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Abstract

Tucker’s well-known combinatorial lemma states that for any given symmetric triangulation

of the n-dimensional unit cube and for any integer labeling that assigns to each vertex of

the triangulation a label from the set {±1,±2, · · · ,±n} with the property that antipodal

vertices on the boundary of the cube are assigned opposite labels, the triangulation admits

a 1-dimensional simplex whose two vertices have opposite labels. In this paper we are

concerned with an arbitrary finite set D of integral vectors in the n-dimensional Euclidean

space and an integer labeling that assigns to each element of D a label from the set

{±1,±2, · · · ,±n}. Using a constructive approach we prove two combinatorial theorems of

Tucker type, stating that under some mild conditions there exists two integral vectors in

D having opposite labels and being cell-connected in the sense that both belong to the set

{0, 1}n+q for some integral vector q. These theorems will be used to show in a constructive

way the existence of an integral solution to a system of nonlinear equations under certain

natural conditions.

Keywords: Sperner lemma, Tucker lemma, integer labeling, simplicial algorithm, dis-

crete nonlinear equations.

JEL classification: C61, C62, C68, C72, C58.



1 Introduction

Fixed point theorems are fundamental tools for establishing the existence of a solution to

various problems in many fields of study such as economics, mathematics and engineering.

It is well-known that Brouwer’s fixed point theorem is implied by Sperner’s combinatorial

lemma on the unit simplex and that the Borsuk-Ulam antipodal point theorem is implied

by Tucker’s combinatorial lemma on the unit cube.

For any given triangulation of the (n − 1)-dimensional unit simplex Sn = {x ∈ IRn+ |∑n

i=1 xi = 1}, where IR
n
+ is the nonnegative orthant of the n-dimensional Euclidean space

IRn, and any given labeling function assigning to every vertex of the triangulation an

integer label from the set {1, 2, · · · , n}, such that a vertex x is not assigned label k whenever

xk = 0, Sperner’s lemma states that the triangulation contains a completely labeled (n−1)-

dimensional simplex, being a simplex whose n vertices carry all the labels from 1 up to n.

In his pioneering work, Scarf (1967, 1973) gave the first constructive method for finding

a completely labeled simplex in Sperner’s lemma and thus led to a constructive proof of

Brouwer’s theorem as well. Later on, more efficient and more flexible simplicial algorithms

were developed by Kuhn (1969), Eaves (1972), Merrill (1972), van der Laan and Talman

(1979) among many others.

Tucker’s lemma (see Tucker (1945) and Lefschetz (1949)) asserts that for any given

symmetric triangulation of the n-dimensional unit cube Cn = {x ∈ IRn | |xi| ≤ 1, i =

1, 2, · · · , n} and any given labeling function assigning to every vertex of the triangulation

an integer label from the set {±1,±2, · · · ,±n}, such that antipodal vertices of the trian-

gulation on the boundary of Cn are assigned opposite labels (labels that sum to zero),

there exists a complementary one-dimensional simplex, i.e., its two vertices have opposite

labels. Tucker’s lemma implies the famous Borsuk-Ulam antipodal point theorem, a more

powerful result than Brouwer’s theorem. Based on the 2n-ray integer labeling algorithm

of van der Laan and Talman (1981) and Reiser (1981), Freund and Todd (1981) have

given an elegant constructive proof for Tucker’s lemma, and thus a constructive proof of

Borsuk-Ulam theorem as well, see also van der Laan (1984) and Yang (1999).

The combinatorial lemmas of Sperner and Tucker have been extended in various ways.

For instance, Fan (1967) studied Sperner’s lemma in a broader and more abstract setting.

Shapley (1973) generalized Sperner’s lemma by using a set labeling rule instead of an integer

labeling rule. Bapat (1989) established a permutation-based generalization of Sperner’s

lemma. Freund (1986, 1989), van der Laan and Talman (1982), Yamamoto (1988), and

van der Laan, Talman and Yang (2001) proved the existence of a completely labeled simplex

for an arbitrarily given triangulation of the hypercube, the simplotope and any bounded

polyhedron, respectively. Su (1999) presented an interesting application of Sperner’s lemma

to a fair division problem. Prescott and Su (2005) gave a constructive proof of Ky Fan’s
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generalization of Tucker’s lemma.

In this paper we present for the class of finite integrally convex sets several new results

on the existence of two vectors in the set having opposite labels and being cell-connected,

i.e., both vectors belong to the finite set {0, 1}n+q for some integral vector q. The concept

of integrally convex set was introduced by Favati and Tardella (1990) and has been well

studied in the literature, see e.g. Murota (2003) and Fujishige (2005). Many well-known

and important integral polyhedra generate integrally convex sets, for instance, the set

P ∩ Zn is integrally convex for any base polyhedron or generalized polymatriod P , where

Zn is the integer lattice in IRn. The basic property of an integrally convex set is that its

convex hull admits a cubical triangulation for which the set of vertices is equal to the set

itself and every simplex is contained in a cube of size one, i.e., a cell equal to [0, 1]n + {q}

for some q ∈ Zn.

For a finite integrally convex set D in IRn and an integer labeling function ℓ:D →

{±1,±2, · · · ,±n}, our combinatorial theorems establish the existence of two cell-connected

points in D with opposite labels under certain mild conditions. To prove the theorems, we

apply the 2n-ray integer labeling algorithm of van der Laan and Talman (1981) and Reiser

(1981). This algorithm, originally developed to approximate a zero point of a continuous

function from the n-dimensional unit cube to IRn, is adapted in such way that it can be

used on a cubical triangulation of the convex hull of D. Starting with an arbitrary point

in D, the algorithm generates a sequence of adjacent simplices of variable dimension in

the triangulation and finds in a finite number of steps a complementary one-dimensional

simplex and therefore two cell-connected points with opposite labels. Until now, no such

algorithm has been proposed on an arbitrary finite integrally convex set.

The current research was motivated by the recently renewed interest on discrete fixed (or

zero) point problems or discrete nonlinear equation problems and by the study on economies

with indivisibility; see Iimura (2003), Iimura, Murota and Tamura (2005), Danilov and

Koshevoy (2004), Yang (2004, 2007), van der Laan, Talman and Yang (2005, 2006, 2007),

Talman and Yang (2005). The research on this subject can date back to Tarski (1955), who

proved the existence of a fixed point for a monotone function mapping from a finite complete

lattice into itself. Zhou (1994) extended Tarski’s theorem to point-to-set mappings. The

discrete fixed point theorems obtained by the recent authors, however, need not impose

the restrictive monotonicity assumption and thus can be applied to a broader range of

problems. The combinatorial results in this paper will be used to establish in a constructive

way more general discrete zero (or fixed) point theorems by showing the existence of an

integral solution to a system of nonlinear equations.

This paper is organized as follows. In Section 2 we present basic concepts and defini-

tions. In Section 3 we establish and prove the two main combinatorial labeling theorems.
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In Section 4 we apply these theorems to show the existence of an integral solution to a

general system of nonlinear equations.

2 Basic concepts and definitions

For a given positive integer n, let N denote the set {1, 2, . . . , n}, IRn the n-dimensional

Euclidean space, and Zn the integer lattice of IRn. For x, y ∈ IRn, x · y stands for the

inner product of x and y. For i ∈ N , e(i) denotes the ith unit vector of IRn and e(−i)

denotes the ith negative unit vector, i.e., e(−i) = −e(i). The symbol 0n stands for the

n-vector of zeroes. A set X ⊂ IRn is symmetric if x ∈ X implies −x ∈ X. For an arbitrary

set X ⊂ IRn, X and ∂X denote the convex hull of X and the relative boundary of X,

respectively.

Two integral points x and y in Zn are cell-connected if both x and y belong to the set

{0, 1}n + {q} for some q ∈ Zn. For an integer t, 0 ≤ t ≤ n, the t-dimensional convex hull

of t+1 affinely independent points x1, . . . , xt+1 in IRn is a t-simplex or simplex and will be

denoted by σ(x1, . . . , xt+1). The extreme points x1, . . . , xt+1 of a t-simplex σ(x1, . . . , xt+1)

are the vertices of σ. The convex hull of any subset of k + 1 vertices of a t-simplex σ,

1 ≤ k ≤ t, is a k-dimensional face or k-face of σ. A k-face of a t-simplex σ is a facet of σ if

k = t− 1, i.e., if the number of vertices is just one less than the number of vertices of the

simplex. A simplex is integral if all of its vertices are integral vectors, i.e., all vertices are

points in Zn. An integral simplex is cubical if all its vertices lie in a cube {0, 1}n + {q} for

some q ∈ Zn. Notice that any two vertices of a cubical simplex are cell-connected.

Given an m-dimensional convex set X in IRn, a collection T of m-dimensional simplices

is a triangulation of X, if (i) X is the union of all simplices in T , (ii) the intersection of any

two simplices of T is either empty or a common face of both, and (iii) any neighborhood of

any point in X only meets a finite number of simplices of T . We refer to Todd (1976) and

Yang (1999) for a more detailed description of triangulations. A triangulation is cubical if

all its simplices are cubical. A triangulation T of a symmetric convex set is symmetric if

σ ∈ T implies −σ ∈ T .

A set D ⊆ Zn is integrally convex if (i) D = Zn ∩ D and (ii) the set D is a union of

cubical simplices. Straightforward examples of integrally convex sets are the sets Zn, Zn+,

{−1, 0, 1}n and P ∩Zn for any base polyhedron or generalized polymatroid P . The concept

of integrally convex set was originally introduced by Favati and Tardella (1990) and has

been well studied in the literature, see Murota (2003) and Fujishige (2005). It is known

from Iimura, Murota and Tamura (2005, Lemma 1) that for any integrally convex set D

there exists a cubical triangulation of its convex hull. From their proof it also follows that

if D is a symmetric integrally convex set, there exists a symmetric cubical triangulation of
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the convex hull of D. An integrally convex set D in Zn is regular if D is n-dimensional and

contains an integral point in its interior. Let

I = {T ⊂ N ∪ (−N) | i ∈ T implies − i �∈ T}

and for any T ∈ I, let e(T ) =
∑

i∈T e(i). Then the convex hull of a regular integrally

convex set D in Zn can be expressed as

D = {x ∈ IRn | e(T ) · x ≤ bT for any T ∈ J } (2.1)

for a family J ⊂ I and integers bT , T ∈ J , so that no constraint is redundant. Further,

for any subset K of J , define

F (K) = {x ∈ D | e(T ) · x = bT for all T ∈ K}.

Then either F (K) is empty or it is a face of D. A set K ⊂ J is admissible, when F (K)

is a face of D. For an admissible set K, we define I(K) = ∪T∈K T . A vector w ∈ IRn is

outgoing at x ∈ D if x + ǫw �∈ D for any ǫ > 0. Notice that for h ∈ N ∪ (−N) the vector

e(h) is outgoing at x ∈ D if and only if h ∈ I(K), where K ⊂ J is such that x lies in the

relative interior of the face F (K) of D. Recall that F (∅) = D. We conclude this section

with an example.

Example 1. Let the set D be given by the set of integral points

D = {x ∈ Z2 | −2 ≤ xi ≤ 2, i = 1, 2, and − 2 ≤ x1 + x2 ≤ 2}.

Then D is a finite and regular integrally convex set. The family J is given by

J = {{1}, {−1}, {2}, {−2}, {1, 2}, {−1,−2}}

and bT = 2 for all T ∈ J . The point (2, 0)⊤ lies in F ({{1}, {1, 2}}), so that e(1) and e(2)

are the unique outgoing unit vectors at (2, 0)⊤. The point (2,−1)⊤ lies in (the relative

interior of) F ({{1}}), so that e(1) is the only outgoing unit vector at (2,−1)⊤. Finally,

the point (2,−2)⊤ lies in F ({{1}, {−2}}), so that e(1) and e(−2) are the unique outgoing

unit vectors at (2,−2)⊤. �

3 Combinatorial Integer Labeling Theorems

Given a set X ⊂ IRn and a finite set of integers K, an integer labeling function ℓ:X → K

assigns to every point in X an element of K. ℓ(x) is called the label of x. When X is

an integrally convex set D in Zn and ℓ:D → N ∪ (−N) is an integer labeling function,
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two points x, y ∈ D are said to be opposite labeled if ℓ(x) = −ℓ(y). In this section we

provide constructive proofs for two new combinatorial theorems on the existence of two

opposite labeled cell-connected points in a finite and regular integrally convex set. In the

first theorem we impose a condition of Sperner type on the labeling function to hold for

points in D that lie on the boundary of the convex hull of D.

Theorem 3.1 Let D be a finite and regular integrally convex set in Zn and let ℓ:D →

N ∪ (−N) be an integer labeling function such that for any admissible set K ⊂ J and

integral boundary point x ∈ F (K) ∩ D it holds that ℓ(x) �∈ I(K). Then D contains two

opposite labeled cell-connected points.

The boundary condition in this theorem can be formulated equivalently as follows. For

any integral point of D in the boundary of D the integer labeling function satisfies that

ℓ(x) �= h whenever e(h) is an outgoing vector at x. Recall that for h ∈ −N , e(h) = −e(−h).

To prove the theorem we adapt the 2n-ray algorithm of van der Laan and Talman

(1981) and Reiser (1981). For an arbitrarily chosen integral point v in the interior of D

(since D is regular such a point exists), we define for any T ∈ I the set A(T ) by

A(T ) = {x ∈ D | xi ≥ vi if i ∈ T ; xi ≤ vi if − i ∈ T ; and xi = vi otherwise}.

Observe that A(∅) = {v} and that A(T ) is a t-dimensional convex set for any T ∈ I, where

t = |T |. Since D is integrally convex, there exists a cubical triangulation of D. Let T be

such a triangulation of D. Since T is cubical, T induces for every T ∈ I a subdivision of

A(T ) into t-dimensional cubical simplices, with t = |T |. Any facet τ of a t-simplex σ in

A(T ) is either a facet of exactly one other t-simplex σ′ in A(T ) or lies on the boundary

of A(T ). In the latter case τ is either a (t − 1)-simplex in A(T \ {k}) for some unique

k ∈ T or a facet in A(T ) on the boundary of D. Moreover, any t-dimensional simplex

in A(T ) is cubical and therefore any two vertices of a t-dimensional simplex in A(T ) are

cell-connected.

Given a t-simplex σ in A(T ), with t = |T |, a facet τ of σ is said to be T -complete if

{ℓ(x) | x is a vertex of τ} = T.

In other words, a facet τ in A(T ) is T -complete if the t vertices of the (t− 1)-dimensional

τ are all labeled differently by the t integers in the set T . The next lemma states that a

facet of a simplex in A(T ) on the boundary of D cannot be T -complete.

Lemma 3.2 When the integer labeling function ℓ:D → N∪(−N) satisfies the boundary

condition of Theorem 3.1, there does not exist a T -complete facet in A(T ) ∩ ∂D for any

T ∈ I.
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Proof. Suppose that τ is a T -complete facet in A(T ) for some T ∈ I and that τ lies on

the boundary of D. Then τ ⊂ A(T ) ∩ F (K) for some minimal admissible set K ⊂ J . We

will first show that T ∩ I(K) �= ∅. Suppose to the contrary that T ∩ I(K) = ∅. Take any

point x in the relative interior of τ . Clearly, x is in the relative interior of F (K). Since

T ∩ I(K) = ∅, there exists ǭ > 0 such that for any ǫ, 0 ≤ ǫ ≤ ǭ,

x+ ǫe(h) ∈ D, for all h ∈ T.

Furthermore, since x is in the interior of τ and τ cannot lie in A(T \ {h}) for any h ∈ T ,

there exist unique λi > 0, i ∈ T , such that

x = v +
∑

i∈T

λie(i).

For i ∈ T , let µi be equal to

µi = λi/
∑

j∈T

λj,

and, for some ǫ, 0 ≤ ǫ ≤ ǭ, let

y = x+ ǫ
∑

i∈T

µie(i).

Then the point

y =
∑

h∈T

µh(x+ ǫe(h))

is a convex combination of elements of D. Since D is a convex set, y ∈ D. On the other

hand, it holds that x = λv + (1 − λ)y for some 0 < λ < 1. Since v is in the interior of

D and y is in D, the point x must lie in the interior of D, contradicting that x lies on

the boundary of D. Consequently, T ∩ I(K) �= ∅. Take any k ∈ T ∩ I(K). Since τ is

T -complete, some vertex y of τ carries label k, but the boundary condition implies that

no vertex of τ is labeled with k. This yields a contradiction. Therefore there can be no

T -complete facet of a simplex in A(T ) lying in ∂D. �

We are now ready to give the constructive proof of Theorem 3.1 by applying the 2n-ray

algorithm.

Proof of Theorem 3.1. Let ℓ(v) be the label of the point v. Then, with T = {ℓ(v)},

{v} in A(∅) is a T -complete 0-dimensional facet of the unique 1-dimensional simplex

σ0 = σ(x1, x2) in A(T ) with vertices x1 = v and x2 = v + e(ℓ(v)). The algorithm starts

from σ0 with T = {ℓ(v)} and generates, for varying sets T ∈ I, a sequence of adjacent

t-simplices in A(T ) with T -complete common facets, where t = |T |. When the algorithm
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encounters a t-simplex σ in A(T ) having a vertex carrying a label k for some k �∈ T ∪(−T ),

then k is added to T and the algorithm continues in A(T ∪ {k}) with the unique (t+ 1)-

simplex in A(T ∪ {k}) having σ as its facet. When the algorithm generates in A(T ) a

T -complete facet τ lying in A(T \ {k}) for some k ∈ T , then k is deleted from T and the

algorithm continues in A(T \ {k}) with the facet opposite the vertex of τ carrying label

k. Since each step of the algorithm is uniquely determined, it follows by the well-known

Lemke-Howson argument that a simplex will never be visited more than once, see van

der Laan and Talman (1981) and Reiser (1981) for a more detailed description. Since the

number of simplices in the triangulation of D is finite, the algorithm will terminate within

a finite number of steps. The only two possibilities to stop is that either the algorithm

generates a T -complete facet τ in the boundary A(T ) ∩ ∂D or the algorithm encounters

a vertex carrying label −k for some k ∈ T . By Lemma 3.2 the first case can not occur.

Therefore the algorithm terminates with a cubical simplex having two vertices with labels

k and −k for some k ∈ N and thus finds within a finite number of steps two opposite

labeled cell-connected points in D. �

Theorem 3.1 holds for any finite (regular) integrally convex set D, i.e., for any finite set

D of integral points for which the convex hull D is a polyhedron as described in formula

(2.1) and any integral point of D belongs to D itself. A special case is that D is an

n-dimensional rectangular or cube given by

D = Cn(a, b) = {x ∈ IRn | ai ≤ xi ≤ bi, i ∈ N},

where a, b are two integral n-vectors satisfying bi > ai + 1 for all i ∈ N . In this case the

boundary condition of the labeling function reduces to ℓ(x) �= −i whenever xi = ai and

ℓ(x) �= i whenever xi = bi. We now have the following corollary, see also Freund (1986).

Corollary 3.3 Let the set D be given by D = {x ∈ Zn | ai ≤ xi ≤ bi, i ∈ N}, for

some vectors a, b ∈ Zn satisfying bi > ai + 1 for all i ∈ N , and let ℓ:D → N ∪ (−N) be an

integer labeling function such that ℓ(x) �= −i if xi = ai and ℓ(x) �= i if xi = bi. Then D

contains two opposite labeled cell-connected points.

The following corollary follows immediately from Theorem 3.1 by observing that when the

boundary condition is not satisfied the algorithm either ends with two opposite labeled

cell-connected points or with a T -complete facet in A(T ) ∩ ∂D for some T . According to

the proof of Lemma 3.2, in the latter case we must have that for at least one element k ∈ T

it holds that e(k) is an outgoing vector at τ .

Corollary 3.4 Let D ⊂ Zn be a finite and regular integrally convex set and let ℓ:D →

N ∪ (−N) be an arbitrary integer labeling function. Then D contains two opposite labeled

7



cell-connected points or a point x in the boundary of D such that for some k ∈ N ∪ (−N),

ℓ(x) = k and e(k) is an outgoing vector at x.

The next corollary follows immediately by applying the previous corollary and Theorem

3.1 to the integer labeling function ℓ̃ : D → N ∪ (−N) given by ℓ̃(x) = −ℓ(x) for all x ∈ D.

Corollary 3.5 Let D ⊂ Zn be a finite and regular integrally convex set and let ℓ:D →

N ∪ (−N) be an arbitrary integer labeling function. Then D contains two opposite labeled

cell-connected points or a point x in the boundary of D such that for some k ∈ N ∪ (−N),

ℓ(x) = k and e(−k) is an outgoing vector at x. Moreover, when ℓ is such that for any

admissible set K ⊂ J and integral boundary point x ∈ F (K) ∩D it holds that ℓ(x) �= −k

for any k ∈ I(K), then D contains two opposite labeled cell-connected points.

We now state our second major existence theorem. This theorem generalizes the well-

known Tucker’s lemma to a finite and regular, symmetric integrally convex set. To prove

the theorem we adapt the 2n-algorithm in such a way that when a T -complete facet τ in

A(T ) on the boundary of D is generated, the algorithm continues with the (−T )-complete

facet −τ in A(−T ). This step is called the reflection step and is originally due to Freund

and Todd (1981) who modified the original 2n-ray algorithm of van der Laan and Talman

(1981) and Reiser (1981) to provide a constructive proof for Tucker’s lemma.

Theorem 3.6 Let D ⊂ Zn be a finite, regular and symmetric integrally convex set

and let ℓ:D → N ∪ (−N) be an integer labeling function such that for any x ∈ ∂D ∩D,

ℓ(−x) = −ℓ(x). Then the set D contains two opposite labeled cell-connected points.

Proof. Since D is regular, integrally convex and symmetric, there exists a symmetric

cubical triangulation T of D. Moreover, the origin 0n is an element of D and lies in the

interior of D. We take the origin as the starting point v of the 2n-algorithm, i.e., for any

T ∈ I the set A(T ) is defined by

A(T ) = {x ∈ D | xi ≥ 0 if i ∈ T ; xi ≤ 0 if − i ∈ T ; and xi = 0, otherwise}.

Since T is cubical, T induces for every T ∈ I a subdivision of A(T ) into t-dimensional

cubical simplices, where t = |T |. Moreover, by the symmetry of D it follows that A(−T ) =

−A(T ) and by the symmetry of T that if σ is a t-dimensional simplex in A(T ), then

−σ is a t-dimensional simplex in A(−T ). In particular it holds that when τ is a facet

of a t-dimensional simplex in A(T ) lying on the boundary of D, then −τ also lies on the

boundary of D and is a facet of precisely one t-dimensional simplex in A(−T ).

The algorithm starts with the unique 1-dimensional simplex σ0 in A(T ) having 0n as

vertex, where T = {ℓ(0n)}, and generates in the same way as in the proof of Theorem
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3.1 a sequence of adjacent t-simplices in A(T ) with T -complete common facets for varying

T ∈ I, with the only difference that when a T -complete facet τ of a simplex in A(T )

is generated that lies on the boundary of D, then a reflection step is made, i.e., the set

T of labels becomes −T and the algorithm jumps from τ to −τ and continues with the

unique simplex in A(−T ) having −τ as its facet in order to generate adjacent t-simplices in

A(−T ) with (−T )-complete common facets. Again each step of the algorithm is uniquely

determined and it follows by the Lemke-Howson argument that no simplex can be visited

more than once. Since D is finite and thus D is bounded, the number of simplices is finite.

Therefore the algorithm terminates within a finite number of steps with a simplex in T

having two opposite labeled vertices. Since any simplex in T is cubical, these two vertices

are cell-connected. �

4 Application to Discrete Nonlinear Equations

Many problems arising from economics, game theory, engineering and other fields are

formulated as a system of nonlinear equations. The most widely used tool for showing the

existence of a solution to the system is Brouwer’s and Kakutani’s fixed point theorems.

Brouwer’s theorem states that a continuous function from a convex and compact subset

of IRn to itself leaves one point fixed. The latter one generalizes the former to upper

semi-continuous point-to-set mappings.

In many circumstances, for example, when the domain of interest is a discrete set or

the presence of indivisibility in an economic model is significant, the continuity (upper

semi-continuity) or convexity requirement of Brouwer’s (Kakutani’s) theorem is no longer

fulfilled; see e.g., Kelso and Crawford (1982), Fudenberg and Tirole (1991), Scarf (1994),

Zhou (1994), Gul and Stacchetti (1999), Sun and Yang (2006). The purpose of this section

is to investigate such cases in a general framework. Precisely, we wish to study two prob-

lems: (1) what condition guarantees the existence of a solution to the system of nonlinear

equations

fi(x1, · · · , xn) = 0, i = 1, . . . , n, (4.2)

where f = (f1, f2, · · · , fn)
⊤ is a nonlinear function from Zn to IRn, and (2) how to find a

solution, if a solution exists. A solution to the system (4.2) is also called a discrete zero

point of f . In the last few years several authors have obtained results on this topic mainly

for functions that are direction preserving or locally gross direction preserving. In this

section we establish two existence theorems for the system (4.2) that are built upon the

new class of coordinatewisely opposite extrema free functions. The relationship between
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(locally gross) direction preserving functions and coordinatewisely opposite extrema free

functions will be discussed at the end of the section.

Definition 4.1 Let D ⊂ Zn be an integrally convex set. A function f :D → IRn is

coordinatewisely opposite extrema free (COEF) if for any two cell-connected points x, y ∈

D, there is no k ∈ N such that fk(x)fk(y) = −maxh∈N |fh(x)|maxh∈N |fh(y)| < 0.

The COEF condition concerns only those components of the function having nonzero

absolute value extrema and states that no component of the function should have both

the highest and the lowest value at two vertices within one cell. We can further relax the

COEF condition so that it relies only on a particular cubical triangulation.

Definition 4.2 Let D ⊂ Zn be an integrally convex set. A function f :D → IRn is

simplicially coordinatewise opposite extrema free (SCOEF) if there exists a cubical trian-

gulation T of D such that for any two vertices x and y of a simplex of T , there exists no

k ∈ N which satisfies

fk(x)fk(y) = −max
h∈N

|fh(x)|max
h∈N

|fh(y)| < 0.

When this condition is satisfied for some specific triangulation T , the function is SCOEF

with respect to T .

We now present two theorems for the existence of a discrete zero point. The first

theorem can be seen as the discrete analogue of Brouwer’s fixed point theorem by observing

that a zero point of f is a fixed point of the function g given by g(x) = f(x) + x. The

second theorem can be seen as a discrete analogue of the famous Borsuk-Ulam theorem,

see Freund and Todd (1981), van der Laan (1984) and Yang (1999). It should be observed

that both theorems are stated for arbitrary (symmetric) integrally convex sets and are not

restricted to the cube. Both theorems will be proved by applying the results of Section 3.

Theorem 4.3 Let D ⊂ Zn be a finite and regular integrally convex set and let f :D →

IRn be a SCOEF function. Suppose that for any x ∈ ∂D ∩ D with f(x) �= 0n, fh(x) <

maxi∈N |fi(x)| if e(h) is outgoing at x for some h ∈ N , and fh(x) > −maxi∈N |fi(x)| if

e(−h) is outgoing at x for some h ∈ N . Then f has a discrete zero point in D.

Theorem 4.4 Let D ⊂ Zn be a finite, regular and symmetric integrally convex set and

let f :D → IRn be a SCOEF function with respect to some symmetric cubical triangulation

of D. Suppose that for any x ∈ ∂D ∩D there exists some k ∈ N such that fk(x)fk(−x) =

−maxi∈N |fi(x)|maxi∈N |fi(−x)|. Then f has a discrete zero point in D.

10



We prove both theorems by using the results of Section 3. To prove Theorem 4.3,

we assign to each point x of the set D an integer from the set N ∪ (−N) ∪ {0}. The

labeling rule is induced from the function f as follows. For given x ∈ D, let k be any

element in N such that |fk(x)| = maxh∈N |fh(x)|. Then, ℓ(x) = 0 if fk(x) = 0, ℓ(x) = k if

fk(x) > 0 and ℓ(x) = −k if fk(x) < 0. Observe that ℓ(x) = 0 if and only if f(x) = 0n. The

following lemma shows that this integer labeling rule excludes the possibility that any two

cell-connected points are opposite labeled when the function satisfies the SCOEF property

for some cubical triangulation of D.

Lemma 4.5 Let f :D → IRn be a SCOEF function with respect to some cubical trian-

gulation T of D. Then there exists no simplex in T carrying both labels k and −k for some

k ∈ N .

Proof. Suppose to the contrary that there is a simplex in T carrying labels k and −k for

some k ∈ N . Then for the vertex x with label k we have fk(x) = maxh |fh(x)| > 0, while

for the vertex y with label −k we have fk(y) = −maxh |fh(x)| < 0. Since x and y are in

the same simplex, this contradicts the (simplicially) coordinatewise opposite extrema free

property of the function f . �

We now prove the first theorem.

Proof of Theorem 4.3. Let T be a cubical triangulation of D for which f satisfies

the SCOEF property and let ℓ be the integer labeling function on D induced by f . From

the boundary condition that for every h ∈ N it holds that fh(x) < maxi∈N |fi(x)| if e(h)

is outgoing at x and that fh(x) > −maxi∈N |fi(x)| if e(−h) is outgoing at x for any

x ∈ ∂D ∩D with f(x) �= 0n, it follows that the function ℓ satisfies the boundary condition

of Theorem 3.1 for any x ∈ ∂D ∩D satisfying f(x) �= 0n. Suppose that the function f has

no discrete zero point and thus ℓ(x) �= 0 for any x ∈ D. Then it follows from Theorem

3.1 that there exists two cell-connected integral points with opposite labels. However, this

contradicts Lemma 4.5. Hence, there must be a point in D with label 0, which proves the

existence of a discrete zero point of f in D. �

The following two corollaries follow similarly from Corollaries 3.3 and 3.4, respectively.

Corollary 4.6 Let f : Zn → IRn be a SCOEF function. Suppose that there exist a, b ∈

Zn with ai+1 < bi for every i ∈ N such that for any x ∈ Zn, xj = bj and maxh∈N |fh(x)| >

0 imply fj(x) < maxh∈N |fh(x)|, and xj = aj and maxh∈N |fh(x)| > 0 imply fj(x) >

−maxh∈N |fh(x)|. Then f has a discrete zero point in the finite set D = {x ∈ Zn | ai ≤

xi ≤ bi, i ∈ N}.
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In particular, observe that the boundary conditions of the corollary above are satisfied

when, for any x ∈ Zn, xj = bj implies fj(x) ≤ 0 and xj = aj implies fj(x) ≥ 0.

Corollary 4.7 Let D ⊂ Zn be a finite and regular integrally convex set and let f :D →

IRn be a SCOEF function. Then f has a discrete zero point in D or there exist a point x

in D on the boundary of D such that for some k ∈ N , either fk(x) = maxh∈N |fh(x)| and

e(k) is an outgoing vector at x, or fk(x) = −maxh∈N |fh(x)| and e(−k) is outgoing at x.

The property in the last corollary might be considered as the discrete equivalent of a

stationary point. It is well known that every continuous function f from a compact convex

n-dimensional set C in IRn to IRn has a stationary point x∗, being a zero point of f when x∗

lies in the interior of C and having a function value f(x∗) lying in the normal cone N(x∗, C)

at x∗ when x∗ lies on the boundary of C. In case of a discrete set D, continuity is replaced

by the SCOEF property and the normal cone condition is replaced by the condition that

the function value f(x∗) must lie in some cone of outgoing vectors at x∗.

To prove Theorem 4.4, we adapt the labeling rule as follows. For any point interior in

D, let the label ℓ(x) be the label induced by f as above. For a point x on the boundary

of D we adapt the labeling as follows. When f(x) = 0n, then ℓ(x) = 0. When f(x) �= 0n

and f(−x) = 0n, then ℓ(x) is the label induced by f as before. When both f(x) �= 0n and

f(−x) �= 0n, take any k ∈ N such that fk(x)fk(−x) = −maxi∈N |fi(x)|maxi∈N |fi(−x)|.

Then ℓ(x) = k if fk(x) > 0 and ℓ(x) = −k if fk(x) < 0. Clearly, the labeling rule ℓ(·)

satisfies that two antipodal points on the boundary of D either have opposite labels or at

least one of the two points has label 0. The next lemma shows that no two vertices of some

simplex can have opposite labels.

Lemma 4.8 Let D ⊂ Zn be a finite, regular and symmetric integrally convex set and

let f :D → IRn be a function satisfying the conditions of Theorem 4.4 with respect to some

symmetric cubical triangulation T of D. Then for the modified integer labeling function

induced by f , there exists no simplex in T carrying both labels k and −k for some k ∈ N .

Proof. Let ℓ(·) be the modified integer labeling function induced by f on D and let x

and y be two vertices of any simplex of T . When both x and y are in the interior of

D, then it follows similarly as in the proof of Lemma 4.5, that x and y can not have

opposite labels. Next, let x be a vertex on the boundary of D with ℓ(x) �= 0. Without

loss of generality, suppose that ℓ(x) = k for some k ∈ N . From the labeling rule it follows

that fk(x) > 0 and fk(x)fk(−x) = −maxi∈N |fi(x)|maxi∈N |fi(−x)|. This implies that

fk(x) = maxh∈N |fh(x)|. We now consider two cases. First, when y is in the interior of

D, it follows by the SCOEF condition that y can not have label −k. The second case is

that also y is on the boundary of D. Since D is regular and thus has an interior point,
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two opposite points on the boundary can not belong to the same cell and therefore also

not to the same simplex of T . Hence, y is not opposite to x, i.e., y �= −x. Suppose that y

has label −k. Then, by the labeling rule we must have that fk(y) < 0 and fk(y)fk(−y) =

−maxi∈N |fi(y)|maxi∈N |fi(−y)|. However, this implies that fk(y) = −maxh∈N |fh(x)|,

which again contradicts the SCOEF condition. �

Proof of Theorem 4.4. Let T be a symmetric cubical triangulation of D with respect to

which f satisfies the SCOEF property and let ℓ(·) be the modified integer label function

on D induced by f . Suppose that the function f has no discrete zero point at all, thus

ℓ(x) �= 0 for any x ∈ D. Then ℓ(·) satisfies the boundary condition of Theorem 3.6 and

thus there exists two cell-connected integral points with opposite labels. However, this

contradicts Lemma 4.8. Hence, f must have a discrete zero point in D. �

We now conclude this section with a comparison between the class of (S)COEF functions

introduced in this paper and the various other classes of functions known in the literature.

A function f : Zn → IRn is direction preserving if for any two cell-connected points x and

y in Zn it holds that fj(x)fj(y) ≥ 0 for all j ∈ N . A function f : Zn → IRn is locally gross

direction preserving if f(x) · f(y) ≥ 0 for any two cell-connected points x and y in Zn. A

function f : Zn → IRn is positive maximum component sign preserving if for any two cell

connected points x and y in Zn, fj(x) = maxh∈N fh(x) > 0 implies fj(y) ≥ 0.

Direction preserving functions were introduced by Iimura (2003), locally gross direction

preserving functions by Yang (2004), and (simplicially) positive maximum component sign

preserving functions by Talman and Yang (2005). Their simplicial extensions can be found

in Iimura and Yang (2005), van der Laan, Talman and Yang (2007) and Yang (2007).

Clearly, (S)COEF functions are more general than positive maximum component sign

preserving functions, which are more general than direction preserving functions. Also

locally gross direction preserving functions are obviously more general than direction pre-

serving functions. However, the following examples show that (S)COEF functions and

locally gross direction preserving functions are incomparable in the sense that they do not

imply each other.

Example 2. Let f : Z6 → IR6 be defined by f(x) = (2, 1, 1, 1, 1, 1) for x = (0, 0, 0, 0, 0, 0),

f(x) = (−2, 1, 1, 1, 1, 1) for x = (1, 1, 1, 1, 1, 1), and f(x) = (0, 0, 0, 0, 0, 0) otherwise. Then

f is locally gross direction preserving but not SCOEF.

Example 3. Let f : Z2 → IR2 be defined by f(x) = (2, 1) for x = (0, 0), f(x) = (−2,−3)

for x = (1, 1), and f(x) = (0, 0) otherwise. Then f is COEF but not locally gross direction

preserving.
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In the literature the existence of a discrete zero (or discrete fixed point) is often shown

by proving that the piecewise linear extension of the function has a zero point. It is inter-

esting, however, to note that the piecewise linear extension of a (S)COEF function may

have a zero point, but the function itself may have no discrete zero point at all. We illus-

trate this point in the following example. This means that in order to prove the existence

of a discrete zero point of a SCOEF function one cannot apply simplicial algorithms based

on vector labeling to this class of functions, and neither can one directly apply the usual,

such as Brouwer’s or Kakutani’s, fixed point argument.

Example 4. Let f : Z3 → IR3 be defined by f(x) = (2,−1,−1) for x = (1, 0, 0), f(y) =

(−1, 2,−1) for y = (0, 1, 0), f(z) = (−1,−1, 2) for z = (0, 0, 1), otherwise f(w) = (1, 1, 1).

Then f is SCOEF. However, f has no discrete zero point, while the barycenter of the

triangle with vertices x, y and z is a zero point of the piecewise linear extension of f .

To prove the existence of a discrete zero (or fixed) point for the direction preserving

functions (see Iimura, Murota and Tamura (2005), Danilov and Koshevoy (2004)) and

for the locally gross direction preserving functions (see Yang (2004)), they first prove the

existence of a zero point x∗ for the piecewise linear extension of the original function f by

using Brouwer fixed point theorem or its extensions and then show that at least one vertex

of the integral simplex containing x∗ must be a discrete (fixed) zero point of the original

function f . The same argument applies to positive maximum component sign preserving

functions. In sharp contrast, Example 4 illustrates that the piecewise linear extension of a

(simplicially) coordinatewisely opposite extrema free function f may have a zero point in

the interior of a cubical simplex, but no vertex of the simplex is a discrete zero point of f .

This indeed implies that one cannot directly apply simplicial algorithms based on vector

labeling to the class of SCOEF or COEF functions and neither can one directly apply the

usual, such as Brouwer’s, fixed point argument.

In van der Laan, Talman and Yang (2005, 2006, 2007), simplicial methods are pro-

posed to show existence theorems for direction preserving functions and simplicially local

gross direction preserving functions, while Talman and Yang (2005) establish theorems also

via a constructive method for (simplicially) positive maximum component sign preserving

functions.
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