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Abstract

This paper shows that the conditionality of investment decisions in R&D has a crit-

ical impact on portfolio risk, and implies that traditional diversi�cation strategies

should be reevaluated when a portfolio is constructed. Real option theory argues

that research projects have conditional or option-like risk and return properties,

and are di�erent from unconditional projects. Although the risk of a portfolio al-

ways depends on the correlation between projects, a portfolio of conditional R&D

projects with real option characteristics has a fundamentally di�erent risk than a

portfolio of unconditional projects. When conditional R&D projects are negatively

correlated, diversi�cation only slightly reduces portfolio risk. When projects are pos-

itively correlated, however, diversi�cation proves more e�ective than conventional

tools predict.
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1 Introduction

When the future outcomes of a �rm's endeavors are unknown, a key strat-

egy for dealing with such risk is betting on more than one horse. Successful

research and development (R&D) policy therefore requires careful portfolio

analysis to optimise the selection and the development of several concurrent

alternatives. Diversi�cation of risk plays a key role in this process. When the

portfolio consists of risky R&D projects, however, conventional diversi�cation

arguments do not hold since conditionality causes the payo�s to become non-

linear. This is a direct result of the option characteristics that many R&D

projects display.

Option characteristics follow from managerial �exibility to adjust decisions

under uncertainty. Any possibility of altering a project as new information

becomes available renders a project conditional. For instance, a project that

is started now may be abandoned or expanded in the future, a decision based

on a given performance criterion and usually taken when new costs need to

be incurred. As the investment decision is conditional, it can be regarded as

an `option' that is acquired by making the prior investment. We will examine

the di�erences between conditional and unconditional investments below, as

well as their implications for portfolio analysis.

This paper examines diversi�cation when conditional investment decisions are

present in an R&D portfolio, and shows that reliance on traditional diversi�-

cation strategies can be misleading. Negative correlation makes diversi�cation

a less e�ective instrument for eliminating risk amongst conditionally �nanced
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projects than for unconditional projects. Positive correlation, however, makes

diversi�cation more e�ective. As compared to unconditional projects, a portfo-

lio of conditionally �nanced projects is less sensitive to changes in correlation

when correlation is not highly positive, and risk is therefore more di�cult to

diversify. Our �ndings have implications for diversi�cation strategies in port-

folio analysis. This includes (but is not limited to) the strategic choice between

a focused or diversi�ed portfolio, diversi�cation over time and risk measure-

ment techniques such as Value at Risk (VaR), often used in risk management

regulation.

Real options analysis has become a well-known R&D project valuation tech-

nique for intertemporal risky investments in R&D. In their seminal paper,

Black and Scholes (1973) consider equity of a real, levered �rm as an option

on its entity value. Using �nancial theory, Myers (1977) was the �rst to de-

scribe real options as �the opportunities to purchase real assets on possibly

favorable terms�. In the strategy literature, Bowman and Hurry (1993) and

Bettis and Hitt (1995) propose real options theory as an alternative lens for

looking at technology investments that closely resemble the behaviour and

characteristics of real options. In the R&D literature, Thomke (1997) indeed

shows empirically that �exibility under uncertainty allows �rms to continu-

ously adapt to change and improve products. Hartmann and Hassan (2006)

�nd that real options analysis is used as an auxiliary valuation tool in phar-

maceutical project valuation 1 . In this context, a basic implementation is pro-

1 The fundamental di�erence between real options and traditional discounted cash
�ow (DCF) valuation lies in the �exibility to adapt when circumstances change.
Whereas DCF valuation assumes investments are �xed, an option is the right (not
the obligation) to invest in R&D at some future date. If future circumstances are
favourable, the option will be exercised; if not, the option will expire without any
further cost. Such freedom of choice enables an investor to abandon the project in
a timely manner so that further losses are avoided. Therefore, many unfavourable
investments (with limited downside risk) can be �nanced by a few highly pro�table
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vided by Kellogg and Charnes (2000), and more sophisticated option valuation

models for pharmaceutical research have been developed by Loch and Bode-

Greuel (2001). Lee and Paxson (2001) view the R&D process and subsequent

discoveries as sequential (compound) exchange options. Cassimon et al. (2004)

provide an analytical model for valuing the phased development of a pharma-

ceutical R&D project. The empirical literature also con�rms that R&D yields

the positively skewed distribution of returns that is typical of options. For in-

stance, Scherer & Harho� (2000) investigated innovations and show that the

top 10% returns captured 48% to 93% of total sample returns. They refer to

Nordhaus (1989), who postulates that 99.99% of invention patents submitted

per year are worthless, but that the remaining 0.01% have high values.

In concurrence with this literature, we analyse conditionally �nanced projects

as options. R&D typically has a high chance of failure and can be deemed

risky. High-risk projects in R&D are generally explorative in nature; examples

include basic and fundamental research, or R&D in response to important

changes in a �rm's strategic environment. We will contrast the option-like

projects to unconditional projects that typically behave similarly to equity

shares, have a low chance of failure and are subject to less risk. Low-risk

projects in R&D are often of an incremental nature; examples include `me-too'

inventions that imitate a successful competitor's invention, or investments into

an already commercialized product. We refer to the �rst group as conditionally

�nanced projects, conditional projects, or real options. We refer to the second

as unconditional projects.

Most real options studies have primarily examined projects in isolation. Eng-

investments (with unlimited upside potential). Pro�table investments will account
for the majority of returns, so the return distribution becomes positively skewed.
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wall (2003), however, argues that every project takes o� from, or is executed

in, an organizational context. Real options should therefore also be considered

as part of a portfolio. Brosch (2001) considers the in�uence of interacting real

options within projects. These positive and negative interactions between op-

tions make a portfolio's value non-additive. Our focus, however, is on option

interactions between projects, and we focus on the risk of the portfolio.

Smith and Thompson (2003, 2005) postulate a project selection strategy in

sequential petroleum exploration, where the outcome of the prior drillings can

be observed before investing in the next drilling. We are also involved with

real option selection, but focus on simultaneous (non-sequential) development.

Multiple assets have been examined by Wörner et al. (2002, 2003), who de-

scribe a �rm as a `basket option' that conducts several R&D projects, or as

an option on a set of stochastic variables. Yet, as they focus on the value of a

single claim that pertains to many random variables, their analysis does not

derive results relevant to portfolio management (which inherently deals with

the selection between multiple claims). Such rainbow or basket options are

often used to describe R&D projects; Paxson (2003) surveys several real R&D

option models and utilises some of them in a case study.

When constructing an R&D portfolio, the selection of candidates comprises

many important, non-monetary considerations. For example, Prencipe and

Tell (2001) show that �rms try to capture synergies that stem from learning

processes. Several studies have therefore aimed to integrate risk diversi�cation

with expected costs and bene�ts, inter-project synergies, externalities, R&D

quality and overall �t with the business strategy. Taking this angle, Linton

et al. (2002) develop a framework that combines both quantitative and qual-

itative measures to rank and select the projects in a portfolio. In addition,
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Martino (1995) describes several methods for R&D project selection includ-

ing cluster analysis, cognitive modeling, simulation, portfolio optimisation,

and decision theory. While these sources are suitable for handling technical

and physical diversi�cation, they seem less appropriate for allocating �nan-

cial resources, compared to the Markowitz (1952) diversi�cation principle.

Markowitz's objective is to optimise risk given a return, or vice versa. Chien

(2002) includes a survey of selection procedures and shows that several orig-

inated from Markowitz's work. A recent R&D selection model that is based

on that of Markowitz (1952) can be found in Ringuest et al. (2004). Unfor-

tunately, the Markowitz diversi�cation strategy only applies when the distri-

bution of project returns is symmetric, an assumption that does not hold for

R&D projects with conditionality. Our argument supplements the Markowitz

criterion in that it explicitly considers real option characteristics; we create a

skewed distribution by simulating many real options.

Using a portfolio of two investment opportunities, we show that although

the risk of an R&D portfolio always depends on the correlation between

projects, the dependence di�ers between conditional projects and uncondi-

tional projects. In particular, we �nd that when projects are positively corre-

lated, the overall portfolio risk for conditional projects is lower than for uncon-

ditional projects. Diversi�cation is an important argument to create a portfolio

of such projects, because it is more e�ective than one would expect from un-

conditional investments. In contrast, when projects are negatively correlated,

we �nd that the overall portfolio risk for conditional projects is higher than

for unconditional projects. Moreover, under negative correlation, portfolio risk

is less sensitive to changes in correlation as compared to unconditional invest-

ment projects. Diversi�cation is therefore less e�ective than one would initially

expect from unconditional investments, and more weight should be placed on
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non-diversi�cation arguments to motivate a portfolio of such projects, such as

synergies and spillovers.

This paper is organized as follows: in Section 2, the theory behind a portfolio

of real options is conveyed. In Section 3 we present the model and its results.

Section 4 is dedicated to the implications of our �ndings. In Section 5, we

conclude and provide directions for future research. In the Appendices A and

B, a proof of our �ndings is provided, as well as a means to extend our analysis

to a more realistic setting.

2 Conceptual Framework

We analyze a portfolio of individual projects that await conditional invest-

ments, and represent each project by a simple call. A portfolio of calls is a

valid way to describe reality if the portfolio's constituents behave similarly to

�nancial options. This happens if a portfolio consists entirely of conditionally

�nanced projects, as is often found in pharmaceuticals, biotechnology, venture

capital and software technology.

It is important to note that we examine a portfolio of multiple contingent

claims. This di�ers from a single claim on several underlying stochastic pro-

cesses, such as an option on the most valuable R&D project in a portfolio.

A single claim does not �t our central goal of selecting and managing multi-

ple claims. Each individual portfolio element may well be an R&D project or

a venture facing several uncertainties and aiming for multiple markets, such

that each element may be a rainbow or basket option. We study portfolios

of these elements, however, and such portfolios consist of several claims (not

their underlying values).
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The symmetry of a project's value distribution has an impact on portfolio

diversi�cation. For unconditionally �nanced projects, the symmetrical distri-

bution allows for a 'perfect hedge', and a riskless portfolio can be created;

when two equity shares are perfectly negatively correlated, one goes down

by the amount that the other goes up and vice versa 2 , so that all deviation

is o�set. In line with Markowitz (1952), we call this hedging mechanism the

�diversi�cation e�ect� on the risk of a portfolio.

However, when the projects are conditionally �nanced, below-average results

are no longer o�set by above-average returns and Markowitz's (1952) diversi-

�cation principle is no longer valid. Because the payo� from a call cannot fall

below zero, an option already provides insurance against the negative payo�s

by nullifying those payo�s that are lower than the exercise price. Hence, the

value distribution of a portfolio of real call options becomes skewed from the

left and ceases to be symmetrical. The would-be-negative payo�s are no longer

available for diversi�cation, and constructing a riskless portfolio is no longer

possible. Paradoxically, in a portfolio of options, the option to abandon limits

downside risk of the individual project, but complicates diversi�cation and

does not limit risk when portfolio correlation is negative. In line with Jensen's

Inequality, we call this the `convexity e�ect', which a�ects the diversi�cation

e�ect. In Appendix A, we derive this result as we examine the variance of a

conditionally �nanced portfolio more explicitly.

In the next section, we will develop a Monte Carlo simulation model to show

the e�ect of risky projects on a portfolio of R&D projects. The procedure is

straightforward and can easily be used in practice with other portfolio selec-

tion criteria. Before we proceed, however, a proper description of our research

2 That is, when uncertainty is constant and equal for both shares.
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subject is appropriate. This paper exclusively focuses on the risk (not the

value) of a portfolio of options, and is therefore a supplement to the previ-

ously mentioned portfolio selection criteria. Their importance notwithstand-

ing, for the sake of argument we group all these criteria under the heading

of �non-diversi�cation criteria�. �Uncertainty� in our portfolio is completely

determined by how the value of projects varies. Portfolio variance is a well-

known measure for this dispersion, used in the �nancial sector under Basel

II regulations. We con�ne our analysis to the relation between market values

of projects, and assume the project costs to be independent and known. We

prefer this setup because modeling more than one source of uncertainty would

cause our results to become confounded. To more accurately re�ect reality,

the procedure can be easily extended to accommodate two or more related

stochastic processes, such as uncertain costs and bene�ts.

3 Methodology and Results

3.1 Simulation Model

To �nd the volatility of an option portfolio, we estimate the volatility of payo�s

for each option. We model a portfolio with two projects iε{1, 2}. Unless we

consider the special cases in Appendix A, it is not possible to determine the

risk of an option portfolio analytically since the joint distribution of options is

not analytically tractable. Instead, we model the behavior of both end-of-R&D

values projects Vi by a simple normal distribution, de�ned as follows:

Vi = µi + σiεi (1)
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where µi is the project value, σi is the standard deviation of project values

when the project is completed and εi is a random draw from a standard normal

distribution. Assuming no dividend payouts for each project i, we calculate

the option value OVi:

OVi = max[Vi −Xi, 0]e−rT (2)

where Xi is the investment needed to start or acquire the project, r is the

discount rate and T is project i's time to completion. The value of the project

can now be calculated by taking the average value of equation (2) over R

simulation rounds, with OVij representing the result of a single simulation

round for OVi. As the number of rounds increases, this value converges to its

true value. To observe how project values are distributed, the volatility of a

single option can be found as follows:

σOVi
=

√√√√ 1

R

∑
j

(OVij −OVi)2 (3)

Extending to a portfolio of two projects, the relation between underlying val-

ues (not the option values) is measured by means of a correlation coe�cient ρ12

between ε1 and ε2. Assuming multivariate normality, the correlation between

any number of assets can be calculated using the Cholesky decomposition.

This process, as well as constructing a consistent variance-covariance matrix

for cases where i > 2, is described in Appendix A. For the two variable case, in-

dependent samples y1 and y2 are taken from a univariate standardized normal

distribution and the correlated samples ε1 and ε2 are calculated as follows:

ε1 = y1 (4)

ε2 = ρ12y1 + y2

√
1− ρ2

12 (5)
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From one set of independent samples y1 and y2, we generate 21 pairs of corre-

lated samples ε1 and ε2 (ranging from ρ12 = −1.0 to ρ12 = 1.0 with step size

0.10) by inserting the independent sample values into equations (4) and (5).

Because, under the assumption of correlation between project values but no

interactions between the options, the value of the portfolio is the sum of the

project values i,

pf =
∑
i

OVi, (6)

and the value of the portfolio can be calculated for each correlation. However,

we are concerned with portfolio risk (measured by the variance of the summed

option values) rather than the value of a portfolio of options. Similar to the case

for a single option, the estimate of portfolio variance is based on a simulation

of portfolios pfj for j = 1, ..., R and averaging over R:

σ̂pf=

√√√√ 1

R

∑
j

(pfj − pf)2 (7)

As a numerical example, we can show a potential simulation round using

the numbers from the bivariate base case described in Figure 1. Assume one

set of draws from the univariate distribution are the following: y1 = 0.5 and

y2 = −0.25. Using equation (5), this independent pair of draws leads to 21

correlated pairs, including (for ρ12 = −0.2)

ε1 = 0.5;

ε2:ρ=−0.2 = −0.2× 0.5− 0.25×
√

0.96 ≈ −0.34.

11



Using equation (1), if the underlying values are somewhat negatively correlated

and uncertainty is 25%, a feasible realisation would be

V1 = 20 + (25%× 20)× 0.5 = 22.5;

V2 = 20 + (25%× 20)×−0.34 = 18.3

The value of each project and the portfolio is calculated using equation (2):

OV1 = max[22.5− 25 , 0]e−rT = 0

OV2 = max[18.3− 25 , 0]e−rT = 0

pf = 0 + 0 = 0

This procedure is repeated R times for each of the 21 correlations. Of the

resulting 21 correlation-speci�c sets of R-sized portfolio values, we calculate

portfolio risk using the variance of the portfolio values and plot it against

the correlation. In all graphs, portfolio risk is normalized by dividing over

the summed variance of two independent calls. If we treat the two projects

as unconditional, we would have used equation (3), leading us to calculate a

`naive' portfolio variance, as described below.

3.2 Simulation Results

The curved, solid line σ2
pf in Figure 1 shows the cumulative variance of 21

ρ-speci�c option pairs. As this paper is exclusively concerned with portfolio

risk and our results cannot be compared with other pricing methods such as
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the seminal Black�Scholes equation 3 , no further option values are reported.

Nevertheless, values have been used in equation (7) to construct the variance,

our measure for dispersion. To illustrate the di�erence between the actual

portfolio risk and the calculated risk when using Markowitz diversi�cation, we

add a dashed line σ̃2
pf that shows the variance of the projects if we (wrongly)

assume Markowitz diversi�cation to be valid. This would only be appropriate if

the separate projects are unconditional and behave as equity shares. The solid

line connects the portfolio variance for 21 di�erent correlations and for the

dashed line, the following well-known formula to calculate portfolio variance

is used:

σ̃2
pf = σ2

OV 1 + σ2
OV 2 + 2ρσOV 1σOV 2 (8)

Using equations (2) and (3), this line has the variance of individual option

values OV1 and OV2 as inputs for σ2
OV 1 and σ2

OV 2. We observe that at ρ =

0, the variance of unrelated projects is the same for both σ2
pf and σ̃2

pf . A

third, dotted line σ2
0 ≡ σ̃2

pf :ρ=0 = σ2
OV 1 + σ2

OV 2 shows that the �rst line σ2
pf

is cushioned towards a special case of σ̃2
pf , which represents a portfolio of

completely unrelated options or options that are both separate and unrelated.

[Insert Figure 1 about here]

3 Our results also persist for other stochastic processes such as the geometric Brow-
nian motion, on which the Black & Scholes option pricing model is built. Under
this process, the project value's changes, instead of levels, would be normally dis-
tributed. This process is arguably more suitable for modeling skewed R&D project
values, but causes an additional asymmetry in the distribution of portfolio values.
To isolate the e�ects of the (also nonlinear) investment option, we choose a symmet-
rically distributed process; this makes it no longer possible to compare our results
with other models.
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The di�erence lies in the interpretation of the correlation coe�cient ρ that

measures the correlation between projects (the horizontal line σ2
0 illustrates

the degenerate case where ρ is zero). In the case of the naively calculated

variance σ̃2
pf , the projects are correlated one-to-one with the projects' market

values and ρ is a constant. In the case of the correct variance σ2
pf , however, co-

movement between real option projects is a function of market value and the

probability that a project is terminated 4 . This probability, in turn, depends

on the moneyness of the call options, the correlation between project values

and the volatilities of each project value. A manager who doesn't recognise

real option characteristics would end up calculating risk naively, and Figure

1 illustrates how naively calculated risk may di�er from correctly simulated

risk.

In Figure 1, the naive portfolio variance at ρ = 0 is equal to the simulated

variance of the portfolio and the separate options. We also see that both σ̃2
pf

and σ2
pf are reduced when projects are less than perfectly positively correlated,

and that two perfectly positively correlated projects have a variance of 200%

compared to σ2
0, as proven in Appendix A. When the projects are negatively

correlated, both σ̃2
pf and σ

2
pf are less then σ

2
0. All of these diversi�cation e�ects

are in line with the theory proposed by Markovitz.

The `convexity e�ect', however, limits the most severe value drops but leaves

all positive development intact, so that project payo�s are non-linear and the

value distribution becomes skewed. Figure 1 and Appendix A both show that

when individual projects can no longer be o�set, naively applying Markowitz

diversi�cation may lead to signi�cant miscalculations of risk. This is caused

4 This fact has also been used in the theoretical derivations of our results in Ap-
pendix A.
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by the interaction between the diversi�cation and convexity e�ects, which has

both positive and negative consequences. When projects are positively cor-

related, the cushioning of convexity enhances diversi�cation and overall risk

becomes lower than under Markowitz diversi�cation. When the projects are

negatively correlated, however, the cushioning of convexity hampers the diver-

si�cation e�ect, leading to a less e�ective hedge. As a consequence, options are

more complex instruments for diversi�cation than stock. In terms of the e�ect

that correlation has on risk, the sensitivity of unconditional risk to changes

in correlation is generally smaller than for unconditional risk, up to a cor-

relation of about ρ = 0.60. For negatively correlated projects in particular,

diversi�cation changes the portfolio's risk only slightly. Stated more precisely,

the variance of a conditionally �nanced portfolio is compressed towards the

cumulative variance of two independent options. The range of a conditionally

�nanced portfolio is smaller than the range of an unconditional portfolio, but

the minimum is higher than the unconditional portfolio's minimum. We can

formulate the following hypotheses:

H1: For positively correlated project values, conditionally �nanced projects

diversify risk better than unconditional projects.

H2: For negatively correlated project values, unconditional projects diversify

risk better than conditionally �nanced projects.

3.3 Robustness Analysis and General Applicability

The base case (Figure 1) shows what happens when two simple and identical

options are out of the money. This setting is typical of many R&D projects.

Four panels in Figure 2 show results of simulated options that have a lower
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volatility (Panel A), a di�erent volatility (Panel B), are at the money (Panel C)

or in the money (Panel D). In all these situations, the convexity e�ect persists.

Changes in other parameters such as the discount rate have no e�ect on the

results. In Panel A, we halve the volatility so that the project is not in the

money until the value is equal to µ+2σ. In R&D, this means that the project

is not continued in about 97.5% of the cases and hardly any of these projects

are available for risk diversi�cation. As a consequence, the diversi�cation e�ect

is nearly absent and all we see is the convexity e�ect; we might just as well

not diversify at all. In the less extreme case when volatilities di�er, Panel

B shows that portfolio risk is less sensitive to changes in correlation than in

Figure 1 and diversi�cation is still quite ine�ective. The unit change on the

y-axis indicates that in this case, zero variance cannot be achieved by naive

calculation either. When the moneyness increases in Panel C and Panel D, the

curves move towards the straight line and our results become less distinct. This

re�ects the familiar fact that deeply in the money options will behave similarly

to the underlying stock. As a consequence, the convexity e�ect becomes less

pronounced and the diversi�cation e�ect starts to dominate. In R&D, this

means that if the value of the project is much higher then its costs, conditional

�nancing doesn't make a large di�erence because the project will be exercised

anyway.

[Insert Figure 2 about here]

Some general remarks can be made on applying our model to practice. Many

projects are funded by multiple �nance or subsidy rounds and our simple calls
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represent the last phase. A more complex example involves an R&D project

that is split up into stages such that certain requirements must be met be-

fore it can enter the next development phase. This project design involves

several `compound' options, as each conditional investment is an option on

the next phase. R&D in the pharmaceutical industry, for example, is typically

characterized by six stages of development. This means that investing in the

sixth phase is conditional upon completion of the �fth phase, which requires

investments conditional on the fourth phase, etc.. These more realistic fea-

tures can easily modeled by using compound options in the simulation. In

the compounded case, we are stacking `e�ect on e�ect'. This is not demon-

strated here since such simulation results are highly dependent on the success

of entering the next round. Arbitrarily chosen input parameters (especially

for several stages) will have a critical in�uence on the portfolio variance and

conceal the convexity e�ect. Compound options can easily be put to practice

by means of the closed-form model of the successive phases from R&D to

commercialization, developed by Cassimon et al. (2004). Likewise, simulation

makes implementing other realistic features such as uncertain costs or time-

to-completion straightforward . That, however, would also drive us away from

the essential portfolio diversi�cation problem.

For ease of exposition, we have limited the analysis to the smallest portfolio

possible- a portfolio of two projects. The e�ect is also observable when we

increase the number of assets. If we introduce a third asset and keep the

step size �xed at 0.10, for example, then 21 correlated samples are ranked

similarly for every random variable. For the 3-variable case we have a grid of

21 correlation points between variable 1 and 2, 21 between 1 and 3 and 21

between 2 and 3. Appendix B describes how a simulation procedure can be

developed for three and more projects by constructing a consistent correlation
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structure, as in Hull (2006) 5 .

4 Implications

The implications of our results can be readily applied to any research policy

that concerns simultaneous development of projects, subject to conditional

�nancing. While various examples may illustrate this, we limit ourselves to

three: static diversi�cation, diversi�cation over time and capital reserve regu-

lations that protect an organization from bankruptcy.

4.1 Focus or Diversify?

An example of an application of our framework lies in resource allocation for

a geographical area, in order to e�ectively spur innovation. For instance, a

government may want to stimulate economic activity in a certain area. Does a

government prefer to focus business activities, in order to create a specialized

technology area such as Silicon Valley? Or would it diversify in order to prevent

overdependence on a few industries, which has proven problematic in Detroit,

an area focused on construction and car manufacturing?

Our results provide an argument based on the risk characteristics of individual

�rms in both areas. Especially in an innovative �eld such as information tech-

nology, a start-up is often a risky business with option characteristics. This

5 At the same time, the number of possible correlations is smaller than 63. If, for
instance, two projects c1 and c2 have a negative correlation of 0.99, the third cannot
be highly correlated with both at the same time. In this three-variable case, the
correlation between c1 and c2 and a third, single option can only be de�ned on the
complete interval [-1, 1] when the correlation of the two projects c1 and c2 is held
constant at ρ = 0.
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is not true for construction and manufacturing. We have shown that the risk

of a group of positively correlated start-ups is lower than one would expect

if conditionality is ignored. Hence, diversi�cation can be a good argument for

grouping innovative companies, as risk is more e�ectively reduced than within

industries with a more stable cash �ow. Therefore, total risk in Silicon Valley

is not easily increased, even when moderate positive correlation exists between

the value drivers of the region's companies. In Detroit, however, diversi�cation

is an important factor in the region's development.

4.2 Diversi�cation Over Time

An important implication concerns the di�erent e�ects of diversi�cation as

the portfolio matures: when positively correlated projects are still young and

in the R&D phase, a portfolio consisting of such projects is less risky than one

would expect. But as successful projects mature, uncertainty resolves and op-

tion characteristics become less relevant, so that the same correlation between

projects leads to more diversi�cation risk. As a result, portfolios need restruc-

turing when projects evolve and policy makers need di�erent diversi�cation

criteria over time. Each individual project's milestone will modify the risk

characteristics of the portfolio as a whole. To minimize overall portfolio risk,

for instance, some of the matured projects may therefore be sold in exchange

for more negatively correlated projects with low-risk.

Put di�erently, Figure 1 indicates that risk �rst develops as the curvature,

and later as the straight, dotted line. The gentle slope of the curve shows

that although the risk of positively correlated ventures is still higher than the

risk of negatively correlated ventures, the di�erence doesn't matter as much
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as standard portfolio theory predicts. Therefore, structuring a portfolio to

minimize variance is not as important in the early stages: non-diversi�cation

arguments may still provide good reason to combine these projects, but risk

reduction isn't one of them. Until the projects mature and risk diminishes,

negatively correlated risky projects are less attractive portfolio candidates

for risk diversi�cation. When ventures mature, diversi�cation becomes more

important and the risk characteristics of positively and negatively correlated

ventures become more pronounced.

This can be observed in the pharmaceuticals sector, where many small �rms

succesfully focus on a few drugs, rather than become part of a portfolio of a

large, diversi�ed company. Why is risk diversi�cation not necessary for small

research ventures to be successful in such a risky business? One well-known

argument is that in the early stages of development, economies of scale (for

example in marketing) are not feasible yet. Another is that the R&D process

is di�erently organized for small ventures than for big companies. Our re-

sults provide an additional argument for this phenomenon: under conditional

�nancing, a strong focus only marginally increases the risk of the portfolio

while it may strongly contribute to non-diversi�cation criteria (such as syn-

ergies and spillovers) and preserve the upward potential. Only after several

milestones have been completed do the results of these R&D programs be-

come less uncertain; the cushioning by the convexity e�ect disappears and the

projects behave more like stocks. In these later stages, the risk becomes more

sensitive to changes in correlation, diversi�cation of risk becomes important

and the venture may well be sold to a diversi�ed company.

In this context, it may be useful to provide examples of positively and neg-

atively correlated risk. Positively correlated risk can be partially ascribed to
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non-diversi�able market risk. Another part may be ascribed to the medical

context, if projects develop drugs for `complementary treatment'. An example

is the treatment of HIV, where a combination of three drugs is prescribed;

if the side e�ects of one drug become less severe or e�ectiveness improves,

the value of all three drugs will increase, since the quality of the treatment

increases. Another example are drugs that treat closely related disorders such

as lung cancer and cardiovascular diseases. Often, both have a common cause,

such as an unhealthy lifestyle. When a patient can be treated for one illness,

he or she will live longer and odds increase that he or she will su�er from the

second illness. Ironically, this is good news for investors as the market value

of both drugs increases. An example of negatively correlated risk are two de-

velopment programs that aim to cure similar diseases; if one program yields a

major discovery, the value of the other program automatically goes down.

The problem in both examples can be described by a trade-o� between focus

and diversi�cation; when focusing, ρ > 0, and conditional portfolio risk is lower

than than standard portfolio theory might suggest because the diversi�cation

e�ect is cushioned by the convex nature of options. When diversifying, ρ < 0,

and the cushioning of convexity causes diversi�cation to be less e�ective than

would be expected from standard diversi�cation arguments.

The implications of diversi�cation over time can be summarized by the e�ec-

tiveness of risk management; risk diversi�cation is not important until other

uncertainties (that justify conditional �nancing) have been resolved. In other

words, when an investor's risk is minimized by a milestone �nancing require-

ment, choosing negatively correlated projects will not diversify the risk much

further. Rather, having a strong focus is not as risky as one would expect,

and non-diversi�cation arguments are more important selection criteria. Until
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the correlation becomes more than moderate, diversi�cation has an insigni�-

cant e�ect on total risk as long as other factors justify conditional investment

decisions.

4.3 Capital Reserves

Using variance as a measure of risk lies at the basis of common �nancial risk

measures such as Value at Risk (VaR). Over the period that a portfolio is

held, it measures the value of the portfolio at risk that for a given con�dence

interval. Similar to our `naively' constructed portfolio, the most common VaR

model assumes portfolio value to be linearly dependent on the value of the

underlying assets. In the R&D setting, however, this relationship is linear

only between portfolio value and the value of the options.

When the number of conditional projects is su�ciently large, the value of the

portfolio becomes normally distributed. If the number of conditional projects

is not su�ciently large, our results imply that the linearity assumption is inap-

propriate. To determine the VaR correctly, the variance of a portfolio should be

simulated to contruct the con�dence interval. We show that the standard de-

viation is signi�cantly higher if projects are negatively correlated, and naively

calculated variance leads to an underestimation of VaR. As an international

standard for creating capital reserves regulations, the Basel Accords may rec-

ommend simulation as a tool for risk assessment. This is true particularly for

industries in which conditional investment decisions are common practice.
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5 Conclusion and Suggestions for Future Research Di-

rections

In this article we have shown that the presence of conditional �nancing in

R&D may invalidate diversi�cation strategies for portfolio construction. Under

negative correlation, emphasis should be placed on other (non-diversi�cation)

arguments when constructing a portfolio. Under positive correlation, by con-

trast, the advantages of diversi�cation are larger than one may expect using

Markowitz diversi�cation. We have also demonstrated that due to the con-

vexity of high-risk projects, the sensitivity of portfolio risk to correlation is

smaller for high-risk projects than for low-risk projects.

The di�erence in risk between high-risk and low-risk projects can be quite

substantial; for two negatively correlated risky projects of about ρ = −0.5,

the uncertainty is reduced by only 10%/50% = 20% as compared to low-

risk uncertainty reduction. For ρ = +0.5, the uncertainty is increased by

only 30%/50% = 60% as compared to low-risk uncertainty. These di�erences

can easily become more dramatic (Figure 2.A shows that diversi�cation may

become impossible for negative correlations), and our �ndings are robust to

changes in the parameter structure of the model. We have provided examples

to show why this is important for R&D portfolio analysis.

An important implication of our work is that when evaluating the risk of a

portfolio of risky R&D opportunities, it is not su�cient to merely examine

the risk-return properties between projects. It is also important to determine

the presence of conditional investment decisions before drawing conclusions

on how e�ective a project will be at reducing the risk of the portfolio. Fur-

thermore, policy makers may need to change their selection criteria over time.
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As companies mature and the need for conditional �nancing disappears along

with uncertainty, diversi�cation of succesful projects becomes more important

in the future.

Extending the model in several ways facilitates the analysis of portfolio risk

under more speci�c circumstances. As we have shown, one can easily con-

struct a portfolio with projects that di�er in volatility, time to maturity and

moneyness. It is also possible to compound several options when additional

parameters (such as success probabilities) are known. Using Appendix A, it is

easy to extend the analysis to a large portfolio, with each project having its

own distinct features such as the required investment outlay, estimated date

of completion and volatility of market value.

Applying our model in real-world case studies may yield interesting results in

the future. The simulation procedure remains the same for several underlying

stochastic processes and may include other case-speci�c properties such as

mean reversion, barriers or autocorrelation. It is also possible to account for

synergies on the cost side. To explore these directions, however, and to com-

pare empirical results with our framework, real-life data is needed to provide

realistic input parameters. Our study demonstrates the complexity of options

in a portfolio context, but when additional information on project parame-

ters is available to tailor the model to a speci�c problem, our framework can

be helpful in formulating and assessing research and development policy by

public and private parties.
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Appendix A: Explicit Derivation of Main Results

To examine the variance of a risky R&D portfolio more closely, we will present

an analytical treatment of our theoretical framework to convey what happens

when the correlation is perfectly positive, negative or absent. Because of the

nature of options (caused by the the max operator), the variance of a single

call option consists of two properly weighted variances: one variance for the

case in which the call value is positive � which we will denote by V ar(c+) �

and one for the case in which the outcome is zero:

V ar(max[V −X, 0]) = w1V ar(V −X) + w2V ar(0) = w1V ar(c
+) (9)

where w1 and w2 are the appropriate weights, V is the project's value and X

the cost of investment. The key to an analytical derivation of the variances is

recognizing the outcome possibilities that exist in each of the three correla-

tion scenarios, and constructing a single variance from there, using a variance

decomposition formula that is de�ned as

V ar(A) = E[V ar(A|B)] + V ar(E[A|B]) (10)

We will consider a portfolio of two simple investment opportunities (calls) that

are exactly equal to each other. Both require an investment X that is assumed

to be equal to the expected value of the project (for ease of notation, we drop

the subscript i that we introduced in Section 3.1):

X1 = X2 = X = E[VT ] (11)
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As a consequence, for at the money options, each call will be distributed

around E[VT ]:

Pr(VT > X|X = E[VT ]) = Pr(ε > 0) = 0.5; ε ∼ N(0, 1) (12)

Furthermore, since both calls are identical, we know that the probability of

being in the money is equal for both calls i, j:

Pr(Vi,T > X) = Pr(Vj,T > X) (13)

The cases of perfectly positive, negative or absent correlation di�er only in

the correlation that exist between two projects, and each will yield a di�er-

ent expression for the portfolio variance, as expressed in terms of the option

components' variance in equation (9).

Perfectly Positively Correlated Projects

For ρ = 1, either both calls are in the money or both calls are out of the

money. This means that the portfolio consists of two possible outcomes:

Pf = (c+1 + c+2 |V1 > X, V2 > X) + (0|V1 < X, V2 < X)

Because of equation (12) and equation (13), each outcome is equally likely. In

this case (denoting the positive part of the portfolio as pf+ and the negative

as pf−), the variance composites on the right-hand side are:
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V arpf+ =V ar(2c+|V > X) = 4× V ar(c+|V > X)

V arpf− = 0

Furthermore, we know that E[pf+] = 2E[c+] since both projects are identical.

From equation (10), it follows that the portfolio variance is:

V ar(pf |ρ = 1) =
4V ar(c+) + 0

2
+

(2E[c+]− E[c+])2 + (0− E[c+])2

2
= 2× V ar(c+) + E[c+]2

Perfectly Independent Projects

For ρ = 0, we know from equation (12) and equation (13) that each option

can be in the money or out of the money with equal probability. In this case,

we can therefore distinguish four possible outcomes :

Pf = (V1 −X|V1 > X, V2 < X)

+ (V2 −X|V1 < X, V2 > X)

+ (V1 −X + V2 −X|V1 > X, V2 > X)

+ (0|V1 < X, V2 < X)

The variance of the �rst two terms on the right hand side is equal to V ar(c+),

and the expected value for both is E[c+]. Since the non-linear payo� is ac-

counted for in the last term, we can use Markowitz's equation to �nd the

variance of the third term, which is simply the sum of the variances V ar(c+1 )

and V ar(c+2 ) because ρ = 0. Furthermore, we know that the expected value of

this term is equal to the sum of the expected values E[c+1 ]and E[c+2 ]. It follows

from equation (10) that
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V ar(Pf |ρ = 0) =
V ar(c+) + V ar(c+) + 2var(c+) + 0

4

+
0 + 0 + (2E[c+]− E[c+])2 + (0− E[c+])2

4
=V ar(c+) + 0.5(E[c+])2

This is exactly half of the variance found at ρ = +1, a �nding that corresponds

with the simulation results.

Perfectly negatively correlated projects

For ρ = −1 and at the money options, we know that either one call or the

other is in the money. Yet since both projects can never jointly be in or out of

the money at ρ = −1, this simply means that the variance is equal to either

the variance of one call, or that of the other. More precisely, we can state that:

Pf = (c+1 |V1 > X, V2 < X) + (c+2 |V1 < X, V2 > X)

= c+1 = c+2 = c+

The last line follows from the observation that the calls are identical under

the given conditions. It follows directly that

V ar(Pf |ρ = −1) = V ar(c+)

This demonstrates why in our results, the variance of a perfectly negatively

correlated portfolio doesn't go to 0% in the limit but is of a magnitude be-

tween zero and the variance at ρ = 0. Indeed, diversi�cation under these

circumstances does not permit risk to be diversi�ed away.
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Appendix B: How to Generate Random Samples from a Mul-

tivariate Normal Distribution

When a third stock enters our model, a third sample is drawn; ρ13 and ρ23

need to be de�ned in such a manner that the variances and covariance are

consistent. For instance, if asset 1 and asset 2 strongly move together as well

as asset 1 and 3 (that is, the correlations ρ12 and ρ13 are highly positive), then

the relation between asset 2 and 3 needs to be positive (that is, ρ23 needs to

have a high positive value) as well. If we require 3 correlated samples from

normal distributions, the required samples are de�ned as follows:

ε1 = α11x1

ε2 = α21x1 + α22x1

ε3 = α31x1 + α32x1 + α33x1

(14)

The Choleski decomposition procedure is used to create a consistent corre-

lation structure, and is appropriate since we assume the disturbances to be

multivariate normally distributed. The procedure starts by setting α11 = 1

and requires α21 to be chosen such that α21α11 = ρ21 and α
2
21 + α2

22 = 1. This

yields

α21 = ρ21 (15)

and

α22 =
√

1− ρ2
21 (16)

For the third sample, α31 is to be chosen such that α31α11 = ρ31, yielding
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α31 = ρ31. α32 is then to be chosen such that

α31α21 + α32α22 = ρ32, (17)

leading to

α32 =
ρ32 − ρ12ρ13√

1− ρ2
12

(18)

We conclude by the requirement that

α2
31 + α2

32 + α2
33 = 1, (19)

leading to

α33 =

√√√√√1− ρ2
13 − (

ρ23 − ρ2
12ρ

2
13√

1− ρ2
12

)2 (20)

We can simply generalize this case to n by expanding the Choleski matrix in

equation (14), for example to

ε4 = α41x1 + α42x2 + α43x3 + α44x4 (21)

and repeat this procedure. As the number of projects increases, however, cor-

relations need to be chosen with more and more care. Take the example of

a single pharmaceutical drug. If we want to simulate two additional projects

that both are correlated to this drug ρ12 = ρ13 = −0.9, then the additional

projects need to be positively correlated. More speci�cally, if we let the third

variable enter the simulation, it must satisfy

α2
31 + α2

32 + α2
33 = 1 (22)
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or

α2
33 =

√
1− α2

31 − α2
32 =

√
1− 0.92 − α2

32 > 0. (23)

Hence, the Choleski-variable α2
32 must not be larger than (1 - 0.81 = ) 0.19

and

−
√

0.19 5 α32 5
√

0.19. (24)

Using this condition in Eq. (17), we �nd the following range:

0.62 = 0.90× 0.90− 0.19× 0.19 ≤ ρ23 ≤ 0.90× 0.90 + 0.19× 0.19 = 0.88

If a fourth project enters the story and ρ14 = ρ12 = ρ13 = −0.9, it is required

that

α2
44 =

√
1− α2

41 − α2
42 − α2

43 =
√

1− 0.92 − α2
42 − α2

43 > 0

and, similarly to equation (24), that

−α22 ≤ α42 + α43 ≤ α22,

meaning that α42 + α43 are subject to the same constraint as was α32. Thus,

any new simulation variable is subject to all previous constraints, plus a

new constraint. For instance, if we choose ρ42 = ρ32(so that α42 = α32 and

α41, α42, α43 = α31, α32, α33), it must be true that

α44 =
√

1− α2
41 − α2

42 − α2
43 =

√
1− 0.81− 0.19− α2

43 > 0

and the fourth project needs to be uncorrelated with the others for consistency.

34



Figure 1. Simulated Risk for Two Identical Investment Opportunities

Using portfolio variance as a measure for risk, the cumulative variance of two
simulated call options changes along with the correlation between the underly-
ing values. Using Equation (8) for calculating portfolio risk would be naive, as
it neglects option characteristics. The correct portfolio risk is graphed by the
variance of the sum of option values (values are obtained through simulation
and not reported); portfolio risk is normalized by dividing over the summed
variance of two independent calls. The correct variance develops similar to
naive variance, but is compressed towards the horizontal line, i.e. portfolio
variance when projects are independent (ρ = 0). Simulation parameters (no
dividend payments are made) are set as follows:

Number of trials: R = 50, 000 Number of options: n = 2

Investment: X1 = X2 = 25 Project volatility: σ1 = σ2 = 25%

Project market value:V1 = V2 = 20 Discount rate: r = 20%

Time to completion: T = 18 months
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Figure 2. Sensitivity Analysis of Simulation Results

Number of trials: R = 50, 000 Number of options: n = 2

Investment: X1 = X2 = 25 Project volatility: σ1 = σ2 = 12.5%

Project market value:V1 = V2 = 20 Discount rate: r = 20%

Time to completion: T = 18 months
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Number of trials: R = 50, 000 Number of options: n = 2

Investment: X1 = X2 = 25 Project volatility: σ1 = 20%, σ2 = 30%

Project market value:V1 = V2 = 20 Discount rate: r = 20%

Time to completion: T = 18 months
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Number of trials: R = 50, 000 Number of options: n = 2

Investment: X1 = X2 = 25 Project volatility: σ1 = σ2 = 25%

Project market value:V1 = V2 = 25 Discount rate: r = 20%

Time to completion: T = 18 months
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Number of trials: R = 50, 000 Number of options: n = 2

Investment: X1 = X2 = 25 Project volatility: σ1 = σ2 = 25%

Project market value:V1 = V2 = 30 Discount rate: r = 20%

Time to completion: T = 18 months
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