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1. Introduction

Consider a finite set N with n players. Situations where each subset of players

of N can generate a certain worth can be described by a cooperative transferable

utility game (or simply TU-game) (N, v): for any coalition S ⊆ N , the real number

v(S) is the worth of S, which the members of the coalition S can distribute among

themselves. A payoff vector in an n-player TU-game is an n-dimensional vector

whose components are the payoffs of the corresponding players. A single-valued

solution for a class C of TU-games is a function that assigns a payoff vector to every

TU-game in C. The best known single-valued solution for TU-games is the Shapley

value, Shapley (1953b), which distributes the so-called Harsanyi dividends of the

game equally among the players in the corresponding coalitions (see Section 2 for

undefined notions).

The equal distribution of the dividends seems questionable in situations that

suggest proportionality rather than equality. A prominent example is the socio-

psychological equity theory of Homans (1961) and Selten (1978). The standard

business practice of dividing a firm’s profit proportionally to investment (constant

return per share) could serve as a daily-life example of the same phenomenon. (Sub-

additive) cost games provide another example. Consider a market with non-linear

pricing where the unit price depends on the purchased volume, e.g., it equals to 10

for quantities bellow five and 8 for higher amounts. Suppose there are two agents

in the market who have to buy two and three units, respectively. One might expect

that the buyers will agree to pool their resources and buy together the five units to

guarantee the lower price for both of them, spending 16 and 24 units, respectively.

On the contrary, all prominent solutions for TU-games (Shapley value, nucleolus

etc.) are based on equal split of the dividends for 2-person games. In this example

these solutions predict that buyers split the cost savings (of 10) equally (spending

15 and 25 respectively, and facing different prices of 15/2 and 25/3).

Several authors have proposed ‘proportional’ solutions for particular classes of

games (see, e.g., Kalai, 1977; Roth, 1979; Hart and Mas-Colell, 1989; Feldman,

2005; Ortmann, 2000). In this paper we modify the so-called proper Shapley value,
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the solution proposed by Vorob’ev and Liapounov (1998). Their approach is based

on the weighted Shapley value, Shapley (1953a), where the dividends are distributed

among players proportionally according to some exogenously given weights. The

proper Shapley value distributes the worth of the grand coalition N among the

players in such a way that the payoff vector x coincides with the weighted Shapley

value with respect to the weight scheme given by that vector x. Thus the proper

Shapley value is obtained as a fixed point of the mapping that appears in the defi-

nition of the weighted Shapley value.

Vorob’ev and Liapounov (1998) proved the existence of the proper Shapley value

for all games with nonnegative dividends. These games form a proper subclass of

monotone, convex games. Similarly to their approach, we consider fixed points of

a particular mapping on the payoff simplex. Our mapping coincides with that of

Vorob’ev and Liapounov for positive efficient weights; for weights on the boundary

of the nonnegative efficient simplex we follow the original Shapley value approach

and split the dividends equally among the players in the corresponding coalition.

A payoff vector obtained in this way will be called a balanced value. The balanced

solution assigns to each game the set of all balanced values. The idea behind the

proper Shapley value and our solution is identical: since the payoff vector given by

the weighted Shapley value and the vector of weights itself express the power of the

players in the game, they should naturally coincide.

The paper is organized as follows. In Section 2 we present some basic facts about

TU-games and their solutions. The balanced value and the balanced solution are

introduced in Section 3. We discuss some basic properties and state the theorem

saying that each monotone game admits at least one balanced value. We also deal

with a characterization of the balanced solution adapting the reduced game property

used by Hart and Mas-Colell (1988, 1989) to axiomatize the Shapley value. Finally,

the proofs of the main results are presented in Section 4.

2. Preliminaries

Let us start with several formal definitions. A transferable utility game (TU-game

for short) is a pair (N, v) where N = {1, . . . , n} and v is a characteristic function
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assigning to each subset S ⊆ N a real number v(S) whereas v(∅) = 0. We denote

the collection of all TU-games by G.

A TU-game (N, v) is

• monotone if v(S) ≤ v(T ) whenever S ⊆ T ⊆ N ,

• superadditive if v(S) + v(T ) ≤ v(S ∪ T ) whenever S, T ⊆ N are disjoint.

Let (N, v) ∈ G. The dividends ∆N,v(S), S ⊆ N , are defined inductively by

∆N,v(S) =





0, if S = ∅,

v(S)−∑
T(S ∆N,v(T ), if S 6= ∅

(see Harsanyi, 1959). Let us note that v(S) =
∑

T⊆S ∆N,v(T ) for every S ⊆ N . This

formula shows that the dividends uniquely determine the characteristic function.

We employ the following notation. Let N be a finite nonempty set, y ∈ RN , and

S ⊆ N . The symbol y|S stands for the restriction of y to S and yS stands for
∑

i∈S yi

whereas y∅ = 0.

A payoff vector x ∈ RN for a game (N, v) is efficient if it exactly distributes

worth v(N) of the grand coalition N , i.e., if xN = v(N). The set of all efficient

payoff vectors of (N, v) is denoted by X(N, v) and the set of all efficient payoff

vectors with positive coordinates is denoted by X+(N, v). If there is no danger of

confusion we write simply X and X+ instead of X(N, v) and X+(N, v).

Let C ⊆ G. A single-valued solution on C is a function f that assigns to every

game (N, v) ∈ C a payoff vector f(N, v). A single-valued solution f is efficient on

C if f(N, v) is an efficient payoff vector for all (N, v) ∈ C. A set-valued solution F

on C assigns a set of payoff vectors F (N, v) to every game (N, v) ∈ C. A set-valued

solution F is efficient on C if every payoff vector in F (N, v) is efficient whenever

(N, v) ∈ C.

The Shapley value (Shapley, 1953a) of a game (N, v) is an efficient single-valued

solution obtained by distributing the dividends of every coalition equally among all

players in the coalition, i.e., it is the function ϕ : G → RN defined by

(1) ϕi(N, v) =
∑
S⊆N
i∈S

1

|S|∆N,v(S), i ∈ N,

where |S| denotes the cardinality of S.
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Given a weight vector ω ∈ RN with weights ωi > 0, i ∈ N , the corresponding

weighted Shapley value (Shapley, 1953b) is the function ϕω : G → RN defined by

ϕω
i (N, v) =

∑
S⊆N
i∈S

ωi

ωS

∆N,v(S), i ∈ N.

The weighted Shapley value thus distributes the dividends of coalitions proportion-

ally to the exogenously given weights of the players. Clearly, if all weights ωi are

equal to each other then the weighted Shapely value ϕω(N, v) is equal to the Shap-

ley value ϕ(N, v). Further observe that if ω and ω̃ are positive weight vectors with

ω̃i/ω̃j = ωi/ωj for all i, j ∈ N then ϕω(N, v) = ϕω̃(N, v).

The best known set-valued solution is the core which assigns to every game the

set of efficient payoff vectors that are group stable in the sense that every coalition

gets at least its own worth. So, the core of a game (N, v) is the set of payoff vectors

given by

Core(N, v) = {x ∈ RN | xN = v(N) and xS ≥ v(S) for all S ⊆ N}.

A problem with the core is that it can be empty, even for monotone superadditive

games.

Let us recall several notions which will be helpful later.

Definition 1. Let (N, v) be a TU-game.

• A component in (N, v) is a coalition C ⊆ N such that

v(S) = v(S \ C) + v(S ∩ C)

for all S ⊆ N (see, e.g., Aumann and Drèze, 1980, Chang and Kan, 1994).

• Player i ∈ N is a null player in (N, v) if v(S) = v(S \ {i}) for all S ⊆ N .

• Players i, j ∈ N are symmetric with respect to (N, v) if, for each S ⊆
N \ {i, j} , we have v(S ∪ {i}) = v(S ∪ {j}).

In the next definition we recall some notions related to solutions of TU-games.

Definition 2. Let C ⊆ G be a class of games and F be a solution defined on C. A

solution F satisfies on C
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• component efficiency if, for every (N, v) ∈ C, x ∈ F (N, v), and every com-

ponent C in (N, v), we have xC = v(C);

• the component restriction property if, for every (N, v) ∈ C, every component

C in (N, v), and every x, x′ ∈ F (N, v), we have that x′′ given by

x′′i =





xi for i ∈ C,

x′i for i ∈ N \ C,

is an element of F (N, v);

• the null player property if, for every (N, v) ∈ C and x ∈ F (N, v), we have

xi = 0 whenever i is a null player in the game (N, v);

• the symmetry property if, for every (N, v) ∈ C and x ∈ F (N, v), we have

xi = xj whenever i and j are symmetric players with respect to (N, v);

• individual rationality, if xi ≥ v({i}) for every (N, v) ∈ C, x ∈ F (N, v), and

i ∈ N .

3. Balanced values, balanced solution, and their properties

Let (N, v) be a given game and ω1 ∈ X+ be an initial weight scheme where

the weights equal each other. Applying the Shapley value (1) we get a redistributed

weight vector ω2 := ϕ(N, v) reflecting the power of the players. Thus it seems natural

to consider ω2 as a new weight scheme for players in the game (N, v). Applying the

weighted Shapley value repeatedly we get a sequence (ωk)∞k=1 of weights satisfying

ωk+1 = ϕωk
(N, v) (assuming ωk to have strictly positive coordinates). Obviously,

the ‘limit weights’ (if such exist) will be invariant to the redistribution mechanism.

This turns our attention to the fixed points of the mapping ω 7→ ϕω(N, v).

Let us be more formal. Let (N, v) ∈ G and define h(N, v) : X → RN by

h(N, v)i(x) =
∑

S⊆N,i∈S
xS 6=0

xi

xS

∆N,v(S) +
∑

S⊆N,i∈S
xS=0

1

|S|∆N,v(S), i ∈ N.

For the sake of brevity, we omit the parameters (N, v) if no confusion is possible.

The mapping h coincides with the mapping ω 7→ ϕω(N, v) on X+. The second

sum in the definition of h is important when dealing with zero weights. Since we

cannot divide by xS if xS = 0, we follow the original Shapley value approach and
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split the dividends equally among the players in the corresponding coalition in that

case.

Remark 1. For every x ∈ X we have

hN(x) =
∑
i∈N

hi(x) =
∑
S⊆N
xS 6=0

∆N,v(S) +
∑
S⊆N
xS=0

∆N,v(S) =
∑
S⊆N

∆N,v(S)

= v(N).

This means that h maps values from X to X.

The next definition introduces the key notion of our paper.

Definition 3. Let (N, v) ∈ G. A vector x ∈ X is called a balanced value if h(x) = x

and xi ≥ 0 for all i ∈ N .

We denote

B(N, v) = {x ∈ X(N, v) | x is a balanced value of (N, v)}.

Remark 2. (i) We require the balanced values to be nonnegative since we consider

them as payoff vectors as well as weight schemes.

(ii) Consider a two-player game (N, v), where N = {1, 2} and v satisfies v({1}) >

0, v({2}) > 0, and v(N) > 0. Then a straightforward computation gives a (unique)

balanced value
(

v({1})
v({1}) + v({2}) · v(N),

v({2})
v({1}) + v({2}) · v(N)

)
.

Thus in this case the worth of the grand coalition is distributed proportionally to

the individual worths.

(iii) In general, fixed points for h : X → X need not exist, as one can easily check

in the case of the following two-player game:

N = {1, 2}, v({1}) = 1, v({2}) = −1, v(N) = 1.

However, we have the following first main result.

Theorem 1. There exists at least one balanced value for each monotone game.
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Let us indicate here only the main idea of the proof. (The full proof can be found

in Section 4.) The first step is the result saying that if the game (N, v) is monotone

then the function h redistributes each positive weight scheme x ∈ X+ to a positive

weight scheme h(x) ∈ X+ (see Lemma 3(ii)). Then we define a multivalued mapping

F by assigning to each x from the closure of X+ the convex hull of the set of all

limit values of h|X+ at x. Applying Kakutani’s fixed point theorem to F , we get a

fixed point x∗ of F . Finally, we show that x∗ is also a fixed point of h. Note that

we cannot apply directly Brouwer’s fixed point theorem since the mapping h is not

continuous on X, as illustrated in Example 2 in the last section.

We refer to the solution that assigns to every game (N, v) ∈ G the set of bal-

anced values B(N, v) as the balanced solution. For monotone superadditive games,

individual rationality seems a desirable property. It turns out that this property is

satisfied by the balanced solution.

Theorem 2. If (N, v) is a monotone superadditive game and x is a balanced value

of (N, v), then xi ≥ v({i}) for every i ∈ N .

The proof of this theorem can also be found in Section 4.

Consider the game (N, v) such that v(S) = 0 for every S ( N and v(N) = 1. Then

each x ∈ X+ is a balanced value. So we do not have uniqueness for balanced values

even for the class of all monotone games. On the other hand, we do not know whether

the balanced value is determined uniquely for any monotone or superadditive game

(N, w) with w({i}) > 0 for every i ∈ N .

The next proposition captures properties of balanced values related to the sym-

metry property and the null player property.

Proposition 1. Let (N, v) be a monotone game.

(i) If i, j ∈ N , i 6= j, are symmetric players in (N, v), then there exists a

balanced value x∗ of (N, v) with x∗i = x∗j .

(ii) Let i ∈ N . If v({i}) = 0, then there exists a balanced value x∗ of (N, v) with

x∗i = 0.

(iii) Let i ∈ N . If v({i}) > 0, then each balanced value x∗ of (N, v) satisfies

x∗i > 0.
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(iv) If k, l ∈ N are symmetric players with respect to (N, v) and v({k}) > 0 (and

thus v({l}) > 0) then each balanced value x∗ of (N, v) satisfies x∗k = x∗l .

It is well known that efficiency, the symmetry property, the null player property,

and additivity uniquely determine the Shapley value. Let us remark that the bal-

anced solution satisfies efficiency and the null player property on the class of all

games, and the symmetry property on the class of all positive monotone games. (A

game (N, v) is positive if v(S) > 0 for all nonempty S ⊆ N .)

Proposition 2. The balanced solution satisfies component efficiency, the component

restriction property, and the null player property for the class G.

Let us mention that balanced values need not be core allocations nor the other

way around, as is demonstrated by the following example.

Example 1. Consider the game

v(S) =





3 if S = N,

2 if |S| = 2,

1 if S = {3},

0 if S ∈ {{1}, {2}}.
Note that Proposition 1(i) implies that there exists a balanced value with x1 = x2.

Further, Proposition 1(ii) implies that for players i ∈ {1, 2} there exists a balanced

value with xi = 0. Since v({1, 2}) > 0 there cannot be a balanced value with

x1 = x2 = 0. Therefore we can conclude that there are at least three balanced values.

It can be verified that (0, 3/2, 3/2), (3/2, 0, 3/2), and 1
10

(15 − 3
√

5, 15 − 3
√

5, 6
√

5)

are the balanced values for (N, v), while the core consists of the single point (1, 1, 1) .

However, for any monotone simple game (N, v), every core allocation is a balanced

value. Recall that a game (N, v) is simple if v(S) ∈ {0, 1} for all S ⊆ N .

Proposition 3. If (N, v) is a simple monotone game, then Core(N, v) ⊆ B(N, v).

Denote the class of all games with at least one balanced value by GB. We provide

a characterization of the balanced solution among solutions defined on GB. We
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adapt the HM-reduced game property that characterizes the Shapley value in Hart

and Mas-Colell (1988, 1989). The HM-reduced game property considers situations

in which some players ‘leave’ the game. This property states that the payoffs of

players that do not leave the game do not change if we consider an appropriately

defined reduced game on the set of players remaining in the game. In this reduced

game the worth of each coalition equals the worth of the union of this coalition

and all players that leave the game minus the payoffs of the leaving players in the

corresponding restricted game. The formal description is the following.

Let (N, v) ∈ G, f be a solution on the class G, and T ⊆ N . The Hart and

Mas-Colell reduced game (T, vf
T ) is given by

vf
T (S) = v(S ∪ T c)− fT c(S ∪ T c, vS∪T c) for all S ⊆ T,

where T c = N \T is the coalition of leaving players and vS∪T c is the restricted game

on S ∪ T c given by vS∪T c(H) = v(H) for all H ⊆ S ∪ T c.

A solution f satisfies the HM-reduced game property if fi(N, v) = fi(T, vf
T ) for

every (N, v) ∈ G, T ⊆ N , and i ∈ T . Hart and Mas-Colell (1988) used the HM-

reduced game property to axiomatize the Shapley value.

To characterize the balanced solution we use a different reduced game which we

refer to as the proportional reduced game. In this reduced game that results after

some players have left the game, the dividend of a coalition S of the remaining

players is equal to the dividend of coalition S in the original game plus a share in

the original dividends of all coalitions containing S and players who left the game.

These shares are determined by the payoffs of the players in the original game. Here

we have a formal definition.

Definition 4. Let (N, v) ∈ G, x ∈ X(N, v), and T ⊆ N be nonempty. We define

the proportional reduced game (T, vx
T ) by determining its dividends

∆T,vx
T
(S) = ∆N,v(S) +

∑

K⊆T c,K 6=∅
xS∪K 6=0

xS

xS∪K

∆N,v(S ∪K)

+
∑

K⊆T c,K 6=∅
xS∪K=0

|S|
|S ∪K|∆N,v(S ∪K), S ⊆ T.



10

Definition 5. We say that a solution F satisfies the proportional reduced game

property on a class C ⊆ G if, for every (N, v) ∈ C, x ∈ F (N, v), and nonempty

T ⊆ N , we have (T, vx
T ) ∈ C and x|T ∈ F (T, vx

T ).

Remark 3. The formula for ∆T,vx
T
(S) can also be written as follows

∆T,vx
T
(S) =

∑
K⊆T c

xS∪K 6=0

xS

xS∪K

∆N,v(S ∪K) +
∑

K⊆T c

xS∪K=0

|S|
|S ∪K|∆N,v(S ∪K).

Similarly to the HM-reduced game property, the proportional reduced game prop-

erty can be seen as a consistency property. The just defined notions provide a ‘partial

axiomatization’ of the balanced solution whose proof is contained in Section 4.

Proposition 4. (i) The balanced solution satisfies the proportional reduced game

property on GB.

(ii) If an efficient solution F on GB satisfies the proportional reduced game prop-

erty on GB, then F (N, v) ⊆ B(N, v) for every (N, v) ∈ GB.

Now we introduce the converse proportional reduced game property to obtain a

characterization of the balanced solution.

Definition 6. A solution F is said to satisfy the converse proportional reduced game

property on a class C if, for every (N, v) ∈ C and every x ∈ X(N, v) satisfying vx
T ∈ C

and x|T ∈ F (T, vx
T ) for every nonempty T ( N , we have x ∈ F (N, v).

A characterization of the balanced solution on GB can be formulated as follows.

Theorem 3. A solution F on GB is efficient, satisfies the proportional reduced game

property and the converse proportional reduced game property on GB if and only if

it is the balanced solution.

The proof again can be found in Section 4. Note that we characterize a set-valued

solution, while Hart and Mas-Colell (1989) characterize a single-valued solution.

Comparing our proportional reduced game with the HM-reduced game, we see that

the latter takes account of payoffs of ‘leaving’ players in restricted games (T, vT ),

while what matters in our proportional reduced game are the payoffs of ‘leaving’
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players in the original game (N, v). Because the cardinality of player sets in re-

stricted games is lower than the cardinality of the player set in the original game,

the induction hypothesis in the proof of Hart and Mas-Colell (1989) uniquely deter-

mines the payoffs of players in the HM-reduced games. This cannot be done in the

proof of Theorem 3.

Hart and Mas-Colell (1989) characterize the Shapley value by their reduced game

property and standardness for two player games meaning that in any two player game

each player gets its own singleton worth plus half of the dividend of the two player

‘grand’ coalition. Note that the above given axioms that characterize the balanced

solution on GB imply proportional standardness for two player games meaning that

in any two player game with positive singleton worths the worth of the two player

‘grand’ coalition is allocated proportionally to the singleton worths.

Hart and Mas-Colell (1989) also characterize weighted Shapley values by a ‘weigh-

ted’ standardness for two-player games property and the HM-reduced game property.

However, their weighted Shapley values consider exogenously given weights which are

the same for both the original and the reduced game. The balanced solution does

not satisfy the HM-reduced game property because the endogenously determined

balanced weights in the HM-reduced game (i.e., components xi of a balanced value

x in the HM-reduced game) can be different from the balanced weights in the original

game.

4. Proofs

4.1. Proof of Theorem 1. Some of the results presented in this subsection are

standard (e.g., Lemma 4 and 5). We include them for the convenience of the reader.

Let (N, v) ∈ G. The symbol X0(N, v) denotes the set of all x ∈ X(N, v) with

nonnegative coordinates. Usually we will write just X0 instead of X0(N, v).

Let S ⊆ N and x ∈ RN be a nonnegative vector (i.e., all coordinates of x are

nonnegative) with xS > 0. We set

kS(x) =
∑
T⊆N
T⊇S

(−1)|T |−|S|

xT

, qS(x) =
∑
T⊆N
T⊇S

(−1)|T |−|S|

x2
T

.
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We establish properties of hi, kS, and qS needed in the sequel. In the proofs we will

abbreviate notation ∆N,v(T ) to ∆(T ) in case there is no confusion about the game

we consider.

Lemma 1. Let (N, v) ∈ G and i ∈ N . Then

hi(x) = xi

∑
S⊆N
i∈S

kS(x)(v(S)− v(S \ {i}))

for x ∈ X0 with xi > 0.

Proof. It is known that the dividends can be expressed as

∆(T ) =
∑
S⊆T

(−1)|T |−|S|v(S), T ⊆ N.

We can write

hi(x) =
∑
T⊆N
i∈T

xi

xT

∆(T ) =
∑
T⊆N
i∈T

xi

xT

(∑
S⊆T

(−1)|T |−|S|v(S)

)

= xi

∑
S⊆N

∑
T⊆N

T⊇S,i∈T

(−1)|T |−|S|
1

xT

v(S)

= xi

∑
S⊆N
i∈S

∑
T⊆N

T⊇S,i∈T

(−1)|T |−|S|
1

xT

v(S) + xi

∑
S⊆N
i/∈S

∑
T⊆N

T⊇S,i∈T

(−1)|T |−|S|
1

xT

v(S)

= xi

∑
S⊆N
i∈S

∑
T⊆N
T⊇S

(−1)|T |−|S|
1

xT

v(S)

+ xi

∑
R⊆N
i∈R

∑
T⊆N
T⊇R

(−1)|T |−(|R|−1) 1

xT

v(R \ {i})

= xi

∑
S⊆N
i∈S

∑
T⊆N
T⊇S

(−1)|T |−|S|
1

xT

v(S)− xi

∑
S⊆N
i∈S

∑
T⊆N
T⊇S

(−1)|T |−|S|
1

xT

v(S \ {i})

= xi

∑
S⊆N
i∈S

kS(x)
(
v(S)− v(S \ {i})).

¤

Lemma 2. Let N be a finite nonempty set, S ⊆ N , and x ∈ RN be a nonnegative

vector with xS > 0. Then we have kS(x) > 0 and qS(x) > 0.

Proof. We start with the following claim.
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Claim 1. Let g be a positive C∞ function on (0, +∞) such that (−1)pg(p) is positive

on (0, +∞) for every p ∈ N. Then for every nonempty finite set N , S ⊆ N , and

every nonnegative vector x ∈ RN with xS > 0 we have

∑
T⊆N
T⊇S

(−1)|T |−|S|g(xT ) > 0.

Proof. Fix a nonempty finite set N and denote |N | = n. If |S| = |N |, then the

assertion obviously holds since g is positive. Assume that the assertion is valid for

this N and every g, S, and x satisfying the required properties and moreover |S| > k,

where k < |N |.
We are going to prove the assertion for S ⊆ N with |S| = k and nonnegative

x ∈ RN with xS > 0. Take i ∈ N \ S. Define an auxiliary function ψ by

ψ(z) =
∑
T⊆N

T⊇S∪{i}

(−1)|T |−|S|g(xT\{i} + z) +
∑
T⊆N

T⊇S,i/∈T

(−1)|T |−|S|g(xT ), z ∈ [0,∞).

We have

(2) ψ(0) =
∑
L⊆N

L⊇S,i/∈L

−(−1)|L|−|S|g(xL) +
∑
T⊆N

T⊇S,i/∈T

(−1)|T |−|S|g(xT ) = 0.

We compute the first derivative of ψ

ψ′(z) =
∑
T⊆N

T⊇S∪{i}

(−1)|T |−|S|g′(xT\{i} + z).

Set P := S ∪ {i}. Using the induction hypothesis, we obtain

ψ′(z) =
∑
T⊆N
T⊇P

(−1)|T |−|P |(−g′)(xT\{i} + z) > 0 for z ∈ [0, +∞).(3)

Here we have used the fact that the function −g′ = (−1)1g(1) is positive and satisfies

the required conditions on signs of its derivatives. Using (2) and (3), we obtain

ψ(xi) =
∑
T⊆N
T⊇S

(−1)|T |−|S|g(xT ) > 0

and the claim is proved. ¤

Applying Claim 1 to the functions g(t) = 1/t and g(t) = 1/t2 the proof of Lemma

2 is finished. ¤
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Throughout this subsection and in subsections 4.2 and 4.3, we will assume that

the considered game (N, v) is monotone and satisfies v(N) > 0. Then we have that

the corresponding set X+ is nonempty. If v(N) = 0, then the assertions of Theorem

1, Theorem 2, and Proposition 1 are trivial or vacuous. Again, we denote |N | by n.

Lemma 3. (i) The mapping h is continuous on X+.

(ii) We have h(x) ∈ X0 for all x ∈ X+.

Proof. The statement (i) is obvious. As for (ii), recall that h(x) ∈ X for every x ∈ X

by Remark 1. Using monotonicity of the game (N, v), Lemma 1 and Lemma 2, we

see that hi(x) ≥ 0 for every x ∈ X+ and i ∈ N . Thus we have h(x) ∈ X0 for

x ∈ X+. ¤

Now we define the mapping H : X0 → 2X0 by

H(x) = {α ∈ Rn | ∃(xj) ⊆ X+ : xj → x, h(xj) → α}.

Lemma 4. (i) The set {(x, y) ∈ X0 ×X0 | y ∈ H(x)} is closed.

(ii) The set H(x) is a nonempty compact subset of X0 for every x ∈ X0.

(iii) We have H(x) = {h(x)} for every x ∈ X+.

Proof. (i) Take sequences (xj), xj ∈ X0, and (yj) such that xj → x ∈ X0, yj ∈
H(xj), and yj → y. For each j ∈ N there exists zj ∈ X+ such that ||zj − xj|| < 1/j

and ||h(zj)− yj|| < 1/j. Then zj → x and h(zj) → y. Consequently, y ∈ H(x).

(ii) Fix x ∈ X0. Since X0 is compact, we have H(x) ⊆ X0 by Lemma 3(ii). Using

(i) and compactness of X0 , we get that H(x) is compact. To prove that H(x) 6= ∅
take a sequence (xj), xj ∈ X+, with xj → x. By Lemma 3(ii) the sequence (h(xj)) is

contained in the compact set X0. Therefore, there exists a convergent subsequence

(h(xjk))∞k=1 with a limit α ∈ X0. Thus α ∈ H(x), showing that H(x) 6= ∅.
(iii) This follows from continuity of h on X+. ¤

Now let us define a mapping F from X0 to the set of all convex subsets of X0

such that F (x) is the convex envelope of H(x) for every x ∈ X0.

Lemma 5. (i) The set F (x) is a nonempty convex compact subset of X0 for all

x ∈ X0.
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(ii) We have F (x) = {h(x)} for every x ∈ X+.

(iii) The set {(x, y) ∈ X0 ×X0 | y ∈ F (x)} is closed.

Proof. (i) This assertion immediately follows from Lemma 4(ii), convexity of X0,

and the well-known fact that the convex envelope of any compact subset of Rn is

compact.

(ii) This part clearly follows from Lemma 4(iii).

(iii) Take sequences (xj), xj ∈ X0, and (yj) such that xj → x ∈ X0, yj ∈ F (xj),

and yj → y. Now we use Carathéodory’s theorem, which asserts that each element

of the convex envelope of a set M ⊆ Rn−1 can be written as a convex combination

of n elements of the set M . Since the simplex X0 is n − 1 dimensional, there are

αj
1, . . . , α

j
n ∈ [0, 1] and yj,1, . . . , yj,n ∈ H(xj) such that

αj
1y

j,1 + · · ·+ αj
nyj,n = yj and

n∑
s=1

αj
s = 1.

Going to subsequences, if necessary, we may assume that αj
s → αs ∈ [0, 1], and

yj,s → y∞,s. Then

α1y
∞,1 + · · ·+ αny∞,n = y and

n∑
s=1

αs = 1.

Since the graph of H is closed by Lemma 4(i), we have that y∞,s ∈ H(x), and thus

y ∈ F (x). ¤

Kakutani’s theorem (see Kakutani, 1941, or, e.g., Franklin, 1980) states that

any multivalued F from a nonempty compact convex subset D of Rn to itself such

that the graph of F is closed and F (x) is convex, closed, and nonempty for all x ∈ D,

has a fixed point, i.e., there exists an x∗ ∈ D such that x∗ ∈ F (x∗).

Since we have shown that F and its domain X0 satisfy the assumptions of Kaku-

tani’s theorem, we have the following lemma.

Lemma 6. There exists x∗ ∈ X0 such that x∗ ∈ F (x∗).

The next lemma shows the relationships between fixed points of h and F .

Lemma 7. Let x∗ ∈ X0 be such that x∗ ∈ F (x∗). Then h(x∗) = x∗. Moreover, if

we set Q = {i ∈ N | x∗i = 0}, then v(Q) = 0.
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Proof. We distinguish two cases.

a) If x∗ ∈ X+ then x∗ ∈ F (x∗) = {h(x∗)} (Lemma 5(ii)) and, consequently,

x∗ = h(x∗).

b) Suppose now that x∗ ∈ X0 \X+. From the definition of F there are elements

z1, . . . , zp ∈ H(x∗) and β1, . . . , βp ∈ (0, 1] such that
∑p

s=1 βs = 1 and

(4) β1z
1 + · · ·+ βpz

p = x∗.

Denote Q = {i ∈ N | x∗i = 0}. Since zj
i ≥ 0, j = 1, . . . , p, the equation (4)

guarantees that zj
i = 0 for every i ∈ Q, j ∈ {1, . . . , p}. Let us simplify the notation

by setting z := z1. Since z ∈ H(x∗) there exists a sequence (xj), xj ∈ X+, such that

xj → x∗ and h(xj) → z.

For i ∈ Q we have limj→∞ xj
i = 0 and limj→∞ hi(x

j) = 0. Further, we get

∑
i∈Q

hi(x
j) =

∑
i∈Q

( ∑
S⊆N,i∈S

xj
i

xj
S

∆(S)

)

=
∑
i∈Q







∑
S⊆N,

i∈S,S\Q6=∅

xj
i

xj
S

∆(S)


 +

( ∑
S⊆Q,i∈S

xj
i

xj
S

∆(S)

)



=
∑
i∈Q




∑
S⊆N

i∈S,S\Q6=∅

xj
i

xj
S

∆(S)


 +

∑
i∈Q

( ∑
S⊆Q,i∈S

xj
i

xj
S

∆(S)

)

=
∑
i∈Q




∑
S⊆N

i∈S,S\Q6=∅

xj
i

xj
S

∆(S)


 +

(∑
S⊆Q

∆(S)

)

=
∑
i∈Q




∑
S⊆N

i∈S,S\Q6=∅

xj
i

xj
S

∆(S)


 + v(Q).

The limit of the left side is

lim
j→∞

∑
i∈Q

hi(x
j) = 0,
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and, since S \Q 6= ∅ implies x∗S > 0, we have also

lim
j→∞

∑
i∈Q




∑
S⊆N

i∈S,S\Q6=∅

xj
i

xj
S

∆(S)


 = 0.

Therefore, we have v(Q) = 0. This proves the second part of our statement.

By monotonicity of (N, v) we get v(S) = 0 for every S ⊆ Q. Consequently,

∆(S) = 0 for all S ⊆ Q. Then

hi(x) =
∑
S⊆N

i∈S,xS 6=0

xi

xS

∆(S) +
∑
S⊆N

i∈S,xS=0

1

|S|∆(S)

=
∑

S⊆N,i∈S
S\Q6=∅,xS 6=0

xi

xS

∆(S) +
∑

S⊆N,i∈S
S\Q6=∅,xS=0

1

|S|∆(S), x ∈ X0.

Since x∗i > 0 for all i ∈ N \Q, there exists a neighborhood V of x∗ such that, for

every x ∈ X0 ∩ V and S ⊆ N with S \Q 6= ∅, we have xS > 0 and

hi(x) =
∑

S⊆N,i∈S
S\Q6=∅,xS 6=0

xi

xS

∆(S).

From this we conclude that h is continuous at x∗.

From the continuity of h at fixed point x∗ of F it follows that x∗ ∈ F (x∗) =

{h(x∗)}, and thus x∗ = h(x∗). ¤

Now we immediately see that the assertion of Theorem 1 holds.

Note that we could not apply directly Brouwer’s fixed point theorem since the

mapping h(N, v) is not continuous on X(N, v), as illustrated in the following exam-

ple.

Example 2. Consider the monotone game (N, v) given by N = {1, 2, 3} with the

dividends

∆N,v(S) =





1 if S ∈ {{3}, {1, 2}},

0 otherwise;

and xε = (ε, 2ε, 2 − 3ε). Clearly, h(xε) = (1/3, 2/3, 1) whenever ε ∈ (0, 2/3) and

h(xε) = (1/2, 1/2, 1) for ε = 0.
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4.2. Proof of Theorem 2.

Lemma 8. For every x ∈ X0 we have h(x) ∈ F (x).

Proof. Denote Q = {i ∈ N | xi = 0} and for ε > 0 we set

yε
i =





ε for i ∈ Q;

xi − |Q|
|N |−|Q|ε for i ∈ N \Q.

If ε > 0 is sufficiently small, then yε ∈ X+ and we have

hi(y
ε) =

∑
S⊆N
i∈S

yε
i

yε
S

∆(S) =
∑
S⊆N

i∈S,xS 6=0

yε
i

yε
S

∆(S) +
∑
S⊆N

i∈S,xS=0

ε

|S|ε∆(S), i ∈ Q.

Now it is easy to see that h(yε) → h(x) for ε → 0+. This shows h(x) ∈ H(x) ⊆ F (x)

and we are done. ¤

Now we prove Theorem 2. By Theorem 1, the set B(N, v) is nonempty. Using

Lemma 1 and superadditivity of (N, v), we get for x ∈ X0 with xi > 0 the following

estimates.

(5)

hi(x) = xi

∑
S⊆N
i∈S

kS(x) (v(S)− v(S \ {i}))

≥ xi

∑
S⊆N
i∈S

(kS(x) · v({i})) = xi · v({i}) ·
∑
S⊆N
i∈S

kS(x).

The term
∑

S⊆N
i∈S

kS(x) can be rewritten as follows

∑
S⊆N
i∈S

kS(x) =
∑
S⊆N
i∈S

∑
T⊆N
T⊇S

(−1)|T |−|S|

xT

=
∑
T⊆N
i∈T

∑
S⊆T
i∈S

(−1)|T |−|S|

xT

=
∑
T⊆N
i∈T

(
(−1)|T |

xT

·
∑

S⊆T,i∈S

(−1)−|S|
)

.
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Further, we compute

∑
S⊆T,i∈S

(−1)−|S| =
∑

R⊆T\{i}
(−1)−|R|−1 = −

|T |−1∑
n=0

∑

R⊆T\{i}
|R|=n

(−1)−n

= −
((|T | − 1

0

)
−

(|T | − 1

1

)
+ · · ·+ (−1)|T |−1

(|T | − 1

|T | − 1

))

=




−1 for |T | = 1,

−(1− 1)|T |−1 = 0 for |T | > 1.

Thus we get

∑
S⊆N
i∈S

kS(x) =
∑
T⊆N

i∈T,|T |=1

(−1)|T |+1

xT

=
1

xi

.(6)

The inequality (5) and the identity (6) yield hi(x) ≥ v({i}) for x ∈ X0 with xi > 0.

Now let x∗ be a balanced value of the game (N, v). Denote Q = {i ∈ N | x∗i = 0}.
If i ∈ N \Q, then we have x∗i > 0 and so x∗i = hi(x

∗) ≥ v({i}) as shown above.

By Lemmas 7 and 8 we have v(Q) = 0. By monotonicity this leads to v({i}) = 0

for all i ∈ Q, and we have x∗i = v({i}) for every i ∈ Q, showing individual rationality

of the balanced solution for monotone superadditive games.

4.3. Proof of Proposition 1. We again use the same notation as in the previous

subsections.

(i) Set Z = {x ∈ X0 | xi = xj}. The set Z is nonempty, compact, and convex. Let

F be the mapping defined in subsection 4.1 after Lemma 4. We define a multivalued

mapping G by G(x) = F (x)∩Z. Using the symmetry of the players i and j, we have

that hi(x) = hj(x) whenever x ∈ Z. This and Lemma 8 implies that h(x) ∈ G(x)

for every x ∈ Z. Consequently, G(x) 6= ∅ for every x ∈ Z. Further, it is clear that

G(x) is a compact convex set and the set {(x, y) ∈ Z × Z | y ∈ G(x)} is closed

(see Lemma 5). Applying Kakutani’s theorem, we get a fixed point x∗ ∈ Z of the

mapping G. Then clearly x∗ is a fixed point of F and x∗i = x∗j . By Lemma 7 we get

that x∗ is a fixed point of h.

(ii) The idea of this proof is the same as in the previous part. Set R = {x ∈ X0 |
xi = 0}. The set R is nonempty, compact, and convex. Let F again be the mapping
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defined in subsection 4.1. We define a multivalued mapping G by G(x) = F (x)∩R,

x ∈ R. It is clear that G(x) is a compact convex set for every x ∈ R and the set

{(x, y) ∈ R×R | y ∈ G(x)} is closed.

We also show that G(x) is nonempty whenever x ∈ R. To this end, fix x ∈ R.

Since v(N) > 0, one can find j ∈ N with xj > 0. We define yε ∈ X by

yε
k =





ε2 for k = i;

xk + ε for k ∈ N \ {i, j};

xj − ε2 − (|N | − 2)ε for k = j.

For every ε ≥ 0 we have yε ∈ X and for sufficiently small ε > 0 we have yε ∈
X+. Then we have limε→0+ yε = x, and a straightforward computation results in

limε→0+ yε
i /y

ε
S = 0 for every nonempty S ⊆ N with S 6= {i}. Using this and

∆({i}) = 0, we infer limε→0+ hi(y
ε) = 0. This implies that there exists a sequence

(yj) of elements of X+ going to x such that (h(yj))j converges to some α ∈ X0 with

αi = 0. Thus α ∈ F (x) ∩R and G(x) 6= ∅.
Applying Kakutani’s theorem, we obtain a fixed point x∗ ∈ R of the mapping G.

Thus x∗i = 0 and x∗ ∈ F (x∗). By Lemma 7 we get that x∗ is a fixed point of h.

(iii) Suppose that v({i}) > 0 and x∗ is a balanced value of (N, v). Applying

Lemma 8, we get x∗ ∈ F (x∗). Now from Lemma 7 it follows that x∗i > 0 since

otherwise v({i}) = 0.

(iv) Suppose on the contrary that there exists a balanced value x∗ of (N, v) with

x∗k 6= x∗l . Without any loss of generality we may assume that k = 1, l = 2, and

x∗1 < x∗2. Define y∗ ∈ X0 by y∗1 = x∗2, y∗2 = x∗1, and y∗i = x∗i , i ∈ N \ {1, 2}. Because

of the symmetry of players 1 and 2 we have h1(y
∗) = h2(x

∗) = y∗1.

For t ∈ R set z(t) = (1− t)x∗ + ty∗ and define an auxiliary function g on [0, 1] by

g(t) =
∑
S⊆N
1∈S

kS(z(t))(v(S)− v(S \ {1})).

Since v({1}) > 0 and v({2}) > 0, we have x∗1 > 0 and x∗2 > 0 by Proposition 1(iii).

Then we have g(0) = h1(x
∗)/x∗1 = 1 and g(1) = h1(y

∗)/y∗1 = h2(x
∗)/x∗2 = 1. Further,
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we compute

g′(t) = (x∗2 − x∗1)
∑
S⊆N
1∈S

(
∂kS

∂x1

(z(t))− ∂kS

∂x2

(z(t))

)
(v(S)− v(S \ {1})).(7)

For S ⊆ N with 1 ∈ S and x ∈ X0 with xS > 0 we have

∂kS

∂x1

(x)− ∂kS

∂x2

(x) =
∑
T⊆N
T⊇S

(−1)|T |−|S|(−x−2
T )−

∑
T⊆N

T⊇S,2∈T

(−1)|T |−|S|(−x−2
T )

=
∑
T⊆N

T⊇S,2/∈T

(−1)|T |−|S|(−x−2
T ) = −

∑

T⊆N\{2}
T⊇S

(−1)|T |−|S|x−2
T

If 2 ∈ S then the last term is 0, otherwise it is negative by Lemma 2. Since

x∗2 − x∗1 > 0, we thus get g′ ≤ 0 on (0, 1). But we know also that

(x∗2 − x∗1)
(

∂k{1}
∂x1

(x)− ∂k{1}
∂x2

(x)

)
(v({1})− v(∅)) < 0, x ∈ X0, x1 > 0,

and this yields g′ < 0 on (0, 1). This is in contradiction with g(0) = g(1) = 1.

4.4. Proof of Proposition 2. We start with the following claim.

Claim 2. Let (N, v) ∈ G, C be a component of (N, v), and i ∈ C. Then

hi(N, v)(y) = hi(C, vC)(y|C) for every y ∈ X(N, v),

where (C, vC) is the restriction of (N, v) to C, i.e., vC(S) = v(S ∩ C) for every

S ⊆ C.

Proof. Firts of all, we prove that if S ⊆ N intersects both C and N \ C, then

∆(S) = 0 . If S contains just two elements, then the observation follows directly

from the definition of component. Now take a set S with the required property and

assume that the observation holds for all sets having less elements than S. Using

this assumption and the definition of component we have

∆(S) = v(S)−
∑
T(S

∆(T ) = v(S)−
∑

T⊆S∩C

∆(T )−
∑

T⊆S\C
∆(T )

= v(S)− v(S ∩ C)− v(S \ C) = 0.

Then the assertion of Claim 2 follows immediately from the observation that

∆(N,v)(S) = ∆(C,vC)(S) if S ⊆ C. ¤
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We will continue with the proof of Proposition 2. To prove component efficiency

consider (N, v) ∈ G with a component C and x ∈ B(N, v). Using Claim 2 we get

xC =
∑
i∈C

hi(N, v)(x) =
∑
i∈C

hi(C, vC)(x|C) = v(C).

The last equality follows from Remark 1.

Now consider x, x′ ∈ B(N, v) and a vector x′′ defined by

x′′i =





xi for i ∈ C,

x′i for i ∈ N \ C.

We show that x′′ ∈ B(N, v). According to component efficiency we have

x′′N = x′′C + x′′N\C = xC + x′N\C = v(C) + v(N \ C) = v(N).

Now it is clear that x′′ ∈ X0(N, v). Using Claim 2, for i ∈ C, we have

x′′i = xi = hi(N, v)(x) = hi(C, vC)(x|C) = hi(C, vC)(x′′|C) = hi(N, v)(x′′).

The equality x′′i = hi(x
′′) for i ∈ N\C immediately follows since N\C is a component

of (N, v) as well.

The null player property of the balanced solution follows from component effi-

ciency since C := {i}, where i is a null player in (N, v), is a component in (N, v).

4.5. Proof of Proposition 3. Let (N, v) be a simple monotone game. Suppose

that x ∈ Core(N, v). Then there exists a coalition T ⊆ N such that v(S) = 1 if and

only if T ⊆ S ⊆ N .

If ∆(S) 6= 0, then xS = 1. Indeed, ∆(S) 6= 0 implies v(S) 6= 0. This yields T ⊆ S

and 1 ≥ xS ≥ xT ≥ v(T ) = 1, showing xS = 1.

Applying this observation, we get

hi(x) =
∑

S⊆N,i∈S
xS=1

xi

xS

∆(S) = xi

∑
S⊆N,i∈S

xS=1

∆(S) = xi

∑
S⊆N,i∈S

∆(S), i ∈ N.

The last equality holds since we added just the zero dividends. Since the last sum

equals v(N) = 1, we have hi(x) = xi and we are done.
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4.6. Proof of Proposition 4. The following lemma will be useful in the sequel.

Lemma 9. Let (N, v) ∈ GB, x ∈ B(N, v), and T ⊆ N be nonempty. Then we have

hi(T, vx
T )(x|T ) = hi(N, v)(x) for every i ∈ T .

Proof. By the definition of ∆T,vx
T

we have

∑
S⊆T,i∈S

xS 6=0

xi

xS

∆T,vx
T
(S) =

∑
S⊆T,i∈S

xS 6=0

∑
K⊆T c

xS∪K 6=0

xi

xS

· xS

xS∪K

∆N,v(S ∪K)

+
∑

S⊆T,i∈S
xS 6=0

∑
K⊆T c

xS∪K=0

xi

xS

· |S|
|S ∪K|∆N,v(S ∪K).

For x ∈ X0(N, v) and S ⊆ N , xS = 0 implies that xi = 0 for all i ∈ S. It follows

that xS∪K = 0 implies xS = 0 ; thus the last term in the expression above disappears

so we can write

(8)

∑
S⊆T,i∈S

xS 6=0

xi

xS

∆T,vx
T
(S) =

∑
S⊆T,i∈S

xS 6=0

∑
K⊆T c

xS∪K 6=0

xi

xS∪K

∆N,v(S ∪K)

=
∑

S⊆T,i∈S
xS 6=0

∑
K⊆T c

xi

xS∪K

∆N,v(S ∪K).

Similarly, we can write

∑
S⊆T,i∈S

xS=0

1

|S|∆T,vx
T
(S) =

∑
S⊆T,i∈S

xS=0

∑
K⊆T c

xS∪K 6=0

1

|S| ·
xS

xS∪K

∆N,v(S ∪K)

+
∑

S⊆T,i∈S
xS=0

∑
K⊆T c

xS∪K=0

1

|S| ·
|S|

|S ∪K|∆N,v(S ∪K)

=
∑

S⊆T,i∈S
xS=0

∑
K⊆T c

xK 6=0

1

|S| ·
xS

xS∪K

∆N,v(S ∪K)

+
∑

S⊆T,i∈S
xS=0

∑
K⊆T c

xK=0

1

|S ∪K|∆N,v(S ∪K).

In the expression above we have xS = 0 and i ∈ S. Thus xi = 0 , and we can

replace the zero term 1
|S| · xS

xS∪K
by another zero term xi

xS∪K
. Thus we have
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(9)

∑
S⊆T,i∈S

xS=0

1

|S|∆T,vx
T
(S) =

∑
S⊆T,i∈S

xS=0

∑
K⊆T c

xK 6=0

xi

xS∪K

∆N,v(S ∪K)

+
∑

S⊆T,i∈S
xS=0

∑
K⊆T c

xK=0

1

|S ∪K|∆N,v(S ∪K).

Summing up (8) and (9) provides the desired equality. ¤

Now we can start with the proof of Proposition 3.

(i) The desired assertion follows easily from Lemma 9.

(ii) We will proceed by induction on the cardinality of N . If |N | = 1, then

F (N, v) = B(N, v) by efficiency of F and the balanced solution. Let (N, v) ∈
GB, |N | > 1, and suppose that F (N ′, v′) ⊆ B(N ′, v′) for any (N ′, v′) ∈ GB with

|N ′| < |N |. Let i ∈ N . Suppose that x ∈ F (N, v). The proportional reduced

game property of F on GB implies that vx
{i} ∈ GB and x|{i} ∈ F ({i}, vx

{i}). By

the induction hypothesis we have x|{i} ∈ B({i}, vx
{i}). Using Lemma 9, we get

xi = hi({i}, vx
{i})(x|{i}) = hi(N, v)(x). Since i ∈ N has been chosen arbitrarily, we

have x ∈ B(N, v).

4.7. Proof of Theorem 3. First we show that the balanced solution satisfies the

converse proportional reduced game property. Take (N, v) ∈ GB and let x ∈ X(N, v)

be such that x|T ∈ B(T, vx
T ) for all nonempty T ( N . Set T = {i}, i ∈ N . By

Lemma 9 we have

xi = hi({i}, vx
{i})(x|{i}) = hi(N, v)(x).

It remains to show that, if an efficient solution F satisfies the proportional reduced

game property and the converse proportional reduced game property, then F is the

balanced solution. Such an F coincides with the balanced solution on the class

of one-person games from GB by efficiency. We will proceed by induction on the

cardinality of N . Assume that F (N ′, v′) = B(N ′, v′) for every (N ′, v′) ∈ GB with

|N ′| < |N |. By Proposition 4(ii) we have that F (N, v) ⊆ B(N, v). So we are left to

show that B(N, v) ⊆ F (N, v).

Suppose that x ∈ B(N, v). Since B satisfies the proportional reduced game

property, it follows that x|T ∈ B(T, vx
T ) for all nonempty T ( N . By the induction
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hypothesis B(T, vx
T ) = F (T, vx

T ), and thus x|T ∈ F (T, vx
T ) for all nonempty T ( N .

The converse proportional reduced game property of F implies that x ∈ F (N, v)

and the proof is finished.
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