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Abstract—We propose a first order bias correction term for the Gini index to reduce the 

bias due to grouping. The first order correction term is obtained from studying the 

estimator of the Gini index within a measurement error framework. In addition, it 

reveals an intuitive formula for the remaining second order bias which is useful in 

empirical analyses. We analyze the empirical performance of our first order correction 

term using income data for 15 European countries and the US, and show that it reduces 

a considerable share of the bias due to grouping. 
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I. Introduction 

 

The Gini index is the most commonly applied inequality measure in the 

literature, probably because of its link with Lorenz curves which give an intuitive and 

graphical representation of inequality. Its main application has been in the measurement 

of inequalities in income and wealth, but it has also a long history in other areas. For 

example, it has appeared as an inequality measure of health indicators (among others Le 

Grand, 1987, Pradhan et al., 2003), educational attainment (among others Sheret, 1988, 

Lin, 2007), business concentration (among others Hart, 1971, Buzzacchi and Valletti, 

2006), scientific publications and citations (among others Allison and Stewart, 1974), 

legislative malapportionment (Alker, 1965), astronomy (Abraham et al., 2003), and 

many others. 

The most frequently cited shortcomings of the Gini index are its violation of 

subgroup decomposability (see e.g. Bourguignon, 1979), and the bias due to data that is 

grouped by categories or into ranges (see e.g. Gastwirth, 1972).
1
 The latter issue 

commonly arises with income or tax statistics that are grouped into deciles or quintiles 

for confidentiality reasons. Grouped data is also the main source of information on 

income distributions provided through the POVCALNET interactive computational tool 

of the World Bank (World Bank, 2008), and recent publications on regional and global 

inequality have also used grouped data (among others Sala-i-Martin, 2006). Previous 

empirical research suggests the grouping of income into relatively small number of 

categories imparts a non-negligible bias. For example, using the 1984 US Current 

Population Survey and the 1979-1980 Israeli Family Expenditure Survey, Lerman and 

                                                 
1
 Lambert and Aronson (1993) and Aronson et al. (1994) have successfully rationalized the violation of 

subgroup decomposability as a desirable property of the Gini index as a tool for analyzing the 

redistributive effect of an income tax. 
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Yitzhaki (1989) show that the bias from using grouped data with 10 and 5 income 

categories is about 2.5 and 7 percent of the Gini as calculated from micro data. 

Several solutions have been proposed to cope with the dependence of the Gini 

index on the number of groups. First, a common approach is to reduce the bias due to 

grouping by estimating parametric functions that satisfy the properties of a theoretical 

Lorenz curve.
2
 The estimated parameters are then used to estimate the Gini coefficient 

(among others Kakwani, 1980, Kakwani, 1986, Villaseñor and Arnold, 1989, Ryu and 

Slottje, 1996). This approach is popular among applied researchers (among others Datt 

and Ravallion, 1992, Bigsten and Shimeles, 2007) and has been implemented in the 

POVCAL software of the World Bank (2008). Despite its popularity, empirical 

uncertainty is the major disadvantage of this approach. Schader and Schmid (1994) 

show that most parametric functions give unreliable estimates of the Gini coefficient. 

A second approach is to define non-parametric bounds on the Gini index 

(Gastwirth, 1972, Mehran, 1975, Murray, 1978, Fuller, 1979, Ogwang, 2003, Ogwang, 

2006) which has the advantage that – compared to parametric functions – it does not 

make any assumption on the shape of the underlying Lorenz curve. These non-

parametric bounds have been shown to outperform the approach using parametric 

functions (Schader and Schmid, 1994), but do require information on the lower and 

upper limit of each group.
3
 The intuition is that the lower bound of the Gini corresponds 

to a situation where all individuals within a group have the same amount, while the 

upper bound reflects a situation where inequality is maximal in each of the groups. 

                                                 
2
 These are: twice differentiable, convex, monotonically increasing and passing through ( )0,0  and ( )1,1 . 

3
 The various methods mainly differ with respect to the information requirements of the overall and 

group-specific means. 
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In a recent study Deltas (2003) has attempted to address the related issue of 

small-sample bias, particularly in the context of business concentration. Here the bias 

arises not because of grouping, but is due to only having a few observations such as 

firms in an industry (Spiezia, 2003, Blyde, 2006, Li, 2006, Reynolds-Feighan, 2007). 

Deltas (2003) approach involves dividing the estimated Gini by its potential maximum 

to reduce the bias due to small samples which he denotes as a first-order correction 

term. The main advantage of this procedure is its relative simplicity and transparency in 

application. However, as the bias of the Gini is distribution specific, there might be a 

remaining (second-order) bias after applying this procedure. Despite the latter bias, his 

Monte Carlo simulations show that the procedure manages to reduce the bias in small 

samples. 

In this paper, we develop a simple first-order correction term to deal with the 

bias of the Gini due to grouping by treating grouping as a form of measurement error. 

We first revisit the first-order bias correction term of Deltas (2003) that addresses small-

sample bias, and show it worsens matters if applied to grouping. Our first-order 

correction term reduces the bias due to grouping considerably when applied to the 

income distributions of the 15 European countries and the US. It also provides an exact 

expression for the remaining second-order bias with an intuitive interpretation, and thus 

allows assessing the bias reduction of the first-order correction term for various shapes 

of the underlying distribution functions. An additional advantage is that it allows for 

groupings of unequal size. 

The remainder of this paper contains four sections. We start by revisiting Deltas’ 

(2003) first-order correction for the Gini. The next section derives and discusses our 

first-order correction. We then illustrate the bias due to income groupings of the Gini 
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and the performance in terms of reducing the bias of our first-order correction in the 

third section. The final section contains the conclusions. 

 

II. The first-order correction term of Deltas (2003) revisited 

 

The Gini can be estimated using several equivalent formulas. For our purposes 

the following one is the most useful (Kakwani et al., 1997), i.e. 

1

2

1

n

i i

i
n

y R

G
ny

== −
∑

        (1) 

where iy  is the income of individual 1, ,i n= …  with individuals ranked from poor to 

rich, i.e. 1 2 ny y y≤ ≤ ≤⋯ , ( )1 1 2iR n i−= −  is the fractional income rank (Lerman and 

Yitzhaki, 1989), and 1

1

n

ii
y n y−

=
= ∑  denotes average income.

4
 Equation (1) is a 

consistent, but downwardly biased estimator of the Gini index due to the convexity of 

the underlying Lorenz curves, but the magnitude of the bias is distribution specific 

(Lerman and Yitzhaki, 1989). 

Deltas (2003) addresses this small-sample bias of the Gini by considering the 

inverse of the Gini in equation (1) that applies if all income would be concentrated 

among the richest person. It is well known that in finite samples the upper bound of the 

Gini is ( )1 1n n− − . One way to correct this bias is to multiply the Gini by the inverse of 

                                                 
4
 We discuss the Gini of income, but obviously everything also holds for any variable which distribution 

is analyzed. 
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this maximum, i.e. ( ) 1
1n n

−
− , so one obtains an upper bound of the Gini index 

equalling +1 which is independent of n.
5
 

Deltas (2003) shows that his first-order correction term reduces the absolute 

value of the small-sample bias using a Monte Carlo simulation, but as the correction 

term only depends on n, a second-order bias remains, except for the case where the 

distribution of income is exponential. The magnitude of the remaining bias is increasing 

in the variance and kurtosis of the underlying distribution and is reducing in the 

skewness. The latter is in line with the Gini being mostly sensitive to transfers close to 

the mode as there are a high number of individuals between the transferring parties 

(Borooah, 1991). 

 

III. A first-order correction term for grouping 

 

In this section, we present a first-order correction term for the bias of the Gini 

due to grouping and discuss its properties. It derives from three steps. First, we compare 

equation (1) for n observations and for a situation where one constructs K  groups from 

these n observations.
6
 Second, we draw a parallel with the econometric literature on 

measurement error models (for example Cameron and Trivedi, 2005, chapter 26). Third, 

we let the number of observations approach infinity, while keeping the number of 

groups (and their relative size) fixed. 

                                                 
5
 The first-order correction term removes the small-sample bias of the absolute mean difference. Deltas 

(2003) shows that this unbiasedness of the absolute mean difference does not translate to the Gini since 

the Gini is a non-linear combination of the absolute mean difference and the mean. 
6
 Note the similarity with the difference between the OLS and between estimator for panel models 

(Cameron and Trivedi, 2005, chapter 21). 
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Kakwani et al. (1997) have shown that the Gini index in equation (1) can also be 

calculated as the OLS estimate of β , i.e. 

22 i
R i i

y
R

y
σ α β ε= + +         (2) 

where ( ) ( ) 1
2 2 21 12R n nσ

−
= −  is the variance of 

iR , iε  is an error term with zero mean 

and α , β  are parameters.
7
 It is important to note that the equality between equation (1) 

and (2) holds under the properties of OLS as arithmetic tool, and that no additional 

assumptions must be made.
8
 

 

A. Groups of equal size 

 

In order to understand the bias of the Gini that results from grouping n 

observations into K  groups of equal size
9
, it is helpful to see that equation (2) reduces 

to 

22 K

g K K

g gR

y
R

y
σ α β ε= + +        (3) 

where we have added ‘K ’-superscripts to refer to the grouped data case, 

( ) ( )1
1 2gR K n g

−
= −  is the fractional income rank of group 1, ,g K= … , 

( )( ) 1
2 2 21 12K
R

K Kσ
−

= −  is the variance of gR , and 
gy  is the average income within 

group g . The OLS estimate of 
Kβ  equals the Gini index calculated from the K  groups 

and is smaller (if there is income variation within at least one of the K  groups) or equal 

                                                 
7
 Consult appendix A for a derivation of the variance of the fractional rank. 

8
 Consult appendix B for a derivation of the equality between equation (1) and (2). 

9
 For ease of exposition, we first derive the first-order correction term for equally sized groups, i.e. n K  

observations per group. The intuition and derivation is similar for unequally sized groups and is shortly 

discussed in the next section. 
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(if there is no income variation in each of the K  groups) to the estimate of the Gini 

based on n observations, i.e. 

1

2

1

K

g g

gK K

n n

y R

G G
Ky

β β== = − ≤ =
∑

      (4) 

The goal of the remainder of this section is to establish an exact relationship 

between nG  and K

nG  using equations (2) and (3). Comparing the latter equations reveals 

that both RHS and LHS differ. The difference in the RHS can be interpreted as a 

measurement error problem, i.e. we observe the rank of income at the level of the 

groups rather than one at the level of the n observations. More exactly, let’s start from 

equation (2) and add an equation that describes the measurement error 

g g

i i iR R δ= +          (5) 

where g

iδ  is the measurement error with zero mean and g

iR  is the fractional income 

rank of group g  defined at the individual level, i.e. every individual in group g  gets 

the fractional income rank of group g , i.e. 
gR . Assuming that we do observe the actual 

income level iy  but not the actual fractional income rank iR , i.e. substituting equation 

(5) into equation (2), gives 

( )22 g gi
R i i i

y
R

y
σ α β ε βδ= + + −       (6) 

It is impossible to estimate β  from equation (6) using OLS (as an arithmetic tool) since 

we do not observe ( )gi iε βδ− . Instead, we can only estimate 

22 MER MER gi
R i i

y
R

y
σ α β η= + +        (7) 
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where iη  is a zero mean error term, and the superscript ‘MER’ refers to measurement 

error. Using some algebra, exploiting the fact g

iδ  and g

iR  are uncorrelated
10

, the fact 

that iε  and iR  are uncorrelated (which holds due the using OLS as an arithmetic tool 

only), it is easy to show that the OLS estimate of 
MERβ  in equation (7) and the OLS 

estimate of 
nGβ =  in equation (2) are related

11
 

1

2

1

K

n
g

i i
MER i

n

R

n
G

δ ε
β

σ
== +
∑

       (8) 

In order to derive an expression relating nG  and K

nG , we need to establish one 

additional relationship that addresses the difference between the LHS of equations (2) 

and (3). After some algebra, one can establish that
12

 

( )
( )

2 22

2 2 2

1

1K

MER K KR
n n

R

K n
G G

n K

σ
β

σ

 − 
 = =   −    

     (9) 

which shows that 
MERβ  is related to K

nG  by the ratio of the variances of the actual 

fractional income rank and that of the fractional income rank of group g  – 

( ) ( )
1

2 2 2 21 1K n n K
−

 − −  . 

Combining equation (8) and (9), allows us to come up with a useful equation 

that expresses the Gini estimated from n observations as a function of – among others – 

the Gini estimated from a grouping of these n observations, i.e. 

                                                 
10

 g

iδ  and g

iR  are uncorrelated since g

iR  equals the average iR  of group g , i.e. 

( ) 0g g g g

i i i i ii g i g
R R R Rδ

∈ ∈
= − =∑ ∑ , and hence ( )1 1

0
n Kg g g g

i i i ii g i g
R Rδ δ

= = ∈
= =∑ ∑ ∑ . 

11
 Consult appendix C for a full derivation. 

12
 Consult appendix D for a full derivation. 
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( )
( )
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1

2 2 22 2
1
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1 12 1
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∑
∑  (10) 

Assuming that n→+∞  and K < +∞  (i.e. the number of groups in the population and 

their relative size is fixed) results in ( )
2

2
12cov ,

1

K g

i i

K
G G

K
δ ε∞ ∞

 = − −
. Equation (10) 

reveals some interesting insights. First, we have only used the properties of OLS as an 

arithmetic tool and the properties of the fractional rank to come up with equation (10). 

Second, equation (10) provides a first-order correction term and an expression for the 

remaining second-order bias. The first-order correction ( ) 1
2 21K K

−
−  resembles Deltas’ 

term, but is smaller and has two intuitive interpretations, i.e. it equals a “grouped data” 

adjustment of the variance of the fractional rank, and it is also related to the inverse of 

the covariance between the actual fractional rank at the individual level and that of 

group g , i.e. ( ) ( )
11

2 21 12cov ,gi iK K R R
−−

 − =   .
13

 The latter interpretation is intuitive as 

a high covariance between the grouped and actual fractional ranks implies a low first-

order correction term. The second order bias ( ) ( ) 1
2 212cov , 1g

i i K Kδ ε
−

− −  also has an 

intuitive interpretation as it is a function of the covariance between the measurement 

error and the error term from equation (2). A few things can be said about this 

covariance. First, although one can always observe g

iδ , iε  is unobservable and thus the 

value and sign of this covariance is always unknown. Nevertheless, if one has an idea 

on the shape of the distribution function of iy , it is straightforward to get an idea on its 

sign and magnitude. For example the second order bias is zero for a uniform distribution 

as the variance of iε  is equal to zero. Second, the covariance will be smaller the higher 

                                                 
13

 More information on the derivation can be found in appendix E. 
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the number of groups K , which is easily inferred from the equality 

( ) ( )cov , cov ,g g

i i i iRδ ε ε=  (see also appendix E). Third, although the sign of the 

covariance cannot be predicted a priori, it is likely to be negative (i.e. implying an 

undercorrection after applying the first-order correction term) for an asymmetric 

unimodal distribution (i.e. left or right skewed). For example, an extreme long right tail 

is likely to result in a negative covariance (see equation (2) and (5)). 

 

B. Groups of unequal size 

 

Until now we have assumed that the K  groups are equally sized. Equation (10) 

is however easily generalised to groups of unequal size. Assume that 
un  is the number 

of observations in group 1, ,u K= …  (with u  referring to ‘unequal group size’), that 

( ) ( )11

1
1 2

u

u u jj
R n n n

−−

=
= +∑  equals the fractional income rank of group u , and that the 

variance of the latter is defined as ( ) ( )1 22

1
1 2K

u

K

u uR u
n n Rσ −

=
= −∑ . We have now 

sufficient information to derive the equivalent expressions of equation (3) and (4): 

22 K
u

u uu
u u u u u uR

y
n n R n n

y
σ α β ε= + +      (11) 

, 11

22

1 1

KK

u u uu u u
K u u uu
n n

K
n y Rn y R

n
G G

ny Ky
β ==

  
    = = − = − ≤

∑∑
   (12) 

Equation (11) is a Weighted Least Squares (WLS) generalisation of equation (3), and 

equation (12) reduces to equation (4) if all groups have equal size. The relationship 

between ,K u

nG  and nG  is established by combining equation (2) with an ‘unequal size’ 

generalization of equation (5) 
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u u

i i iR R δ= +          (13) 

where u

iδ  is the measurement error with zero mean and u

iR  is the fractional income rank 

of group u  defined at the individual level. This results in
14

 

2
, 1

2 2

1

K K
u u

n
u

i i
K u iR

n n

R R

n
G G

δ ε
σ
σ σ

== −
∑

       (14) 

It is straightforward to see that equation (11) and (14) are identical, except for the 

unequal group sizes. The first order correction term still measures the ratio of the 

variance of the actual fractional rank and that of the fractional rank of group u  and is 

easy to calculate, and we still obtain an expression of the second-order bias with the 

covariance interpretation. 

 

IV. Empirical illustration 

 

A. Data 

 

In this section, we illustrate the dependence of the Gini index of income on the 

number of groups, and show the performance of our first-order correction term in 

reducing the bias if applied to income distributions. First, we analyzed this bias for the 

Netherlands using administrative data on more than five million individual income tax 

files for 2004. The advantage of administrative data is that it allows us to compare the 

Gini indices obtained from income groupings with the one obtained from this 

population. Unfortunately, it was not possible to obtain administrative data for other 

countries. Instead, we used European microdata from the European Community 

                                                 
14

 Consult appendix F (and appendix C) for a full derivation. 
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Household Panel (ECHP) and US microdata from the Medical Expenditure Panel 

Survey (MEPS). As we report below, the findings based on these microdata are very 

much in line with those resulting from the Dutch administrative data. 

We have not resorted to Monte Carlo simulations since one might draw 

empirically irrelevant inferences from these. As discussed in the introduction, the 

approach using parametric functions to reduce the bias from grouping suffers from 

empirical uncertainty. This suggests that Monte Carlo simulations using parametric 

cumulative distribution functions will be of limited value in understanding the 

performance of our first-order correction term if applied to actual income distributions. 

While the results from the ECHP and the MEPS do not allow us to compare with the 

Gini in the population in the respective countries, it nevertheless gives useful 

information on the variability of the first order correction as it compares the reduction of 

the underestimation across a set of 16 countries. 

The ECHP was designed and coordinated by EUROSTAT. It contains 

socioeconomic information for individuals aged 16 or older, uses a standardised 

questionnaire, and covers 15 EU member states: Austria (AT), Belgium (BE), Denmark 

(DK), Finland (FI), France (FR), Germany (DE), Greece (GR), Ireland (IRL), Italy (IT), 

Luxembourg (LU), Netherlands (NL), Portugal (PT), Spain (ES), Sweden (SE) and the 

United Kingdom (UK). We use the first wave for all countries, i.e. the 1994 wave, 

except for Austria that joined the survey in 1995, Finland that joined in 1996, and 

Sweden that joined in 1997. We supplement this with US income microdata from the 

2001 wave of MEPS. We use the first wave of the ECHP as it does not suffer from 

attrition, and thus has more observations which is useful for illustrating the first-order 

correction term and the dependence of the Gini upon the number of income groups. 
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Note that all calculations in this section only serve the purpose of illustrating the 

methods explained in the previous sections, and not to deliver any hard evidence on 

income inequality in the EU and US. 

The key variable for this study is income. The Dutch income tax files provide 

annual equivalent disposable household income (where the equivalence-factor gives 

weight 1 to the head of the household, each following household member over 18 

receives weight 0.38, while household members under 18 receive a weight – depending 

on their age and birth order – between 0.19 and 0.30). The ECHP income measure is 

annual disposable (i.e. after-tax) household income, which is all net monetary income 

received by the household members during the previous year. It includes income from 

work (employment and self-employment), private income (from investments and 

property and private transfers to the household), pensions and other direct social 

transfers received. No account has been taken of indirect social transfers (e.g. 

reimbursement of medical expenses), receipts in kind and imputed rent from owner-

occupied accommodation. The MEPS income measure is similarly defined.
15

 We 

measure all incomes in national currencies.
16

 The income variable was further divided 

by the OECD modified equivalence scale in order to account for household size and 

composition (giving a weight of 1.0 to the first adult, 0.5 to the second and each 

subsequent person aged 14 and over, and 0.3 to each child aged under 4 in the 

household). Table A.1 in appendix G reports descriptive statistics of equivalent income 

                                                 
15

 Note that two individuals in the MEPS data report negative incomes. We have recoded these negative 

into zero income values (see also Chen et al., 1982). 
16

 We did not take the trouble to convert the national currencies into a common currency and did neither 

deflate to correct for inflation as the Gini index is a relative inequality measure that is invariant to 

proportional income changes. The national exchange rates (national currency=1 euro) for 1994 were 

39.66 Belgian francs, 7.54 Danish krone, 6.58 French francs, 1.92 German mark, 288.03 Greek drachma, 

0.79 Irish pound, 1915.06 Italian lire, 39.66 Luxembourgian francs, 2.16 Dutch guilders, 196.90 

Portuguese escudo, 158.92 Spanish peseta, 0.78 British pounds. The 1995 exchange rate was 13.18 

Austrian schilling, the 1996 one was 5.83 Finnish markka, and the 1997 one was 8.65 Swedish krona 

(EUROSTAT, 2003). The 2001 US exchange rate was 0.90 US dollars (OECD, 2008). 
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in each of the countries. As we are analyzing the behaviour of estimates of the Gini 

index for varying grouping sizes, it is reassuring to note that all samples are sufficiently 

large (at least 5500 observations, except for Luxembourg that has about 2000 

observations). 

The analysis takes three steps. First, we calculate the Gini index based on the 

Dutch administrative data and the ECHP and MEPS datasets. Second, we create income 

categories from the full samples; and analyze the effect that follows from these 

groupings. Third, we illustrate the performance of our first-order correction term in 

terms of reducing the underestimation.
17

 

 

B. Full sample Gini indices 

 

Figure 1 presents the estimates of the Gini indices based on the Dutch 

administrative data and the full samples of the ECHP and the MEPS where we have 

ranked countries from low to high relative income inequality. The point estimates are 

obtained using equation (2) and the confidence intervals for the microdata result from a 

bootstrap procedure (see e.g. Mills and Zandvakili, 1997).
18,19

 Figure 1 illustrates that 

the 15 European countries and the US differ widely in terms of relative income 

inequality. The Gini index of the three Scandinavian countries – that have the lowest 

                                                 
17

 We have replicated each of the three steps for random subsamples of the MEPS 2001 (i.e. 90, 80, 

70,…, 10 percent of the sample size) to check whether sample size might affect our findings. As 

expected, we confirmed all conclusions based on the full sample. The only difference was plausible, i.e. a 

reduction of the statistical precision. 
18

 We use a fractional rank that accommodates individuals with identical equivalent incomes, i.e. 

( ) ( ) ( ){ }1 0.5 'i i i iR n q y q y q y−= + −    where ( ) ( )
1
1

n

i k ik
q y y y

=
= <∑  and ( ) ( )

1
' 1

n

i k ik
q y y y

=
= ≤∑ . 

19
 We draw 1000 bootstrap samples on the level of the fractional income rank – rather than on the level of 

the individual – to account for individuals with identical equivalent income levels. We adjust the standard 

bootstrap sampling procedure such that the probability to draw a fractional income rank is inversely 

related to the number of individuals with the corresponding equivalent income level. From the resulting 

1000 bootstrap samples, we compute standard errors and confidence intervals. 
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inequality – is almost half of that in Portugal and the US. It is also the case that the 

sampling variability differs widely across countries, but this is only partially explained 

by differences in sample size (compare e.g. France and Spain). 

 

FIGURE 1. – GINI INDICES IN THE EU AND US IN SELECTED YEARS: POINT 

ESTIMATES AND 95 PERCENT CONFIDENCE INTERVALS 
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Source: Netherlands (admin) refers to authors’ calculations from linked Dutch administrative data 2004 

 

C. Gini index and the number of income groupings 

 

The estimates presented in Figure 1 are in this study considered as the 

benchmark estimates against which the effect of grouping the data and the performance 

of our first-order correction in terms of reducing the underestimation are evaluated 

where we have explicitly included the Dutch administrative data to have also results 
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based on a very high number of observations, i.e. more than 5 million observations. 

First, we subdivide the full sample into 50 equally sized (equivalent) income categories. 

Second, we calculate average equivalent income for each income category. Finally, we 

calculate the Gini index from these average equivalent incomes using equation (3). This 

three step procedure is repeated for 49 to 2 income categories, and the resulting Gini 

indices are expressed as a proportion of the benchmark Gini’s estimated from the full 

sample, i.e. ( )100 K

n nG G×  with 50, ,2K = … . The resulting proportions are presented 

in figure 2. In table A.2 in appendix G, we also present the point estimates and the 

standard errors of the Gini indices calculated from the income groupings in the ECHP 

and MEPS.
20

 

 

                                                 
20

 The standard errors are obtained using the same bootstrap procedure, with the difference that we have 

drawn income groups, rather than fractional income ranks. 
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FIGURE 2. – THE GINI AND ITS DEPENDENCE ON THE NUMBER OF INCOME 

GROUPINGS IN THE EU AND US 
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Source: Netherlands (admin) refers to authors’ calculations from linked Dutch administrative data 2004 

 

Figure 2 reveals several interesting insights. First, due to the convexity of 

Lorenz curves, the Gini index based on grouped data always underestimates the one in 

the full sample, i.e. all lines lie underneath 100. Second, the underestimation – 

expressed as ( )100 1 K

n nG G × −   – is similar across countries. The largest horizontal 

difference between the lines in figure 2 is observed at 2 income groups, i.e. US has the 

lowest underestimation of 30.88 percent and France has the highest underestimation of 
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34.91 percent. The range of the underestimation (about 4% percent) seems low given 

the much higher value of the underestimation itself. The cross-country similarity of the 

underestimation suggests that the shape of the underlying distribution functions is 

similar across countries, but that the spread differs (otherwise the Gini would take a 

similar value in all countries). In addition, it shows that there is scope for improving 

cross-country inequality comparisons using the first-order correction terms if there 

cross-country differences in the number of income categories. Third, the 

underestimation of the Gini index from grouping the data increases at an increasing 

pace when lowering the number of income categories. It seems that most of the action is 

taking place for 20 or less income groups. In the extreme case of 2 income groups, the 

Gini index based on grouped income data is only between 65 and 70 percent of the one 

based on the full sample. For 5 income groups, the underestimation is between 9 and 6 

percent, and for 10 income groups, the underestimation still amounts to about 2 to 3 

percent. These percentages do represent important underestimations. In order to get an 

intuitive feeling for their magnitude, it is worthwhile to make some comparisons. 

Consulting table A.2 in appendix G to compare with the sampling variability of the Gini 

index in the full sample shows that the underestimation is not negligible. Comparing the 

evolution of the Gini over time in the full sample is a second benchmark. For all 

countries in the ECHP, we have calculated the proportional change in the Gini between 

the first available and last wave using a balanced panel, and calculated the 

underestimation that results from grouping the data in the first wave of the balanced 

panel. We find that in all countries, the proportional change in the Gini over time (8 

years for most countries) is smaller than the underestimation resulting from 5 income 

groups. A final comparison to grasp the importance of the underestimation from income 
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groupings, is to consider the impact of income grouping in one country on the income 

inequality ranking of countries in Figure 1. This is illustrated in Table 2 in section F, 

and again confirms the importance of the underestimation (see below for additional 

discussion). Finally, given the similarity of the bias in the Dutch administrative data and 

the underestimation in the ECHP and the MEPS, and given that the first-order-

correction does not depend upon the income distribution, we stick to the latter 

microdatasets in the remainder of the analysis. 

 

D. Determinants of the underestimation from income groupings 

 

We analyze in more detail some potential determinants of the magnitude of the 

underestimation using pooled regression on 784 observations, i.e. 49 income groupings 

for 16 countries. Our baseline regression model results from rearranging and dividing 

equation (10) by nG  and assuming that n→+∞  and K < +∞ . The resulting model, i.e. 

2

2

1 12K

K

G K

G K G
η∞

∞ ∞

−
= +  with ( )cov ,gi i Kδ ε η=  and 2, ,50K = … , can be estimated with 

OLS by excluding a constant. In other words, this model estimates the 49 covariance 

terms using between-country variation. We find that the latter regression fits the data 

well (i.e. the uncentered and standard R² equal 1.0006 and 0.9817 respectively). All 49 

covariance terms are negative, their value increases monotonically with the number of 

income groupings, and they are precisely estimated.
21

 This shows two things. First, the 

combination of the good fit of the model with the low negative covariance terms shows 

that our first-order correction term is likely to reduce the underestimation considerably 

                                                 
21

 For example, the covariance equals -0.00183 for two income groupings, and -0.00003 for 50 groups. 

The Huber-White standard errors are 0.00013 and 3.32e-06 respectively. 
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for income distributions. Second, applying our first order correction term will – for the 

income data of these 16 countries – underestimate the Gini resulting from the full 

sample, and the lower the number of income categories the higher the underestimation. 
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TABLE 1. – DETERMINANTS OF THE UNDERESTIMATION IN THE ECHP AND 

MEPS 

-0,0556* 0,0342* 0,7316* -0,0041

var -0,0057* -0,0114* 0,0024* 0,0031*

skew 0,0003 0,0012+ 0,0001 0,0000

kurt -0,0002 -0,0010 -0,0007 -0,0006

AT 0,0017* 0,0003 -0,0011+ 0,0178*

BE -0,0007+ -0,0012* 0,0000 0,0061*

DK 0,0002 -0,0038* -0,0017+ 0,0513*

FI 0,0000 -0,0032* 0,0120* 0,0545*

FR -0,0047* -0,0026+ 0,0025* -0,0251*

DE -0,0011+ -0,0007 0,0005+ -0,0045*

GR 0,0006* 0,0040* 0,0011* -0,0435*

IT 0,0024* 0,0038* -0,0003 -0,0180*

LU 0,0017* 0,0017* -0,0006§ 0,0005*

NL 0,0023* -0,0003 -0,0016+ 0,0319*

PT 0,0011* 0,0060* 0,0015+ -0,0621*

ES 0,0022* 0,0038* -0,0001 -0,0213*

SE 0,0024* -0,0025 -0,0025* 0,0617*

UK -0,0018* 0,0013 0,0019* -0,0396*

US 0,0033* 0,0083* 0,0007 -0,0644*

K=2 -0,3223* -0,3220* -0,3223* -0,3225* 0,1052* 0,1015* 0,1052* 0,1052*

K=3 -0,1654* -0,1652* -0,1654* -0,1656* 0,0550* 0,0524* 0,0550* 0,0550*

K=4 -0,1029* -0,1028* -0,1029* -0,1030* 0,0348* 0,0328* 0,0348* 0,0348*

K=5 -0,0711* -0,0710* -0,0711* -0,0712* 0,0244* 0,0227* 0,0244* 0,0244*

K=6 -0,0524* -0,0523* -0,0524* -0,0525* 0,0183* 0,0168* 0,0183* 0,0183*

K=7 -0,0404* -0,0403* -0,0404* -0,0405* 0,0143* 0,0130* 0,0143* 0,0143*

K=8 -0,0321* -0,0320* -0,0321* -0,0322* 0,0115* 0,0104* 0,0115* 0,0115*

K=9 -0,0262* -0,0261* -0,0262* -0,0263* 0,0095* 0,0085* 0,0095* 0,0095*

K=10 -0,0218* -0,0217* -0,0218* -0,0218* 0,0080* 0,0071* 0,0080* 0,0080*

K=11 -0,0184* -0,0183* -0,0184* -0,0184* 0,0069* 0,0060* 0,0069* 0,0069*

K=12 -0,0158* -0,0157* -0,0158 -0,0158* 0,0059* 0,0052* 0,0059* 0,0060*

K=13 -0,0136* -0,0136* -0,0136* -0,0137* 0,0052* 0,0045* 0,0052* 0,0052*

K=14 -0,0119* -0,0118* -0,0119* -0,0119* 0,0046* 0,0039* 0,0046* 0,0046*

K=15 -0,0104* -0,0104* -0,0104* -0,0105* 0,0041* 0,0035* 0,0041* 0,0041*

K=16 -0,0092* -0,0092* -0,0092* -0,0092* 0,0037* 0,0031* 0,0037* 0,0037*

K=17 -0,0082* -0,0081* -0,0082* -0,0082* 0,0033* 0,0028* 0,0033* 0,0033*

K=18 -0,0073* -0,0073* -0,0073* -0,0073* 0,0030* 0,0025* 0,0030* 0,0030*

K=19 -0,0065* -0,0065* -0,0065* -0,0066* 0,0027* 0,0022* 0,0027* 0,0027*

K=20 -0,0059* -0,0058* -0,0059* -0,0059* 0,0025* 0,0020* 0,0025* 0,0025*

K=21 -0,0053* -0,0053* -0,0053* -0,0053* 0,0023* 0,0018* 0,0023* 0,0023*

K=22 -0,0048* -0,0048* -0,0048* -0,0048* 0,0021+ 0,0017* 0,0021* 0,0021*

K=23 -0,0043* -0,0043* -0,0043* -0,0043* 0,0019+ 0,0015* 0,0019* 0,0019*

K=24 -0,0039* -0,0039* -0,0039* -0,0039* 0,0018+ 0,0014* 0,0018* 0,0018*

K=25 -0,0036* -0,0035* -0,0036* -0,0036* 0,0016§ 0,0013* 0,0016* 0,0016*

K=26 -0,0032* -0,0032* -0,0032* -0,0033* 0,0015§ 0,0012* 0,0015* 0,0015*

K=27 -0,0029* -0,0029* -0,0029* -0,0030* 0,0014 0,0011+ 0,0014* 0,0014*

K=28 -0,0027* -0,0027* -0,0027* -0,0027* 0,0013 0,0010+ 0,0013+ 0,0013*

K=29 -0,0024* -0,0024* -0,0024* -0,0025* 0,0012 0,0009+ 0,0012+ 0,0012+

K=30 -0,0022* -0,0022* -0,0022* -0,0022* 0,0011 0,0008§ 0,0011+ 0,0011+

K=31 -0,0020* -0,0020* -0,0020* -0,0020* 0,0011 0,0007§ 0,0011+ 0,0011+

K=32 -0,0018* -0,0018* -0,0018* -0,0018* 0,0010 0,0007 0,0010+ 0,0010+

K=33 -0,0016* -0,0016* -0,0016* -0,0017* 0,0009 0,0006 0,0009+ 0,0009+

K=34 -0,0015* -0,0015* -0,0015* -0,0015* 0,0009 0,0006 0,0009§ 0,0009+

K=35 -0,0013* -0,0013* -0,0013* -0,0014* 0,0008 0,0005 0,0008§ 0,0008§

K=36 -0,0012+ -0,0012+ -0,0012* -0,0012* 0,0007 0,0005 0,0007§ 0,0008§

K=37 -0,0011+ -0,0011+ -0,0011* -0,0011+ 0,0007 0,0004 0,0007§ 0,0007§

K=38 -0,0010§ -0,0009§ -0,0010+ -0,0010+ 0,0006 0,0004 0,0006 0,0006

K=39 -0,0008 -0,0008 -0,0008+ -0,0009§ 0,0006 0,0004 0,0006 0,0006

K=40 -0,0007 -0,0007 -0,0007§ -0,0007 0,0006 0,0003 0,0006 0,0006

K=41 -0,0006 -0,0006 -0,0006 -0,0006 0,0005 0,0003 0,0005 0,0005

K=42 -0,0006 -0,0005 -0,0006 -0,0006 0,0005 0,0003 0,0005 0,0005

K=43 -0,0005 -0,0004 -0,0005 -0,0005 0,0005 0,0002 0,0005 0,0005

K=44 -0,0004 -0,0004 -0,0004 -0,0004 0,0004 0,0002 0,0004 0,0004

K=45 -0,0003 -0,0003 -0,0003 -0,0003 0,0004 0,0002 0,0004 0,0004

K=46 -0,0002 -0,0002 -0,0002 -0,0003 0,0004 0,0002 0,0004 0,0004

K=47 -0,0002 -0,0002 -0,0002 -0,0002 0,0003 0,0001 0,0003 0,0003

K=48 -0,0001 -0,0001 -0,0001 -0,0001 0,0003 0,0001 0,0003 0,0003

K=49 -0,0001 0,0000 -0,0001 -0,0001 0,0003 0,0001 0,0003 0,0003

cste 0,9977* 1,0147* 1,0015* 0,9939* -0,0003 -0,2232* -0,0007 0,0002

n 784 784 784 784 784 784 784 784

R² 0,9983 0,9983 0,9976 0,9981 0,9544 0,9752 0,9241 0,9242

country 0,0000 0,0000 0,0000 0,0000

skew/kurt 0,0142 0,0000 0,0000 0,0000

nG

K

n nG G− K

n nG G− K

n nG G− K

n nG G−K

n nG G K

n nG G K

n nG G K

n nG G

 
Note: K

nG : Gini index estimated from K  income groupings, nG : Gini index estimated from the full sample, var: variance divided 

by the squared mean of equivalent income in the full sample, skew: skewness divided by the cube of the mean of equivalent income 
in the full sample, kurt: kurtosis divided by the fourth power of the mean of equivalent income in the full sample,  country: p-value 

of a test on joint significance of the country dummies (excluded category is Ireland), skew/kurt: p-value of test on joint significance 

of skew and kurt, *: significant at 1% level, +: significant at 5% level; §: significant at 10% level, in all occasions we used the 
Huber-White covariance matrix 
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Besides the above regression model that naturally results from section III, we 

also report results from other regression models to analyse some potential determinants 

of the underestimation in table 1. The models in the 4 left columns use a relative 

indicator of the underestimation whereas the 4 right columns use an absolute indicator.
22

 

We compute Huber-White standard errors and consider four sets of explanatory 

variables. First, we include dummies for the number of income groups (50 income 

groups is the excluded category). Second, we include country dummies (Ireland is the 

excluded category).
23

 Third, we include the value of the Gini index calculated from the 

full sample. Finally, we included scale-free summary measures of the shape of the 

underlying income distribution in the full sample, much along the lines of Deltas (2003). 

We included the normalized variance (var) – i.e. divided by the square of mean 

equivalent income –, the normalized skewness (skew) – i.e. divided by the cube of the 

mean –, and the normalized kurtosis (kurt) – i.e. divided by the fourth power of the 

mean. Mean equivalent income was not included as (a) the mean was used to normalize 

the other summary measures of the income distribution, (b) as it is expressed in 

different currencies, and (c) since the Gini index is a relative inequality measure. 

We draw 4 lessons from the estimates in table 1. First, we prefer the regressions 

in the left columns since the treatment in section III naturally leads to a proportional 

presentation of the underestimation, but also since the R²’s show that it is more difficult 

to explain the underestimation expressed as an absolute difference. Second, the 

dummies for the number of income groups explain the majority of the underestimation. 

This is easily seen from a comparison between figure 2 and the estimates in the first 

                                                 
22

 We use both relative and absolute indicators to provide a more complete understanding of the 

underestimation, but also since the relative indicators seem more appropriate for a within country analysis 

and the absolute differences for between country analyses. 
23

 There are insufficient degrees of freedom to check the relevance of interactions between the country 

dummies and the number of income groups. 
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column of table 1, but also from observing that the estimates are hardly influenced by 

the inclusion of other explanatory variables. Third, the Gini calculated from the full 

sample tends to increase the underestimation (see 2
nd

 and 6
th

 column). Fourth, the 

‘average’ differences between countries are small, but nevertheless jointly significant as 

can be seen from the ‘country’ row. Therefore, we try to explain what features of the 

income distribution might be driving these country differences. We exclude the country 

dummies and include the three summary measures of the underlying (full sample) 

income distribution. We find that all three measures are jointly significant (see row 

skew/kurt), but only the estimate of the variance is individually significant showing that 

it has a similar effect as the Gini calculated from the full sample, which seems plausible 

as both are dispersion measures. This is also in line with our earlier observation that the 

cross-country similarity of the underestimation suggests that the shape of the underlying 

distribution functions is similar across countries, but that the spread differs. 

 

E. Reduction of underestimation after first order correction 

 

This section discusses the performance of our first-order correction term as 

applied to income distributions. The results are presented in figure 3 – which has a 

similar setup as figure 2 – and some more detailed results are available in table A.3 in 

appendix G. The lines with unfilled circles represent the median value for the Gini as a 

proportion of the Gini based on the full sample and the shaded region is the area 

between the minimum and maximum values across all countries presented in figure 2. 

The lines with filled circles give the remaining underestimation after applying our first-

order correction term based on equation (10). The figure also contains Deltas (2003) 
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first-order correction to illustrate the consequences of applying a small-sample bias 

correction method as a method of adjusting the bias that arises from grouping. The 

remaining underestimation is represented with unfilled diamonds. 

 

FIGURE 3. – GINI AND ITS DEPENDENCE ON THE NUMBER OF INCOME 

GROUPINGS: FIRST ORDER CORRECTION TERMS 
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Note: Gini min, median, max: the minimum, median and maximum value (across countries) of the Gini estimated from grouped 
income data as a proportion of the Gini index calculated from the full sample; Deltas min, median, max: the minimum, median and 

maximum value (across countries) of the Gini index estimated from grouped data after applying Deltas’ first-order correction term, 

i.e. ( )1 1K K− − , as a proportion of the Gini index calculated from the full sample; Corr min, median, max: the minimum, median and 

maximum value (across countries) of the Gini index estimated from grouped data after applying our first-order correction term 

resulting from equation (10), i.e. ( ) 1
2 21K K

−
− ; as a proportion of the Gini index calculated from the full sample. 

Source: Netherlands (admin) refers to authors’ calculations from linked Dutch administrative data 2004. 

 

A first thing to note is that our first-order correction term reduces the 

underestimation in each of the 16 countries. This is evident in figure 3, but can in more 

detail be inferred from table A.3 in appendix G. Second observation is that application 
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of our first-order correction term never results in an overestimation of the Gini index. 

Although the sign of the remaining underestimation cannot be signed a priori, its 

magnitude is similar across the 16 countries, as can be inferred from the estimates of the 

covariance term in equation (10) (consult column ‘covar’ in table A.3). Third 

observation is that our first-order correction term removes more than half of the 

underestimation, but this obviously implies a higher remaining percentage point 

underestimation at a low number of income groups (consult the increasing value of 

‘covar’ in table A.3). Fourth observation is that applying Deltas’ first-order correction 

term always results in an overestimation that is larger (in absolute value) compared to 

the original underestimation resulting from applying the Gini to grouped income data. 

This finding shows that Deltas’ correction should not generally be used to correcting 

bias that arises due to groupings of income. The same advice applies to our correction 

term, if it is applied to small-sample bias.
24

 A final interesting observation is that for 

6n≤  the maximum underestimation after applying our first-order correction term is 

always smaller than the minimum original underestimation. The latter suggests – and 

we tend to believe that the comparison between minimum and maximum is an 

extremely conservative test – that cross-country comparative research with different 

number of income groupings per country is almost guaranteed to improve after applying 

our first-order correction term. 

 

                                                 
24

 A Monte Carlo experiment using MEPS income data showed that the correction proposed by Deltas 

almost completely removed the small sample bias for Gini indices calculated using between two and 50 

individuals, while the first order correction proposed here mitigated rather than removed the bias. 
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F. Case study: income inequality rankings and first-order corrections 

 

Although figure 3 shows that our first-order correction term removes a 

substantial part of the underestimation for each country separately, we believe it is 

worthwhile to present a case study on the potential of our first-order correction term to 

reduce the effect of income groupings on the income inequality ranking of the 16 

countries. More exactly, we have analyzed how the income inequality ranking of the 

countries is affected if one were to use the Gini indices based on grouped income data 

reported in figure 2 for one country and the benchmark indices in figure 1 for all other 

countries, and to what extent our first-order correction term manages to restore the 

ranking in figure 1.
25

 We prefer a case study where only the Gini for one country is 

affected by income groupings – as compared to a case where the Gini’s of all countries 

are based on a different number of income groupings –as it is more likely to lead to a 

conservative assessment of the performance of our correction term. 

 

                                                 
25

 An alternative case study could focus on the effect of income groupings on longitudinal variation, and 

would reach similar conclusions. This would for example refer to the case where the number of income 

categories used in a questionnaire changes over time. 
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TABLE 2. – OUR FIRST-ORDER CORRECTION TERM: A CASE STUDY ON CROSS-COUNTRY COMPARISONS IN THE ECHP 

AND MEPS 

G C G C G C G C G C G C G C G C G C G C G C G C G C G C G C G C G C

full 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

20 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -3 -2

15 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 -4 -2

14 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 -1 -4 -3

13 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 -1 -4 -3

12 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 -1 -1 -5 -3

11 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 -1 0 -1 0 0 0 -1 -1 0 0 -1 -1 -7 -4

10 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 -1 0 -1 0 0 0 -1 -1 0 0 -1 -1 -7 -4

9 0 0 0 0 -1 -1 0 0 0 0 0 0 -1 0 -2 -1 -2 0 0 0 -1 0 -1 -1 0 0 -1 -1 0 0 -1 -1 -10 -5

8 0 0 0 0 -1 -1 0 0 0 0 0 0 -1 0 -2 -1 -2 -1 0 0 -1 -1 -2 -1 0 0 -1 -1 0 0 -1 -1 -11 -7

7 0 0 0 0 -1 -1 0 0 0 0 0 0 -1 0 -2 -1 -2 -1 0 0 -1 -1 -2 -1 0 0 -1 -1 0 0 -1 -1 -11 -7

6 0 0 0 0 -1 -1 0 0 0 0 0 0 -1 -1 -2 -2 -3 -2 0 0 -1 -1 -2 -2 -1 0 -1 -1 0 0 -1 -1 -13 -11

5 0 0 -1 0 -2 -1 0 0 0 0 -1 0 -1 -1 -2 -2 -3 -2 -1 0 -2 -1 -2 -2 -2 0 -2 -1 -1 0 -1 -1 -21 -11

4 0 0 -1 0 -2 -1 0 0 -1 0 -1 0 -2 -1 -3 -2 -4 -3 -3 0 -4 -1 -5 -2 -3 -1 -4 -1 -2 0 -3 -1 -38 -13

3 0 0 -1 0 -2 -1 -2 0 -2 0 -2 -1 -3 -1 -4 -2 -5 -3 -5 -1 -5 -1 -7 -2 -6 -1 -5 -1 -5 0 -5 -1 -59 -15

2 0 0 -1 -1 -2 -2 -3 0 -4 -1 -5 -1 -6 -2 -7 -3 -8 -4 -8 -3 -9 -4 -10 -5 -9 -3 -10 -3 -10 -2 -11 -2 -103 -36

US TotalSpain France UK Greece PortugalBelgium Luxembourg Ireland Germany ItalySweden Denmark Finland Netherlands Austria

 
Note: full: rank in full sample, 50-2: change in rank from income grouping/our correction term in the respective country while using the Gini from the full sample for all other countries, total: sum of rank 

changes over all countries, G: Gini index, C: Gini after our first order correction. 

Countries are ranked according to full; light grey implies an improvement over the ranking using the Gini based on grouped data. 
 



 29

Table 2 presents the results of our case study. The row “full” shows the income 

inequality ranking using the full samples. The column “G” shows the change in the 

ranking from grouping the data for the country under study (and using the full sample 

Gini indices for the other countries). For example, Germany drops 4 places (from rank 9 

to rank 5) for 4 income groups. The column “C” shows the change in the country 

ranking after applying our correction term to the country under study. Comparing 

columns “C” and “G” reveals the potential of our correction in restoring the income 

inequality ranking in row “full”. Cells in light grey imply that applying the correction 

term comes closer to the “full” country ranking. In the final column “Total”, we sum the 

change in the country rankings over all countries (i.e. the sum over the separate 

columns) giving an overall indicator of the performance of our correction term. A final 

issue to note is that our case study has a few built-in tendencies. Since we use the 

change in the country ranking, it is obvious that one is more likely to observe changes 

for countries that are ranked in the middle and at the top. In addition, since income 

groupings always lead to an underestimation of the Gini index, the “full sample” 

country ranking of the lowest ranked country (i.e. Sweden) will never change. 

We find that changes in the income inequality ranking occur frequently, 

especially in case of a low number of income groups (see “G” columns). We also find 

that our correction term never worsens the income inequality ranking based on the 

grouped data, and often improves upon the latter. In other words, although it does not 

always restore the full sample country ranking, it never harms to use it in our case 

study. 
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V. Discussion and conclusion 

 

This paper analyses the bias of the Gini index due to grouped data complicating 

comparisons of Gini indices calculated from such data. We develop a first-order 

correction term that results from studying the Gini in a measurement error framework, 

and show that it is inversely related to the covariance between the fractional rank at the 

individual and group level. Besides its simplicity and transparency, our procedure 

provides an exact and intuitive expression for the remaining and distribution-specific 

second-order bias allowing assessing a priori the performance of the first-order 

correction term for various shapes of the underlying distribution functions. We show 

that it exactly removes the bias due to income groupings for a uniform distribution, and 

is likely to remove a substantial share of the bias for an asymmetric unimodal 

distribution. 

Using Dutch administrative data with more than 5 million observations and 

microdata from the ECHP and MEPS on income distributions of 15 European countries 

and the US, we illustrate that the underestimation from income groupings is similar 

across the 16 countries. Despite the wide variability in the Gini indices in the full 

samples, the value of the Gini has only a small effect on the magnitude of the 

underestimation. We further illustrate that the underestimation increases at an increasing 

pace when lowering the number of income categories, and that the underestimation is 

substantial relative to the sampling variability of the Gini index, its evolution over time, 

and cross-country differences in the value of the Gini. 

Next, we illustrate the performance of our first-order correction term, and show 

that it reduces the underestimation of the Gini due to grouping considerably in all 
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countries. We reached similar conclusions from a case study on the performance of our 

correction term in restoring the income inequality ranking if one were to use the Gini 

indices based on grouped income data for one country and the Gini’s in the full samples 

for all other countries. In addition, our results suggest that the bias resulting from 

income groupings is fundamentally different from small-sample bias although both 

entail a small number of data points in practice. The latter bias is generally better 

addressed using the first-order correction term of Deltas (2003), but his correction 

should not be used to correcting bias that arises due to groupings of income. 

A final issue concerns the terminology we have used throughout this paper. We 

have deliberately used ‘income groupings’ to abstract from a situation where the 

individuals in each income group have the same income. In the latter case, the Gini 

index estimated from grouped data is not biased, and thus application of our correction 

term would introduce an upward bias. ‘Income groupings’ instead point to a situation 

where microdata/official income statistics/etc. are grouped into a limited number of 

income groups, and thus neglecting within income group income variation leads to an 

underestimation. 

Although this paper deals with the bias due to income groupings of the Gini 

index, we believe it is also useful for the widely used concentration index. For example, 

Wagstaff et al. (1991), Wagstaff and van Doorslaer (2000), and Burström et al. (2005) 

present applications to bivariate distributions in the health domain (inequalities in 

health/health care use/health care expenditures by income and occupational categories, 

etc.), Lambert (2001) gives an overview of applications to taxation (progressivity, 

redistributive effect, etc.), and many other applications have been reported in the 

economics literature. Its main difference with the Gini is that the fractional rank and the 
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cumulative shares refer to different variables (for example cumulative shares of health 

over occupational groups), and thus the bias of the concentration index can be both 

down- and upward as the underlying concentration curves need not be convex and may 

have inflection points. 

An important assumption in the theoretical and empirical part of this paper is 

that income groupings result in measurement error within income groups only, i.e. we 

assume that measurement error and the fractional group ranks are not correlated, and 

that the income ranking in the full sample is measured without error. This assumption 

allows studying the bias due to income groupings of the Gini in isolation, but neglects 

other types of measurement error. When answering a survey for example, a respondent 

may round off his/her reported income instead of reporting an exact amount or more 

generally income might be misreported. In combination with income groupings, the 

latter might introduce a misclassification bias to estimates of the Gini, i.e. an individual 

might be classified into the wrong income group based on his reported income. It is 

clear that misclassification and bias due to income groupings might be offsetting each 

other, and these issues have been analyzed for the variance of log incomes, the Theil 

and Atkinson inequality index by van Praag et al. (1983). Although we believe future 

research should analyze the relative importance of both biases in the Gini index, our 

results show that the bias from income groupings can be considerable. 
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APPENDIX 

 

A. Derivation of the variance of the fractional rank 

 

Let 
2

Rσ  be the variance of the fractional rank 
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B. Equality between Gini estimated from equation (1) and (2) 

 

Let us use OLS as an arithmetic tool to calculate β  in equation (2), i.e. 
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C. Derivation of equation (8) 

 

Let us start from equation (7). The OLS point estimate of 
MERβ  equals 
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Next we use fact that the LHS of equation (6) and (7) are similar, such that 
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Note that 1
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1 2 . Note that we have not relied upon n→+∞  to derive both properties. 
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which similarly reduces to 

1 1

2

1

1

2

i

n n
g g g

i i i
MER i i

n
g

i

i

R R

R

ε β δ
β β = =

=

−
= +

 − 
 

∑ ∑

∑
      (C.4) 

It is important to note that the properties of the fractional rank make the measurement 

error g

iδ  uncorrelated with the fractional rank of group g  defined at the individual 

level g

iR  (see footnote 11). Combining this information with the definition of the 

measurement error in equation (5), equation (C.4) reduces to 
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Finally, we should remember that OLS as an arithmetic device imposes on equation (2) 
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and the fact that equation (2) learns that nGβ = , equation (C.5) reduces to 
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D. Derivation of equation (9) 

 

In order to derive equation (9) it is worthwhile to notice that equation (7) – here 

(D.1) – and (D.2) give the same point estimate of 
MERβ  since

1
 equation (D.2) is 

basically a ‘grouped data average’ of equation (D.1) 
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Note that the LHS of (D.2) includes the variance of the fractional rank at the individual 

2

Rσ  and not the variance at the grouped level. The OLS estimate of 
MERβ  in equation 
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1
 The point estimate is identical, while the standard error will differ. This is unimportant since we only 

use OLS as an arithmetic tool, not as a statistical device. Consult Pyatt et al. (1980) for a similar issue 

related to the covariance. 
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E. Covariance between fractional rank at individual and grouped level 

 

Let’s start from equation (10) 
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Next, we focus on the second term between brackets of this equation 
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Combine equation (E.2) with ( ) 122 2Rα σ β−
= −  (cf. ‘averaging’ of equation (2)), gives 

2
2

1 1 1

12 12 2
2

2 2

n n n
g g gR
i i i i R i i

i i i

n
R y R R

n n y

σ β
δ ε σ β

= = =

  = − − −  
  

∑ ∑ ∑    (E.3) 

After some algebra, and noting that nGβ = , we get: 
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Combining (E.1) and (E.5), shows that 
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Equation (E.6) can only hold if 
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F. The case of unequal group sizes 

 

Similar to equation (D.2), we start from 
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G. Additional tables 

 

TABLE A1. – DESCRIPTIVE STATISTICS OF EQUIVALENT INCOME 

obs mean stdev

Sweden 8889 137.947 63.268

Denmark 5899 131.497 69.759

Finland 8171 86.900 50.580

Netherlands (admin) 5.104.844 22.673 34.882

Netherlands 9351 28.788 15.363

Austria 7382 214.317 123.594

Belgium 6664 609.200 507.861

Luxembourg 2044 866.215 563.721

Ireland 9890 7.715 7.081

Germany 9390 31.414 24.164

Italy 17323 15.943 10.558

Spain 17757 1.107.543 763.037

France 13794 94.265 98.806

UK 10484 9.431 9.664

Greece 12423 1.562.758 1.347.131

Portugal 11445 887.748 750.996

US 17399 30.011 23.662
 

Source: Netherlands (admin) refers to authors’ calculations from linked Dutch administrative data 2004 
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TABLE A2. – POINT ESTIMATES AND STANDARD ERRORS OF GINI INDICES 

ESTIMATED FROM FULL SAMPLE AND INCOME GROUPINGS IN ECHP AND 

MEPS 

gini s.e gini s.e gini s.e gini s.e gini s.e gini s.e gini s.e gini s.e

full 0,218 0,004 0,233 0,006 0,234 0,006 0,260 0,004 0,280 0,005 0,297 0,011 0,304 0,010 0,306 0,013

50 0,218 0,022 0,233 0,035 0,233 0,035 0,259 0,029 0,279 0,034 0,297 0,049 0,304 0,038 0,305 0,051

40 0,217 0,024 0,233 0,037 0,233 0,039 0,259 0,032 0,279 0,038 0,296 0,052 0,304 0,042 0,305 0,051

30 0,217 0,025 0,232 0,040 0,233 0,041 0,259 0,036 0,279 0,042 0,296 0,055 0,303 0,046 0,304 0,054

20 0,216 0,028 0,231 0,041 0,232 0,044 0,258 0,040 0,278 0,047 0,295 0,058 0,302 0,054 0,303 0,060

10 0,213 0,032 0,227 0,045 0,228 0,051 0,254 0,047 0,274 0,055 0,290 0,063 0,298 0,062 0,298 0,067

9 0,212 0,034 0,226 0,045 0,227 0,050 0,253 0,048 0,273 0,057 0,288 0,064 0,296 0,067 0,297 0,072

8 0,211 0,032 0,225 0,045 0,226 0,051 0,252 0,048 0,271 0,055 0,287 0,066 0,295 0,066 0,295 0,068

7 0,210 0,036 0,223 0,046 0,224 0,053 0,250 0,052 0,269 0,058 0,284 0,065 0,292 0,067 0,293 0,069

6 0,207 0,037 0,220 0,044 0,221 0,053 0,247 0,052 0,265 0,061 0,280 0,070 0,288 0,074 0,289 0,075

5 0,203 0,042 0,216 0,050 0,216 0,055 0,242 0,060 0,260 0,067 0,274 0,066 0,283 0,073 0,283 0,077

4 0,197 0,045 0,209 0,053 0,209 0,060 0,234 0,065 0,251 0,071 0,265 0,076 0,274 0,090 0,274 0,087

3 0,183 0,058 0,194 0,070 0,194 0,073 0,219 0,081 0,234 0,089 0,246 0,087 0,255 0,100 0,255 0,099

2 0,149 0,075 0,157 0,079 0,157 0,079 0,178 0,089 0,189 0,095 0,200 0,100 0,206 0,103 0,209 0,105

Luxembourg IrelandSweden Denmark Finland Netherlands Austria Belgium

 

 

TABLE A2. – CONTINUED 

Germany Italy Spain France UK Greece Portugal US

gini s,e, gini s,e, gini s,e, gini s,e, gini s,e, gini s,e, gini s,e, gini s,e,

full 0,312 0,008 0,330 0,004 0,335 0,004 0,343 0,011 0,362 0,011 0,367 0,008 0,393 0,007 0,395 0,004

50 0,312 0,051 0,329 0,038 0,334 0,041 0,342 0,083 0,361 0,074 0,366 0,058 0,392 0,058 0,394 0,047

40 0,311 0,054 0,329 0,042 0,334 0,046 0,342 0,085 0,361 0,073 0,366 0,060 0,392 0,066 0,394 0,050

30 0,311 0,057 0,329 0,046 0,334 0,050 0,341 0,089 0,360 0,083 0,365 0,066 0,391 0,070 0,393 0,056

20 0,310 0,064 0,328 0,052 0,333 0,056 0,339 0,094 0,359 0,087 0,364 0,070 0,390 0,081 0,392 0,067

10 0,304 0,072 0,323 0,057 0,328 0,072 0,332 0,093 0,352 0,097 0,358 0,078 0,384 0,097 0,387 0,080

9 0,303 0,071 0,322 0,059 0,326 0,073 0,330 0,097 0,351 0,096 0,356 0,079 0,382 0,102 0,386 0,080

8 0,301 0,078 0,320 0,064 0,324 0,074 0,328 0,093 0,348 0,094 0,354 0,079 0,380 0,103 0,383 0,081

7 0,298 0,075 0,317 0,061 0,322 0,080 0,325 0,099 0,345 0,104 0,351 0,085 0,376 0,111 0,380 0,087

6 0,294 0,077 0,313 0,065 0,318 0,080 0,320 0,100 0,340 0,103 0,347 0,089 0,372 0,111 0,376 0,098

5 0,288 0,083 0,307 0,065 0,312 0,094 0,313 0,100 0,333 0,111 0,340 0,087 0,364 0,128 0,369 0,098

4 0,277 0,085 0,297 0,076 0,301 0,099 0,301 0,108 0,321 0,112 0,329 0,093 0,351 0,123 0,357 0,113

3 0,257 0,098 0,277 0,103 0,280 0,115 0,278 0,115 0,298 0,123 0,306 0,116 0,326 0,134 0,333 0,130

2 0,207 0,104 0,227 0,113 0,227 0,113 0,223 0,112 0,242 0,121 0,248 0,124 0,263 0,131 0,273 0,136  
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TABLE A3. – THE PERFORMANCE OF DELTAS’ AND OUR FIRST-ORDER CORRECTION TERM TO ADDRESS THE 

UNDERESTIMATION OF THE GINI INDEX CALCULATED FROM GROUPED INCOME DATA IN THE ECHP AND MEPS 

Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     

full 0,2178           0,2331           0,2339           0,2597           0,2798           0,2973           0,3041           0,3056           

50 0,2175 0,2220 0,2176 0,0000 0,2327 0,2374 0,2328 0,0000 0,2334 0,2382 0,2335 0,0000 0,2594 0,2647 0,2595 0,0000 0,2795 0,2852 0,2796 0,0000 0,2966 0,3027 0,2968 0,0000 0,3037 0,3099 0,3038 0,0000 0,3049 0,3111 0,3050 0,0000

40 0,2174 0,2230 0,2175 0,0000 0,2325 0,2385 0,2327 0,0000 0,2333 0,2392 0,2334 0,0000 0,2592 0,2659 0,2594 0,0000 0,2793 0,2865 0,2795 0,0000 0,2964 0,3040 0,2966 -0,0001 0,3035 0,3113 0,3037 0,0000 0,3046 0,3124 0,3048 -0,0001

30 0,2171 0,2246 0,2174 0,0000 0,2321 0,2402 0,2324 -0,0001 0,2329 0,2409 0,2332 -0,0001 0,2589 0,2678 0,2592 0,0000 0,2790 0,2886 0,2793 0,0000 0,2959 0,3061 0,2962 -0,0001 0,3031 0,3136 0,3034 -0,0001 0,3041 0,3146 0,3044 -0,0001

20 0,2164 0,2278 0,2170 -0,0001 0,2312 0,2434 0,2318 -0,0001 0,2320 0,2442 0,2326 -0,0001 0,2581 0,2717 0,2587 -0,0001 0,2780 0,2927 0,2787 -0,0001 0,2947 0,3102 0,2954 -0,0002 0,3021 0,3180 0,3029 -0,0001 0,3029 0,3188 0,3037 -0,0002

15 0,2155 0,2309 0,2165 -0,0001 0,2301 0,2466 0,2312 -0,0002 0,2309 0,2474 0,2320 -0,0002 0,2570 0,2754 0,2582 -0,0001 0,2769 0,2966 0,2781 -0,0001 0,2932 0,3142 0,2945 -0,0002 0,3008 0,3223 0,3021 -0,0002 0,3015 0,3230 0,3028 -0,0002

14 0,2153 0,2318 0,2164 -0,0001 0,2298 0,2474 0,2310 -0,0002 0,2306 0,2483 0,2318 -0,0002 0,2567 0,2764 0,2580 -0,0001 0,2765 0,2977 0,2779 -0,0002 0,2928 0,3153 0,2943 -0,0002 0,3004 0,3235 0,3019 -0,0002 0,3010 0,3242 0,3026 -0,0002

13 0,2149 0,2328 0,2162 -0,0001 0,2294 0,2485 0,2307 -0,0002 0,2302 0,2494 0,2315 -0,0002 0,2563 0,2776 0,2578 -0,0002 0,2760 0,2990 0,2776 -0,0002 0,2922 0,3165 0,2939 -0,0003 0,2999 0,3249 0,3017 -0,0002 0,3005 0,3256 0,3023 -0,0003

12 0,2145 0,2340 0,2160 -0,0002 0,2288 0,2496 0,2304 -0,0002 0,2297 0,2506 0,2313 -0,0002 0,2558 0,2790 0,2576 -0,0002 0,2754 0,3005 0,2774 -0,0002 0,2915 0,3180 0,2936 -0,0003 0,2993 0,3265 0,3014 -0,0002 0,2998 0,3271 0,3019 -0,0003

11 0,2140 0,2354 0,2158 -0,0002 0,2282 0,2510 0,2301 -0,0002 0,2290 0,2519 0,2309 -0,0002 0,2551 0,2806 0,2573 -0,0002 0,2748 0,3022 0,2771 -0,0002 0,2907 0,3198 0,2931 -0,0003 0,2985 0,3284 0,3010 -0,0003 0,2990 0,3289 0,3015 -0,0003

10 0,2133 0,2370 0,2155 -0,0002 0,2274 0,2527 0,2297 -0,0003 0,2282 0,2536 0,2305 -0,0003 0,2543 0,2826 0,2569 -0,0002 0,2738 0,3043 0,2766 -0,0003 0,2896 0,3218 0,2926 -0,0004 0,2975 0,3306 0,3005 -0,0003 0,2980 0,3311 0,3010 -0,0004

9 0,2125 0,2390 0,2151 -0,0002 0,2264 0,2547 0,2292 -0,0003 0,2271 0,2555 0,2300 -0,0003 0,2533 0,2849 0,2564 -0,0003 0,2726 0,3067 0,2760 -0,0003 0,2883 0,3244 0,2919 -0,0004 0,2962 0,3332 0,2999 -0,0003 0,2967 0,3338 0,3004 -0,0004

8 0,2112 0,2414 0,2146 -0,0003 0,2250 0,2571 0,2286 -0,0004 0,2257 0,2579 0,2293 -0,0004 0,2518 0,2878 0,2558 -0,0003 0,2711 0,3098 0,2754 -0,0004 0,2865 0,3275 0,2911 -0,0005 0,2945 0,3366 0,2992 -0,0004 0,2950 0,3371 0,2997 -0,0005

7 0,2096 0,2445 0,2140 -0,0003 0,2230 0,2602 0,2277 -0,0004 0,2237 0,2610 0,2283 -0,0005 0,2498 0,2914 0,2550 -0,0004 0,2688 0,3136 0,2744 -0,0004 0,2840 0,3313 0,2899 -0,0006 0,2919 0,3406 0,2980 -0,0005 0,2925 0,3413 0,2986 -0,0006

6 0,2071 0,2486 0,2130 -0,0004 0,2203 0,2643 0,2266 -0,0005 0,2208 0,2650 0,2271 -0,0005 0,2469 0,2962 0,2539 -0,0005 0,2655 0,3185 0,2730 -0,0006 0,2802 0,3362 0,2882 -0,0007 0,2885 0,3461 0,2967 -0,0006 0,2889 0,3467 0,2972 -0,0007

5 0,2033 0,2542 0,2118 -0,0005 0,2159 0,2699 0,2249 -0,0007 0,2164 0,2705 0,2254 -0,0007 0,2422 0,3027 0,2523 -0,0006 0,2603 0,3254 0,2712 -0,0007 0,2744 0,3431 0,2859 -0,0009 0,2830 0,3537 0,2948 -0,0007 0,2834 0,3543 0,2952 -0,0008

4 0,1967 0,2623 0,2099 -0,0006 0,2086 0,2781 0,2225 -0,0008 0,2088 0,2784 0,2227 -0,0009 0,2343 0,3125 0,2500 -0,0008 0,2514 0,3352 0,2681 -0,0009 0,2648 0,3530 0,2824 -0,0012 0,2735 0,3647 0,2918 -0,0010 0,2738 0,3651 0,2920 -0,0011

3 0,1833 0,2750 0,2062 -0,0009 0,1940 0,2910 0,2183 -0,0011 0,1940 0,2910 0,2182 -0,0012 0,2185 0,3278 0,2459 -0,0010 0,2335 0,3503 0,2627 -0,0013 0,2463 0,3695 0,2771 -0,0015 0,2547 0,3820 0,2865 -0,0013 0,2553 0,3830 0,2872 -0,0014

2 0,1495 0,2990 0,1993 -0,0012 0,1573 0,3147 0,2098 -0,0015 0,1573 0,3146 0,2097 -0,0015 0,1783 0,3567 0,2378 -0,0014 0,1894 0,3789 0,2526 -0,0017 0,1995 0,3990 0,2660 -0,0020 0,2061 0,4122 0,2748 -0,0018 0,2093 0,4186 0,2790 -0,0017

Belgium Luxembourg IrelandSweden Denmark Finland Netherlands Austria

 
Note: Gini: point estimate of the Gini index; Deltas: point estimate of the Gini index using Deltas’ first-order correction term, i.e. ( )1 1K K− − ; Corr: point estimate of the Gini index using our first-order 

correction term resulting from equation (10), i.e. ( ) 1
2 21K K

−
− ; covar: the covariance term in equation (10). 
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TABLE A3. – CONTINUED 

Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     Gini Deltas Corr covar     

full 0,3123           0,3298           0,3346           0,3432           0,3623           0,3666           0,3925           0,3946           

50 0,3117 0,3181 0,3119 0,0000 0,3294 0,3361 0,3295 0,0000 0,3342 0,3410 0,3343 0,0000 0,3422 0,3492 0,3424 -0,0001 0,3615 0,3689 0,3616 -0,0001 0,3660 0,3734 0,3661 0,0000 0,3920 0,4000 0,3922 0,0000 0,3941 0,4022 0,3943 0,0000

40 0,3115 0,3195 0,3117 -0,0001 0,3292 0,3377 0,3294 0,0000 0,3340 0,3425 0,3342 0,0000 0,3418 0,3506 0,3420 -0,0001 0,3612 0,3704 0,3614 -0,0001 0,3657 0,3751 0,3659 -0,0001 0,3918 0,4018 0,3920 0,0000 0,3939 0,4040 0,3942 0,0000

30 0,3110 0,3217 0,3113 -0,0001 0,3288 0,3402 0,3292 -0,0001 0,3336 0,3451 0,3339 -0,0001 0,3410 0,3528 0,3414 -0,0001 0,3605 0,3729 0,3609 -0,0001 0,3651 0,3777 0,3655 -0,0001 0,3913 0,4048 0,3917 -0,0001 0,3935 0,4071 0,3939 -0,0001

20 0,3097 0,3260 0,3105 -0,0002 0,3277 0,3450 0,3286 -0,0001 0,3325 0,3500 0,3333 -0,0001 0,3392 0,3571 0,3401 -0,0003 0,3588 0,3777 0,3597 -0,0002 0,3638 0,3829 0,3647 -0,0002 0,3900 0,4105 0,3910 -0,0001 0,3924 0,4130 0,3934 -0,0001

15 0,3081 0,3301 0,3095 -0,0002 0,3264 0,3497 0,3279 -0,0002 0,3312 0,3548 0,3327 -0,0002 0,3371 0,3612 0,3386 -0,0004 0,3569 0,3824 0,3585 -0,0003 0,3621 0,3880 0,3637 -0,0002 0,3883 0,4160 0,3900 -0,0002 0,3909 0,4188 0,3926 -0,0002

14 0,3076 0,3313 0,3092 -0,0003 0,3260 0,3510 0,3276 -0,0002 0,3308 0,3562 0,3324 -0,0002 0,3364 0,3623 0,3382 -0,0004 0,3563 0,3837 0,3581 -0,0003 0,3616 0,3894 0,3635 -0,0003 0,3877 0,4175 0,3897 -0,0002 0,3904 0,4204 0,3924 -0,0002

13 0,3070 0,3326 0,3089 -0,0003 0,3254 0,3526 0,3274 -0,0002 0,3302 0,3578 0,3322 -0,0002 0,3357 0,3636 0,3377 -0,0005 0,3556 0,3852 0,3577 -0,0004 0,3610 0,3911 0,3632 -0,0003 0,3870 0,4192 0,3893 -0,0003 0,3898 0,4223 0,3921 -0,0002

12 0,3063 0,3342 0,3085 -0,0003 0,3248 0,3543 0,3271 -0,0002 0,3296 0,3596 0,3319 -0,0002 0,3347 0,3652 0,3371 -0,0005 0,3547 0,3869 0,3572 -0,0004 0,3602 0,3930 0,3627 -0,0003 0,3862 0,4213 0,3889 -0,0003 0,3891 0,4244 0,3918 -0,0002

11 0,3054 0,3360 0,3080 -0,0004 0,3240 0,3564 0,3267 -0,0003 0,3288 0,3617 0,3315 -0,0002 0,3336 0,3669 0,3363 -0,0006 0,3536 0,3890 0,3566 -0,0005 0,3593 0,3952 0,3623 -0,0004 0,3851 0,4236 0,3883 -0,0003 0,3882 0,4270 0,3914 -0,0003

10 0,3042 0,3380 0,3073 -0,0004 0,3230 0,3588 0,3262 -0,0003 0,3278 0,3642 0,3311 -0,0003 0,3321 0,3690 0,3355 -0,0006 0,3522 0,3914 0,3558 -0,0005 0,3580 0,3978 0,3616 -0,0004 0,3838 0,4264 0,3877 -0,0004 0,3870 0,4300 0,3909 -0,0003

9 0,3027 0,3405 0,3065 -0,0005 0,3216 0,3618 0,3256 -0,0003 0,3263 0,3671 0,3304 -0,0003 0,3303 0,3716 0,3344 -0,0007 0,3505 0,3943 0,3549 -0,0006 0,3564 0,4010 0,3609 -0,0005 0,3820 0,4298 0,3868 -0,0005 0,3855 0,4337 0,3903 -0,0003

8 0,3007 0,3436 0,3054 -0,0006 0,3198 0,3655 0,3249 -0,0004 0,3245 0,3708 0,3296 -0,0004 0,3278 0,3747 0,3330 -0,0008 0,3481 0,3978 0,3536 -0,0007 0,3543 0,4049 0,3599 -0,0006 0,3797 0,4339 0,3857 -0,0006 0,3834 0,4382 0,3895 -0,0004

7 0,2979 0,3476 0,3041 -0,0007 0,3172 0,3701 0,3238 -0,0005 0,3218 0,3754 0,3285 -0,0005 0,3245 0,3786 0,3313 -0,0010 0,3449 0,4024 0,3521 -0,0008 0,3514 0,4099 0,3587 -0,0006 0,3763 0,4390 0,3842 -0,0007 0,3805 0,4439 0,3884 -0,0005

6 0,2939 0,3527 0,3023 -0,0008 0,3134 0,3761 0,3224 -0,0006 0,3179 0,3815 0,3270 -0,0006 0,3199 0,3838 0,3290 -0,0011 0,3402 0,4083 0,3499 -0,0010 0,3470 0,4164 0,3569 -0,0008 0,3715 0,4458 0,3821 -0,0008 0,3761 0,4513 0,3868 -0,0006

5 0,2877 0,3596 0,2997 -0,0010 0,3074 0,3843 0,3202 -0,0008 0,3119 0,3899 0,3249 -0,0008 0,3127 0,3909 0,3258 -0,0014 0,3330 0,4163 0,3469 -0,0012 0,3400 0,4250 0,3542 -0,0010 0,3642 0,4553 0,3794 -0,0011 0,3692 0,4615 0,3846 -0,0008

4 0,2772 0,3696 0,2957 -0,0013 0,2973 0,3964 0,3171 -0,0010 0,3013 0,4018 0,3214 -0,0010 0,3007 0,4009 0,3207 -0,0018 0,3212 0,4282 0,3426 -0,0015 0,3287 0,4382 0,3506 -0,0013 0,3512 0,4682 0,3746 -0,0014 0,3575 0,4766 0,3813 -0,0010
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Note: Gini: point estimate of the Gini index; Deltas: point estimate of the Gini index using Deltas’ first-order correction term, i.e. ( )1 1K K− − ; Corr: point estimate of the Gini index using our first-order 

correction term resulting from equation (10), i.e. ( ) 1
2 21K K

−
− ; covar: the covariance term in equation (10). 


