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Abstract

We study the problem of selecting the optimal functional form among a set of non-nested

nonlinear mean functions for a semiparametric kernel based regression model. To this end we

consider Rissanen’s minimum description length (MDL) principle. We prove the consistency

of the proposed MDL criterion. Its performance is examined via simulated data sets of

univariate and bivariate nonlinear regression models.
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1 Introduction

Consider a general (non)linear regression problem with observations

Yi]|(Xi,θ
∗) = g(θ∗,Xi) + εi, (i = 1, . . . , n), (1)

where θ∗ is the “true” value of the model parameters θ ∈ Θ ⊂ IRk, and g(θ,x) = E(Yi|(Xi,θ)) is

a specified conditional mean function of the k-dimensional parameter vector θ and the covariates

X, and where it is assumed that the (Yi,Xi, εi)’s are i.i.d. realizations from a common random

source (Y,X, ε). In the usual parametric regression model, the εi’s are assumed to have some

known distribution f(·). Then the maximum likelihood estimator (MLE) of θ has desirable

optimal properties. when f(·) is the true residual distribution. But, in practice, f(·) is unknown.

Its choice is often based on convenience, and usually restricted to a limited few. In an attempt to

derive a general regression method without imposing too strong subjective model assumptions,

Yuan & De Gooijer (2007) (hereafter YDG) studied a semiparametric regression model, in which

g(·, ·) is specified parametrically, and f(·) is modeled by a kernel density estimator; see Section 2

for a brief introduction. They proved that, under fairly general regularity conditions, the MLE

θ̂n of θ is consistent, is asymptotically normal with rate
√
n, and efficient. YDG showed that

the nonparametric pseudo-likelihood ratio test statistic has the Wilks property. Further, using

this test statistic, they presented simulation results for selecting a subset of parameters in a set

of nested models.

One important topic, not considered by these authors, concerns the selection of the optimal

functional form of g(·, ·), among a set of non-nested or separate models. A good g(·, ·) should fit

the data well and be as simple (smooth) as possible. Goodness-of-fit implies that the correspond-

ing semiparametric log-likelihood function, evaluated at θ̂n, is relatively large. But typically,

this will favor a sophisticated function g(·, ·). So there is a trade-off between goodness-of-fit

and model complexity. Different gi(·, ·)’s, taken from a finite set of available functions, may

have the same parametric dimensions but different parametrizations, or different parametric

dimensions and the corresponding model may not necessarily be nested. One way to solve this

model-selection problem is through using Rissanen’s (1986, 1987, 1996) “minimum description

length” (MDL) principle. Within the information theoretic view of model selection, the MDL

principle rests on somewhat the same foundations as does the idea underlying the commonly

used information criteria AIC and BIC. However, in contrast to these latter two model-selection

criteria, it allows comparisons between non-nested regression models. The MDL principle has

been successfully applied to a wide variety of model-selection problems in the fields of computer
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science, electrical engineering, and database mining; see, e.g., Grünwald et al. (2005). Good

tutorial introductions are provided by Bryant & Cordero-Braña (2000), Hansen & Yu (2001),

and Lanterman (2001).

In this paper, we propose an MDL model-selection criterion for semiparametric kernel based

regression models (Section 3). In addition, we study the consistency of the proposed MDL crite-

rion. Its performance is examined via simulated data sets of univariate and bivariate nonlinear

regression models (Section 4).

2 Semiparametric kernel regression

For a fixed g(·, ·), given x and θ, assume that the εi’s are i.i.d. with common unknown density

f(·). Hence, Yi|(Xi,θ) ∼ f(· − g(θ,x)). There are several potential ways to estimate f(·)

nonparametrically. One direct approach is the Nadaraya-Watson estimator, given by fn(ε) =

(nhn)
−1Pn

j=1K((ε − Yj + g(θ,Xj)/hn) where K(·) is a probability density (kernel), and hn a

positive sequence (bandwidth) with hn→0 as n → ∞. The main idea of YDG is to plug in

the estimator fn(·) for the “true” density of the εi = Yi − g(θ,Xi)’s. From the construction

of fn(·), this involves terms of K(·) evaluated at the data points Yi − Yj − g(θ,Xi) + g(θ,Xj)

(i, j = 1, . . . , n), which for some specifications of g(·, ·), will cause the cancellation of some

parameters in the difference−g(θ,Xi)+g(θ,Xj), and thus gives rise to an identifiability problem;

see YDG for a simple method to overcome this problem. In the rest of this paper we assume,

without loss of generality, that g(·, ·) is identifiable. Thus, instead of modeling the distribution of

the εi’s, the idea is to model the distribution of the Zi = Yi−g(θ,Xi)’s. Let f(·) and fn(·) denote

the true density of Zi and its estimate respectively. Since all Zj ’s are used in the construction

of fn(·) at each data point Zi, the nonparametric likelihood specification will contain some

unwanted values of h−1n K(0). So, using the delete-one version of fn(·), the likelihood function

of Y = (Y1, . . . , Yn) given X = (X1, . . . ,Xn) is given by

cn(Y|θ,X) =
nY
i=1

f(n,i)(Zi|θ) =
nY
i=1

f(n,i)(Yi − g(θ,Xi)) (2)

where f(n,i)(Zi|θ) = {(n − 1)hn}−1
P

j 6=iK((Zi − Zj)/hn). Maximizing (2) over θ yields the

MLE θ̂n as the inferred regression relationship in E(Y|X,θ).
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3 MDL selection of g(·, ·)

Initiated by Kolmogorov’s theory of algorithmic or descriptive complexity, Rissanen (1978) de-

veloped the MDL principle of model-selection. Loosely defined: choose the model that gives the

shortest description of data. The conversion of this principle into an explicit criterion resulted in

a number of different versions with different interpretations. Here, we adopt Rissanen’s (1996)

formulation of the MDL criterion based on the expected Fisher information.

A precise formulation requires a bit of notation. Let G = {g(·, ·)} be a finite set of candidate

mean functions under consideration, and Θ = {θj : j = 1, . . . , h.} be the collection of parame-

trizations of interest. The θj ’s may or may not be nested within each other, or θi and θj both

in Θ may have the same dimension but different parametrization. Next consider a fixed density

f(·|θj), with parameter θj running through a subset Γj ⊂ IRk, to emphasize the index of the

parameter, we denote the MLE of θj under model f(·|·) by θ̂j (instead of by θ̂n to emphasize

the dependence on the sample size), I(θj) the Fisher information for θj under f(·|·), |I(θj)| its

determinant, and kj the dimension of θj . Then the MDL criterion (Rissanen, 1996) chooses θj

so as to minimize

−
nX
i=1

log f(Yi|θ̂j) +
kj
2
log

n

2π
+ log

Z
Γj

q
|I(θj)|dθj , (j = 1, . . . , h). (3)

The second and third term are often referred to as a complexity penalty. Note that Schwarz’s

BIC seeks a θj which minimizes

BICj = −
nX
i=1

log f(Yi|θ̂j) +
kj
2
logn, (j = 1, . . . , h). (4)

When f(·|·) is known, both the MDL and BIC criteria have reasonable explanations, though the

results may not be the same. But when f(·|·) depends on a functional form g(·, ·), BIC does not

take this extra complexity into account, while in MDL, this extra bit of uncertainty is reflected

in I(θj) which, since it depends on g(·, ·), will be denoted by Ig(θj). For the semiparametric

regression model Ig(θj) is given by

Ig(θj) = E

µ
f (1)(Z)

f(Z)

¶2
Eθj

³
g[1](θj ,X)

´³
g[1](θj ,X)

´0
, (5)

where g[1](·, ·) is the first partial derivative vector ∂g(θj ,X)/∂θj .

Given the fact that in the semiparametric kernel based regression model f(·|·), θ̂j , and I(θj)

also depend on g(·, ·) we label them with the subscript g when necessary. Now, our objective

is to choose the optimal g(·, ·). Since fg(·|·) is unknown, a typical way is to apply the MDL
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model-selection criterion on the pseudo log-likelihood, which is obtained by replacing fg(·|·), as

given in (2), by fn,g,i(·|·). Thus we choose g(·, ·) ∈ G to minimize the criterion

MDL(g) = −
nX
i=1

log fn,g,i(Zi|θ̂g,j) +
kj
2
log

n

2π
+ log

Z
Γj

q
|Îg(θj)|dθj , (6)

where θj is the (only) corresponding parameter(s) on which g(·, ·) is defined. Here Îg(θj) is an

estimator of (5). From YDG (2007, Remark 6) this estimator is given by

Îg(θj) =
³ 1
n

nX
i=1

hf (1)n,i (zi)

fn,i(zi)

i2´ 1
n

nX
i=1

³
g[1](θj ,xi)

´³
g[1](θj ,xi)

´0
, (7)

and where the notation f (1)n,i (zi) denotes the first derivative of f(·|·) with respect to z. Given two

mean functions g1(·, ·) and g2(·, ·) in G, function g2(·, ·) is preferred over g1(·, ·) if MDL(g2) <

MDL(g1).

Clearly, (6) takes into account the dimensionality of θj and the complexity of gj(·, ·) simul-

taneously. Note that each g(·, ·) can only be defined on one of the θj ’s, but each θj may have

more than one g(·, ·)’s defined on it. For example, let Xi = (X1i,X2i,X3i)
0, θ = (θ1, θ2, θ3),

θ1 = (θ1, θ2) and θ2 = (θ2, θ3). We can define g1(θ,X) = g1(θ1,Xi) = θ1X1i + θ2X2i,

g2(θ,Xi) = g2(θ1,Xi) = θ1X
2
1i + θ2X

2
2i, and g3(θ,Xi) = g3(θ2,Xi) = θ2X2i + θ3X3i. Here,

for the same θ1, we have g1(·, ·) and g2(·, ·) defined on it. In other words, if g∗(·, ·) is the

true data generating mechanism, we are not sure if g∗(·, ·) will minimize (6), but (6) is still a

reasonable criterion to use.

To study the consistency of Îg(θj), we impose the following conditions:

(A1) hn → 0 and
P∞

n=1 exp(−εnh4n) <∞, for all ε > 0.

(A2) K(i)(·) is bounded (i = 0, 1, 2).

(A3)
R
K(u)du = 1,

R
K(1)(u)du = 0, and

R
uK(1)(u)du = −1.

(A4) f (1)(·) is uniformly continuous.

(A5) g[1](·, ·) is continuous.

(A6) 0 < infθ∈Γ |Ig(θ)| ≤ supθ∈Γ |Ig(θ)| <∞.

(A7) X has compact support.

(A8) infz f(z) > 0.

Conditions (A1)-(A7) are practical and easy to satisfy. Note that if we use a Gaussian ker-

nel, then (A3) is satisfied. Condition (A8) is used by a number of authors (Hall 1986; Joe 1989;

Hall & Morton 1993). The following theorem, omitting the subscript j for simplicity, asserts the

consistency of Îg(θ). A proof is given in the Appendix.
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Theorem. Suppose (A1)-(A8) hold. Then for any compact Γ, we have

log

Z
Γ

q
|Îg(θ)|dθ → log

Z
Γ

q
|Ig(θ)|dθ, a.s.

In the MDL(g) criterion (6), the integration in the last term can be well approximated by

Monte Carlo methods (see, e.g., Robert & Casella, 1999). One suitable method is importance

sampling1, as described below. Denote by În,g(θj) = HnJn,g(θj) where Hn = n−1
Pn

i=1[f
(1)
n,i (zi)/

fn,i(zi)]
2, and Jn,g(θj) = n−1

Pn
i=1(g

[1](θj ,xi)(g
[1](θj ,xi))

0. Then
R
Γj

p
In,g(θj)dθj =

√
Hn

R
Γjp

|Jn,g(θj)|dθj . To compute the integration on the right-hand side, specify the support set Γj of

θj . If there is no information for a particular form of Γj just take IRk for convenience. Let χΓj (·)

be the indicator function on the set Γj . Select an arbitrary density for θj only for sampling

purpose. For instance, the kj-variate standard normal density φ(θj). Given a large integer value

m (m = 10, 000 in the simulations), then, for u = 1, . . . ,m do the following: i) independently

sample θj,u ∼ φ(θj); ii) compute
q
|Jn,g(θj,u)|χΓj (θj,u)/φ(θj,u). Then, by the SLLN, we have

(as m→∞)

1

m

mX
u=1

p
|Jn,g(θj,u)|
φ(θj,u)

χΓj (θj,u)
a.s.→ Eθj

µp|Jn,g(θj)|
φ(θj)

χΓj (θj)

¶
=

Z
Γj

q
|Jn,g(θj)|dθj .

4 Numerical Studies

This section examines the performance of the MDL model-selection criterion (6) for non-nested

nonlinear regression models via two sets of simulation experiments. For comparison, we also

compute (6) without the complexity penalty term log
R
Γj

q
|Îg(θj)|dθj .

4.1 Univariate regression: 2 parameters

Consider the nonlinear regression model (1). We simulate data from the following four univariate

regression models

g1(·, ·) =
θ1(1)X1i

θ1(2) +X1i
, θ1(1) = 2, θ1(2) = 2,

g2(·, ·) = θ2(1) exp(θ2(2)X1i), θ2(1) = −0.5, θ2(2) = −2,

g3(·, ·) =
θ3(1)X1i

X1i + θ3(2)X2
1i

, θ3(1) = 0.5, θ3(2) = 0.8,

g4(·, ·) = θ4(1)X1i + θ4(2)X
2
1i, θ4(1) = 1, θ4(2) = −0.5.

1 In the simulations the so-called VEGAS algorithm of G.P. Lepage was used for this purpose.
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Model function g1(·, ·) is the so-called Michaelis-Menten equation. It was fitted to empirical data

by Bates and Watts (1988, Appendix A.1.3). Model functions g2(·, ·) − −g4(·, ·) are adapted

versions of models listed in Appendix 7 of Bates & Watts (1988). Hence, all above models

are of interest to applied research. Note that in all cases the mean functions have no constant

term. So, we don’t have the identifiability problem. Figure 1.a) shows a plot of the four mean

functions.

We draw 1000 random samples of sizes n = 100 and 200 from each model. We sample

Zi’s from a standard gamma distribution with density f(z) = z exp(−z), z > 0. The covariate

X1i has a Uniform (-1,3) distribution. Throughout the simulations we use the biweight kernel

K(u) = 15
16(1 − u2)χ(|u| ≤ 1). In all cases the so-called rule of thumb bandwidth selector of

Deheuvels (1977) was adopted; see YDG for some discussion on this choice. Table 1 presents a

ranking of the total number of models selected.

MDL identifies the “true” model specification in all cases, for both sample sizes. However,

whether or not the complexity integral term is included makes quite a difference. Indeed, for

each of the true models g1(·, ·), g2(·, ·), and g3(·, ·), the total number of models ranking first is

much lower for the MDL criterion than for the MDL criterion without penalty term (printed

in parentheses). An exception is g2(·, ·) with substantial larger number of correctly identified

models for the MDL criterion than for the MDL criterion without penalty term. Note that for

n = 200 the MDL criterion without penalty term incorrectly chooses g1(·, ·) 636 times while

it picks the true model g2(·, ·) in only 348 out of 1000 cases. In contrast, MDL picks the true

model in 867 cases and g1(·, ·) in 114 cases. These observations suggest that, in finite samples,

the complexity integral term in the MDL criterion plays a crucial role to identify the true model.

Regarding the overall ranking, given the true models g1(·, ·), g2(·, ·), and g4(·, ·), all competing

model specifications are most likely to end up at ranks 2—4. Except for g3(·, ·) which, apart from

ranking first, also ranks second when n = 100 and n = 200.

4.2 Bivariate regression: 2—4 parameters

A large number of nonlinear regression models have been proposed to describe the equilibrium

moisture content, Me, of many biological and agricultural materials as a function of relative

humidity, RH, and the solid material temperature, Ts, i.e. Me,i = g(θ, Ts,i, RHi) (i = 1, . . . , n).

Recently, Ribeiro et al. (2005), using experimental data for Bixa orellana seeds, a tropical shrub
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which grows quickly in Brazil, India, and East Africa, evaluated the following five models2:

g1(·, ·) =
³ ln(1−RHi)

−θ1(1)Ts,i

´1/θ1(2)
, θ1(1) = 1.05× 10−4, θ1(2) = 1.68,

g2(·, ·) =
³ ln(1−RHi)

−θ2(1)(Ts,i + θ2(3))

´1/θ2(2)
, θ2(1) = 1.05× 10−4, θ2(2) = 1.71,

θ2(3) = 3.38,

g3(·, ·) =
−1
θ3(2)

ln
³(Ts,i + θ3(3)) ln(RHi)

−θ3(1)
´
, θ3(1) = 124.57, θ3(2) = 0.08,

θ3(3) = −10.69,

g4(·, ·) =
−1

θ4(3)T
θ4(4)
s,i

ln
³ ln(RHi)

−θ4(1)T θ4(2)
s,i

´
, θ4(1) = 0.992, θ4(2) = 0.486,

θ4(3) = 0.004, θ4(4) = 0.816,

g5(·, ·) =
³− exp(θ5(1)Ts,i + θ5(3))

ln(RHi)

´1/θ5(2)
, θ5(1) = −4.19× 10−2, θ5(2) = 2.575,

θ5(3) = 9.

Figure 1.b) shows a plot of the five mean functions at temperature Ts = 25◦C. Note that, as

opposed to Figure 1.a), these functions show very similar patterns.

We draw 1000 random samples of size n = 100 from each model. We sample Zi’s from a

standard normal distribution. The covariate Ts,i has a Uniform (20,50) distribution, and the

covariate RHi has a Uniform (0,1) distribution. The two covariates are independent. Table 2

presents a ranking of the total number of models selected. Not surprisingly, the total number

of correctly chosen models is always very high when the data generating mechanism is the true

one. Clearly, there is less distinction between the MDL criterion with or without the complexity

integral term. This feature was also noticed for sample sizes n > 100. Interestingly, in all four

cases g5(·, ·) is not the true data generating mechanism, model g5(·, ·) ends up last in ranking.

Hence, there is less support for Ribeiro et al.’s (2005) conclusion, albeit using different statistical

methodology, to select g5(·, ·) as the best mean function.
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Appendix: Proof of Theorem

Proof: We first prove

sup
z
|f (r)n (z)− f (r)(z)| = o(1) a.s. (r = 0, 1). (8)

Here we only prove the case r = 1. The case r = 0 is similar and simpler. We have

sup
z
|f (1)n (z)− f (1)(z)| ≤ sup

z
|f (1)n (z)−Ef (1)n (z)|+ sup

z
|Ef (1)n (z)− f (1)(z)| := Vn,1 + Vn,2.

Let Fn(·) and F (·) respectively be the empirical and true distributions of the Zi’s. Note that

(A2) implies that K(j)(·) has bounded variation 0 < τj <∞ (j = 0, 1), so we have

Vn,1 =
1

h2n
sup
z
|
Z

K(1)(
z − y

hn
)dFn(y)−

Z
K(1)(

z − y

hn
)dF (y)|

≤ 1

h2n
sup
z

Z
|Fn(y)− F (y)||dK(1)(

z − y

hn
)|

≤ 1

h2n
sup
z

Z
|Fn(z − hnu)− F (z − hnu)||dK(1)(u)| ≤ τ1

h2n
sup
y
|Fn(y)− F (y)|.

By the result on large deviation in Dvoretzky et al. (1956), there are positive constants C and

0 < α ≤ 2, such that

P

µ
τ1
h2n
sup
y
|Fn(y)− F (y)| > �

¶
≤ C exp(−α�2τ−21 nh4n), ∀ � > 0.

This together with (A1), and the Borel-Cantelli lemma we have Vn,1 → 0 (a.s).

Using (A3), for some 0 ≤ βn ≤ 1, we have

Ef (1)n (z) =
1

h2n

Z +∞

−∞
K(1)(

z − y

hn
)f(y)dy = − 1

hn

Z −∞

+∞
K(1)(u)f(z − hnu)du

=
1

hn

Z +∞

−∞
K(1)(u)[f(z)− hnuf

(1)(z − βnhnu)]du = −
Z

uK(1)(u)f (1)(z − βnhnu)du.

For any � > 0, by (A4), there is a δ > 0 such that sup|βnhnu|≤δ supz |f (1)(z−βnhnu)− f (1)(z)| ≤

�/2. Also, by (A4), there is 0 < C <∞ such that supz |f (1)(z−βnhnu)−f (1)(z)| ≤ C. By (A3),

there is an n0 such that for n > n0,
R
|βnhnu|>δ |uK

(1)(u)|du < �/2. So by (A3) again, we have

sup
z
|Ef (1)n (z)− f (1)(z)| = sup

z

¯̄̄̄ Z
uK(1)(u)[f (1)(z − βnhnu)− f (1)(z)]du

¯̄̄̄

≤
Z
|βnhnu|≤δ

|uK(1)(u)| sup
z
|f (1)(z − βnhnu)− f (1)(z)|du
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+

Z
|βnhnu|>δ

|uK(1)(u)| sup
z
|f (1)(z − βnhnu)− f (1)(z)|du ≤ �

2

Z
|uK(1)(u)|du+ C

�

2
.

Since � > 0 is arbitrary, we have Vn,2 → 0. This completes the proof of (8) for the case r = 1.

Now, by (8), we have

1

n

nX
i=1

hf (1)n,i (zi)

fn,i(zi)

i2
=
1

n

nX
i=1

hf (1)(zi) + o(1)

f(zi) + o(1)

i2
=
1

n

nX
i=1

hf (1)(zi)
f(zi)

¸2
+
1

n

nX
i=1

o(1)[f(zi)− f (1)(zi)]
2

f2(zi)[f(zi) + o(1)]2
.

For large n, the second term on the right-hand side above is asymptotically equivalent to o(1)C,

by the SLLN and (A8), for some 0 < C <∞. Thus,

Îg(θ) =
³ 1
n

nX
i=1

hf (1)(zi)
f(zi)

i2´ 1
n

nX
i=1

³
g[1](θ,xi)

´³
g[1](θ,xi)

´0
+ o(1) a.s.

Now we only need to prove

1

n

nX
i=1

³
g[1](θ,xi)

´³
g[1](θ,xi)

´0
→ Eθ

³
g[1](θ,X

´³
g[1](θ,X)

´0
, (a.s.) uniformly for θ ∈ Γ. (9)

To show (9) for any corresponding components of the matrices we assume, without loss of

generality, that g[1](θ,xi) is one-dimensional. Let S be the support of X. By (A5), (A7) and

the compactness of Γ, g[1](·, ·) is uniformly continuous on Γ× S. Thus, for any � > 0, there are

finite number of points θ1, . . . ,θJ in Γ such that for any θ ∈ Γ, there is a θj ∈ Γ satisfying

|g[1](θ,x)− g[1](θj ,x)| < �/3, ∀x ∈ S and |Eg[1](θ,X)−Eg[1](θj ,X)| < �/3.

The index j is dependent on θ, and we just write it as j in the following. Now we have

sup
θ∈Γ

¯̄̄̄
1

n

nX
i=1

g[1](θ,xi)−Eg[1](θ,X)

¯̄̄̄
≤ 1

n

nX
i=1

sup
θ∈Γ

¯̄̄̄
g[1](θ,xi)− g[1](θj ,xi)

¯̄̄̄

+

¯̄̄̄
1

n

nX
i=1

g[1](θj ,xi)−Eg[1](θj ,X)

¯̄̄̄
+

¯̄̄̄
Eg[1](θj ,X)−Eg[1](θ,X)

¯̄̄̄

≤ 2�/3 +
¯̄̄̄
1

n

nX
i=1

g[1](θj ,xi)−Eg[1](θj ,X)

¯̄̄̄
.

By the large deviation inequality (according to a result initiated by Cramér-Chernoff, extended

by Bahadur & Zabell, 1979; concisely stated in Kotz & Johnson, 1982, pp. 32-33), and stated

in the form of an inequality in YDG, 2007), there are constants 0 < C0 <∞ and 0 < C(�) such

that P (| 1n
Pn

i=1 g
[1](θ,xi) − g[1](θj ,xi)| ≥ �/3) ≤ C0 exp(−nC(�)), thus by the Borel-Cantelli

lemma the last term in the above is bounded by �/3 (a.s.) and we have

lim
n
sup
θ∈Γ

¯̄̄̄
1

n

nX
i=1

g[1](θ,xi)−Eg[1](θ,X)

¯̄̄̄
≤ �. a.s.

Since � > 0 is arbitrary, we have 1
n

Pn
i=1 g

[1](θ,xi)→ Eg[1](θ,X) (a.s.) uniformly for θ ∈ Γ and

(9) is proved 2
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Table 1: Total number of true models selected out of 1000 replications by the MDL criterion
and by the MDL criterion without complexity integral term (values in parentheses). Univariate
regression with 2 parameters. Given a true model the value, say Z, of entry (ranki,gi(·, ·)), with
gi(·, ·) (i = 1, . . . , 4) in top row and ranki in first column, means that model gi(·, ·) ended up at
ranki Z times out of 1000 replications.

Model g(·, ·) selected
Rank g1(·, ·) g2(·, ·) g3(·, ·) g4(·, ·) g1(·, ·) g2(·, ·) g3(·, ·) g4(·, ·)

True model g1(·, ·)
n = 100 n = 200

1 525 (906) 377 (58) 76 (28) 22 (7) 888 (968) 69 (9) 41 (23) 2 (0)
2 355 (80) 493 (693) 108 (157) 44 (70) 93 (29) 801 (779) 78 (152) 28 (40)
3 119 (14) 122 (229) 541 (439) 318 (318) 19 (3) 127 (205) 587 (525) 267 (267)
4 1 (0) 8 (19) 375 (376) 616 (605) 0 (0) 3 (7) 294 (300) 703 (693)

True model g2(·, ·)
n = 100 n = 200

1 3 (284) 980 (690) 13 (18) 4 (8) 114 (636) 867 (348) 19 (16) 0 (0)
2 768 (630) 20 (292) 110 (42) 102 (36) 837 (355) 124 (620) 37 (25) 2 (0)
3 197 (77) 0 (17) 380 (409) 423 (497) 49 (9) 9 (32) 649 (657) 293 (302)
4 32 (9) 0 (1) 497 (531) 471 (459) 0 (0) 0 (0) 295 (302 705 (698)

True model g3(·, ·)
n = 100 n = 200

1 6 (98) 381 (244) 590 (630) 23 (28) 6 (103) 408 (261) 584 (633) 2 (3)
2 155 (249) 248 (261) 362 (289) 235 (201) 164 (259) 321 (326) 391 (310) 124 (105)
3 340 (333) 197 (237) 44 (76) 419 (354) 466 (350) 95 (215) 24 (55) 415 (380)
4 499 (320) 174 (258) 4 (5) 323 (417) 364 (288) 176 (198) 1 (2) 459 (512)

True model g4(·, ·)
n = 100 n = 200

1 10 (74) 433 (316) 49 (36) 508 (574) 15 (57) 423 (358) 34 (27) 528 (558)
2 87 (258) 407 (414) 256 (196) 250 (132) 165 (282) 447 (438) 168 (133) 220 (147)
3 321 (353) 131 (173) 411 (317) 137 (157) 330 (344) 82 (126) 440 (354) 148 (176)
4 582 (315) 29 (97) 284 (451) 105 (137) 490 (317) 48 (78) 358 (486) 104 (119)
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Table 2: Total number of true models selected out of 1000 replications by the MDL criterion
and by the MDL criterion without complexity integral term (values in parentheses). Bivariate
regression with 2—4 parameters and n = 100. Given a true model the value, say Z, of entry
(ranki,gi(·, ·)), with gi(·, ·) (i = 1, . . . , 5) in top row and ranki in first column, means that model
gi(·, ·) ended up at ranki Z times out of 1000 replications.

Model g(·, ·) selected
Rank g1(·, ·) g2(·, ·) g3(·, ·) g4(·, ·) g5(·, ·)

True model g1(·, ·)
1 757 (805) 243 (193) 0 (0) 0 (0) 0 (0)
2 243 (195) 757 (805) 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (2) 3 (0) 997 (998) 0 (0)
4 0 (0) 0 (0) 997 (1000) 3 (0) 0 (0)
5 0 (0) 0 (0) 0 (0) 0 (0) 1000 (1000)

True model g2(·, ·)
1 86 (107) 914 (891) 0 (0) 0 (2) 0 (0)
2 912 (881) 86 (109) 0 (0) 2 (10) 0 (0)
3 2 (12) 0 (0) 12 (0) 986 (988) 0 (0)
4 0 (0) 0 (0) 988 (1000) 12 (0) 0 (0)
5 0 (0) 0 (0) 0 (0) 0 (0) 1000 (1000)

True model g3(·, ·)
1 0 (0) 0 (0) 1000 (907) 0 (93) 0 (0)
2 0 (0) 0 (0) 0 (93) 1000 (907) 0 (0)
3 610 (648) 390 (352) 0 (0) 0 (0) 0 (0)
4 389 (351) 610 (648) 0 (0) 0 (0) 1 (1)
5 1 (1) 0 (0) 0 (0) 0 (0) 999 (999)

True model g4(·, ·)
1 0 (0) 0 (0) 0 (0) 1000 (1000) 0 (0)
2 80 (94) 920 (906) 0 (0) 0 (0) 0 (0)
3 920 (906) 80 (94) 0 (0) 0 (0) 0 (0)
4 0 (0) 0 (0) 1000 (997) 0 (0) 0 (0)
5 0 (0) 0 (0) 0 (3) 0 (0) 1000 (1000)

True model g5(·, ·)
1 0 (0) 0 (0) 0 (0) 0 (0) 1000 (1000)
2 36 (45) 63 (80) 830 (302) 70 (573) 0 (0)
3 50 (34) 51 (40) 125 (595) 775 (331) 0 (0)
4 596 (604) 259 (243) 38 (78) 107 (75) 0 (0)
5 318 (317) 627 (637) 7 (25) 48 (21) 0 (0)
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Figure 1: True regression functions: a) Univariate case and b) bivariate case.
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