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Abstract

Highly non-elliptical posterior distributions may occur in several econometric

models, in particular, when the likelihood is allowed to dominate and informa-

tion in the data is weak. This latter feature occurs frequently in empirical

econometric analysis. Well-known cases are: instrumental variable models with

weak instruments like the income-education models; vector autoregressive mod-

els with co-integration restrictions, widely used for the analysis of macroeco-

nomic and financial time series; and mixture processes where one component is

nearly non-identified like business cycle models with recessions and expansions

as components of the mixture.

We explain the issue of highly non-elliptical posteriors in the context of a

simple model for the effect of education on income using data from the well-

known Angrist and Krueger (1991) study and discuss how a so-called Informa-

tion Matrix or Jeffreys’ prior may be used as a ‘regularization prior’ that in

combination with the likelihood function yields posteriors with desirable prop-

erties. We also illustrate that the IV model and the vector autoregressive model

with co-integration restrictions have a similar mathematical structure and thus

this leads to similar posterior shapes.

In order to perform a Bayesian posterior analysis using simulation techniques

in these models, one has to face the issue of finding a good candidate density

∗Preliminary versions of this paper were presented at the 2007 ISI Conference in Lisbon, the 2008

MCMSki meeting in Bormio, and at the University of Montreal, Harvard University and Louisiana

State. Helpful comments of several participants led to substantial improvements. The authors further

thank David Ardia for useful suggestions. The second author gratefully acknowledges the hospitality

of Harvard’s Economics department where part of this paper was written and financial assistance

from the Netherlands Organization of Research (grant 400-07-703).
†Econometric and Tinbergen Institutes, Erasmus University Rotterdam, The Netherlands.
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for all classes of indirect sampling methods. In a recent paper – Hoogerheide,

Kaashoek and Van Dijk (2007) – a class of neural network functions was intro-

duced as candidate densities in case of non-elliptical posteriors.

In the present paper, the connection between canonical model structures,

non-elliptical credible sets, and more sophisticated neural network simulation

techniques is explored. As a preliminary step, three types of neural networks

are applied to a bimodal distribution of Gelman and Meng (1991) and it is

shown that the type of neural network that amounts to a mixture of Student’s

t densities clearly outperforms the two other types of networks in terms of com-

puting time. Next, the performance of a mixture of Student’s t distributions

is compared with a Student’s t distribution as a candidate for a 2-dimensional

posterior distribution in a simple IV model for the effect of education on in-

come, using data on men born in the state New York. Finally, an 8-dimensional

bimodal posterior distribution is analyzed in a 2-regime mixture model for the

real US GNP growth. In all examples considered in this paper, the mixture of

Student’s t distributions is clearly a much better candidate, yielding far more

precise estimates of posterior means after the same amount of computing time,

whereas the Student’s t candidate almost completely misses substantial parts of

the parameter space.

JEL classification: C11; C15; C45.

Keywords: instrumental variables; vector error correction model; Jeffreys’ prior;

mixture model; importance sampling; Markov chain Monte Carlo; neural net-

work.

1 Introduction

There exist classes of statistical and econometric models where the joint and marginal

posterior distributions of the parameters may have unknown analytical properties and

non-elliptical Bayesian Highest Posterior Density [HPD] credible sets, see e.g. Berger

(1985). Then it is not trivial to perform inference on the joint posterior distribution.

This may have strong effects on the measurement of uncertainty of forecasts and of

certain policy measures. The feature of non-elliptical posteriors occurs frequently in

empirical econometric analysis. We mention here three cases. First, instrumental

variable models with weak instruments like the income-education models which are

relevant for government agencies responsible for compulsory schooling laws. Secondly,

near unit root models and – more generally – vector autoregressive models with co-
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integration restrictions, widely used for the analysis of macroeconomic and financial

time series. For instance, in international financial markets, these models are used

for hedging currency risk, and knowledge of a strongly non-elliptical credible set is

important for the specification of an optimal hedging decision under risk. Thirdly,

mixture processes where one component is nearly non-identified. As an example we

consider business cycle models with recessions and expansions as components of the

mixture. A detailed analysis of the literature is beyond the scope of the present paper.

For some details on econometric models we refer to Imbens and Angrist (1994) and

Bos, Mahieu and Van Dijk (2000) and the references cited there.

An important issue is that one may encounter great difficulties when trying to

simulate (pseudo-) random draws from such a non-elliptical joint posterior distribu-

tion. Even if it is relatively easy to simulate random draws from the conditional

distributions, multi-modality and/or high correlations may cause the Gibbs sampler

to converge extremely slowly or even yield erroneous results.

A first contribution of this paper is to investigate the ill-behaved posterior distri-

butions that may occur in the IV regression model. We consider a simple, illustrative

model for the measurement of the effect of education on income for two different data

sets of Angrist and Krueger (1991). In this way, we also illustrate the effect of in-

strument strength on the posterior shapes, as the strength of the instrument differs

considerably between the two data sets. We show the peculiar posterior shapes un-

der the diffuse prior and explain the working of the Information Matrix or Jeffreys’

prior as a ‘regularization prior’, that in combination with the likelihood function yields

posteriors with desirable properties. Further, we illustrate that the similar mathemat-

ical structure of the instrumental variable model and the vector autoregressive model

under cointegration restrictions leads to similar posterior shapes.

A second contribution of this paper is to extend the analysis of neural network sam-

pling, introduced by Hoogerheide, Kaashoek and Van Dijk (2007) [henceforth HKVD].

These methods allow for sampling from a target (posterior) distribution that may be

multi-modal or skew. In other words, this is a class of methods to sample from non-

elliptical distributions. Neural network sampling algorithms consist of two main steps.

In the first step a neural network function is constructed that approximates the target

density (kernel). In the second step this neural network function is embedded in a

Metropolis-Hastings [MH] or importance sampling [IS] algorithm.1 With respect to

1The theory of Markov chain Monte Carlo [MCMC] methods starts with Metropolis et al. (1953)

and Hastings (1970); an important technical paper on MCMC methods is due to Tierney (1994). IS,

see Hammersley and Handscomb (1964), has been introduced in Bayesian inference by Kloek and
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the first step we emphasize that an important advantage of neural network functions

is their ‘universal approximation property’. That is, under certain conditions neural

network functions can provide approximations of any square integrable function to any

desired accuracy.2 In the second step this neural network is used as an importance

function in IS or as a candidate density in MH. In a ‘standard’ case of MH or IS, the

candidate density function or importance function is unimodal. If the target (poste-

rior) distribution is multimodal then a second mode may be completely missed in the

MH approach and some draws may have huge weights in the IS approach. As a conse-

quence the convergence behavior of these Monte Carlo integration methods is rather

uncertain. Thus, an important problem is the choice of the candidate or importance

density, especially when little is known a priori about the shape of the target density.

In this paper, we extend the HKVD analysis as follows. First, we apply three

types of neural networks to a bimodal, conditionally normal distribution of Gelman

and Meng (1991) in order to compare the computing times required for the three neural

network sampling methods. We analyze why the neural network that amounts to a

mixture of Student’s t densities outperforms the two other types of networks in terms

of computing time, and explain how this candidate density - that approximates the

posterior distribution - is iteratively constructed. Second, we compare the mixture of

Student’s t distributions with a unimodal t distribution as a candidate distribution for

a 2-dimensional posterior distribution in a simple IV model for the effect of education

on income, using data on men born in the state New York. Third, we compare the

mixture of t distributions with a t distribution as a candidate distribution for an 8-

dimensional posterior distribution in a 2-regime mixture model for the real US GNP

growth.

The outline of the paper is as follows. In Section 2 we consider the model structure

and the shapes of posterior densities in a simple IV regression model, and similar pos-

terior shapes in the VECM. In Section 3, we consider the three types of neural network

functions that can be used as candidate densities in case of non-elliptical posteriors.

We explain why some of the well-known possible drawbacks of neural networks do not

play a role in this application. Section 4 provides a comparison of the performance of

the three neural network functions as candidate densities for a bimodal, conditionally

normal distribution of Gelman and Meng (1991). In Section 5, we compare the mix-

Van Dijk (1978) and is further developed by Van Dijk and Kloek (1980, 1984) and Geweke (1989).
2Kolmogorov (1957) and Hecht-Nielsen (1987) establish general theoretical capabilities. Proofs

concerning neural network approximations for specific configurations can be found in e.g. Gallant and

White (1988), Hornik, Stinchcombe and White (1989) and Leshno, Lin, Pinkus and Schocken (1993).
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ture of Student’s t distributions with a Student’s t distribution as a candidate for a

posterior in a simple IV model. We illustrate that it is worthwhile to ‘invest’ some

computing time in an accurate candidate density or importance function, as this in-

vestment may become very ‘profitable’ in the sense of much quicker convergence or

more reliable sampling results. In Section 6, the sampling performance of the mixture

of t distributions is analyzed as a candidate distribution for an 8-dimensional posterior

distribution in a 2-regime mixture model for the real US GNP growth. The proposed

method in Section 6 differs from the approach in Section 5 that heavily relies on the

evaluation of Hessian matrices, which can be troublesome in higher dimensions or in

situations with pronounced boundaries in the parameter space. The proposed algo-

rithm is also different from the method of HKVD, in the sense that it ‘learns’ the

neural network candidate density in a somewhat more intelligent manner. The results

for an 8-dimensional highly non-elliptical posterior suggest the method’s useful appli-

cability in higher dimensions. Finally, we show the shapes of the likelihood function

in a particular mixture model, illustrating that the prior of e.g. Frühwirth-Schnatter

(2001) can also be interpreted as a ‘regularization’ prior that eliminates the likelihood

function’s ‘spikes’. Section 7 gives concluding remarks and some topics for further

research on which we intend to report in the near future.

2 The issue of ill-behaved posterior densities in the

instrumental variables (IV) regression model, il-

lustrated for the measurement of the effect of

education on income

A well-known example of the use of instrumental variables in econometrics is the

measurement of the effect of education on income, the (monetary) return on education.

Measuring the effect of education on income, is a matter of great importance for

several decision processes. For example, the results of such analysis are relevant for

government agencies responsible for compulsory schooling laws, for school districts

considering changes in school entrance policies and also for parents deciding when to

enroll their children to school. However, a problem is that intellectual capabilities,

which are usually not observed, not only influence education but also directly affect

income. Therefore, a simple regression of income on the number of years of education

may lead to incorrect conclusions. For example, more intelligent students find school
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less difficult and may choose to obtain more schooling to signal their high ability. So,

even if extra years of education have no effect on income, people with higher education

will on average have higher incomes because of their higher abilities. Therefore, one

may expect that an ordinary regression of income on the years of education leads to

an upward bias, i.e. an overestimated effect of education on income. Further, the

(often unobserved) intellectual capabilities, income and education level of the parents

may also cause an upward bias, as the parents’ characteristics may also influence the

education level and have a direct effect on income. For example, it may be the case

that children of more intelligent and higher educated parents on average learn more at

home. Another problem is the measurement error in reported education. First, usually

only the completed (integer) number of years of education is reported. Second, people

may misreport their education spell.3 If the measurement error would be the only

problem, one would expect that a simple regression of income on education would

result in a downward bias, i.e. an underestimated effect of education on income, as the

part of the variation in education that is merely due to measurement error does not

lead to variation in income.

A method for solving these problems is the use of instrumental variables. These

instrumental variables must be correlated with education but uncorrelated with latent

capabilities (and measurement errors). Intuitively, in this way one focuses on the direct

effect of education on income, while other effects on income are filtered out. However,

it is hard to find variables that are correlated with education but uncorrelated with

intellectual capabilities. Angrist and Krueger (1991) use American data and suggest

using quarter of birth to form instrumental variables. These instruments exploit that

students born in different quarters have different average education spells. This results

since most school districts require students to have turned age six by a certain date, a

so-called ‘birthday cutoff’ which is typically near the end of the year, in the year they

enter school, whereas compulsory schooling laws compel students to remain at school

until their sixteenth, seventeenth or eighteenth birthday. This asymmetry between

school-entry requirements and compulsory schooling laws compels students born in

certain months to attend school longer than students born in other months: students

born earlier in the year enter school at an older age and reach the legal dropout age

after less education. Hence, for students who leave school as soon as the schooling

laws allow for it, those born in the first quarter have on average attended school for

three quarters less than those born in the fourth quarter.

3Siegel and Hodge (1968) find that the correlation between individuals’ education reported in two

surveys is only 0.933.
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Angrist and Krueger (1991) use three data sets on men born in three decades,

emphasizing results for the data set on 329509 men born in the years 1930-1939. For

the latter data set we consider a simple, illustrative model for persons i = 1, . . . , N :

yi = xi β + εi (1)

xi = zi Π + vi (2)

with yi the log weekly wage in 1979, xi the number of years of education, and zi = 1

if person i is born in quarter 2, 3 or 4, and zi = 0 if person i is born in quarter 1.

The variables yi, xi, zi are taken in deviation from their means, so that no constant

terms occur in (1) and (2). The parameter β is the average effect of one extra year

of education on income: on average, one more year of schooling results in an increase

of income of approximately 100β %. The (scalar) parameter Π is the difference in the

mean education spell between men born in quarter 2, 3 or 4 and men born in quarter

1. The error terms εi and vi are assumed to be independent across observations and

jointly normally distributed: (εi, vi)
′ ∼ N(0, Σ).

We consider both the case with the whole data set and the case in which we only

use data on 29015 men born in the state New York. Especially in the latter case, the

quarter-of-birth instrument is very weak. As an indication, for the New York data the

first stage F-statistic is 0.55 (with p-value 0.46), whereas for the whole US data set

this is 67.57 (with p-value 0.00). Figure 1 shows the data.

First, we consider the following diffuse prior

p(β, π, Σ) ∝ |Σ|−h/2 with h > 0, (3)

which is used by Zellner (1971) and Drèze (1976) for particular values of h.

Given the model (1)-(3), one can easily derive the likelihood function and the

posterior density kernel of (β, Π, Σ). Choosing h = 3 in the prior density kernel

(3) and using properties of the inverted Wishart distribution (see Zellner (1971) and

Bauwens and Van Dijk (1990)) in order to integrate Σ out of the joint posterior, leads

to the following joint posterior kernel of (β, Π):

p(β, Π|y, x, Z) ∝
∣∣∣∣∣

(y − xβ)′(y − xβ) (y − xβ)′(x− ZΠ)

(x− ZΠ)′(y − xβ) (x− ZΠ)′(x− ZΠ)

∣∣∣∣∣

−N/2

, (4)

where y and x are N×1 vectors, Z is an N×k matrix with k the number of instruments,

and Π is a k× 1 vector; in our simple example we have k = 1. The marginal posterior

of β, derived by Drèze (1976, 1977), see also Bauwens and Van Dijk (1990), is given
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born in 1st quarter born in quarter 2-4

Men born in the state New York: (N = 29015)
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Men born in the US: (N = 329509)
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Figure 1: Data on education and income for samples of men born in 1930-1939, which

were also used by Angrist and Krueger (1991). (Obviously, the New York data are

a subset of the US data.) The differences between mean education and income for

different quarters of birth are slightly larger for the US data.
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by:

p(β|y, x, Z) ∝ [(y − xβ)′(y − xβ)]−(N−1)/2

[(y − xβ)′MZ(y − xβ)]−(N−k−1)/2
(5)

with MZ = I − Z(Z ′Z)−1Z ′. Kleibergen and Van Dijk (1994, 1998) derived the

marginal posterior of Π as:

p(Π|y, x, Z) ∝ [(x− ZΠ)′(x− ZΠ)]−(N−1)/2 (Π′Z ′MxZΠ)−1/2 ×

×
(

Π′Z ′M[y x]ZΠ

Π′Z ′MxZΠ

)−(N−1)/2

(6)

These posterior distributions have several peculiar properties:

(a) Local non-identification at Π = 0: The marginal posterior of Π has an

asymptote at Π = 0 because of the term (Π′Z ′MxZΠ)−1/2. In the case of k = 1

instrument, the posterior is not integrable over neighborhoods around Π = 0.

(See Kleibergen and Van Dijk (1994, 1998).)

(b) Regular posterior behavior of β when irrelevant instruments are added:

The marginal posterior of β becomes tighter if (possibly irrelevant) instruments

are added. Moments exist up to the order of overidentification (k−1); for k = 1,

the marginal posterior of β is improper. (This result appeared in an informal

way in Maddala (1976), commenting on Drèze (1976).)

These pathologies stem from the local non-identification of β when Π = 0, which

is most easily seen from the restricted reduced form corresponding to the structural

form (1)-(2): (
yi

xi

)
=

(
β

1

)
Π′ zi +

(
v1i

vi

)
(7)

with v1i = viβ + ε and (v1i, vi)
′ ∼ N(0, Ω). Figure 2 illustrates these pathologies for

the data of New York and the whole US. For the joint posterior kernel of β and Π for

New York data, a substantial ‘ridge’ is visible at Π = 0; the marginal posterior of Π

is completely dominated by the asymptote at Π = 0. On the other hand, for the US

data, the shapes are nearly elliptical, which reflects that in this case the quarter-of-

birth instrument is less weak. The peak around the posterior mode4 is high compared

with the ridge around Π = 0, so that the latter is not visible. Still, the joint posterior

has a non-integrable ridge at Π = 0, as can be seen from the asymptote at Π = 0 for

the marginal posterior of Π.

4In this simple example, the posterior mode is given by (β, Π) = (β̂2SLS , Π̂OLS) =

(y′z/x′z, x′z/z′z).
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Posterior density kernel

p(β, Π|data) under diffuse prior

Posterior density

p(β, Π|data) under Jeffreys’ prior
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Figure 2: Posterior density kernels for the simple IV model (1)-(2) for measurement

of the effect of education on income (β) using the difference in mean education between

men born in quarters 2-4 and quarter 1 (Π). The graphs show the joint posterior kernel

of β, Π. At the axes, the marginal posterior kernels of β and Π are shown.
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We now consider the Information Matrix or Jeffreys prior. The Jeffreys prior, the

square root of the determinant of the information matrix, is given by:

p(β, Π, Σ) ∝ |Σ|−2 (Π′Z ′ZΠ)1/2 σ
−(k−1)/2
22.1 (8)

with σ22.1 = σ22 − σ2
12/σ11, for the structural form (1)-(2), or equivalently by:

p(β, Π, Ω) ∝ |Ω|−2 (Π′Z ′ZΠ)1/2 ((β 1)Ω−1(β 1)′)(k−1)/2 (9)

for the corresponding restricted reduced form (7); see Appendix A of Hoogerheide,

Kleibergen and Van Dijk (2007) for a derivation of this Jeffreys prior.

The factor (Π′Z ′ZΠ)1/2 is 0 for Π = 0, which reflects that in the restricted reduced

form β only occurs in the product Πβ, so that for Π = 0 the model contains no

information on β. Hence for Π = 0 the likelihood is constant over values of β, so that

the first and second order derivatives of the log-likelihood with respect to β are zero,

and the determinant of the information matrix, minus the expectation of the Hessian

of the log-likelihood, is 0 for zero values of Π.

Intuitively speaking, the factor (Π′Z ′ZΠ)1/2 in the prior ‘cancels’ the asymptote

of the posterior at Π = 0 so the posteriors are proper even in case of a just identified

model.

The ((β 1)Ω−1(β 1)′)(k−1)/2 factor in the prior influences the tail behavior of the

marginal posterior of β and makes it independent of the number of instruments k such

that it has Cauchy type tails.

Note that for k = 1 instrument the Jeffreys prior (8) reduces to

p(β, Π, Σ) ∝ |Σ|−2|Π|, (10)

which is simply the diffuse prior in (3) with h = 4 multiplied with |Π|. One interpre-

tation of this Information Matrix or Jeffreys prior is that a priori one prefers a strong

instrument; that is, Π is preferred to be large (in absolute sense). An intuitively ap-

pealing explanation is that this Jeffreys prior is just a ‘regularization prior’ that does

not immediately reflect prior beliefs, but in combination with the likelihood func-

tion yields posteriors with desirable properties (in the sense that the aforementioned

peculiar properties resulting from the diffuse prior do not occur).

Notice that also for k > 2 the factor (Π′Z ′ZΠ)1/2 in the prior takes high values for

(in absolute sense) large elements of Π, while in this case the ((β 1)Ω−1(β 1)′)(k−1)/2

factor takes high values for (in absolute sense) large values of β. In the likelihood of

the (restricted reduced form of) the IV model, it is the occurrence of the product Πβ
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that causes points (Π, β) with Π and β both attaining extremely large values to have

small posterior probability.

Figure 2 illustrates the posterior shapes under the Jeffreys prior for the data of

New York and the US. For the US data, the graphs look similar to the graphs under

the diffuse prior, except for the disappearance of the asymptote at Π = 0 for the

marginal posterior of Π. For the New York data, the differences with the posterior

shapes under the diffuse prior are huge. Under the Jeffreys prior, there is no ridge

or asymptote at Π = 0, and the tails of the marginal posterior of β are thinner (and

integrable). Also notice that, although the joint posterior kernel of β, Π tends to 0

for Π → 0, the marginal posterior of Π does not drop in neighborhoods of Π = 0: for

Π → 0 the lower values of the posterior density kernel p(β, Π|y, x, Z) are compensated

by the fact that for Π → 0 the posterior p(β, Π|y, x, Z) becomes less sensitive with

respect to changes in β, as β only occurs in the likelihood in the product Πβ. In other

words, the marginal posterior probability mass of Π does not decrease for Π → 0, this

posterior probability mass is just spread over a wider range of values for β. Finally,

note that although the Jeffreys prior ‘cures’ some of the peculiar properties under the

diffuse prior, the posterior may still display non-elliptical shapes such as bimodality.

It should be noted that the model above is much simpler than the models considered

by Angrist and Krueger (1991); for example, Angrist and Krueger (1991) also include

dummies for the direct effect of state and year of birth on education and income.

Using a model of Angrist and Krueger (1991), Hoogerheide and Van Dijk (2006) show

that the results for US data depend to a large extent on the data of three states

(Arkansas, Kentucky, Tennessee). For many states, including the state of New York,

the quarter of birth instrument has hardly any value. We note that there exists an

extensive literature on the interpretation of IV estimands as local average treatment

effects [LATE]. For more details, we refer to Angrist, Imbens and Rubin (1996) and

Imbens and Angrist (1997a, 1997b).
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Figure 3: A Highest Posterior Density credible set for the parameters α1, α2, β̃ in

the VECM under a diffuse prior for simulated data from a VECM with α1 = −0.05,

α2 = 0.05, β̃ = 1 (left); the simulated data from the VECM (middle); an HPD credible

set in an IV model in a similar simulation experiment (right)

Similarity of mathematical structure and posterior shapes in IV model and

Vector Error Correction Model

Consider the following restricted reduced form of an IV model with 2 instruments

z1i, z2i (i = 1, . . . , N), and a simple vector error correction model (VECM) under a

cointegration restriction for 2 variables y1t, y2t (t = 1, . . . , T ):

reduced rank

IV:

(
yi

xi

)
=

︷ ︸︸ ︷(
β

1

)
(π1 π2)

(
z1i

z2i

)
+

(
v1i

vi

)

VECM:

(
∆y1t

∆y2t

)
=

︷ ︸︸ ︷(
α1

α2

)
(1 − β̃)

(
y1,t−1

y2,t−1

)
+

(
ε1t

ε2t

)

which have in common that they contain a parameter matrix with reduced rank. In

both models, local non-identification plays a role. In the IV model, the parameter β is

not identified for π1 = π2 = 0, whereas in the VECM the parameter β̃ is not identified

for α1 = α2 = 0.

We now consider a simulation experiment with α1 = −0.05, α2 = 0.05, β̃ = 1, so

that there is slow adjustment towards the cointegration relation y1 = y2, (ε1t, ε2t) ∼
N(0, I), for a rather small data set (T = 50). The left panel of Figure 3 shows a Highest

Posterior Density (HPD) credible set for (α1, α2, β) under a diffuse prior similar to the

diffuse prior for the IV model, for −0.5 < αj < 0.5 (j = 1, 2), −10 < β̃ < 10. The

middle panel of Figure 3 shows the simulated data from the VECM. The right panel
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shows approximately the same non-elliptical posterior shapes for a similar simulation

experiment in the IV model.

3 Neural network sampling methods

In the previous section, it was shown that the posterior distributions in the IV model

and VECM may be highly non-elliptical. This property is shared by many other mod-

els, such as the class of mixture models, which will be considered in the sequel of this

paper. A problem in the presence of highly non-elliptical posterior shapes is that if one

desires to investigate properties of the posterior density p(θ|data) (of a m-dimensional

parameter vector θ), using indirect sampling methods as Importance Sampling (IS) or

the independence chain Metropolis-Hastings (MH) algorithm, then using an elliptical

candidate distribution gives slow convergence and/or incorrect results.

In such a situation, one possible approach is to use a neural network function as the

candidate density. The three types of neural network functions introduced by HKVD

are as follows.

The first specification, the Type 1 neural network, is a three-layer feed-forward

neural network, a multi-layer perceptron [MLP], with arctangent activation function:

nn(θ) =
H∑

h=1

ch arctan

(
m∑

k=1

ahkθk + bh

)
+ d (11)

where H reflects the number of hidden cells of the network, and ahi, bh, ch, d (with

h = 1, . . . , H, k = 1, . . . ,m) represent the network weights that have to be estimated.

Figure 4 shows (for the case with m = 2, H = 2) the network diagram representing

the Type 1 neural network.

The reason for choosing the arctangent function is that it can be analytically

integrated infinitely many times. This property makes the neural network, in the role

of a density kernel on a bounded region, easy to sample from, because each marginal

and conditional cumulative distribution function [CDF] can be analytically derived.

For details, we refer to HKVD and Hoogerheide (2006).

HKVD suggest the following procedure to ‘learn’ the weights of the Type 1 neural

network approximation to a certain target posterior density kernel p(θ|data). First,

obtain a set of draws θj (j = 1, . . . , n) from the uniform distribution on the bounded

region to which we restrict the random variable θ ∈ Rm to take its values. Then

approximate the target density kernel p(θ|data) with a neural network by minimizing

14



Figure 4: Network diagram corresponding to the Type 1 neural network, a multi-layer

perceptron with arctangent activation function, in case of m = 2 inputs and H = 2

hidden cells.

Figure 5: Network diagram corresponding to the Type 2 neural network, which applies

the exponential transformation to the output of a multi-layer perceptron with piecewise-

linear activation function, in case of m = 2 inputs and H = 2 hidden cells.

Figure 6: Network diagram corresponding to the Type 3 neural network, which amounts

to a mixture of Student’s t densities, as a 3-layer Radial Basis Function (RBF) net-

work, in case of m = 2 inputs and H = 2 mixture components.
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the sum of squared residuals:

SSR(A, b, c, d) =
n∑

j=1

(
p(θj|data)− nn

(
θj

∣∣ A, b, c, d
))2

, (12)

We choose the most parsimonious neural network, i.e. the one with the smallest num-

ber H of hidden cells, that still gives a ‘good’ approximation to the target distribution.

One could define a ‘good’ approximation as one with a high enough squared correla-

tion, R2, between p(θ|data) and nn(θ). In the case of a Type 1 neural network, we also

have to deal with the problem that the neural network function is not automatically

non-negative for each θ. In order to establish this, a penalty term is added to (12), for

example −M
∑n

j=1 I{nn(θj) < 0} nn(θj) where M is a constant large enough to make

nn non-negative in all points θj (j = 1, . . . , n). It should be mentioned that, since a

neural network can have a surface that looks like a bed of nails, one should be very

careful when checking the accuracy of the approximation and the non-negativity. For

example, one can check the squared correlation R2 between nn(θ) and p(θ|data) for a

much larger set of points than the ‘estimation set’, and one can look for the (global)

minimum of nn(θ) by running a minimization procedure starting with several initial

values.

The second specification, the Type 2 neural network, is a network of which the

output is the exponential function of a three-layer feed-forward neural network function

with piecewise-linear activation function:

nn(θ) = exp

[
H∑

h=1

ch plin

(
m∑

k=1

ahkθk + bh

)
+ d

]
(13)

with

plin(x) =





0 x < −1/2

x + 1/2 −1/2 ≤ x ≤ 1/2

1 x > 1/2

, x ∈ R. (14)

Figure 5 shows (for the case with m = 2, H = 2) the network diagram representing

the Type 2 neural network. The idea behind this specification is that the candidate

density kernel (13) allows for easy Gibbs sampling (see Geman and Geman (1984));

(13) can be analytically integrated with respect to a θk (k = 1, . . . ,m), after which one

uses analytical inversion of the conditional CDF to generate the next draw in the Gibbs

sequence. Since the draws from the Type 2 network are obtained as a Gibbs sequence,

the corresponding Metropolis-Hastings algorithm is a so-called ‘Metropolis-Hastings

within Gibbs’ method.
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Again, the network weights can be ‘learned’ by minimizing (12); for the Type 2

network no penalty function is required, as the exponential function implies that non-

negativity is automatically taken care of.

The third specification, the Type 3 neural network, is a mixture of Student’s t

densities:

nn(θ) =
H∑

h=1

ph t(θ|µh, Σh, ν), (15)

where ph (h = 1, . . . , H) are the probabilities (satisfying ph ≥ 0,
∑H

h=1 ph = 1) of the

Student’s t components and where t(θ|µh, Σh, ν) is an m-variate Student’s t density

with mode vector µh, scaling matrix Σh, and ν degrees of freedom:

t(θ|µh, Σh, ν) =
Γ((ν + m)/2)

Γ(ν/2)(πν)m/2
|Σh|−1/2

(
1 +

(θ − µh)
′Σ−1

h (θ − µh)

ν

)−(ν+m)/2

. (16)

The reason for this choice is that a mixture of t distributions is easy to sample from,

and that the Student’s t distribution has fatter tails than the normal distribution. The

Type 3 network can be interpreted as a radial basis function (RBF) network; Figure

6 shows (for the case with m = 2, H = 2) the corresponding network diagram.

HKVD suggest the following iterative procedure to obtain a Type 3 neural network

approximation – an adaptive mixture of t densities (AdMit) – to a certain target

posterior density kernel p(θ|data).

First, compute the mode µ1 and scale Σ1 of the first Student’s t distribution in

the mixture as µ1 = argmaxθ p(θ|data), the mode of the target distribution, and

Σ1 as minus the inverse Hessian of log p(θ|data) evaluated at its mode µ1. Then

draw a set of points θj (j = 1, . . . , n) from the ‘first stage neural network’ nn(θ) =

t(θ|µ1, Σ1, ν), with small ν to allow for fat tails.5 After that add components to the

mixture, iteratively, by performing the following steps:

Step 1: Compute the importance sampling weights w(θj) = p(θj|data)/nn(θj) (j =

1, . . . , n). In order to determine the number of components H of the mixture

we make use of a simple diagnostic criterion: the coefficient of variation, i.e. the

standard deviation divided by the mean, of the IS weights w(θj) (j = 1, . . . , n).

5Throughout this paper we use Student’s t distributions with ν = 1. There are two reasons for

this. First, it enables the methods to deal with fat-tailed target (posterior) distributions. Second,

it makes it easier for the iterative procedure by which the Type 3 neural network approximation is

constructed to detect modes that are far apart. One could also choose to optimize the degree of

freedom of the Student’s t distributions and/or allow for different degrees of freedom in different

Student’s t distributions. This is a topic for further research.
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If the relative decrease in the coefficient of variation of the IS weights caused

by adding one new Student’s t component to the candidate mixture is small,

e.g. less than 10%, then stop: the current nn(θ) will be used as the candidate

distribution.6 Otherwise, go to step 2.

Step 2: Add another Student’s t distribution with density t(θ|µh, Σh, ν) to the mixture

with µh = argmaxθ w(θ) = argmaxθ{p(θ|data)/nn(θ)} and Σh equal to minus

the inverse Hessian of log w(θ) = log p(θ|data)− log nn(θ) evaluated at µh. Here

nn(θ) denotes the mixture of (h − 1) Student’s t densities obtained in the pre-

vious iteration of the procedure. An obvious initial value for the maximization

procedure for computing µh = argmaxθ w(θ) is the point θj with the highest

weight w(θj) in the sample {θj|j = 1, . . . , n}. The idea behind this choice of

µh and Σh is that the new Student’s t component should ‘cover’ a region where

the weights w(θ) are relatively large: the point where the weight function w(θ)

attains its maximum is an obvious choice for the mode µh, while the scale Σh

is the covariance matrix of the local normal approximation to the distribution

with density kernel w(θ) around the point µh.

Step 3: Choose the probabilities ph (h = 1, . . . , H) in the mixture nn(θ) =
∑H

h=1 ph t(θ|µh, Σh, ν)

by minimizing the (squared) coefficient of variation of the importance sam-

pling weights. First, draw n points θj
h from each component t(θ|µh, Σh, ν) (h =

1, . . . , H). Then minimize E[w(θ)2]/E[w(θ)]2, where:

E[w(θ)k] =
1

n

n∑
j=1

H∑

h=1

ph w
(
θj

h

)k
(k = 1, 2), w

(
θj

h

)
=

p(θj
h|data)∑H

l=1 pl t
(
θj

h|µl, Σl, ν
) .

(17)

Step 4: Draw a sample of n points θj (j = 1, . . . , n) from our new mixture of Student’s t

distributions, nn(θ) =
∑H

h=1 ph t(θ|µh, Σh, ν), and go to step 1; in order to draw

a point from the density nn(θ) first use a draw from the U(0, 1) distribution to

determine which component t(θ|µh, Σh, ν) is chosen, and then draw from this

multivariate t distribution.

It may occur that one is dissatisfied with diagnostics like the coefficient of variation

of the IS weights corresponding to the final candidate density resulting from the pro-

cedure above. In that case one may start all over again with a larger number of points

6Notice that nn(θ) is a proper density, whereas p(θ|data) is merely a density kernel. So, the Type

3 neural network does not provide an approximation to the target density kernel p(θ|data) in the

sense that nn(θ) ≈ p(θ|data), but nn(θ) provides an approximation to the density of which p(θ|data)

is a kernel, in the sense that the ratio p(θ|data)/nn(θ) has relatively little variation.
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n. The idea behind this is that the larger n is, the easier it is for the method to ‘feel’

the shape of the target density kernel, and to specify the Student’s t distributions of

the mixture adequately.

Note that an advantage of the Type 3 network, as compared to the Type 1 and

2 networks, is that its construction does not require the specification of a certain

bounded region where the random parameter vector θ ∈ Rm takes its values.

If the region of integration of the parameters θ is bounded, it may occur in step 2

that w(θ) attains its maximum at the boundary of the integration region; in this case

minus the inverse Hessian of log w(θ) evaluated at its mode µh may be a very poor

scale matrix; in fact this matrix may not even be positive definite. In that case, µh is

chosen as the point θj with the highest weight w(θj) in the sample {θj|j = 1, . . . , n},
Σh is obtained as the matrix of estimated second moments around µh for a certain

‘residual distribution’ with density kernel:

res(θ) = max{p(θ|data)− c̃ nn(θ), 0}, (18)

where c̃ is a constant.7 We take max{., 0} to make it a (non-negative) density kernel.

This Σh is easily obtained by importance sampling with the current nn(θ) as the can-

didate density, using the sample θj (j = 1, . . . , n) from nn(θ) that we already have.

In the case of a bounded region of integration, HKVD suggest obtaining µh and Σh as

the mean and covariance matrix of the ‘residual distribution’ with density kernel (18).

However, this may result in a µh in a region with already enough candidate probability

mass, which does not occur when choosing µh as the point θj with the highest weight

w(θj).

During the past 20 years many results on the approximation capabilities of neural

networks have been published. For example, Hornik, Stinchcombe and White (1989)

show that 3-layer feed-forward networks with an arbitrary sigmoid activation function

can approximate any square integrable function (given sufficiently many hidden cells).

This implies that the Type 1 and Type 2 networks can yield accurate approximations

to a wide variety of density (kernel) functions. Further, Zeevi and Meir (1997) show

that under certain conditions any density function may be approximated to arbitrary

accuracy by a convex combination of ‘basis’ densities; the mixture of Student’s t

7There are two issues relevant for the choice of c̃. First, the new Student’s t density should appear

exactly at places where nn(θ) is too small (relative to p(θ|data)), i.e. the scale Σh should not be too

large. Second, there should be enough points θj with w(θj) > c̃ in order to make Σh nonsingular.
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densities in (15) falls within their framework.

Finally, note that two of the well-known possible drawbacks of neural networks,

the ‘black box’ property and the danger of ‘overfitting’, are no disadvantages for this

application. First, the aforementioned types of neural networks are obviously ‘black

boxes’ in the sense that the working is not immediately clear, as the values of the

individual network weights have no straightforward interpretation. However, only a

reasonable approximation of the target posterior is desired, no interpretation of the

network weights is required. Second, in our application there is no danger of ‘overfit-

ting’, where not only a structural process is captured, but also random noise is ‘fitted’.

For the ‘data’ used in the learning process consist of (posterior density kernel) function

evaluations without random noise.
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4 A comparison of the performance of different

neural network functions as candidate densities:

conditionally normal distribution of Gelman and

Meng (1991)

In this section we consider an illustrative bivariate distribution in order to show the

feasibility of the neural network approach and to compare the performance of the

different neural network based methods. In the notation of the previous sections we

have θ = (X1, X2)
′.

Let X1 and X2 be two random variables, for which X1 is normally distributed given

X2 and vice versa. Then the joint distribution, after location and scale transformations

in each variable, can be written as (see Gelman and Meng (1991)):

p(x1, x2) ∝ exp

(
−1

2

[
Ax2

1x
2
2 + x2

1 + x2
2 − 2Bx1x2 − 2C1x1 − 2C2x2

])
, (19)

where A, B, C1 and C2 are constants. Equation (19) can be rewritten as:

p(x1, x2) ∝ exp

(
−1

2

[
Ax2

1x
2
2 + (x− µ)′Σ−1(x− µ)

])
, (20)

with:

µ =

[
BC2 + C1

1−B2
,
BC1 + C2

1−B2

]′
Σ−1 =

(
1 −B

−B 1

)
,

so the term Ax2
1x

2
2 causes deviations from the bivariate normal distribution. We con-

sider the symmetric case in which A = 1, B = 0, C1 = C2 = 3, with conditional

distributions

X1|X2 = x2 ∼ N

(
3

1 + x2
2

,
1

1 + x2
2

)
X2|X1 = x1 ∼ N

(
3

1 + x2
1

,
1

1 + x2
1

)
. (21)

For the Type 1 and 2 networks, we restrict the variables X1 and X2 to the interval

[-2.5,7.5]. This restriction does not affect our estimates, as the probability mass outside

this region is negligible.

The contour plots of the neural network approximations8 are given by Figure 7,

8We constructed a Type 1 network with H = 50 hidden neurons, R2 = 0.9966 on its training set

of 1000 points, and R2 = 0.9936 on its test set of 5000 points. We obtained a Type 2 network with

H = 13, R2 = 0.9944 on its training set of 1000 points, and R2 = 0.9756 on its test set of 5000

points; the H = 13 hidden neurons result from deleting the (almost) irrelevant hidden neurons from

a network of H = 25 neurons. We also constructed a mixture of H = 4 Student’s t distributions with

a sample of 1000 IS weights with coefficient of variation equal to 0.87 (and in which the 5% most

influential points have 11.6% weight).
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together with the contour plot of the target density. These contour plots confirm that

the three classes of neural networks are able to provide reasonable approximations to

the target density. Figure 7 clearly suggests that the Type 1 (MLP) neural network

provides the best approximation. Especially compared with the Type 3 (mixture of t)

network, its approximation is clearly more accurate. However, a substantial drawback

is the computing time required for the construction of the Type 1 approximation:

this takes over 120 seconds (on an Intel CentrinoTM Duo Core processor), whereas

the ‘learning’ of the Type 3 network only takes less than 1 second. The construction

of the Type 1 network takes relatively much time, as relatively many hidden cells

(H = 50) are required to provide a reasonable Type 1 neural network approximation.

Figure 8 illustrates how the AdMit procedure iteratively constructs an approximating

candidate density, a mixture of four t densities, in four steps.

Given the constructed neural network approximations, we sample from these net-

works and use the samples in IS or the (independence chain) MH algorithm. Many

diagnostic checks have been developed for assessing the convergence of the IS or MH

method; see e.g. Kloek and Van Dijk (1978) and Geweke (1989) for the IS method

and Cowles and Carlin (1996) and Brooks and Roberts (1998) for MCMC methods.

Several diagnostic checks for investigating the convergence of IS and MCMC methods

are also discussed by Hoogerheide, Van Dijk and Van Oest (2008). In this example,

we use the following simple heuristic rule to obtain estimates of the means with a

precision of 1 decimal: for each algorithm we construct two samples, and we say that

convergence has been achieved if the difference between the two estimates of E(X1)

and the difference between the two estimates of E(X2) are both less than 0.05.9 The

results are in Table 1. Note that the eight neural network sampling algorithms all

yield estimates of E[X1] and E[X2] differing less than 0.05 from the real values. The

table shows numerical standard errors and the corresponding relative numerical effi-

ciency (RNE), see Geweke (1989). The numerical standard errors are estimates of the

standard deviations of the IS estimators of E[X1] and E[X2]. The RNE is the ratio

between (an estimate of) the variance of an estimator based on direct sampling and

the IS estimator’s estimated variance (with the same number of draws). The RNE is

an indicator of the efficiency of the chosen importance function; if target and impor-

9The number of draws required may depend on an initial value such as the seed of the random

number generator; for each algorithm the experiment has been repeated several times and the results

are robust in the sense that in most cases convergence had been reached after the reported number

of draws.
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Type 1 NN Type 2 NN Type 3 NN

(MLP with (exp of MLP with (Adaptive

arctan piecewiese-linear Mixture of t

target activation) activation) [AdMit])
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Figure 7: Contour plots: the target distribution, a conditionally normal bivariate dis-

tribution of Gelman and Meng (1991) in (21) (first), and its Type 1 (second), Type 2

(third), and Type 3 (fourth) neural network approximation.

candidate density 1 ⇒ candidate density 2 ⇒ candidate density 3 ⇒ candidate density 4

(Student’s t density) (mixture of 2 (mixture of 3 (mixture of 4

Student’s t densities) Student’s t densities) Student’s t densities)
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coefficient of variation coefficient of variation coefficient of variation coefficient of variation

of IS weights: 4.01. of IS weights: 1.39. of IS weights: 0.93. of IS weights: 0.87.

Figure 8: Illustration of the Adaptive Mixture of t [AdMit] procedure for constructing

a Type 3 (mixture of t) neural network approximation to a target density, a bimodal

conditionally normal distribution of Gelman and Meng (1991) in (21). In this case, a

candidate density is constructed in four steps. The cross denotes the point at which the

importance weight function p(x1, x2)/nn(x1, x2) corresponding to the displayed candi-

date density nn(x1, x2) attains its maximum, which is the mode of the next Student’s

t distribution in the candidate mixture distribution. Below each panel the coefficient

of variation, the standard deviation divided by the mean, of the importance sampling

weights is reported.
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Table 1: Neural network based sampling results for the conditionally normal bivariate

distribution of Gelman and Meng (1991) in (21), which is depicted in the first panel of

Figure 7. The IS and MH methods based on the Type 3 neural network, the mixture of

Student’s t densities, require much less computing time than the methods using Type

1 and 2 networks.

importance function / candidate density

Type 1 NN (MLP Type 2 NN (exp of MLP with Type 3 NN (Adaptive

with arctan activation) piecewiese-linear activation) Mixture of t [AdMit])

real values IS MH IS MH IS MH

E(X1) 1.459 1.487 1.504 1.472 1.433 1.464 1.467

(num. std. error) (0.019) (0.015)

[RNE] [0.896] [0.649]

E(X2) 1.459 1.450 1.434 1.444 1.490 1.459 1.458

(num. std. error) (0.019) (0.016)

[RNE] [0.885] [0.619]

σ(X1) 1.234 1.239 1.247 1.233 1.229 1.236 1.245

σ(X2) 1.234 1.239 1.235 1.223 1.244 1.242 1.235

ρ(X1, X2) -0.760 -0.764 -0.766 -0.755 -0.757 -0.759 -0.759

total time 142.8 s 142.8 s 36.9 s 44.4 s 0.7 s 0.7 s

time construction NN 125.1 s 125.1 s 34.8 s 34.8 s 0.6 s 0.6 s

time sampling 17.7 s 17.7 s 2.1 s 9.6 s 0.1 s 0.1 s

draws 5000 5000 10000 40000 10000 10000

time/draw 3.5 ms 3.5 ms 0.21 ms 0.24 ms 0.01 ms 0.01 ms

5% IS weights 6.3 % 7.2 % 12.9 %

coeff. var. IS weights 0.382 0.239 0.840

acc. rate 84.6% 90.0 % 52.7 %

serial corr. X1 0.15 0.65 0.73 0.45

serial corr. X2 0.14 0.67 0.72 0.45

tance density coincide the RNE equals one, whereas a very poor importance density

will have an RNE close to zero.10

The total weight of the 5% most influential points is below 15% for the three

IS algorithms and the values of the RNE are rather high, confirming the quality of

the importance density. The rather high MH acceptance rates above 50% reflect the

quality of the neural network as a candidate density in the MH algorithm.

If we look at the computing times required for generating the samples, we conclude

that AdMit-IS and AdMit-MH (based on the Type 3 network) are the winners in this

10The numerical standard error and RNE of Geweke (1989) are not reported for the Type 2 network,

as the candidate draws are not independent, because these are generated by Gibbs sampling.
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example. Not only does the ‘learning’ of the network take much less time than for

the other networks, also sampling is performed far more quickly. Especially, sampling

from a Type 1 network is rather slow as this requires a numerical method, such as

the Newton-Raphson method, in order to invert the CDF. Further note that, whereas

the approximation of the Type 2 network is somewhat better than that of the Type

3 network, more MH draws are required when using a Type 2 candidate. The reason

for this is the higher serial correlation between the draws in this ‘MH within Gibbs’

approach. We conclude that this example clearly indicates the superiority of the Type

3 (mixture of t) network over the other two types: the slightly lower quality of the

candidate as an approximation to the target density is easily compensated by the

higher speed of both the ‘learning’ and the sampling.

The methods using Type 1 and Type 2 networks, especially the IS procedure for the

Type 2 network, may become competitive if (much) better optimization techniques are

used. Several different optimization methods than the used back-propagation method

have been discussed in literature. For example, White (1989) shows that a particular

back-propagation implementation is not efficient and discusses a two-step procedure

that has better convergence properties.

The Type 1 network has the interesting property that the integral of its func-

tional form can be evaluated analytically. Next to that, the moments can be derived

analytically, see appendix 2.A.3 of Hoogerheide (2006). This means that if one can

construct a Type 1 neural network that provides an (almost) perfect fit to the tar-

get density, then one can analytically evaluate the moments of the target distribution

without the use of any Monte Carlo integration procedure. However, using a simple

back-propagation technique, it is extremely time consuming to find a network with al-

most perfect fit. Application of optimization techniques that are specifically designed

for neural network learning to the Type 1 and Type 2 network is a topic for further

research.
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5 A comparison of the performance of a mixture of

Student’s t densities with other candidate densi-

ties: a highly non-elliptical posterior in a simple

IV model

The purpose of this section is to compare the performance of the mixture of Student’s

t densities, the Type 3 network, as a candidate density with a simple Student’s t dis-

tribution in the presence of a highly non-elliptical posterior. As the target distribution

we consider the posterior of the parameters Π, β in the simple IV model (1)-(2) under

the diffuse prior for N = 29015 data on men born in New York in 1930-1939. The

posterior density kernel is shown in the top-left panel of Figure 2 and the left panel

of Figure 9. The reason for this choice of the target distribution in this example is

simply that it has highly non-elliptical shapes because of the ‘ridge’ around Π = 0.

We restrict the domain of Π, β to finite intervals, (Π, β) ∈ [−0.2, 0.2] × [−10, 10], as

otherwise this posterior distribution is improper. The posterior density is well approx-

imated by a mixture of 6 Student’s t densities; see Figure 9. The first steps of the

AdMit method are depicted in Figure 10.

The first columns of Table 2 give sampling results for the AdMit candidate density,

the mixture of 6 Student’s t densities. Further, Table 2 gives sampling results for a

Student’s t candidate density with mode and scale adapted to the posterior distribution

in a preliminary run. The final two columns give results for the Student’s t candidate

density around the posterior mode (with scale matrix equal to minus the inverted

Hessian of the log-posterior evaluated at the mode). Notice that the numbers of draws

are chosen in such a way that the total amount of computing time is approximately

the same among the three methods.11

Note that the IS and MH methods with the AdMit candidate yield estimates of

the posterior means with a higher precision: for both the estimates of E[β] and E[Π]

the numerical standard error is more than two times smaller than under the Student’s

t candidate distributions. Especially, under the Student’s t distribution around the

posterior mode the numerical standard error for the estimate of E[β] is much worse.

11The numerical standard errors for the Metropolis-Hastings algorithm are estimated by the method

of Andrews (1991), using a quadratic spectral (QS) kernel and pre-whitening as suggested by Andrews

and Monahan (1992). The corresponding relative numerical efficiency (RNE) is the inverse of the

inefficiency factor (IF), the MH estimator’s (estimated) variance divided by the variance under direct

sampling (using the same number of draws).
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target density candidate density

(p(Π, β|data)) (mixture of 6 Student’s t densities)
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Figure 9: Contour plots: Posterior density kernel for parameters Π, β in simple IV

model (1)-(2) under the diffuse prior (3) for measurement of the effect of education

on income (β), using as an instrument the difference in mean education between men

born in quarters 2-4 and quarter 1 (Π), using N = 29015 data on men born in the

state New York in 1930-1939 (left). Approximating candidate density, a mixture of 6

Student’s t densities (right).

candidate density

first Student’s t density (t1) ⇒ second Student’s t density (t2) ⇒ after two iterations:

in mixture candidate in mixture candidate mixture (0.45 t1 + 0.55 t2)
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Figure 10: First steps of Adaptive mixture of t [AdMit] method in IV model (1)-

(2) for data on men born in the state New York in 1930-1939 (under diffuse prior):

first Student’s t distribution of the mixture (around posterior mode) (left), second

Student’s t distribution of the mixture (middle), mixture of first and second Student’s

t distributions (right)
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Table 2: Sampling results for different candidate densities: estimated posterior mo-

ments for simple IV model (1)-(2) under the diffuse prior (3) for measurement of the

effect of education on income (β), using as an instrument the difference in mean ed-

ucation between men born in quarters 2-4 and quarter 1 (Π), using N = 29015 data

on men born in the state New York in 1930-1939. (The (target) posterior density is

depicted in the top-left panel of Figure 2 and the left panel of Figure 9). The IS and

MH methods based on the Type 3 network, the mixture of Student’s t densities, yield

much more precise results in approximately the same computing time.

importance function / candidate density

Type 3 NN (Adaptive Student’s t with Student’s t around

Mixture of t [AdMit]) adapted mode and scale posterior mode

IS MH IS MH IS MH

E(β) -0.0086 -0.0174 0.0001 -0.0012 0.2647 0.1023

(num. std. error) (0.0052) (0.0066) (0.0112) (0.0139) (0.1563) (0.2225)

[RNE] [0.3866] [0.2397] [0.0277] [0.0183] [0.0002] [7.6 · 10−5]

E(Π) 0.0080 0.0080 0.0080 0.0081 0.0079 0.0078

(num. std. error) (3.6 · 10−5) (5.5 · 10−5) (0.0001) (0.0001) (0.0002) (0.0002)

[RNE] [0.4519] [0.1920] [0.0605] [0.0305] [0.0074] [0.0047]

σ(β) 3.2265 3.2314 3.2266 3.2547 3.4033 3.3674

σ(Π) 0.0241 0.0241 0.0242 0.0242 0.0240 0.0237

total time 34.2 s 37.4 s 36.4 s

time construction NN 18.1 s

time adapting mode, scale 1.0 s

time sampling 16.1 s 36.4 s 36.4 s

draws 1 mln 3 mln 3 mln

time/draw 0.016 ms 0.012 ms 0.012 ms

coeff. var. IS weights 1.09 3.01 22.56

5% largest IS weights 19.0 % 46.6 % 66.9 %

acceptance rate MH 42.08 % 16.90 % 16.70 %

serial corr. β 0.627 0.937 0.994

serial corr. π 0.577 0.898 0.708
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It should be noted that more than half of the computing time required for the

results of IS or the MH algorithm using the AdMit candidate, is needed for ‘learning’

the candidate distribution, the mixture of 6 Student’s t distributions. However, the

RNE’s are much higher for the AdMit candidate density, so that 1 million of AdMit

draws are much more valuable than 3 millions of draws from the Student’s t candidate

distribution. The idea of the construction of a good candidate as an ‘investment’ is

illustrated in Figure 11. Until 18.1 seconds the AdMit method is only constructing a

candidate, while after 1 second (required for adapting the mode and scale to the target

density) the IS approach with a Student’s t candidate is already sampling. However,

once the AdMit-IS method starts sampling, it soon outperforms IS with a Student’s t

candidate: the lines cross at 19.9 seconds, at a precision of 1/var(Ê(β)) = 4191.4 (at

a standard deviation of st.dev(Ê(β)) = 0.0154). AdMit-IS only requires 1.8 seconds

to catch up with the 18.9 seconds of sampling of IS with a t candidate; the ‘increase of

precision per second of sampling’ is about 10 times larger for AdMit-IS. The increase

of precision per second of sampling for the IS estimator of the posterior mean of θk,

the k-th element of θ, is given by:

∂[1/var(Ê(θk))]

∂ time
=

#draws per s

var(θk)
RNEE(θk) (22)

where the RNE (relative numerical efficiency) is the ratio between the (estimated)

precision of the IS estimator of E(θk) and (an estimate of) the precision of an estimator

of E(θk) based on direct sampling (with the same number of draws), see Geweke (1989).

The increase of precision per second of sampling for the posterior mean of β is therefore

given by

∂[1/var(Ê(β))]

∂ time
=

1/(0.016 · 10−3)

(3.2265)2
0.3866 = 2321.0

for AdMit-IS;

∂[1/var(Ê(β))]

∂ time
=

1/(0.012 · 10−3)

(3.2265)2
0.0277 = 221.7

for IS using a Student’s t distribution with adapted mode and scale;

∂[1/var(Ê(β))]

∂ time
=

1/(0.012 · 10−3)

(3.2265)2
0.0002 = 1.6

for IS using a Student’s t distribution around the posterior mode.12 So, if one desires

12Note that we use the same, most precise (AdMit-IS) estimate of st.dev(β) of 3.2265 in the

formulas. Moreover, notice that the time per draw is only a factor of approximately 4/3 larger for the

mixture of 6 Student’s t distributions than for the t distribution, because the evaluation of (mixtures

of) t densities takes relatively little time. In these IS approaches, most time is required for evaluating

the target density kernel.
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to obtain an estimator of the posterior mean of β with standard deviation st.dev(Ê(β))

smaller than 0.0154, then AdMit-IS is the better choice as in this case AdMit-IS needs

(possibly much) less computing time. On the other hand, if one only needs a less

precise estimator of the posterior mean of β, then IS with a Student’s t candidate may

be a better choice. However, one should bear in mind that the latter only holds, if the

Student’s t distribution covers the whole region containing posterior probability mass

with enough candidate probability mass. For the probability that important regions

of the parameter space, such as distant modes in case of a multi-modal posterior, are

‘missed’, is much smaller if one uses the AdMit procedure. So, next to the conver-

gence speed of the sampling results, an advantage of the AdMit approach is the higher

robustness, i.e. a higher reliability that the whole posterior distribution is covered by

the candidate.

0

5000

10000

15000

20000

25000

30000

1/var

5 10 15 20 25 30
time (in s)

Figure 11: IV model (1)-(2) for data on men born in the state New York in 1930-

1939 (under diffuse prior): precision (1/variance) of the IS estimator of the posterior

mean of β for different candidate distributions, as a function of the computing time:

Student’s t candidate density with scale and mode adapted to target density (dashed

line); AdMit (mixture of t) candidate density (solid line), which requires 18.1 seconds

to be ‘learned’ but after that needs less than 2 seconds to outperform the Student’s t

candidate density.
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6 Posterior shapes in a 2-regime mixture model

for real US GNP growth: comparing candidate

distributions for an 8-dimensional posterior

In this section we consider the posterior shapes in a 2-regime mixture model for real US

GNP growth. We use this example model in order to compare candidate distributions

in case of a highly non-elliptical, 8-dimensional posterior in a parameter space with a

restricted domain. This indicates how poor a unimodal (Student’s t) candidate distri-

bution may perform in such situations, and how much quicker convergence of sampling

results can be obtained by using a mixture of Student’s t candidate distribution.

The used method differs from the approach in Section 5 that heavily relies on the

evaluation of Hessian matrices, which can be troublesome in higher dimensions or in

situations with pronounced boundaries in the parameter space, where the latter is the

case in this example. The results for the 8-dimensional highly non-elliptical posterior

suggest the method’s useful applicability in higher dimensions.

We note that in this empirical example the mixture process refers to the data

space. However, such mixture processes may give rise to bimodal or skew posterior

distributions, i.e. non-elliptical shapes in the parameter space. In this example, we

consider a mixture model with two AR(2) regimes for real US GNP growth:

yt =

{
β11 + β12yt−1 + β13yt−2 + εt with probability p,

β21 + β22yt−1 + β23yt−2 + εt with probability 1− p,

εt ∼ N(0, σ2), (23)

where yt denotes the (annualized) quarterly growth rate. The data consist of T = 231

observations from the first quarter of 1950 to the third quarter of 2007; see Figure

12. We emphasize that model (23) is used for illustrative purposes only. Investigating

possible misspecification of (23) due to the Great Moderation in volatility observed

since the early nineteen-eighties is beyond the scope of the present paper.

Note that we have an 8-dimensional vector θ = (β11, β12, β13, β21, β22, β23, σ, p)′.

The prior for p is U(0, 1), while the prior for σ is taken proportional to 1/σ, which

amounts to specifying a uniform prior for log(σ). The priors for βi1 (i = 1, 2) are

chosen uniform on the interval [−4, 4]; for βi2, βi3 (i = 1, 2) the prior is chosen uniform

on the interval [−1, 1].13 For identification, it is imposed that β11 < β21.

13In order to obtain a proper posterior distribution for βi1, βi2, βi3 (i = 1, 2), we need to specify a

proper prior for these parameters. Intuitively speaking, the reason is that there is a probability of
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Figure 12: US real Gross National Product: (annualized) growth rates in percents.

The data are seasonally adjusted. Source: US Department of Commerce, Bureau of

Economic Analysis.

The constraint β11 < β21 implies that in step 2 of the AdMit approach the im-

portance weight function may often attain its supremum at this boundary (or at a

boundary for βi1 = ±4 (i = 1, 2), βi2 = ±1, or βi3 = ±1 (i = 1, 2)). So, the Hessian

of the logarithm of the weight function, evaluated at its supremum, may often not be

positive definite. Therefore, µh (h = 2, 3, . . .) is chosen as the point θj with the highest

weight w(θj) in the current sample {θj|j = 1, . . . , n}, and Σh is obtained as the matrix

of estimated second moments around µh for the ‘residual distribution’ with kernel in

(18).

The first columns of Table 3 give sampling results for the AdMit candidate density,

a mixture of 8 Student’s t densities. Further, Table 3 gives sampling results for a

Student’s t candidate density with mode and scale that have been adapted to the

posterior distribution in a preliminary run. The final two columns give results for the

Student’s t candidate density around the posterior mode (with scale matrix equal to

minus the inverted Hessian of the log-posterior, evaluated at the mode). Notice that

the numbers of draws are chosen in such a way that the total amount of computing

time is approximately the same among the three methods. Note that the IS and

MH methods with the AdMit candidate yield estimates of the posterior means with

a higher precision: for all estimated posterior means the numerical standard error is

smaller than under a Student’s t candidate distribution. Under the AdMit-IS approach

all numerical standard errors are more than 3 times smaller than under the other IS

methods. For 4 parameters the AdMit-IS and AdMit-MH methods deliver numerical

standard errors that are over 10 times smaller than under a Student’s t candidate.14

(1 − p)T (a probability of pT ) that none of the observations belong to the first (second) regime, in

which case the posterior of the corresponding parameters is simply given by the prior.
14Obviously, the numerical standard errors are only (possibly rough) estimates of the actual stan-
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Table 3: Sampling results for different candidate densities: estimated posterior mo-

ments for the 2-regime mixture AR(2) model (23) (with β11 < β21) for (annualized)

quarterly real US GNP growth in 1950-2007. The IS and MH methods based on the

Type 3 network, the mixture of Student’s t densities, yield much more precise results

in approximately the same computing time.

importance function / candidate density

Type 3 NN (Adaptive Student’s t with Student’s t around

Mixture of t [AdMit]) adapted mode and scale posterior mode

IS MH IS MH IS MH

E(β11) 0.1292 0.1403 0.2022 -0.0091 0.2519 0.0527

(num. std. error) (0.0060) (0.0080) (0.1191) (0.1398) (0.1049) (0.0883)

[RNE] [0.0058] [0.0031] [5.9 · 10−6] [7.3 · 10−6] [6.2 · 10−6] [1.6 · 10−5]

E(β12) 0.4061 0.4044 0.4135 0.4518 0.3387 0.2225

(num. std. error) (0.0030) (0.0036) (0.0157) (0.0124) (0.0367) (0.1564)

[RNE] [0.0092] [0.0064] [0.0001] [0.0004] [2.6 · 10−5] [5.9 · 10−6]

E(β13) 0.2663 0.2606 0.2006 0.3303 0.2080 0.5178

(num. std. error) (0.0037) (0.0047) (0.0705) (0.0762) (0.0807) (0.1190)

[RNE] [0.0050] [0.0029] [5.8 · 10−6] [7.3 · 10−6] [4.8 · 10−6] [4.9 · 10−6]

E(β21) 1.7832 1.8398 1.3947 1.0742 0.9180 0.7467

(num. std. error) (0.0154) (0.0303) (0.1186) (0.0989) (0.0517) (0.0568)

[RNE] [0.0044] [0.0012] [6.1 · 10−6] [8.0 · 10−6] [9.3 · 10−6] [1.2 · 10−5]

E(β22) -0.2569 -0.2546 -0.5583 -0.1474 -0.4611 0.0867

(num. std. error) (0.0062) (0.0108) (0.2090) (0.2045) (0.1786) (0.1800)

[RNE] [0.0057] [0.0020] [3.1 · 10−6] [3.1 · 10−6] [3.0 · 10−6] [3.0 · 10−6]

E(β23) -0.0852 -0.0999 0.0986 0.0294 0.6317 0.1591

(num. std. error) (0.0089) (0.0098) (0.0644) (0.0823) (0.1831) (0.2118)

[RNE] [0.0022] [0.0018] [3.1 · 10−6] [2.8 · 10−6] [2.8 · 10−6] [1.5 · 10−6]

E(σ) 0.8367 0.8367 0.8239 0.8304 0.8253 0.8246

(num. std. error) (0.0006) (0.0008) (0.0080) (0.0049) (0.0018) (0.0011)

[RNE] [0.0071] [0.0034] [9.9 · 10−6] [4.3 · 10−5] [0.0001] [0.0006]

E(p) 0.6797 0.6887 0.7129 0.5380 0.7070 0.3753

(num. std. error) (0.0039) (0.0070) (0.0941) (0.1018) (0.1032) (0.0715)

[RNE] [0.0068] [0.0021] [4.3 · 10−6] [4.7 · 10−6] [3.1 · 10−6] [7.5 · 10−6]

σ(β11) 0.4605 0.4480 0.4091 0.5336 0.3698 0.5057

σ(β12) 0.2920 0.2891 0.2473 0.3454 0.2651 0.5348

σ(β13) 0.2577 0.2523 0.2394 0.2908 0.2509 0.3727

σ(β21) 1.0255 1.0491 0.4130 0.3957 0.2226 0.2830

σ(β22) 0.4723 0.4784 0.5209 0.5074 0.4357 0.4426

σ(β23) 0.4155 0.4103 0.1602 0.1957 0.4297 0.3657

σ(σ) 0.0474 0.0468 0.0358 0.0452 0.0254 0.0366

σ(p) 0.3213 0.3191 0.2748 0.3118 0.2572 0.2773

total time 185.2 s 196.5 s 188.5 s

time construction NN 87.2 s

time adapting mode, scale 8.0 s

time sampling 98.0 s 188.5 s 188.5 s

draws 1 mln 2 mln 2 mln

time/draw 0.098 ms 0.094 ms 0.094 ms
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Again, about half of the computing time required for the results of IS or the MH

algorithm using the AdMit candidate, is needed for ‘learning’ the candidate distribu-

tion, the mixture of 8 Student’s t distributions. However, the RNE’s are much higher

for the AdMit candidate density, so that 1 million of AdMit draws are much more

valuable than 2 millions of draws from a Student’s t candidate distribution. Note that

most RNE’s are extremely low for the Student’s t candidate distributions: for the

parameter β11 it is approximately 6× 10−6 under the IS approach, which means that

the samples of 2 million draws are equivalent with a sample of merely 12 independent

direct draws from the posterior! For the mixture of Student’s t distributions, an RNE

of 0.0058 may seem really low, as this means that the million draws are equivalent

with merely 5800 independent direct draws. However, this mainly reflects that for

highly non-elliptical posteriors in higher dimensions it may be almost impossible to

(quickly) find a candidate distribution with a high RNE.

For both MH algorithms using Student’s t distributions, there was a sequence of

over 300000 consecutive rejections! This reflects that there are parts of the parameter

space, which contain substantial posterior probability mass, that are almost completely

‘missed’ by these Student’s t candidate distributions. This is illustrated by Figure 13.

Another consequence is that some estimated posterior standard deviations are far

too small for the Student’s t candidate distributions. Figure 13 also shows that the

posterior is bimodal. Further, Figure 13 reflects that if p → 0 (p → 1), then β11,

β12 and β13 (β21, β22 and β23) become unidentified, so that a wide range of values is

possible for these parameters.

Finally, note that for the middle columns of Table 3 the mode and scale of the

candidate have already been roughly adapted to the posterior, and that this is a fat-

tailed Student’s t distribution with 1 degree of freedom. Still substantial parts of the

parameter space are almost completely missed, when using this unimodal candidate.

This stresses the need for multi-modal candidate densities in such situations.

Of course, it is also possible to apply the method of Gibbs sampling with data

augmentation to this 2-regime mixture model. However, our main aim is to compare

the IS and MH algorithms that make use of different candidate distributions for an

8-dimensional, highly non-elliptical posterior distribution. Further, the data augmen-

dard deviations of the IS and MH estimators. This may explain the relatively large differences between

the numerical standard errors under the IS and MH methods, and the smaller numerical standard

errors (for some of the parameters) under the Student’s t candidate distribution around the posterior

mode as compared with the Student’s t distribution with mode and scale adapted to the posterior.
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Metropolis-Hastings draws (candidate = mixture of 8 Student’s t distributions):

Metropolis-Hastings draws (candidate = Student’s t distribution):

Figure 13: Posterior for the 2-regime mixture AR(2) model (23) (with β11 <

β21) for (annualized) quarterly real US GNP growth in 1950-2007: scatter plots

of β11, β12, β13, β21, β22, β23, σ (on vertical axis) versus p (on horizontal axis) for

Metropolis-Hastings draws with Adaptive Mixture of t [AdMit] candidate (top) and

for Metropolis-Hastings draws with Student’s t candidate (bottom). Notice that the

regions with p close to 1 are (almost) completely ‘missed’ by the Student’s t candidate

distribution.
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tation approach requires more ‘inputs’ than the IS and MH methods. For the data

augmentation method, the conditional posterior distribution of each parameter has to

be derived, whereas the IS and MH methods only require a kernel of the posterior

density. In the case of multi-modality, the data augmentation approach may also fail,

in the sense that the Gibbs sequence remains near one of the posterior modes. Obvi-

ously, one can then draw from the other regions of the parameter space by choosing a

different initial value, but it is not a trivial issue how to weight the results from the

different runs, i.e. it is not trivial to determine which part of the posterior probability

mass is contained in each region of the parameter space.

Another approach is the permutation-augmented sampling method of Geweke (2007),

which is close to the random permutation sampler of Frühwirth-Schnatter (2001).

These approaches solve the problem of multimodality of the posterior in the unre-

stricted mixture model due to the symmetry of the mixture components in the (un-

restricted) model. The idea behind the permutation-augmented approach is that one

first generates draws from the unrestricted posterior and secondly permutes these in

order to satisfy the identification constraint, where the second step is only performed

if one desires insight into the restricted posterior distribution. However, the posterior

distribution may also be highly non-elliptical ‘per mode’, which may cause slow con-

vergence or unreliable results in case of high-dimensional posteriors. In such cases, a

combination of the permutation-augmented idea and the mixture of Student’s t dis-

tributions may be useful.

Finally, we briefly consider another irregularity of the likelihood of the mixture

model that occurs if we allow the parameter σ to be different across regimes. Consider

the simple mixture model:

yt ∼
{

N(µ1, σ
2
1) with probability p

N(µ2, σ
2
2) with probability 1− p

t = 1, . . . , T, (24)

where the yt are independent. The likelihood function is:

L(µ1, σ1, µ2, σ2, p) ≡ p(y|θ) =
T∏

t=1

[
p (2π)−1/2 σ−1

1 exp

(
−(yt − µ1)

2

2σ2
1

)
+ (25)

(1− p) (2π)−1/2 σ−1
2 exp

(
−(yt − µ2)

2

2σ2
2

)]

with y = (y1, . . . , yT )′, θ = (µ1, µ2, σ
2
1, σ

2
2, p)′. The likelihood function L(µ1, σ1, µ2, σ2, p)

in (25) has unbounded modes for µi = yt, σi → 0 (i = 1, 2; t = 1, . . . , T ), as for µi = yt

the factor exp
(
− (yt−µi)

2

2σ2
i

)
= 1, so that only the factor σ−1

i →∞ remains.
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Figure 14 shows the likelihood L(µ1, σ1, µ2, σ2, p) for data on the (annualized)

quarterly real US GNP growth rate yt from the fourth quarter of 2005 to the third

quarter of 2007 (the last 8 observations in Figure 12), conditional on the values

µ1 = 2.515, σ1 = 1.478, the mean and standard deviation of the 8 observations,

and p = 0.99. Note the 8 ‘spikes’ corresponding to the 8 observations yt: we have

L(µ1 = 2.515, σ1 = 1.478, µ2, σ2, p = 0.99) →∞ for µ2 → yt, σ2 → 0 (t = 1, . . . , 8).

This phenomenon means that the inverted gamma IG(ν0, D0) prior density for σ2
i ,

p(σ2
i ) =

Dν0
0

Γ(ν0)

(
σ2

i

)−ν0−1
exp(−D0/σ

2
i ) D0 > 0, ν0 > 0, i = 1, 2, (26)

used by e.g. Frühwirth-Schnatter (2001), can also be interpreted as a regularization

prior in the sense that the exponent exp(−D0/σ
2
i ) eliminates the likelihood function’s

‘spikes’.
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Figure 14: Likelihood function L(µ1, σ1, µ2, σ2, p) in simple two-regime mixture model

with different standard deviation parameters σ1, σ2 in the two regimes, for data on

the (annualized) quarterly real US GNP growth rate yt from 2005Q4 to 2007Q3 (the

last 8 observations in Figure 12); conditional on the values µ1 = 2.515, σ1 = 1.478,

the mean and standard deviation of the 8 observations, p = 0.99. The likelihood

L(µ1 = 2.515, σ1 = 1.478, µ2, σ2, p = 0.99) →∞ for σ2 → 0, µ2 → yt (t = 1, . . . , 8).
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7 Concluding remarks

In this paper, we considered the possibility of highly non-elliptical posterior distribu-

tions that may occur in several econometric models, in particular, when one allows

the likelihood to dominate and the information in the data is weak. We investigated

three cases: instrumental variable models with weak instruments, vector autoregressive

models with co-integration restrictions, and mixture processes where one component

is nearly non-identified.

We started with an analysis of the issue of highly non-elliptical posteriors in the

context of a simple IV model for the effect of education on income using data from

the well-known Angrist and Krueger (1991) study. We discussed how a so-called

Information Matrix or Jeffreys prior may be used as a ‘regularization prior’ that in

combination with the likelihood function yields posteriors with desirable properties.

Further, we illustrated that the IV model and the Vector Error Correction Model have

a similar mathematical structure which leads to similar posterior shapes.

As a main contribution of the paper, we find that in situations of highly non-

elliptical posteriors that may occur frequently in economic processes, it is worthwhile

to invest in the search for accurate candidate or importance functions. Simple simula-

tion methods like the Metropolis-Hastings algorithm or Importance sampling with one

normal or Student’s t candidate density may either fail to converge or be extremely

slow, which inhibits their use in practical applications. In all examples considered in

this paper, the mixture of Student’s t densities – that can be considered a particular

type of neural network function – is clearly a much better candidate. This mixture

candidate yields far more precise estimates of posterior means after the same amount

of computing time, whereas the Student’s t candidate almost completely misses sub-

stantial parts of the parameter space.

Of course, it is also possible to apply the method of Gibbs sampling with data

augmentation to the 2-regime mixture model. However, our main aim is to compare

the IS and MH algorithms that make use of different candidate distributions for an

8-dimensional, highly non-elliptical posterior distribution. Further, in the case of

multi-modality, the data augmentation approach may also fail, in the sense that the

the Gibbs sequence remains near one of the posterior modes.

Another approach is the permutation-augmented sampling method of Geweke (2007),

which is close to the random permutation sampler of Frühwirth-Schnatter (2001).

However, the posterior distribution may also be highly non-elliptical ‘per mode’, which

may cause slow convergence in case of high-dimensional posteriors. In such cases, a
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combination of the permutation-augmented idea and the mixture of Student’s t dis-

tributions may be useful. The mixture of t candidate can also be applied to particular

(non-linear) multivariate GARCH models, where application of the data augmenta-

tion method is more difficult. Another possible extension is the combination of copulas

and mixtures of Student’s t distributions, where the use of copulas helps the marginal

candidate distributions match with the marginal posteriors. We intend to report on

these extensions in the near future.
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