
the pro�t gain. We assume that (i) the two cost components of R&D would be the same in the
two periods when � = 0 and (ii) the total cost of R&D would equal the pro�t gain of R&D when
� = 0.

Assumption 1: I0 = I1 = I.
Assumption 2: I0 + I1 = ��.

Our results hold over the complete parameter space of (c; �; p�). Indeed, in relating di¤erent
demand lotteries to the decision to start the R&D project, we deliberately do not want to
restrict the set of lotteries on the supply side. In other words, in determining x and y, we
choose from the total set of supply lotteries (i) that particular lottery for which we obtain the
smallest interval p� 2 [0; x) of demand lotteries for which a more divergent demand lottery
cannot positively a¤ect the decision to start R&D and (ii) that particular lottery for which we
obtain the smallest interval p� 2 [y; 1] of demand lotteries for which a more divergent demand
lottery cannot negatively a¤ect the decision to start R&D. Larger intervals than [0; x) and [y; 1]
would be obtained if one excluded these particular supply lotteries from the total set. All results
also hold for any strictly positive value of c. When c equals zero, the incumbent never starts
the R&D project. A completely similar exercise is performed to relate changes in � and values
of p� to changes in � under the complete parameter space of (c; �; p�).2

Under Assumptions 1-2, we obtain Propositions 3a&3b for the minimal values x; v and Propo-
sition 4 for the minimal values y; w respectively; see footnote 2 for de�nitions of v and w. All
proofs are relegated to Appendix A.3

2More speci�cally, we aim at �nding respectively the minimal values v 2 (0; 1] and w 2 [0; 1
2
] such that the

following results hold:
If p� 2 [0; v), there does not exist a �; �0 2 [0; 1], where � < �0, such that
�(�) < 0 and �(�0) � 0 for all (c; �; p�) 2 [0; 1]3.
If p� 2 [w; 1], there does not exist a �; �0 2 [0; 1], where � < �0, such that
�(�) � 0 and �(�0) < 0 for all (c; �; p�) 2 [0; 1]3.
3We performed a sensitivity analysis on Assumptions 1&2. We relax Assumption 1, setting I1 = aI0, where

a 2 R++. We �nd that the higher (lower) the cost of continuing R&D compared to the cost of starting R&D, the
smaller (larger) the subset of unfavorable demand (supply) lotteries for which a more divergent demand (supply)
lottery never positively a¤ects the decision to start R&D. Furthermore, for all unfavorable demand/supply
lotteries, we cannot exclude that a more divergent demand/supply lottery negatively a¤ects the decision to
start R&D, whatever the relative importance of the two cost components I0 and I1. We relax Assumption 2
by expressing the total cost of R&D as a proportion b 2 R++ of the pro�t gain of R&D when � = 0, i.e.
I0 + I1 = b��. We �nd that the lower the pro�t gain of the R&D project compared to the total cost, the more
favorable the demand/supply lottery has to become in order to start R&D. For reasons of parsimony, we omit
the detailed results which are available upon request.
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Proposition 3a: Under Assumptions 1-2, if p� 2 [0; 14 ), there does not exist a �; �0 2 [0; 1],
where � < �0, such that �(�) < 0 and �(�0) � 0 for all (c; �; p�) 2 [0; 1]� R++ � [0; 1].

Proposition 3b: Under Assumptions 1-2, if p� 2 [0; 0:28), there does not exist a �; �0 2 [0; 1],
where � < �0, such that �(�) < 0 and �(�0) � 0 for all (c; �; p�) 2 [0; 1]3.

Proposition 4: Under Assumptions 1-2, Proposition 2 is not extended: both y and w equal 12
for all (c; �; p�) 2 [0; 1]� R++ � [0; 1] and for all (c; �; p�) 2 [0; 1]3 respectively.

From Proposition 3a it follows that for the subset of unfavorable demand lotteries with p� 2
[0; 14 ), a more divergent demand lottery (= a decrease in the demand lottery premium) never
positively a¤ects the decision to start R&D. From the determination of y in Proposition 4 we
learn that for all unfavorable demand lotteries, we can not exclude that a more divergent demand
lottery (= a decrease in the demand lottery premium) negatively a¤ects the decision to start
R&D. From Proposition 3b it follows that for the subset of unfavorable supply lotteries with
p� 2 [0; 0:28), a more divergent supply lottery (= a decrease in the supply lottery premium)
never positively a¤ects the decision to start R&D. From the determination of w in Proposition
4 we learn that for all unfavorable supply lotteries, we cannot exclude that a more divergent
supply lottery (= a decrease in the supply lottery premium) negatively a¤ects the decision to
start R&D.

Propositions 3a, 3b and 4 provide important additional insight in the relation between demand
(supply) lotteries and the decision to start R&D. Let us focus on demand lotteries. Propositions
3a and 4 demonstrate that, for the set of unfavorable demand lotteries with p� 2 [ 14 ;

1
2 ) and

depending inter alia on the supply lottery the incumbent faces, a decrease in the demand
lottery premium can either positively or negatively a¤ect the decision to start R&D. Especially
the fact that a decrease in the demand lottery premium can positively a¤ect the decision to start
R&D deserves some explanation. We obtain this result because of the abandonment option that
the incumbent possesses. As we show in the proof of Proposition 3a in Appendix A, an increase
in � positively a¤ects the decision to start R&D when � = �(1;1;0;0)NPV . Exactly in this case the
R&D project is started under the assumption that the project will be completed when the good
state on the demand side occurs (although it is more likely that the bad state on the demand
side occurs since the demand lottery is unfavorable). In other words, the incumbent completely
ignores the downside risk of the R&D project when the bad state on the demand side occurs
exactly because it can abandon the project when this happens. Hence, under the good state
on the demand side, an increase in � improves the pro�tability of the R&D project, which
explains the result. If there were no abandonment option, a decrease in the lottery premium of
an unfavorable demand lottery would never positively a¤ect the decision to start R&D.4

4 An empirical analysis of the determinants of R&D de-
cisions

4.1 Data

To test the propositions derived in the previous section, we mainly use data from the 2005 of-
�cial innovation survey in the German manufacturing and services industries which constitute

4 If the incumbent is forced to complete the R&D project once the project is started, he will only start the

project when �(1;1;1;1)NPV > 0. Note that
@�

(1;1;1;1)
NPV
@�

= (2p� � 1)�� which is positive for all favorable demand
lotteries and strictly negative for all unfavorable demand lotteries. This explains the result, given the relation
between divergence and lottery premia (cfr. Section 3.1).
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the German part of the European-wide harmonized fourth Community Innovation Surveys (CIS
IV).5 The CIS data provide rich information on �rms�innovation behavior. The target popula-
tion consists of all legally independent �rms with at least 5 employees and their headquarters
located in Germany.6 The survey is drawn as a strati�ed random sample and is representative
of the corresponding target population. The strati�cation criteria are �rm size (8 size classes
according to the number of employees), industry (22 two-digit industries according to the NACE
Rev.1 classi�cation system) and region (East and West Germany). The survey is performed by
mail and data on 4776 �rms were collected in 2005 (total sample), corresponding to a response
rate of about 20%.7 In order to control for a response bias in the net sample, a non-response
analysis was carried out collecting data on 4000 additional �rms. A comparison shows that the
innovation behavior of respondents and non-respondents does not di¤er signi�cantly. The share
of innovators is 63.9% in the former group and 62.2% in the latter group.8

All explanatory variables which are explained in Section 4.2 are taken from the 2005 survey.
In order to investigate how they a¤ect the decision to start R&D, we merge information on
R&D from the 2006 survey.9 Combining the two surveys reduces the number of observations
by 40.3 percent. For estimation purposes we further exclude �rms with incomplete data for
any of the relevant variables, ending up with a sample of 2411 �rms. As illustrated in Table
B.1 in Appendix B, our estimation sample (full sample) re�ects total sample distributional
characteristics very well and does not give any obvious cause for selectivity concerns.

5 An empirical analysis of the optimal decision to under-
take R&D under uncertainty

5.1 Data

To test the propositions derived in the previous section, we mainly use data from the 2005 of-
�cial innovation survey in the German manufacturing and services industries which constitute
the German part of the European-wide harmonized fourth Community Innovation Surveys (CIS
IV).10 The CIS data provide rich information on �rms�innovation behavior. The target popu-
lation consists of all legally independent �rms with at least 5 employees and their headquarters
located in Germany.11 The survey is drawn as a strati�ed random sample and is representative
of the corresponding target population. The strati�cation criteria are �rm size (8 size classes
according to the number of employees), industry (22 two-digit industries according to the NACE
Rev.1 classi�cation system) and region (East and West Germany). The survey is performed by
mail and data on 4776 �rms were collected in 2005 (total sample), corresponding to a response

5The innovation surveys are annually conducted by the Centre for European Economic Research (ZEW),
Fraunhofer Institute for Systems and Innovation Research (ISI) and infas Institute for Applied Social Sciences
on behalf of the German Federal Ministry of Education and Research (BMBF).

6A �rm is de�ned as the smallest combination of legal units operating as an organizational unit producing
goods or services.

7This rather low response rate is not unusual for surveys in Germany and is due to the fact that participation
is voluntary.

8The p-value of the Fisher-test on equal shares in both groups amounts to 0.108.
9 In Germany, the innovation surveys are conducted annually and they are designed as a panel (Mannheim

Innovation Panel).
10The innovation surveys are annually conducted by the Centre for European Economic Research (ZEW),

Fraunhofer Institute for Systems and Innovation Research (ISI) and infas Institute for Applied Social Sciences
on behalf of the German Federal Ministry of Education and Research (BMBF).
11A �rm is de�ned as the smallest combination of legal units operating as an organizational unit producing

goods or services.
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rate of about 20%.12 In order to control for a response bias in the net sample, a non-response
analysis was carried out collecting data on 4000 additional �rms. A comparison shows that the
innovation behavior of respondents and non-respondents does not di¤er signi�cantly. The share
of innovators is 63.9% in the former group and 62.2% in the latter group.13

All explanatory variables which are explained in Section 4.2 are taken from the 2005 survey.
In order to investigate how they a¤ect the decision to start R&D, we merge information on
R&D from the 2006 survey.14 Combining the two surveys reduces the number of observations
by 40.3 percent. For estimation purposes we further exclude �rms with incomplete data for
any of the relevant variables, ending up with a sample of 2411 �rms. As illustrated in Table
B.1 in Appendix B, our estimation sample (full sample) re�ects total sample distributional
characteristics very well and does not give any obvious cause for selectivity concerns.

5.2 Econometric model and testable hypotheses

Econometric model
In our theoretical model, the incumbent has to decide whether to undertake an R&D project
which aims at obtaining the same superior production technology as the potential entrant.15

The optimal decision to undertake R&D depends, ceteris paribus, on the degree of divergence of
the demand and supply lotteries. Empirically, we operationalize this optimal decision as follows.

Let y�i denote �rm i�s maximal di¤erence between the NPV of undertaking R&D and the NPV
of not undertaking R&D, which cannot be observed. Exploiting the �rm heterogeneity in our
unique dataset, we assume that for �rm i this di¤erence depends on �i and �i, some other
observable characteristics summarized in the row vector xi and unobservable factors captured
by �i:

y�i = ��i + �i + xi� + �i (1)

In Section 2.3, we derive that it is optimal for incumbent i to undertake R&D if and only if y�i
is larger than or equal to zero:

yi =

�
1 if y�i � 0
0 if y�i < 0

(2)

where yi denotes the observed binary endogenous variable. We estimate equation (2) using the
probit estimator.

Speci�cation and testable hypotheses
Table 1 gives the descriptive statistics of all variables used in the econometric analysis and Table
B.2 in Appendix B provides detailed de�nitions of all variables. We proxy the observed binary
endogenous variable (yi) by two variables. The �rst variable indicates whether the �rm per-
formed R&D in 2005 (R&D). Table 1 shows that 45% of the �rms in the full sample undertook
R&D projects. Our theoretical model is essentially about cost-reducing process innovations.
One drawback of R&D is that R&D activities cannot be divided into product and process in-
novations. Therefore, we employ as an alternative proxy a variable indicating whether the �rm

12This rather low response rate is not unusual for surveys in Germany and is due to the fact that participation
is voluntary.
13The p-value of the Fisher-test on equal shares in both groups amounts to 0.108.
14 In Germany, the innovation surveys are conducted annually and they are designed as a panel (Mannheim

Innovation Panel).
15 In what follows, the notions �rm and incumbent are used interchangeably.
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planned in the period 2002-2004 to introduce a new production technology in 2005 (PROCESS).
We �nd that 46% of the �rms in the full sample planned to introduce a process innovation.16

In our theoretical model, demand uncertainty stems from the two components in the demand
lottery: the degree of divergence (determined by �) and the probability (p�) of facing a good
demand state. The variable � is measured by the average of the absolute values of the absolute
changes in real sales over the last two years 2002-2003 and 2003-2004 (THETA).17 Table 1
reveals that the absolute value of the absolute change in real sales was on average about 13%
in the last two years. To calculate p� using the full sample, we derive that 53.1% of the �rms
experienced a positive growth in sales between 2002 and 2003 and 57.4% between 2003 and
2004. In our benchmark estimations, we assume that p� is the same for all �rms. Our dataset
enables us to relax this assumption later on.

Similarly, technical uncertainty is represented by the two components in the lottery on the supply
side: the degree of divergence (determined by �) and the probability (p�) of facing a good supply
state. For the full sample, � can only be proxied by a dummy variable LAMBDA1. LAMBDA1
equals 1 if an innovation project was postponed due to high innovation costs in the period 2002-
2004. The motivation for using this information is that an unexpected delay of an innovation
project is presumably associated with unexpected higher costs.18 Hence, LAMBDA1 partitions
the set of �rms into a subset of �rms with a low degree of divergence and a subset of �rms with
a high degree of divergence. Around 19% of the �rms belong to the latter. Alternatively, we
use a second proxy for � (LAMBDA2) which is de�ned as the absolute value of the deviation
between on the one hand the innovation expenditures for 2004 expected in 2003 and on the other
hand the realized innovation expenditures in 2004. The virtue of this measure is that it more
closely corresponds to the way we model � in our theoretical analysis. The defect is that we can
apply it only to a subset of enterprises since we have to use the prior wave of the innovation
survey to construct this variable.19 However, this subsample is representative for the full sample
as can be inferred from Table B.1 in Appendix B. The average absolute value of the deviation
between expected and realized innovation expenditure comes to 2.9 mill. Euro. The deviation
turns out to be highly skewed. We therefore use a logarithmic transformation of this variable in
the econometric analysis. As LAMBDA2 measures the absolute value of the deviation between
expected and realized innovation costs, we encounter the problem that LAMBDA2 equals zero
for �rms with no prior innovation activities. To �lter out this e¤ect, we additionally include
DLAMBDA2 in the estimations. DLAMBDA2 is a binary variable which is one if the �rm had
no prior innovation activities. No information is available to calculate p� from the full sample.
However, we are able to determine p� from the subsample. More speci�cally, we observe that
for 60.1% of the �rms, realized innovation expenditure in 2004 turned out to be lower than
expected in 2003. Given the representativeness of the subsample, we assume that the calculated
p� is also valid for the full sample. In all our estimations, we assume that p� is the same for all
�rms. Our dataset does not allow to relax this assumption.

16 In 71% of the observations, R&D and PROCESS coincide. This implies a correlation between the two
dependent variables of about 0.28 (signi�cant at the 1% level).
17We use producer price indices at the 3-digit industry (NACE) level as a de�ator. Furthermore, we implicitly

assume that �rms expect sales to stay constant over the short time-span under consideration.
18 It might have been that the unexpected delay led to R&D activities in 2005. Though we cannot completely

rule out this mechanical e¤ect, we are con�dent that this is of minor importance in our data set. The delay took
place somewhere in the period 2002-2004. Despite the delay the �rm could still have �nished the innovation
project in that period. As a robustness check, we use an alternative R&D indicator. In particular, we only
account for R&D activities in 2005 if the �rm had no ongoing process innovation activities at the end of year
2004. This leaves the results nearly unchanged. Results are not reported here but are available upon request.
19Unfortunately, the overlap between the 2004 and 2005 survey only amounts to almost 40% due to a major

refreshment and enlargement of the gross sample.
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Assuming that p� and p� are the same for all �rms and given that p� and p� are calculated to
be larger than 1

2 , we postulate from Proposition 2 the following hypotheses.

Hypothesis 1: A higher demand lottery premium does not decrease the probability of under-
taking R&D.

Hypothesis 2: A higher supply lottery premium does not decrease the probability of under-
taking R&D.

Besides the importance of lottery premia, we demonstrate in Section 3.2 that having an aban-
donment option limits the downside risk of the R&D project. Unfortunately, we do not directly
observe in our data whether a �rm has the option to abandon an R&D project. However, we
observe whether the �rm abandoned innovation projects in the past three years 2002-2004. We
use this information to construct the variable ABAN which captures whether the �rm has the
option to abandon R&D projects in the following way. ABAN equals 1 if a �rm abandoned any
innovation project in the past. For all other �rms, it is the predicted probability derived from
a probit regression.20

In our theoretical model, the incumbent is challenged by a potential competitor. Our data
reveal that about 91% of the �rms perceived a threat of its own market position due to the
potential entry of new competitors. In the estimations, we therefore control for potential entry
by including 3 dummy variables indicating whether the �rm perceived a high, medium or low
threat.

Our main explanatory variables, i.e. proxies for the degree of divergence in the demand and
supply lotteries, abandonment option and entry threat, belong to the categories of respectively
project characteristics and industry characteristics that are discussed in Section 1. We also
control for the following factors found to be important in the literature. These can be mapped
into the categories of �rm characteristics and industry characteristics.

Among the �rm characteristics, we include �rm size (SIZE), corporate variables such as
the degree of product diversi�cation (DIV ERS), innovative capabilities (HIGHSKILLED,
TRAINEXP , NOTRAIN , MV TRAIN), the type of competition (COMP ) and the degree
of internationalization (EXPORT ), and �nancial variables such as the availability of �nancial
resources (RATING).

Firm size (SIZE) is measured by the logarithm of the number of employees in 2004. We expect
a positive relationship between �rm size and the decision to undertake an R&D project.

More diversi�ed �rms possess economies of scope in innovation. As they have more opportunities
to exploit new knowledge and complementarities among their diversi�ed activities, they tend to
be more innovative. We measure product diversi�cation by the share of turnover of the �rm�s
most important product in 2004 (DIV ERS). Therefore, we expect a negative coe¢ cient since
more diversi�ed �rms exhibit lower values for this proxy.

Innovative capabilities are determined by the skills of employees. We take into account the
share of employees with a university degree (HIGHSKILLED), a dummy variable being 1
if the �rm did not invest in training its employees (NOTRAIN) and the amount of training
expenditure per employee (TRAINEXP ) if the �rm invested in training. Since information
on training expenditure is missing for 9.6% of the �rms, we do not drop these observations but

20We explain the probability of abandoning innovation projects by industry dummies and �rm characteristics
such as �rm size, share of high-skilled employees, degree of internationalization, training expenditure and company
group (see Table B.3 in Appendix B).
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rather set the expenditure to zero and include a dummy variable indicating the missing value
status (MV TRAIN).

The incentive to engage in R&D may further depend on the type of competition (COMP ).
We include 3 dummy variables indicating whether �rms primarily competed in prices, product
quality or technological lead.

The more a �rm is exposed to international competition, the more likely the �rm engages in
R&D activities. The degree to which a �rm was exposed to international competition is captured
by the export intensity in 2004, i.e. the ratio of exports to sales (EXPORT ).

The availability of �nancial resources is proxied by an index of creditworthiness (RATING). A
lower creditworthiness implies less available and more costly external funding to �nance R&D
projects. Since the index ranges from 1 (best rating) to 6 (worst rating), we expect a negative
coe¢ cient for this proxy.

We also include a variable re�ecting whether the �rm was located in East Germany (EAST ).
A priori, the e¤ect of EAST is unclear.

Among the industry characteristics, we include market structure (NUMCOMP ) and general
industry conditions. Market structure is captured by 3 dummy variables indicating the number
of competitors. Schumpeter (1942) stresses a negative relationship between competition and
innovation. His argument is that ex ante product market power on the one hand increases
monopoly rents from innovation and on the other hand reduces the uncertainty associated with
excessive rivalry. Recently, Aghion et al. (2005) �nd evidence for an inverted U -relationship
between competition and innovation. For low initial levels of competition an escape-competition
e¤ect dominates (i.e. competition increases the incremental pro�ts from innovating, and, thereby,
encourages innovation investments) whereas the Schumpeterian e¤ect tends to dominate at
higher levels of competition.

Finally, we control for general industry conditions by including industry dummies in all regres-
sions.

15



Table 1
Descriptive Statistics - Full Sample

Variable Unit Mean SD Median Skewness Min Max
Dependent variables
R&D [0/1] 0.454 0.498 0 � 0 1
PROCESS [0/1] 0.460 0.498 0 � 0 1
Independent variables
Demand lottery premium
THETA % 0.132 0.138 0.090 2.831 0.006 1.254
G1 [0/1] 0.129 0.335 0 � 0 1
G2 [0/1] 0.295 0.456 0 � 0 1
G3 [0/1] 0.371 0.483 0 � 0 1
G4 [0/1] 0.204 0.403 0 � 0 1
Supply lottery premium
LAMBDA1 [0/1] 0.192 0.394 0 � 0 1
LAMBDA2a Mill. Euro 2.887 14.448 0.117 9.013 0 207.318
DLAMBDA2a [0/1] 0.229 0.420 0 � 0 1
Abandonment option
ABAN [0-1] 0.263 0.295 0.146 1.923 0.019 1
Additional control variables
THREAT: no [0/1] 0.093 0.295 0 � 0 1
THREAT: low [0/1] 0.457 0.498 0 � 0 1
THREAT: medium [0/1] 0.304 0.460 0 � 0 1
THREAT: high [0/1] 0.146 0.353 0 � 0 1
SIZE # Empl. 692.798 6505.776 46 24.251 1 232700
NUMCOMP: 0 [0/1] 0.024 0.153 0 � 0 1
NUMCOMP: 1-5 [0/1] 0.590 0.492 1 � 0 1
NUMCOMP: 6-15 [0/1] 0.204 0.403 0 � 0 1
NUMCOMP: >15 [0/1] 0.182 0.386 0 � 0 1
COMP: PRICE [0/1] 0.526 0.499 1 � 0 1
COMP: QUAL [0/1] 0.427 0.495 0 � 0 1
COMP: LEAD [0/1] 0.107 0.310 0 � 0 1
DIVERS [0-1] 0.709 0.234 0.739 -0.476 0 1
EXPORT [0-1] 0.152 0.311 0.000 13.140 0 9.804
RATING [1-6] 2.137 0.794 2.180 0.526 0 6.000
HIGHSKILLED [0-100] 20.824 24.579 10 1.576 0 100
TRAINEXP Mill. Euro 0.001 0.001 0 4.468 0 0.010
NOTRAIN [0/1] 0.112 0.315 0 � 0 1
MVTRAIN [0/1] 0.096 0.294 0 � 0 1
EAST [0/1] 0.339 0.473 0 � 0 1

a Values refer to subsample of 767 �rms.
Values for LAMBDA2, SIZE and TRAINEXP are not log-transformed. For estimation purposes,
however, a log-transformation of these variables is used to take into account the skewness of the distribution.
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5.3 Results

5.3.1 Firms facing equal lottery probabilities

Table 2 reports the marginal e¤ects of the probit estimates for the full sample, assuming that all
�rms face the same probabilities in the demand and supply lotteries. For each of the two endoge-
nous variables, the �rst column reports the results of a parsimonious speci�cation � including
only SIZE and industry dummies in addition to demand uncertainty, technical uncertainty,
abandonment option and entry threat� whereas the second column employs the full set of
control variables described in the previous section.

Hypothesis 1, implying that the probability of undertaking R&D does not decrease with an
increase in �, is con�rmed. The e¤ect is positive but only signi�cant in PROCESS (column
(3)) implying that a 10% increase in THETA increases the likelihood of undertaking R&D by
1.3 percentage points. The result that THETA is only slightly signi�cant may well re�ect the
fact that our assumption of equal demand lottery probabilities is not ful�lled in our sample. We
elaborate on this point in Section 4.3.2.

Hypothesis 2, implying that the probability of undertaking R&D does not decrease with an
increase in �, is strongly con�rmed. This result is robust across the two endogenous variables
and holds when additional control variables are incorporated. We estimate that a change from
a low to a high degree of divergence (captured by a shift in the value of LAMBDA1) increases
the likelihood of undertaking R&D (R&D, column (2)) by 14.6 percentage points.

Having the option to abandon R&D projects signi�cantly increases the likelihood of undertaking
R&D. Focusing on column (2), the marginal e¤ect amounts to 12 percentage points.

We do not �nd a signi�cant e¤ect of entry threat on the decision to undertake R&D. Regard-
ing the impact of the other control variables, �rm size exerts a signi�cantly positive impact.
Firms being exposed to international competition as well as more diversi�ed �rms have a higher
likelihood of undertaking R&D. There is, however, no signi�cant impact on process innovation.
Highlighting the important role of innovative capabilities, we �nd that �rms employing a higher
share of high-skilled workers or �rms investing in training are likely to be more innovative. Inno-
vation activities are stimulated if competitive advantage is achieved by technological leadership.
Our estimates do not con�rm an impact of market structure on innovation.

For the subsample, Table 3 presents in columns (2) and (4) the estimates using our preferred
measure for technical uncertainty (LAMBDA2). For reasons of comparison, columns (1) and
(3) show the subsample results employing LAMBDA1 which is still signi�cantly positive. In
general, the results are very similar to the full sample. Hypothesis 2 is also con�rmed using
LAMBDA2. Since we measure this variable in logarithm, a value of 0.007 implies that an
increase in the absolute value of the deviation between expected and realized innovation expen-
diture by 10% increases the propensity to undertake R&D by 7%.2122

21To test whether multicollinearity between our main independent variables a¤ect our results in Tables 2 and
3, we estimate speci�cations that include demand lottery premium, supply lottery premium or abandonment
option separately and speci�cations that combine demand lottery premium or supply lottery premium with
abandonment option. The signi�cance as well as the magnitude of the estimated marginal e¤ects are very robust
in both the full sample and the subsample (results available upon request).
22To test whether multicollinearity between our main independent variables a¤ect our results in Tables 2 and

3, we estimate speci�cations that include demand lottery premium, supply lottery premium or abandonment
option separately and speci�cations that combine demand lottery premium or supply lottery premium with
abandonment option. The signi�cance as well as the magnitude of the estimated marginal e¤ects are very robust
in both the full sample and the subsample (results available upon request).

17



Table 2
E¤ect of demand and supply lottery premium on innovation - Full Sample

Dep. variables R&D PROCESS
(1) (2) (3) (4)

Demand lottery premium
THETA 0.082 -0.009 0.128� 0.113

(0.063) (0.061) (0.073) (0.071)
Supply lottery premium
LAMBDA1 0.179��� 0.146��� 0.206��� 0.186���

(0.025) (0.024) (0.027) (0.027)
Abandonment option
ABAN 0.199��� 0.120��� 0.153��� 0.119���

(0.035) (0.032) (0.038) (0.038)
Additional control variables
THREAT: low -0.038 -0.029 0.007 -0.008

(0.031) (0.030) (0.036) (0.036)
THREAT: medium -0.051 -0.029 0.022 0.018

(0.032) (0.032) (0.038) (0.038)
THREAT: high -0.081�� -0.035 -0.049 -0.026

(0.036) (0.036) (0.042) (0.043)
SIZE 0.062��� 0.059��� 0.060��� 0.060���

(0.006) (0.006) (0.006) (0.007)
NUMCOMP: 0 � -0.055 � -0.079

(0.054) (0.066)
NUMCOMP: 1-5 � 0.032 � 0.003

(0.022) (0.027)
NUMCOMP: 6-15 � 0.003 � -0.004

(0.026) (0.032)
COMP: PRICE � -0.024 � -0.083���

(0.019) (0.023)
COMP: QUAL � 0.017 � 0.000

(0.018) (0.022)
COMP: LEAD � 0.113��� � -0.014

(0.028) (0.033)
DIVERS � -0.083�� � -0.032

(0.035) (0.043)
EXPORT � 0.233��� � -0.047

(0.041) (0.032)
RATING � 0.001 � -0.009

(0.010) (0.013)
HIGHSKILLED � 0.002��� � 0.000

(0.000) (0.001)
TRAINEXP � 0.058��� � 0.058���

(0.008) (0.010)
NOTRAIN � -0.461��� � -0.471���

(0.026) (0.027)
MVTRAIN � -0.336��� � -0.400���

(0.032) (0.031)
EAST � 0.064��� � 0.028

(0.018) (0.022)
LogL -1235.1 -1127.1 -1360.4 -1311.4
R2MF 0.239 0.296 0.085 0.108
R2MZ 0.453 0.554 0.212 0.273
Count R2 0.747 0.769 0.660 0.678
LMhet (p-value) 0.339 0.457 0.338 0.621
LMnorm (p-value) 0.131 0.899 0.976 0.877
# Obs. 2411 2411 2201 2201

Average marginal e¤ects of the probit estimations are reported. Robust standard errors in parentheses.
���Signi�cant at 1%; ��Signi�cant at 5%; �Signi�cant at 10%. Industry dummies are included but not reported.
LogL: log likelihood value of the model with regressors. R2MF (likelihood ratio index): McFadden (1974) Pseudo
R2, comparing the likelihood of an intercept-only model to the likelihood of the model with regressors. R2MZ : McKelvey
and Zavoina (1976) R2, measuring the proportion of variance of the latent variable accounted for by the model. Count
R2: proportion of accurate predictions. LMhet: Davidson and MacKinnon (1984) test statistic for heteroskedasticity.
LMnorm: Shapiro and Wilk (1965) test statistic for normality.

18

1



Table 3
E¤ect of demand and supply lottery premium on innovation - Subsample

Dep. variables R&D PROCESS
(1) (2) (3) (4)

Demand lottery premium
THETA 0.070 0.117 0.105 0.177

(0.112) (0.107) (0.140) (0.116)
Supply lottery premium
LAMBDA1 0.106�� � 0.084� �

(0.041) (0.046)
LAMBDA2 � 0.007� � -0.005

(0.004) (0.004)
DLAMBDA2 � -0.218��� � -0.516���

(0.071) (0.040)
Abandonment option
ABAN 0.121�� 0.102� 0.150�� 0.111�

(0.061) (0.055) (0.069) (0.062)
Additional control variables
THREAT: low -0.003 0.006 -0.091 -0.109�

(0.052) (0.050) (0.058) (0.059)
THREAT: medium 0.010 0.008 -0.055 -0.082

(0.054) (0.051) (0.062) (0.063)
THREAT: high -0.064 -0.053 -0.192��� -0.191���

(0.062) (0.059) (0.067) (0.070)
SIZE 0.051��� 0.040��� 0.061��� 0.050���

(0.010) (0.010) (0.013) (0.012)
NUMCOMP: 0 -0.112 -0.067 0.022 0.148

(0.087) (0.091) (0.127) (0.107)
NUMCOMP: 1-5 0.095�� 0.074�� -0.058 -0.077�

(0.038) (0.037) (0.048) (0.046)
NUMCOMP: 6-15 0.052 0.039 0.026 -0.001

(0.042) (0.040) (0.055) (0.052)
COMP: PRICE -0.028 -0.026 -0.099�� -0.085��

(0.033) (0.031) (0.040) (0.036)
COMP: QUAL 0.011 -0.007 0.012 -0.005

(0.031) (0.029) (0.038) (0.035)
COMP: LEAD 0.063 0.021 0.020 -0.013

(0.046) (0.041) (0.056) (0.050)
DIVERS -0.090 -0.055 0.024 0.034

(0.060) (0.057) (0.073) (0.069)
EXPORT 0.319��� 0.302��� -0.026 -0.031

(0.078) (0.073) (0.038) (0.075)
RATING -0.010 -0.008 -0.010 -0.009

(0.017) (0.016) (0.022) (0.020)
HIGHSKILLED 0.001� 0.001 0.001 0.000

(0.001) (0.001) (0.001) (0.001)
TRAINEXP 0.081��� 0.060��� 0.067��� 0.046���

(0.014) (0.014) (0.017) (0.016)
NOTRAIN -0.563��� -0.516��� -0.478��� -0.356���

(0.025) (0.051) (0.043) (0.098)
MVTRAIN -0.419��� -0.360��� -0.461��� -0.423���

(0.046) (0.074) (0.034) (0.059)
EAST 0.051� 0.059�� 0.005 0.011

(0.030) (0.029) (0.040) (0.038)
LogL -339.6 -316.4 -412.2 -362.9
R2MF 0.360 0.404 0.157 0.258
R2MZ 0.601 0.645 0.304 0.495
Count R2 0.787 0.816 0.686 0.721
LMhet (p-value) 0.583 0.057 0.957 0.978
LMnorm (p-value) 0.060 0.330 0.101 0.259
# Obs. 767 767 707 707

Average marginal e¤ects of the probit estimations are reported. Robust standard errors in parentheses.
���Signi�cant at 1%; ��Signi�cant at 5%; �Signi�cant at 10%. Industry dummies are included but not reported.
For notes on goodness-of-�t and speci�cation tests: see Table 2.
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5.3.2 Firms facing di¤erent demand lottery probabilities

In Section 3.2, we show that the e¤ect of an increase in � on the decision to start R&D depends,
ceteris paribus, on p�. So far, we assumed that p� is the same for all �rms. In this section, we
relax this assumption. We approximate p� by looking at the �rms�sales histories in the past
three years. We de�ne four groups of �rms (see Table B.2 in Appendix B for exact de�nitions).
Group 1 (G1) comprises all �rms that experienced a decrease in sales in 2002-2003, in 2003-2004
as well as in 2004-2005. The idea is that these �rms always face an unfavorable demand lottery
and have a p� around 0. Group 2 (G2) consists of all �rms that experienced two negative and
one positive demand shock during the period 2002-2005. We assume that these �rms have a
p� around 1

3 . All �rms in group 3 (G3) experienced one negative and two positive demand
shocks during the period 2002-2005. The assumption is that these �rms are more likely to face
a favorable demand lottery re�ected by a p� around 2

3 . Group 4 (G4) consists of all �rms that
experienced three consecutive increases in sales during the period 2002-2005. The idea is that
these �rms always face a favorable demand lottery and have a p� around 1.

We postulate from Proposition 3a and Proposition 2 respectively the following hypotheses.

Hypothesis 3: For �rms in G1, a lower demand lottery premium does not increase the proba-
bility of undertaking R&D.

Hypothesis 4: For �rms in G3 and G4, a higher demand lottery premium does not decrease
the probability of undertaking R&D.

Table 4 presents the results of distinguishing the e¤ect of a more divergent demand lottery
across groups of �rms facing di¤erent demand lottery probabilities. Con�rming hypothesis 3,
we �nd that for �rms in G1 the e¤ect of a lower demand lottery premium (= an increase in
�) is signi�cantly negative for R&D and negative but not signi�cant for PROCESS in the
speci�cations including all control variables. Focusing on column (2), our results indicate that
a 10% increase in THETA decreases the likelihood of undertaking R&D by 4.9 percentage
points. Furthermore, the impact of THETA is signi�cantly di¤erent for �rms in G1 compared
to �rms in G2, G3 and G4. Hypothesis 4 is strongly con�rmed since the impact of a higher
demand lottery premium is never signi�cantly negative for �rms in G3 and G4. Moreover, in all
speci�cations, the e¤ect of a higher demand lottery premium is signi�cantly positive for �rms
in G4. Focusing on column (2), an increase in THETA by 10% increases the probability of
undertaking R&D by 1.7 percentage points for �rms in G4.

From Proposition 3a, Proposition 4 and footnote 4, it follows that for the set of unfavorable
demand lotteries with p� 2 [ 14 ;

1
2 ), a decrease in the lottery premium can positively a¤ect the

decision to start R&D because of the abandonment option that the �rm possesses. We therefore
now consider the �rms in G2 in isolation. We postulate the following hypothesis.

Hypothesis 5: For �rms in G2, having an abandonment option does not decrease the proba-
bility of undertaking R&D.

Con�rming hypothesis 5, having the option to abandon R&D projects signi�cantly increases the
likelihood of undertaking an R&D project when using R&D as the dependent variable. Focusing
on column (2), the marginal e¤ect amounts to 21 percentage points (see Table 5).
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Table 4
E¤ect of demand and supply lottery premium on innovation across groups
of �rms facing a di¤erent p� - Full sample

Dep. variables R&D PROCESS
(1) (2) (3) (4)

Demand lottery premium
THETA*G1 -0.474�� -0.494�� -0.247 -0.112

(0.214) (0.225) (0.234) (0.228)
THETA*G2 -0.109 -0.158 -0.023 0.023

(0.099) (0.098) (0.124) (0.121)
THETA*G3 0.068 0.019 0.021 0.011

(0.073) (0.070) (0.084) (0.083)
THETA*G4 0.313��� 0.171� 0.616��� 0.544���

(0.111) (0.101) (0.137) (0.135)
���G1 >= ���G2 (p-value) 0.045 0.068 0.176 0.282
���G1 >= ���G3 (p-value) 0.005 0.016 0.124 0.292
���G1 >= ���G4 (p-value) 0.000 0.002 0.000 0.004
���G2 >= ���G3 (p-value) 0.048 0.089 0.368 0.537
���G2 >= ���G4 (p-value) 0.001 0.004 0.000 0.001
���G3 >= ���G4 (p-value) 0.019 0.040 0.000 0.000
Supply lottery premium
LAMBDA1 0.173��� 0.141��� 0.201��� 0.183���

(0.024) (0.024) (0.027) (0.027)
Abandonment option
ABAN 0.200��� 0.123��� 0.151��� 0.118���

(0.035) (0.032) (0.038) (0.038)
LogL -1225.7 -1120.3 -1347.6 -1302.1
R2MF 0.243 0.298 0.092 0.112
R2MZ 0.461 0.560 0.227 0.283
Count R2 0.754 0.768 0.666 0.684
LMhet (p-value) 0.358 0.412 0.506 0.778
LMnorm (p-value) 0.224 0.068 0.867 0.282
# Obs. 2411 2411 2201 2201

Average marginal e¤ects of the probit estimations are reported. Robust standard errors in parentheses.
���Signi�cant at 1%; ��Signi�cant at 5%; �Signi�cant at 10%. In columns (1) and (3) SIZE, THREAT and
industry dummies are included as control variables but not reported. In columns (2) and (4) the full set
of control variables including industry dummies is used but not reported (see Table 2). For notes on
goodness-of-�t and speci�cation tests: see Table 2.
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Table 5
E¤ect of demand and supply lottery premium on innovation - Subsample of �rms belonging to G2

Dep. variables R&D PROCESS
(1) (2) (3) (4)

Demand lottery premium
THETA -0.029 -0.137 0.040 0.111

(0.122) (0.119) (0.152) (0.149)
Supply lottery premium
LAMBDA1 0.171��� 0.125��� 0.282��� 0.264���

(0.047) (0.045) (0.049) (0.050)
Abandonment option
ABAN 0.316��� 0.210��� 0.120� 0.071

(0.060) (0.055) (0.070) (0.073)
LogL -349.2 -308.0 -372.5 -352.3
R2MF 0.199 0.257 0.085 0.099
R2MZ 0.459 0.625 0.297 0.381
Count R2 0.759 0.807 0.686 0.707
LMhet (p-value) 0.425 0.056 0.035 0.070
LMnorm (p-value) 0.367 0.738 0.000 0.013
# Obs. 715 715 646 646

Average marginal e¤ects of the probit estimations are reported. Robust standard errors in parentheses.
���Signi�cant at 1%; ��Signi�cant at 5%; �Signi�cant at 10%. In columns (1) and (3) SIZE, THREAT and
industry dummies are included as control variables but not reported. In columns (2) and (4) the full set
of control variables including industry dummies is used but not reported (see Table 2). For notes on
goodness-of-�t and speci�cation tests: see Table 2.
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6 Conclusion

The novelty of this article lies in combining a theoretical and empirical analysis on the determi-
nants of R&D decisions.

From a theoretical point of view, we develop a model that contains many aspects of real-life R&D
decisions within a net present value framework. Besides entry threat, Bertrand competition and
multi-stage R&D with an abandonment option, our model includes demand uncertainty as well
as technical uncertainty, both modelled as a lottery. Each lottery becomes more divergent
when the di¤erence between the outcomes of the lottery increases. We relate di¤erences in
the degree of divergence to di¤erences in lottery premia. This allows us to consider a broader
set of demand and supply lotteries than only the subset of lotteries that preserve the mean, as
previously studied in the literature. The presence of a potential entrant in our model provides the
incumbent with additional bene�ts from undertaking R&D, a strategic e¤ect known as Arrow�s
replacement e¤ect. Under mild assumptions, relating (in the absence of technical uncertainty)
the cost of starting R&D to the cost of continuing R&D and the total cost of the R&D project to
the pro�t gain, we derive under which lottery probabilities more divergent demand and supply
lotteries positively or negatively a¤ect the decision to start R&D. Using CIS IV data for about
2400 German �rms, we �nd that for �rms facing lotteries where the good state is more likely
to prevail (i) a 10% increase in the degree of divergence of the demand lottery increases the
likelihood of undertaking R&D by 1.7 percentage points and (ii) a change from a low to a
high degree of divergence of the supply lottery increases the likelihood of undertaking R&D by
14.1 percentage points. For �rms facing a demand lottery where the bad state is most likely to
prevail, a 10% increase in the degree of divergence of the demand lottery decreases the likelihood
of undertaking R&D by 4.9 percentage points. A striking result of our theoretical analysis is
that a decrease in the lottery premium of an unfavorable demand lottery can positively a¤ect
the decision to start R&D due to the abandonment option that the incumbent possesses. We
estimate that having the option to abandon R&D projects signi�cantly increases the likelihood
of undertaking an R&D project. The marginal e¤ect amounts to 21 percentage points.

Our analysis can be extended in several promising ways. An obvious research avenue is to replace
the monopolist threatened by entry in our model by an oligopolistic market structure. The
distinction can be important since an oligopolistic setting makes the analysis of R&D incentives
more involved. Hence, Cournot competition should be considered and the distinction between
drastic and non-drastic innovation should be studied. Furthermore, it would be interesting to
investigate how sensitive our results are to di¤erences in the degree of entry threat. Also, a
welfare analysis of the social desirability of undertaking R&D in our setting can be conducted.
Now, our model is essentially about cost-reducing process innovations. Another research avenue
is to consider the development of a new product. This would necessitate an analysis of a
di¤erentiated product setting. The current availability of data on product innovations in the
CIS surveys would straightforwardly allow an empirical justi�cation. However, we should be
aware of the defect that CIS data are related to �rms and not to speci�c R&D projects. Ideally,
we would obtain a closer match between our theoretical model and our empirical analysis when
project-speci�c data are available.
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Appendix A: Proofs

Proof of Propositions 1 & 2: Consider the partial derivatives of the �ve arguments of � with

respect to �: @�
(1;1;1;1)
NPV

@� = (2p� � 1)��, @�
(1;1;1;0)
NPV

@� = (p� � p� + p�p�)��, @�
(1;1;0;0)
NPV

@� = p���,
@�

(1;0;1;0)
NPV

@� = p� (2p� � 1)��, @�
(1;0;0;0)
NPV

@� = p�p���. All �ve partial derivatives are either negative
or equal to zero when p� = 0 for all p� 2 [0; 1]. This is a su¢ cient condition to obtain Proposition
1. All �ve partial derivatives are either positive or equal to zero when p� 2 [ 12 ; 1] for all p� 2 [0; 1].
This is a su¢ cient condition to obtain Proposition 2. �

Proofs of Propositions 3a, 3b & 4: Before we prove Propositions 3a, 3b & 4 consequently, we
introduce Lemma 1 and Lemma 1�. Lemma 1 identi�es � for di¤erent ranges of the parameters
� and �. Lemma 1 holds over the complete parameter space of (c; p�; p�).

Lemma 1:
(1) � = �(1;1;1;1)NPV for all � 2 [0; 12 ] and for all � 2 [0;

�
1
2 � �

�
��].

(2) � = �(1;1;1;0)NPV for all � 2 [0; 12 ] and for all � 2 [
�
1
2 � �

�
��; �max].

(3) � = �(1;1;0;0)NPV for all � 2 [ 12 ; 1] and for all � 2 [0;
�
� � 1

2

�
��].

(4) � = �(1;1;1;0)NPV for all � 2 [ 12 ; 1] and for all � 2 [
�
� � 1

2

�
��; �max].

Proof of Lemma 1: From Assumptions 1-2, it follows that �max = I = ��
2 . Then, �

GB
NPV � 0

when
�
1
2 + �

�
�� � �. Therefore, �GBNPV � 0 for all � 2 [0; 1] and � 2 [0; �max]. As a result,

also �GGNPV � 0 for all � 2 [0; 1] and � 2 [0; �max] (cfr. Section 2.3). Then, �BGNPV � 0 when�
� � 1

2

�
�� � �. Therefore, �BGNPV � 0 for all � 2 [0; 12 ] and for all � 2 [0; �max], �

BG
NPV � 0

for all � 2 [ 12 ; 1] and for all � 2 [0;
�
� � 1

2

�
��] and �BGNPV � 0 for all � 2 [ 12 ; 1] and for all

� 2 [
�
� � 1

2

�
��]; �max]. Then, �BBNPV � 0 when

�
1
2 � �

�
�� � �. Therefore, �BBNPV � 0

for all � 2 [0; 12 ] and for all � 2 [0;
�
1
2 � �

�
��], �BBNPV � 0 for all � 2 [0; 12 ] and for all

� 2 [
�
1
2 � �

�
��; �max] and �BBNPV � 0 for all � 2 [ 12 ; 1] and for all � 2 [0; �max]. Lemma 1

follows from noting that � = �
(1;1;1;1)
NPV when �GBNPV � 0, �BGNPV � 0 and �BBNPV � 0, that

� = �
(1;1;1;0)
NPV when �GBNPV � 0, �BGNPV � 0 and �BBNPV � 0 and that � = �

(1;1;1;0)
NPV when

�GBNPV � 0, �BGNPV � 0 and �BBNPV � 0. �
We use Lemma 1, where � is expressed as a function of �, in the determination of x and y. For
the determination of v and w, it is useful to rewrite Lemma 1 as Lemma 1�where we express �
as a function of �. Again, Lemma 1�holds over the complete parameter space of (c; p�; p�).

Lemma 1�:
(1) � = �(1;1;1;1)NPV for all � 2 [0; �max] and for all � 2 [0; �max���� ].

(2) � = �(1;1;1;0)NPV for all � 2 [0; �max] and for all � 2 [�max���� ; �max+��� ].

(3) � = �(1;1;0;0)NPV for all � 2 [0; �max] and for all � 2 [�max+��� ; 1].

Proof of Proposition 3a: We prove that the smallest p� for which a positive e¤ect of an
increase in � on the decision to start R&D is found, equals 1

4 by showing that �(�) = 0 for

� = �
(1;1;0;0)
NPV , � = 1, p� = 1

4 , � = �max and p� = 1.

First, consider the partial derivatives of �(1;1;1;1)NPV , �(1;1;1;0)NPV and �(1;1;0;0)NPV with respect to � when

p� 2 [0; 12 ]. Note that
@�

(1;1;1;1)
NPV

@� = (2p� � 1)�� � 0, @�
(1;1;1;0)
NPV

@� = (p� � p� + p�p�)�� � 0 if
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and only if p� � p�
1�p� and

@�
(1;1;0;0)
NPV

@� = p��� � 0. A positive e¤ect due to an increase in � can
only be found when @�(�)

@� � 0 at some subdomain of �.
Second, from the fact that �GGNPV � �sNPV � �BBNPV for s 2 fGB;BGg (cfr. Section 2.3), it
follows that @�

(1;1;1;1)
NPV

@p�
= p�

�
�GGNPV ��BGNPV

�
+ (1� p�) (�GBNPV � �BBNPV ) � 0, @�

(1;1;1;0)
NPV

@p�
=

p�
�
�GGNPV ��BGNPV

�
+ (1� p�)�GBNPV � 0 and @�

(1;1;0;0)
NPV

@p�
= p��

GG
NPV + (1� p�)�GBNPV � 0.

From these observations and the de�nition of x, it follows that when p� = x, �(�) = 0 when
� = 1.

Third, from Lemma 1, �(1) = 0 holds for � = �
(1;1;0;0)
NPV . Solving �(1;1;0;0)NPV (1) = 0 yields

p� =
1
2��

3
2��+(2p��1)�

. We �nd x by solving min
�;p�

p�. For � = �max and p� = 1, x = 1
4 . �

Proof of Proposition 3b: We prove that the smallest p� for which a positive e¤ect of an
increase in � on the decision to start R&D is found, approximately equals 0:28 by showing that
�(�) = 0 for � = �(1;1;1;0)NPV , � = �max, p� = 0:28, � = 1, and p� =

p�
1�p� .

First, consider the partial derivatives of �(1;1;1;1)NPV , �(1;1;1;0)NPV and �(1;1;0;0)NPV with respect to � when

p� 2 [0; 12 ]. Note that
@�

(1;1;1;1)
NPV

@� = (2p� � 1)�� � 0, @�
(1;1;1;0)
NPV

@� = (�p� + p� + p�p�)�� � 0 if
and only if p� � p�

1�p� and
@�

(1;1;0;0)
NPV

@� = p�(2p� � 1)�� � 0 for all p� 2 [0; 1]. A positive e¤ect
due to an increase in � can only be found when @�(�)

@� � 0 at some subdomain of �.

Second, @�
(1;1;1;1)
NPV

@p�
= p�

�
�GGNPV ��GBNPV

�
+ (1� p�)

�
�BGNPV ��BBNPV

�
� 0 and @�

(1;1;0;0)
NPV

@p�
=

p�
�
�GGNPV ��GBNPV

�
� 0. Also, @�

(1;1;1;0)
NPV

@p�
= p�

�
�GGNPV ��GBNPV

�
+ (1� p�)�BGNPV � 0 if and

only if �BGNPV � 0. This is the case when � = �
(1;1;1;0)
NPV . From these observations and the

de�nition of v, it follows that when p� = v, �(�) = 0 when � = �max.

Third, from Lemma 1�, �(�max) = 0 holds for � = �
(1;1;1;0)
NPV when � 2 [0; 1]. Solving

�
(1;1;1;0)
NPV (�max) = 0 yields p� =

1
2�p��

1��+p�� . We �nd v by solving min�;p�
p� subject to p� � p�

1�p� .

For � = 1 and p� =
p�
1�p� , v = 0:280776 � 0:28. �

Proof of Proposition 4: We �rst prove that the lowest p� for which no negative e¤ect of an
increase in � on the decision to start R&D can be found, equals 12 by showing that �(�) = 0 for

� = �
(1;1;1;0)
NPV , � = 1

2 , p� =
1
2 , � = 0 and p� = 1.

First, a negative e¤ect due to an increase in � can only be found when @�(�)
@� � 0 at some

subdomain of �. Hence, � has to be equal to �(1;1;1;1)NPV or �(1;1;1;0)NPV when p� � p�
1�p� at some

subdomain of �.

Second, from the observation that @�
(1;1;1;1)
NPV

@p�
� 0,@�

(1;1;1;0)
NPV

@p�
� 0 and @�

(1;1;0;0)
NPV

@p�
� 0 (cfr. proof

of Proposition 3a) and from the de�nition of y, two possibilities arise. Either, �(�) = 0 for
� = 1

2 and p� = y, when (i) for � 2 [0; 12 ], � = �
(1;1;1;1)
NPV or � = �

(1;1;1;0)
NPV and p� � p�

1�p�
and for � 2 [ 12 ; 1], � = �

(1;1;0;0)
NPV or when (ii) for � 2 [0; 12 ], � = �

(1;1;1;1)
NPV and for � 2 [ 12 ; 1],

� = �
(1;1;0;0)
NPV or � = �

(1;1;1;0)
NPV and p� � p�

1�p� . Or �(�) = 0 for � = 1 and p� = y when, for

� 2 [0; 12 ], � = �
(1;1;1;1)
NPV or � = �(1;1;1;0)NPV and p� � p�

1�p� and for � 2 [
1
2 ; 1], � = �

(1;1;1;0)
NPV and

p� � p�
1�p� .
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Third, from Lemma 1, �( 12 ) = 0 holds for � = �
(1;1;1;0)
NPV for all � 2 [0; �max] when p� � p�

1�p� .

Solving �(1;1;1;0)NPV ( 12 ) = 0 yields p� =
1
2���p��

���(1�p�)� . We �nd y by solving max
�;p�

p� subject to

p� � p�
1�p� . For � = 0 and p� = 1, y = 1

2 . Since y cannot exceed
1
2 (cfr. Proposition 2), the

result follows.

We now prove that the lowest p� for which no negative e¤ect of an increase in � on the decision
to start R&D can be found, equals 1

2 by showing that �(�) = 0 for � = �
(1;1;1;0)
NPV , � = �max,

p� =
1
2 , � = 0 and p� = 1.

First, a negative e¤ect due to an increase in � can only be found when @�(�)
@� � 0 at some

subdomain of �. Hence, in order to �nd a negative e¤ect, � has to be equal to �(1;1;1;1)NPV ,

�
(1;1;0;0)
NPV or �(1;1;1;0)NPV when p

�
� p�

1�p� at some subdomain of �.

Second, from the observation that @�
(1;1;1;1)
NPV

@p�
� 0,@�

(1;1;1;0)
NPV

@p�
� 0 and @�

(1;1;0;0)
NPV

@p�
� 0 (cfr. proof

of Proposition 3b) and from the de�nition of w, it follows that when p� = w, �(�) = 0 when
� = �max.

Third, from Lemma 1�, �(�max) = 0 holds for � = �
(1;1;1;0)
NPV for all � 2 [0; 1] when p

�
� p�

1�p� .

Solving �(1;1;1;0)NPV (�max) = 0 yields p� =
1
2�p��

1��+p�� . We �nd w by solving max
�;p�

p� subject to

p
�
� p�

1�p� . For � = 0 and p� = 1, w =
1
2 . Since w cannot exceed

1
2 , the result follows. �
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Appendix B: Statistical annex

Table B.1
Distribution of the total sample, full sample and subsample

Distribution by: Total Samplea Full Sampleb Subsamplec

Industry
Food/tobacco 3.16 2.78 2.60
Textiles 2.97 2.70 2.34
Paper/wood/print 6.7 6.35 5.33
Chemicals 4.1 3.94 5.07
Plastic/rubber 3.62 3.94 3.77
Glass/ceramics 2.14 2.57 3.12
Metal 8.35 8.67 9.36
Machinery 5.99 6.93 7.28
Electrical engineering 4.88 5.23 6.24
Medical, precision and optical instruments 4.92 5.47 6.11
Vehicles 2.66 2.65 2.60
Furniture 2.62 2.86 2.21
Wholesale 4.38 3.98 4.16
Retail 2.35 2.20 2.34
Transport/storage/post 8.46 8.05 5.72
Banks/insurances 5.05 4.02 3.90
Computer/telecommunication 4.59 5.02 5.20
Technical services 8.79 9.79 11.18
Consultancies 3.77 3.32 3.38
Other business related services 7.06 6.72 5.33
Real estate/renting 2.07 1.91 2.47
Media 1.38 0.91 0.26
Size (Number of employees)
0-4 4.65 3.36 3.38
5-9 14.24 12.44 12.22
10-19 16.52 16.18 14.30
20-49 18.68 19.58 21.33
50-99 13.13 13.15 13.52
100-199 14.07 14.52 13.91
200-499 7.96 8.75 8.84
500-999 4.98 5.14 5.33
1000+ 5.78 6.89 7.15
Region
West Germany 66.86 66.11 63.07
East Germany 33.14 33.89 36.93
Innovation activities
Non-innovators 36.12 33.26 31.47
Innovatorsd 63.88 66.74 68.53
# Obs. 4776 2411 769

a Total sample refers to the net sample of the 2005 survey.
b Full sample denotes the estimation sample which is based on a merge of the 2005 and 2006 survey, excluding �rms
with missing values.

c Subsample marks the estimation sample of �rms which have answered the 2004, 2005 and 2006 survey, excluding
�rms with missing values.

d Innovators are de�ned as �rms having introduced product or process innovations in the period 2002-2004.
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Table B.2
Variable de�nitions
Variable Type De�nition
Dependent variables
R&D 0/1 1 if the �rm undertook R&D activities in year 2005.
PROCESS 0/1 1 if the �rm planned to undertake process innovations in year 2005.
Independent variables
Demand lottery premium
THETA c Average of the absolute values of the absolute changes in real sales

over the last two years (2002/2003 and 2003/2004)
G1 0/1 1 if the �rm experienced three negative demand shocks in the past three years,

i.e. a decrease in sales in 2002/2003, 2003/2004 and 2004/2005.
G2 0/1 1 if the �rm experienced two negative and one positive demand shock in the past three

years, i.e. two times a decrease and one increase in sales within the last three years.
G3 0/1 1 if the �rm experienced one negative and two positive demand shocks in the past three

years, i.e. one decrease and two times an increase in sales within the last three years.
G4 0/1 1 if the �rm experienced three positive demand shocks in the past three years,

i.e. a positive growth in sales in 2002/2003, 2003/2004 and 2004/2005.
Supply lottery premium
LAMBDA1 0/1 1 if high innovation costs were of high- to medium-size importance and led

to an extension of innovation projects in the period 2002-2004.
LAMBDA2 c Absolute value of the deviation between in year 2003 expected innovation expenditure for 2004

and realized innovation expenditure in 2004, in log.
DLAMBDA2 0/1 1 if a �rm did not observe uncertainty in R&D costs, i.e. if a �rm

expected zero innovation expenditure in 2003 for 2004 and realized zero innovation expenditure in 2004.
This corresponds to LAMBDA2=0 (without taking logs).

Abandonment option
ABAN 0-1 Variable proxying whether a �rm had the option to abandon R&D projects. It equals 1

if a �rm abandoned innovation projects in the past three years 2002-2004.
For all other �rms it is the predicted value of a probit regression explaining
the probability of abandoning innovation projects in the past three years (detailed
regression results are given in Table B.3).

Additional control variables
THREAT 0/1 3 dummy variables indicating whether the �rm perceived a high/medium/low

threat of its own market position due to the potential entry of new competitors
(reference group: �rms with no entry threat).

SIZE c Number of employees in 2004, in log.
NUMCOMP 0/1 3 dummy variables indicating the number of competitors: 0, 1-5 or 6-15

(reference group: more than 15 competitors).
COMP 0/1 3 dummy variables indicating the most important factors of competition:

price, quality and technological lead (multiple factors allowed).
DIVERS 0-100 Degree of product diversi�cation, measured as the share of turnover of most

important product in 2004.
EXPORT 0-1 Export intensity, measured as ratio of exports to sales in 2004.
RATING c Credit rating index of the �rm in year 2004, ranging between

1 (highest) and 6 (worst creditworthiness).
HIGHSKILLED 0-100 Share of employees with a university or college degree in 2004.
NOTRAIN 0/1 1 if the �rm did not invest in training in 2004.
TRAINEXP c Training expenditure per employee in 2004 (in log.) if NOTRAIN=0, otherwise 0.
MVTRAIN 0/1 1 if the information on training expenditure is missing in the data.
EAST 0/1 1 if the �rm was located in East Germany.

0=1 indicates a binary variable, c a continuous variable and 0-100 describes a continuous variable with range of 0 to 100.
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Table B.3
Probability of having abandoned an innovation project in years 2002-2004 - Probit estimation

Dep. variables ABANDON
marginal e¤ect (s.e.)

SIZE 0.030��� (0.005)
HIGHSKILLED 0.0008� (0.0004)
TRAINEXP 0.005� (0.003)
NOTRAIN -0.059 (0.036)
GROUP 0.031� (0.019)
EXPORT 0.038 (0.024)
Industry dummies (reference: food/tobacco)
Textiles 0.032 (0.076)
Paper/wood/print -0.090� (0.037)
Chemicals -0.024 (0.052)
Plastic/rubber 0.020 (0.064)
Glass/ceramics -0.113�� (0.034)
Metal -0.092�� (0.036)
Machinery -0.076 (0.040)
Electrical engineering -0.084� (0.038)
Medical, precision and optical instruments -0.079 (0.040)
Vehicles -0.051 (0.050)
Furniture -0.106�� (0.037)
Wholesale -0.092� (0.041)
Retail -0.056 (0.064)
Transport/storage/post -0.119��� (0.030)
Banks/insurances -0.138��� (0.024)
Computer/telecommunication -0.082 (0.041)
Technical services -0.109��� (0.035)
Consultancies -0.043 (0.057)
Other business related services -0.078 (0.041)
Real estate/renting -0.100 (0.056)
Media 0.077 (0.122)

LogL -815.5
R2MF 0.066
R2MZ 0.116
Count R2 0.825
# Obs. 1870

ABANDON is a dummy variable which equals 1 if a �rm with innovation activities has abandoned innovation projects
in the three years 2002-2004. Based on this regression the predicted value ABAN is constructed as described in
Table B.2.
Average marginal e¤ects of the probit estimations are reported. Robust standard errors in parentheses.
���Signi�cant at 1%; ��Signi�cant at 5%; �Signi�cant at 10%.
For notes on goodness-of-�t and speci�cation tests: see Table 2.
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