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Abstract

This note describes methods for solving deterministic and stochas-
tic versions of the discrete-time Ramsey model of economic growth.
We derive an iterative procedure for solving the Euler equation and
apply it to an example adapted from Pan (2007).



The deterministic Ramsey model

Consider the following discrete-time intertemporal optimization problem

max
{kt}

∞∑
t=0

βtu(ct)

subject to

ct = f(kt)− kt+1

k0 = given,

where 0 < β < 1. The problem is to find a sequence of accumulated stock
{kt} that will result in a consumption flow {ct = f(kt)−kt+1} that maximizes
the discounted utility sum. We will not discuss here conditions under which
this particular problem has a finite solution. Instead we will simply assume
that a unique solution exists for every non-negative value of initial capital
k0.

The above problem is an example of the deterministic Ramsey model.
It is stationary and it is not difficult to show that solutions satisfy

kt+1 = ϕ(f(kt))

for some ‘investment function’ ϕ(w), where ϕ(w) does not depend on k0.
Hence the problem may be rephrased as

max
ϕ(.)

∞∑
t=0

βtu(ct)

subject to

ct = f(kt)− kt+1

kt+1 = ϕ(f(kt))
k0 = given

For ease of notation we will write w = f(k).1 It is well-known2 that the
optimal investment path {kt+1} satisfies the following intertemporal condi-
tion for t = 0, 1, 2, ... (the Euler equation):

u′(wt − kt+1) = βu′(wt+1 − kt+2)f ′(kt+1) (1)
1In a typical application w would be the sum of current income (y, say) and the

remaining value of the capital stock ((1− δ)k): w = y + (1− δ)k.
2E.g., see Stokey and Lucas (1989).
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which shows that the real problem is to find k1: the rest of the sequence
kt will then follow by repeatedly solving for kt+1 in terms of kt. The Euler
equation leads to the following functional equation for ϕ(w):

For all w ≥ 0: u′(w − ϕ(w)) = βu′(f(ϕ(w))− ϕ(f(ϕ(w))))f ′(ϕ(w)).

A solution to the stationary Ramsey problem converges to a steady state
k∗ which (therefore) must satisfy the Ramsey rule

1 = βf ′(k∗).

One way to solve the Ramsey problem is to simply try various k1 and see if
the resulting path for kt gets close enough to the steady state (‘shooting’).
A reverse (and more practical) procedure is to linearize the dynamic path of
kt around the steady state, make a very small step out of the steady state
according to the linearized dynamics and then follow equation (1) backwards
in time until a point near k = 0 is reached, yielding (w,ϕ(w)) pairs. By
perturbing the initial very small step out of steady state one can trace the
graph (i.e. (w,ϕ(w)) pairs) of the function ϕ(w).3

Both the forward and backward shooting approach work fine but have
the disadvantage that they do not generalize readily to a solution of the
stochastic Ramsey model that we consider below. Among the methods that
do generalize are the following:

‘Binning’ Binning reduces the infinite dimensional optimization problem
to a finite dimensional one by aggregating w and k values in value
brackets (‘bins’). A so-called Bellman equation can be associated with
the optimization problem stating that for given k and corresponding
w = f(k) the program value V (w) must satisfy

V (w) = max
k′

u(w − k′) + βV (f(k′)).

Solving this equation for V (·) is equivalent to solving the Ramsey
problem. If values for w and k are restricted to finite sets K =
(k(1), ..., k(n)) and W = (w(1), ..., w(m)), then the function V (·) re-
duces to an m-vector V = (V (w(1)), ..., V (w(m))) and u(w − k′) re-
duces to an (n, m) matrix. The Bellman equation becomes

For all j, Vj = max
i

uij + βVi.

3This is a discrete-time version of the so-called time elimination method. (E.g., Barro
and Sala-i-Martin, 1995, “Appendix on mathematical methods”.)

2



Starting from an initial value of V = 0, iteration of this equation
yields a sequence of V that converges monotonically to a solution of
the discrete equation (since β < 1). This is an approximation to
the infinite dimensional problem. Likewise the argmax of the discrete
equation readily leads to an approximation of the investment function
ϕ. Elbers and Gunning (2007) use the binning approach to solve the
stochastic Ramsey model to be discussed below.

Parametrization of the value/investment function. Solution by binning
leads to step functions for V and ϕ which could be too ragged in
practice. A way out is to fit a simple parametric family of functions to
the discrete solution for V or ϕ and find the set of parameter values
that best (in any given sense) solve the original Bellman equation.

Successive solution of the intertemporal equation. The previous solution
method amounts to ‘value function iteration’. Alternatively, a solu-
tion can be found by ‘policy function iteration’. Omitting the time
subscript equation (1) can be rewritten as

u′(w − k) = βu′(f(k)− k′)f ′(k) (2)

where k′ = ϕ(f(k)). Note that the above equation is the first order
condition of the following maximization problem, where k′ is now taken
to be fixed .

max
k

u(w − k) + βu(f(k)− k′). (3)

Let k = Φ(w, k′) solve the above problem, then
ϕ(w) = Φ(w,ϕ(f(ϕ(w)))). This suggests the following iteration.

Start from a grid of values for w = w1, ..., wn and initial values for
k′1, ..., k

′
n. Solve problem (3) for each wi and put ϕi = ϕ(wi, k

′
i).

Update the values for k′: ideally the updated values would be k′i =
ϕ(f(ϕi)) but since the function ϕ(·) is not known we locate the grid
values wi close to values of f(ϕi) and interpolate/extrapolate the cor-
responding values for ϕi to get new values of k′i. Solve problem (3)
again for the new values of k′i and repeat the procedure until the ϕi

no longer change.

A more formal description of the iterative process is as follows. Let r
indicate the iteration count, {ϕr

i } the rth approximation to ϕ(wi), and
ϕ̂r(·) the rth approximation to ϕ(·). In practice, the approximating
function ϕ̂r(·) would be based on interpolation and extrapolation (IP ),
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linear or otherwise, of the current set of approximations (wi, ϕ
r
i ), also

taking into account that ϕ(0) = 0:

ϕ̂r(·) = IP ({ϕr
i }) .

With this notation the next iterate is given by

ϕr+1
i = arg max

k
u(wi − k) + βu(f(k)− ϕ̂r(f(ϕr

i ))),

for i = 1, ..., n. The converged value limr→∞ ϕ̂r(·) is the ultimate ap-
proximation to the investment function ϕ(·). Its accuracy will depend
on the number of grid points wi and on the shape of the investment
function ϕ.

Generalization to stochastic versions of the Ramsey model

The last three approaches mentioned in the previous section can all be gen-
eralized to solve stochastic versions of the Ramsey model. The first, binning,
is discussed in Elbers and Gunning (2007); the second, parametrization, is
an obvious variation of the first with the added advantage that (once the
parametric form is chosen) it is not necessary to ‘bin’ the random shocks as
well; the third is described in this section.

In the stochastic versions of the Ramsey model applied in Elbers and
Gunning (2007) and Pan (2007) stock levels k lead to random wealth w =
f(k, s) that is divided into consumption and future stocks. Random shocks
are denoted by s. The functional equation for the optimal investment func-
tion ϕ becomes

u′(w − ϕ(w)) ≡ βEu′(f(ϕ(w), s)− ϕ(f(ϕ(w), s)))
∂f

∂k
(ϕ(w), s), (4)

where E denotes the expectation operator. The iterative scheme mentioned
above changes accordingly:4

ϕr+1
i = arg max

k
u(wi − k) + βEu(f(k, s)− ϕ̂r(f(ϕr

i , s))).

In principle the expectation must be computed for every value of k con-
sidered so that in practice the problem could be very costly to solve. Here

4This is based on the first-order condition for the solution of

max
k

u(w − k) + βEu(sf(k)− ϕ(sf(ϕ(w)))),

and subsituting k = ϕ(w).

4



we use a stochastic quasi gradient (SQG) method,5 which gradually approx-
imates the expectation in parallel with the search for an optimal k, but
in many cases we have seen that straightforward numerical integration (for
each k considered) or even crude approximations to the expectation work
fine.6

Examples7

1. A deterministic Ramsey model

Consider the following model which is similar to Pan (2007).

u(c) = log(c)
β = 0.9

f(k) =
(
1 + 0.208665 k0.363

)1.80992
+ 0.9 k

f(k, s) = sy

(
1 + 0.208665 k0.363

)1.80992
+ 0.9 k sk,

where sk and sy are asset and income shocks. For the deterministic case
the set of wi, ϕi values is listed in table 1 and graphed in figure 1. The
condition (2) is satisfied to within machine precision, both at the set of
wi values and the midpoints 0.5(wi + wi+1) when optimal investment is
computed by means of the converged function ϕ̂(·).

2. A stochastic Ramsey model

For the stochastic case we choose (sy, sk) to be lognormal, with unit ex-
pectation. The variances of log(sy) and log(sk) are equal to 0.25, and the
covariance is equal to 0.2. The set of wi, ϕi values is listed in table 2 and
graphed in figure 2. The ratio of the left-hand side and the right-hand
side of condition (4) is tabulated for the set of wi values in table 3 and at
midpoints in table 4. This amounts to a precision within 1% of the true
investment function. Finally, figure 3 graphs the deterministic and stochas-
tic investment policies together. The two differ at higher values of w, the
deterministic investment being slightly higher.

5See e.g., Wets (2005).
6For instance, in Pan (2008) each expectation is computed as the average over (the

same) hundred draws from the shock-pair distribution. Pan (2008, Chapter 4, Appendix
A) reports a very close approximation to the Euler equation..

7Mathematica code for the computations in this section is available from the author
upon request.
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Figure 1: Investment function in the deterministic Ramsey model

Figure 2: Investment function in the Stochastic Ramsey model
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Figure 3: Investment function in the deterministic and stochastic Ramsey
model.
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w ϕ

0.01 0.0000361472
0.02 0.000108407
0.03 0.000207159
0.04 0.000329199
0.05 0.000472882
0.06 0.000637263
0.07 0.00082179
0.08 0.00102616
0.09 0.00125022
0.1 0.00149397
0.2 0.00505967
0.3 0.0109641
0.4 0.0197818
0.5 0.0321941
0.6 0.0488639
0.7 0.070295
0.8 0.0967186
0.9 0.128063
1. 0.164012
1.1 0.204102
1.5 0.396274
1.9 0.622607
2.3 0.868977
2.7 1.12884
3.1 1.39833
3.5 1.67507
3.9 1.95755
4.3 2.24471

Table 1: Investment function in the deterministic Ramsey model
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w ϕ

0.01 0.0000672907
0.02 0.000110104
0.03 0.000210509
0.04 0.00033423
0.05 0.000480395
0.06 0.000648734
0.07 0.000834478
0.08 0.00104408
0.09 0.00127117
0.1 0.00152136
0.2 0.00518124
0.3 0.0113158
0.4 0.0204627
0.5 0.0333911
0.6 0.050716
0.7 0.0727426
0.8 0.0995818
0.9 0.131158
1. 0.167132
1.1 0.20666
1.5 0.392224
1.9 0.606471
2.3 0.839481
2.7 1.08268
3.1 1.33161
3.5 1.58754
3.9 1.84329
4.3 2.09772

Table 2: Investment function in the stochastic Ramsey model
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w LHS(4)/RHS(4)
0.01 1.47171
0.02 1.00108
0.03 1.0011
0.04 1.00024
0.05 1.00029
0.06 1.00125
0.07 0.999379
0.08 1.00026
0.09 0.999515
0.1 1.00012
0.2 1.00012
0.3 1.00146
0.4 1.00041
0.5 1.00047
0.6 1.00071
0.7 1.00039
0.8 1.0001
0.9 1.00039
1. 1.00123
1.1 1.00145
1.5 1.00147
1.9 1.00112
2.3 1.00269
2.7 1.00295
3.1 1.00161
3.5 1.00204
3.9 0.999681
4.3 0.995176

Table 3: Intertemporal condition in the stochastic Ramsey model at grid-
point values.
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w LHS(4)/RHS(4)
0.015 0.870474
0.025 1.00674
0.035 0.999461
0.045 0.99987
0.055 0.999006
0.065 0.999823
0.075 1.00016
0.085 1.00015
0.095 1.00046
0.15 0.995398
0.25 0.999063
0.35 0.999182
0.45 0.99954
0.55 0.999274
0.65 0.999373
0.75 0.999775
0.85 0.99981
0.95 0.999157
1.05 0.998541
1.3 0.998439
1.7 0.999145
2.1 0.998184
2.5 0.997048
2.9 0.997792
3.3 0.998083
3.7 0.998842
4.1 1.00233

Table 4: Intertemporal condition in the stochastic Ramsey model, between
gridpoint values.
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