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Abstract

We investigate the importance of aggregate and consumer-specific or idiosyncratic labour

income risk for aggregate consumption changes in the US over the period 1952-2001. The-

oretically, the effect of labour income risk on consumption changes is decomposed into an

aggregate and into an idiosyncratic part. Empirically, aggregate risk is modelled through a

GARCH process on aggregate labour income shocks and individual risk is modelled as an unob-

served component and obtained through Kalman filtering. Our results suggest that aggregate

labour income risk explains a negligible fraction of the variance of aggregate consumption

changes. A more important part of aggregate consumption changes is explained by the un-

observed component. The interpretation of this component as reflecting idiosyncratic labour

income risk is supported by the finding that it is negatively affected by received consumer

transfers. Idiosyncratic labour income risk thus matters for the aggregate economy.
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1 Introduction.

In this paper we investigate the effects of labour income risk on aggregate consumption changes

using quarterly data for the US over the period 1952-2001. The contribution of this paper to the

literature is threefold.

First, using the theoretical results of Caballero (1990) as a starting point, we present a theoret-

ical framework in which the effect of labour income risk on the change in aggregate consumption

is decomposed into two parts: the impact of aggregate labour income risk and the impact of

consumer-specific or idiosyncratic labour income risk.1 This decomposition is useful because lim-

iting income risk to aggregate income risk is too restrictive. The reason is that the variance of

aggregate labour income is low. As a result, in permanent income models with time-separable

preferences, the magnitude of the average growth in consumption can only be explained by values

of risk aversion that are much higher than what is widely believed (see Gourinchas and Parker

2001). Another reason is that some authors argue that there is no theoretical a priori justification

(e.g. Deaton 1992, p.37) or empirical evidence (e.g. Banks et al. 2001) to suggest that risk pooling

mechanisms that effectively eliminate individual-specific labour income risk actually do exist.

Second, to complement studies that use a micro-based approach2, we follow a pure aggregate

time series approach. Aggregate labour income risk is estimated through a GARCH process on

aggregate labour income shocks. Idiosyncratic income risk is modelled as an unobserved com-

ponent and estimated through Kalman filtering techniques. The identification of the unobserved

component is based on the use of two determinants of income risk suggested in the literature:

(government) transfers received by consumers and the business cycle. The main contribution of

the paper is that we investigate whether changes in the amount of transfers received by consumers

affect the unobserved component and the change in consumption. From the papers by Hubbard et

al. (1995) and Engen and Gruber (2001), we know that transfers provided by the social security

system (e.g. health and unemployment insurance) may reduce idiosyncratic labour income risk by

providing insurance against bad draws of labour income. Pozzi (2007) documents the impact on

aggregate consumption growth of the growth rate in government transfers in US data and explains

1See Banks et al. (2001) for a comparable decomposition at the individual/cohort level but without the possibility

to aggregate analytically since preferences are of the constant relative risk aversion type.
2The use of micro-based uncertainty measures has certain drawbacks that can be avoided by following an aggre-

gate approach. First, there is the small length of the available time series. Second, decomposing these measures into

an aggregate and an idiosyncratic part is not straightforward. Third, the use of these measures can be problematic

in the presence of measurement errors or "self-selection" problems (see Attanasio 1999 for a discussion).
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it with a buffer stock model containing an explicit government transfer policy that reduces the

variance of idiosyncratic labour income. As far as the business cycle is concerned, Carroll (1992)

notes that "the most drastic fluctuations in household income are those associated with spells of

unemployment". We investigate whether changes in the unemployment rate affect the unobserved

component and therefore the change in aggregate consumption. There is a literature that inves-

tigates whether idiosyncratic labour income risk shows cyclical behaviour (see Storesletten et al.

2004, Parker and Preston 2005, and Primiceri and van Rens 2004). We compare the results of our

macro-based time series approach to the results of these papers that use micro data.

Third, we use a Bayesian approach to parameter estimation. A Bayesian approach allows us

to incorporate prior knowledge into our estimations. Priors are also useful to estimate GARCH

effects in state space systems in the presence of outliers in the data. Existing procedures to detect

and correct for outliers in GARCH models (see e.g. Franses and van Dijk 1999) cannot be applied

in a state space context.

Our results suggest that aggregate labour income risk explains only a negligible fraction of the

variance of aggregate consumption changes. The unobserved component explains a more important

part of consumption changes. This component can be interpreted as idiosyncratic labour income

risk since it is negatively affected by the trend in transfers received by consumers (i.e. transfers

can be considered a proxy for idiosyncratic labour income risk). This suggests that idiosyncratic

labour income risk matters for the aggregate economy. We argue that, from the eighties onward,

the trend change in transfers received by consumers can explain low frequency movements in

consumption changes. We find no hard evidence that the unobserved component is driven by the

change in the unemployment rate however. We then extend the model by adding rule-of-thumb

consumers who base their consumption decisions on current income. While the existence of rule-

of-thumb consumers may be due to liquidity constraints (see e.g. Campbell and Mankiw 1990) or

myopia (see e.g. Flavin 1985) in this paper we emphasize a precaution-based explanation of excess

sensitivity. Estimation of the extended model suggests that our results are robust when excess

sensitivity of consumption to anticipated disposable income is taken into account.

The paper is structured as follows. In section 2 we present a consumption model with time-

varying aggregate and time-varying idiosyncratic labour income risk. In section 3 we present

our basic empirical specification which is put into state space form to estimate the unobserved

component. We discuss the Bayesian estimation of the unknown parameters in the model. In

section 4 we present the estimation results for our basic model. In section 5 we investigate whether
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our conclusions are affected by the introduction of rule-of-thumb consumers in the model. Section

6 concludes.

2 A consumption model with time-varying aggregate and

time-varying idiosyncratic labour income risk.

In this section we derive an expression for the change in aggregate private consumption that takes

into account uncertainty with respect to aggregate labour income and uncertainty with respect to

the idiosyncratic component of labour income. The latter type of risk is present because insurance

markets are assumed to be incomplete (i.e. there is no risk pooling across consumers). The model

uses the results of Caballero (1990) in a setting where consumers are heterogeneous in the sense that

they experience different income draws. As a result, given the absence of insurance mechanisms,

consumption trajectories and wealth levels may diverge considerably over consumers.

The economy consists of n consumers, each having an infinite planning horizon. Each consumer

i (where i = 1, ..., n) has a utility function of the constant absolute risk aversion (CARA) type,

namely u(cit) = (−1/γ)e−γcit where cit is real consumption of consumer i in period t and where

γ is the coefficient of absolute risk aversion (γ > 0) which also equals the coefficient of absolute

prudence. We use this type of utility function instead of the more usual utility function of the

constant relative risk aversion (CRRA) type because of its analytical convenience, i.e. it facilitates

aggregation. We discuss the problem with this assumption and how to resolve it in section 5. We

further assume that all consumers can freely lend and borrow, i.e. capital markets are perfect. We

assume that all consumers face the same constant real interest rate r which equals their rate of

time preference.3 Unlike capital markets, insurance markets are incomplete. That is, consumers

cannot insure themselves through the use of so-called Arrow securities (see Deaton 1992 p.35-36)

that could be traded among them to smooth consumption across different states of the world.

Given the stated assumptions, the first-order condition in period t+ 1 for consumer i is,

Eit(e
−γ∆cit+1) = 1 (1)

3This implies that intertemporal substitution effects caused by the (anticipated) interest rate are ruled out.

There is evidence that the ex ante real interest rate has no impact on consumption growth (see Hall 1988, Campbell

and Mankiw 1990 or Ludvigson 1999) even when time-varying income risk is taken into account (see Parker and

Preston, 2005).
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where Eit is the expectations operator conditional on information set Ωit available to consumer

i in period t. Using a second-order Taylor expansion of e−γ∆cit+1 around Eit∆cit+1 we rewrite

eq.(1) as,

∆cit+1 =
γ

2
Eitε

2
cit+1 + εcit+1 (2)

where εcit+1 = cit+1 −Eitcit+1 (see appendix A).

The period t+ 1 budget constraint under which the optimization takes place is given by,

wf
it+1 = (1 + r)wf

it + yit+1 − cit+1 (3)

where the variable wf
it is consumer i’s financial wealth at the end of period t and where yit+1

is consumer i’s after-tax labour income. Following Demery and Duck (2000) we model yit+1,

which is the exogenous process driving the model, as consisting of an aggregate component and an

individual-specific component. Both components are modelled as ARIMA processes. The errors

follow a GARCH process (see Meghir and Pistaferri 2004). Aggregate after-tax labour income

yt+1 is modelled as an ARIMA(p1, 1, q1) process giving,

π(L)(∆yt+1 − μ) = π∗(L)εyt+1 (4)

where π(L) and π∗(L) are polynomials in the lag operator L of respectively order p1 and q1,

where μ is the mean and εyt+1 is the aggregate labour income shock which is assumed to be white

noise. We assume that it follows a GARCH(1, 1) process,

ε2yt+1 = δ1 + δ2ε
2
yt + δ3Eit−1ε

2
yt + ωεt+1 (5)

where δ1, δ2, δ3 > 0 and where δ2 + δ3 < 1. The term ωεt+1 = ε2yt+1 − Eitε
2
yt+1is white

noise (bounded from below, see Hamilton 1994). Idiosyncratic labour income is modelled as an

ARIMA(p2, 1, q2) process,

φ(L)(∆yit+1 −∆yt+1) = φ∗(L)ηit+1 (6)

where φ(L) and φ∗(L) are polynomials in the lag operator L of respectively order p2 and q2

and where ηit+1 is an idiosyncratic labour income shock which is assumed to be white noise. It

further has a constant unconditional variance across consumers. Also, it is uncorrelated across

individuals, so that it disappears on aggregation over consumers, i.e. n−1
Pn

i=1 ηit+1 = 0. The

term ηit+1 is assumed to follow a GARCH(1, 1) process,

η2it+1 = ξ1 + ξ2η
2
it + ξ3Eit−1η

2
it + ωηit+1 (7)
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where ξ1, ξ2, ξ3 > 0 and where ξ2 + ξ3 < 1. The term ωηit+1 = η2it+1 − Eitη
2
it+1 is white noise

(bounded from below). Since it is uncorrelated across consumers we have that n−1
Pn

i=1 ω
η
it+1 = 0.

Note finally that the errors εyt+1, ηit+1, ω
ε
t+1 and ωηit+1 are assumed to be mutually uncorrelated.

These assumptions lead to the following consumption function,

cit =
1− α

α

⎡⎣wf
it +

∞X
j=1

αjEityit+j

⎤⎦ (8)

−1− α

α

⎡⎣ ∞X
j=1

αj
jX

k=1

γ

2
Eitε

2
cit+k

⎤⎦
where α = (1+ r)−1. For the proof we refer to appendix B. The first term equals consumption

under certainty equivalence, i.e. this is the consumption level under the standard permanent

income hypothesis. The second term is the contribution of precaution which decreases consumption

relative to its level under certainty equivalence. It equals the sum of future discounted variances

of consumption shocks conditional on period t information.

We then derive an expression for the change in consumption at the individual level,

∆cit+1 = Aεyt+1 +Bηit+1 +
γ

2
A2Eitε

2
yt+1 +

γ

2
B2Eitη

2
it+1 (9)

−γ
2
A2

δ2
1− δ2 − δ3

ωεt+1 −
γ

2
B2 ξ2
1− ξ2 − ξ3

ωηit+1

where A and B are complicated functions of respectively the parameters of the aggregate

and of the idiosyncratic labour income process. For the proof we refer to appendix C. From

eq.(9) we note that the change in individual consumption from period t to t+ 1 is determined by

the idiosyncratic shock in labour income ηit+1 and by the aggregate labour income shock εyt+1.

Without uncertainty, i.e. under certainty equivalence, only these two shocks affect the change in

consumption. Consumption changes are unpredictable under certainty equivalence (see Hall, 1978).

With uncertainty, however, additional terms enter the equation. The change in consumption is

then also determined by two income uncertainty terms. Aggregate labour income uncertainty is

captured by the conditional variance of the aggregate labour income shocks Eitε
2
yt+1. Its effect

on consumption depends on the degree of risk aversion γ and on the parameters of the aggregate

labour income process (captured by the parameter A). Idiosyncratic labour income uncertainty

is captured by the term Eitη
2
it+1. Its effect also depends on the degree of risk aversion γ and on

the characteristics of the individual-specific part of labour income (captured by the parameter B).

Both income risk terms enter the equation with a positive sign. The reason is that if in period t
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the variance of the labour income shocks is expected to increase then consumption in period t falls

because consumers save more. The change in consumption from t to t+ 1 is then higher because

resources are transferred to the future, i.e. the consumption path becomes steeper. Finally, the

shocks ωεt+1 and ωηit+1 capture the revisions in variance forecasts of both labour income shocks

and enter the equation with a negative sign. Suppose for instance that ωεt+1 > 0, then the change

in consumption from t + 2 on will be higher because consumers update their expected variance

Eit+1ε
2
yt+2. To accommodate the larger slope of the consumption path without violating the budget

constraint, period t+ 1 consumption must fall. The more persistent the effect of the shocks ωεt+1,

that is the closer δ2+ δ3 is to 1, the longer it will take before the consumption slope returns to its

original level and the stronger is the necessary adjustment in period t+ 1 consumption.

After aggregation of eq.(9) we obtain,

∆ct+1 = Aεyt+1 +
γ

2
A2Etε

2
yt+1 +

γ

2
B2Etη

2
t+1 (10)

−γ
2
A2

δ2
1− δ2 − δ3

ωεt+1

where ∆ct+1 = n−1
Pn

i=1 ∆cit+1 , η
2
t+1 = n−1

Pn
i=1 η

2
it+1, and Et is the expectations operator

conditional on the aggregate period t information set Ωt. We refer to appendix D for the proof.

The idiosyncratic shocks ηit+1 and ωηit+1 average out but the average of the conditional variances

of ηit+1, i.e. idiosyncratic labour income risk in the aggregate as captured by Etη
2
t+1, affects the

change in aggregate consumption.

Preliminary estimations suggest that over the sample period aggregate labour income can be

represented by a random walk (with drift), namely yt+1 = μ + yt + εyt+1. This implies that, in

eq.(4), we have π(L) = π∗(L) = 1 leading to A = 1 so that eq.(10) now becomes,

∆ct+1 = εyt+1 +
1

2
γEtε

2
yt+1 +

1

2
γB2Etη

2
t+1 + ωt+1 (11)

where ωt+1 = −γ
2

δ2
1−δ2−δ3ω

ε
t+1. Thus, given the random walk assumption for aggregate labour

income, an income shock εyt+1 leads to a one-for-one change in permanent income and in con-

sumption.
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3 Methodology.

3.1 Empirical specification.

In this section we present our empirical specification. While aggregate labour income risk is

modelled through a GARCH(1, 1) process on aggregate labour income shocks, the contribution to

aggregate consumption of idiosyncratic labour income risk is modelled as an unobserved component.

We estimate the following system,

∆ct+1 =
1

2
γht+1 + ψt+1 + εyt+1 + εct+1 (12)

∆yt+1 = μ+ εyt+1 (13)

ht+1 = δ1 + δ2ε
2
yt + δ3ht (14)

ψt+1 = λ1 + λ2ψt + λ3xt + εψt+1 (15)

εct+1 = εct+1 + θεct (16)

From the consumption equation given in eq.(12) we note, first, that the change in aggregate

consumption depends positively on aggregate income risk ht+1 ≡ Etε
2
yt+1. As can be seen in

eq.(14) this is modelled as a GARCH(1, 1) process for labour income shocks.4 Second, the change

in aggregate consumption also depends on an unobserved component ψt+1 which encompasses

consumer-specific labour income uncertainty Etη
2
t+1, i.e. ψt+1 ≡ 1

2γB
2Etη

2
t+1. As can be seen

in eq.(15) the unobserved component ψt+1 is assumed to follow an AR(1) process with a prede-

termined variable vector xt. Third, given the random walk assumption for the aggregate labour

income process given in eq.(13), the theoretical model derived in section 2 predicts that every shock

in labour income is permanent and leads to a one for one change in consumption. Therefore the er-

ror term εyt+1 enters the consumption equation with coefficient equal to 1 (see also eq.11). Fourth,

as far as the error term εct+1is concerned, we note that it contains revisions in income variance

forecasts ωt+1 (see eq.11) but that it may also contain transitory consumption and measurement

error (see Deaton 1992). Suppose that we denote a transitory component and/or measurement

error in the level of consumption by the white noise term ξt+1. Then εct+1 = ωt+1+ ξt+1− ξt. We

4This specification follows in a straightforward fashion from eq.(5) in the theoretical model. To see this note that

a GARCH(1, 1) model can be written as an ARCH(∞) model. Eq.(5) can be written as ε2yt+1 = δ1(1− δ3)−1 +

δ2(1 − δ3L)−1ε2yt + ωεt+1 where L is the lag operator. From this we note that Eitε2yt+1 = Etε2yt+1 given that for

the aggregate information set Ωt and for the idiosyncratic information sets Ωit we have Ωt ⊂ Ωit (∀i).
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can write the expression for εct+1 as in eq.(16) where εct+1 is white noise and where θ depends on

the relative variances of ωt+1 and ξt+1.

To identify the unobserved component ψt+1 as idiosyncratic labour income risk we impose two

conditions. First, we impose σ2ψ = 0 (statistical identification). This restriction is an implication of

the model since if ψt+1 reflects idiosyncratic labour risk it contains only an anticipated term. Below

we discuss how to implement this restriction in a Bayesian framework. Second, to economically

interpret ψt+1 as idiosyncratic labour income risk (economic identification) we include in xt two

determinants of income risk suggested in the literature: the change in the unemployment rate ∆ut

(see e.g. Carroll 1992) and the change in the trend of the personal transfers to GDP ratio ∆tt

(see Hubbard et al. 1995, Engen and Gruber 2001, and Pozzi 2007), i.e. xt =
h
∆tt ∆ut

i0
with

corresponding parameter vector λ3 =
h
λt3 λu3

i
. We use the trend change in the transfer rate to

reduce the effect of the cyclical component of transfers since this component is strongly correlated

with the unemployment rate. We check whether our specification for ψt+1 is adequate through the

application of autocorrelation tests.

In appendix E we report the state space representation of the system in eqs.(12)-(16). We also

discuss how to tackle GARCH errors in state space models. When reporting our results we present

graphs of the estimated unobserved component series ψt+1 and of the estimated GARCH series

ht+1. Both are obtained by application of the Kalman filter.

3.2 Parameter estimation.

As noted by Harvey et al. (1992) in a state space model with GARCH errors the Kalman filter can

be used to construct an approximate likelihood function. We use a Bayesian approach to parameter

estimation by combining this likelihood with prior parameter information. By maximizing the sum

of the sample log likelihood and the log of the prior parameter distributions we obtain the mode of

the posterior parameter distribution. The mode and the corresponding Hessian-based parameter

covariance matrix form the basis of the importance sampling approach which is used to obtain

(means, variances and percentiles of) posterior parameter distributions. We refer to appendix G

for a formal exposition of these issues.

As far as the priors are concerned we impose priors on the variance of the error term of the

unobserved component σ2ψ, on the coefficient of absolute risk aversion γ, and on the GARCH
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parameters δ2 and δ3. For the remaining parameters we have no useful prior knowledge so we

impose diffuse priors.

To implement the restriction σ2ψ = 0 we impose a degenerate prior on σ2ψ, i.e. a mean and a

variance of 0.

A plausible range of values for the coefficient of relative risk aversion is (0.5, 10). Given the

variation of the variable ct over the sample period (see table 1) a plausible prior for the coefficient

of absolute risk aversion γ (> 0) is given by a gamma distribution with mean .0003 and standard

error .0001.

We also use priors for the parameters δ2 and δ3 because the estimation of a GARCH model for

labour income shocks may be affected by the presence of outliers in the series for labour income

changes. These outliers considerably affect the tails (kurtosis) of the distribution of this series (see

figure 1 and table 1). The quadratic form of the GARCH specification tends to magnify outliers.

With priors we can decrease the weight of the most recent shock ε2yt (i.e. impose a "low" prior

on δ2 in the estimations) and increase the weight of ht (i.e. impose a "high" prior on δ3 in the

estimations). We therefore proceed as follows. We estimate the state space system with a prior

for δ2 with mean 0.5 (and standard deviation 0.2) and a prior for δ3 with mean 0.1 (and standard

deviation 0.05).5 Note that since 0 < δ2, δ3 < 1 we use beta distributions as prior distributions.

We then check the robustness of our results if we reduce the weight of ε2yt in ht+1 by imposing a

prior for δ2 with mean 0.1 (and standard deviation 0.05) and a prior for δ3 with mean 0.5 (and

standard deviation 0.2).6

4 Results.

In tables 2 and 3 the estimation results are presented for the system eqs.(12)-(16). In table 2 we

present the results for the GARCH priors (δ2, δ3) = (0.5, 0.1), while in table 3 we present the results

for the priors (δ2, δ3) = (0.1, 0.5). From both tables we note that the modes, means, and medians

of the posterior distributions of most parameters are of equal magnitude. This is an indication

that the posterior distributions are symmetric. Note also that the Ljung Box test statistics for

autocorrelation (see Durbin and Koopman 2001, p.153) do not reject the null hypothesis of no

5Prior estimation of eqs.(13)-(14) separately by maximum likelihood gives a significant estimate for δ2 of about

0.5 and a value for δ3 of almost 0.
6Prior estimation of eqs.(13)-(14) with two outlier dummies in eq.(13) gives an estimate for δ2 near 0 and an

estimate for δ3 of about 0.4.

10



autocorrelation in the one-step ahead prediction errors of both observation equations in the state

space system (consumption and income). These tests therefore provide support for our empirical

specification.

Based on the theoretical model, the unobserved component ψt is expected to reflect idiosyn-

cratic labour income uncertainty at the aggregate level. The interpretation of this component as

reflecting idiosyncratic labour income risk is supported by the finding that it is affected by received

consumer transfers. From the estimates for λt3 we note that the change in the trend of the personal

transfers to GDP ratio has an important negative effect on the change in consumption, e.g. from

the estimates in table 2 it can be calculated that if ∆tt rises with 25% of its average value then

∆ct+1 decreases with almost 5% of its average value (see table 1 for descriptive statistics of all

variables). Thus, idiosyncratic labour income risk matters for the aggregate economy (see also

Pozzi 2007). The mean of the posterior distribution of λu3 , the coefficient on the unemployment

change, is positive - which is in accordance with what we expect on a theoretical basis - but its

standard error is rather large so that zero values are present between the percentiles 5 and 95 of

the distribution. The small effect of the change in the unemployment rate contradicts Storesletten

et al. (2004) who use both panel and macro data to calculate idiosyncratic labour income risk

and find evidence that it is countercyclical, i.e. higher in recessions. This result is also reported in

Parker and Preston (2005). Primiceri and van Rens (2004), on the other hand, find no evidence of

the cyclical behaviour of income risk.

In figure 3 we present the estimated unobserved state ψt with 90% confidence bands. The

unobserved component largely follows the change in the trend of the personal transfers to GDP

ratio. In figure 4 this component is compared to the trend in the change of consumption. Both

trends move together rather closely from the eighties onward suggesting that the trend in the

transfers received by consumers is a good candidate to explain low frequency movements in the

change in aggregate consumption in the US in the second part of the sample.

If we look at the GARCH part of the system we note from table 2 that the posterior means

of the parameters δ2 and δ3 are close to the prior means while the posterior standard errors are

smaller. The data puts much weight on the ARCH term. To control whether this is due only

to the outliers in labour income we also estimate the system with a high prior for δ3 (table 3).

From the estimated conditional variance series presented in figure 2 we note that the peaks are

flattened considerably in the case presented in table 3 where priors are used to shift the weight

from the ARCH term to the GARCH term. From a comparison of tables 2 and 3 we note however
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that that this has little effect on the parameters other than δ1 , δ2, and δ3. The reason for this is

that the variation in the conditional variance series is insufficient to explain much of the variation

in consumption changes given the estimated values of the risk aversion parameter γ. Aggregate

labour income risk explains not even 1% of the variance of changes in aggregate consumption. Also,

given the magnitude of the estimates for γ, the average conditional variance of aggregate labour

income is much too small to be in accordance with the average change in consumption over the

sample period. While disappointing these results are entirely in line with the general presumption

that the volatility in aggregate consumption or labour income growth is not high enough to cause

consumption growth under plausible values for risk aversion (see Deaton, 1992 and Gourinchas

and Parker, 2001).

In the next section we investigate whether these conclusions change when we extend our model

to allow for an effect of (anticipated) income changes on consumption changes. While there we

discuss the excess sensitivity of consumption to current income, in the remainder of this section we

discuss excess smoothness (see Deaton 1992 for an extensive discussion of both puzzles). From table

1 it is clear that changes in consumption are less volatile than changes in labour income. Yet the

finding that labour income is well described by a random walk process suggests that consumption

should respond fully to every income shock (i.e. our model suggests that consumption changes

one-for-one in response to shocks in labour income). This implies that, in theory, consumption

changes should be at least as volatile as income changes. As this is not the case, the variances of

both sides of eq.(12) can only be reconciled if there is negative correlation between some of the

variables included as regressors in this equation. We find that there is in fact a significant negative

correlation (unreported) between the estimated states εct+1 and εyt+1. Since εct+1 contains the

period t+ 1 shock in the variance of the aggregate labour income shock (i.e. ωεt+1) and since this

shock enters the consumption equation with a negative sign, a positive correlation between this

variance shock and εyt+1 could result in the finding of a negative correlation between εct+1 and

εyt+1. We can therefore interpret the finding of negative correlation between the estimated states

εct+1 and εyt+1 as empirical support for Caballero’s theoretical claim that excess smoothness is

explainable when income shocks and income variance shocks are positively correlated.
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5 Extension: rule-of-thumb consumption.

5.1 Extended specification.

There are reasons why consumers may not behave according to the model derived in section 2.

In this section we alter the model derived in section 2 by allowing some consumers to consume

their disposable income in each period. This gives rise to excess sensitivity of private consumption

to (anticipated) disposable income. Liquidity constraints (see Campbell and Mankiw 1990) or

myopia (see Flavin 1985) are often cited as reasons why consumers may choose to follow such a

rule-of-thumb.

In this paper however it is the precaution-based explanation for excess sensitivity (see Carroll

1992) that is particularly relevant given our assumption of CARA preferences. Remember that

to obtain the analytical results in section 2, like Caballero (1990), we assume that utility is of

the CARA type. In Caballero’s paper this type of utility is necessary to obtain a closed form

solution for the level of consumption. Since, in this paper, we are mainly interested in consumption

changes (that is, in the Euler equation) the use of CARA utility cannot be justified along these

lines. However, it is easy to show that CARA utility is necessary to make aggregation across

consumers possible. Under CARA utility consumption changes at the individual level are linear

in the conditional variance of income shocks. Under CRRA utility, on the other hand, individual

consumption growth is non-linear in the conditional variance of income shocks (see e.g. Banks et

al. 2001). More specifically, under CRRA utility the impact of the conditional variance of income

shocks on individual consumption growth varies inversely with the individual-specific wealth level.

This multiplicative structure makes aggregation difficult. Avoiding these problems by using CARA

utility instead of CRRA utility comes at a price however. The fact that under CARA utility the

wealth level does not enter the Euler equation contradicts Deaton’s (1991) and Carroll’s (1992)

model of "buffer-stock" savers. In Carroll’s model (which uses CRRA preferences) consumption

growth is faster for households with low wealth (all other things equal) because they are building

up a buffer against income shocks. An important implication of Carroll’s model is that this

mechanism gives a precaution-based explanation for the observed excess sensitivity of consumption

to (anticipated) income.7 He argues that when wealth is left out of the Euler equation the finding

that (predicted) income growth positively affects consumption growth can be explained by noting

7Note however that there is no evidence yet that the "buffer stock" model can by itself explain the magnitude

of the observed excess sensitivity of aggregate consumption to income (see Ludvigson and Michaelides 2001)
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that low-wealth periods may coincide with rapid income growth periods (e.g. the periods of fastest

income growth might be the early stages of a recovery when wealth is low because buffer stocks

have been depleted during the downturn). The implication for our results is then that by using

CARA utility wealth is omitted from the Euler equation but that this omitted variable problem

can be resolved by incorporating disposable income changes in the model.

To allow for an effect of current disposable income changes on the change in consumption we

consider the following expression for aggregate consumption changes,

∆ct+1 = ρ∆ydt+1 + (1− ρ)

∙
1

2
γEtε

2
yt+1 +

1

2
γB2Etη

2
t+1 + εyt+1 + ωt+1

¸
(17)

where ydt+1 is aggregate disposable income and where 0 ≤ ρ ≤ 1. This equation reduces to

eq.(11) if ρ = 0. Consistent with the model of section 2 the variable ydt+1 can be written as

the sum of aggregate labour income and aggregate capital income in the economy (i.e aggregate

disposable income),

ydt+1 = yt+1 + rwf
t (18)

where wf
t = n−1

Pn
i=1w

f
it and where n is the total number of consumers in the economy.

From this and given the random walk assumption for yt+1, note that we can write ∆ydt+1 =

Et∆y
d
t+1 + εyt+1. Therefore we have,

∆ct+1 = ρEt∆y
d
t+1 + εyt+1 + (1− ρ)

∙
1

2
γEtε

2
yt+1 +

1

2
γB2Etη

2
t+1 + ωt+1

¸
(19)

Empirically, eqs.(13), (14), (15) and (16) do not change while eq.(12) is replaced by,

∆ct+1 =
1

2
γ(1− ρ)ht+1 + ρEt∆y

d
t+1 + ψt+1 + εyt+1 + εct+1 (20)

where ht+1 ≡ Etε
2
yt+1, and ψt+1 ≡ 1

2γ(1 − ρ)B2Etη
2
t+1. The variable Et∆y

d
t+1 is obtained

as the fitted value from a preliminary regression of per capita disposable income changes on a

number of variables that are suggested by Campbell and Mankiw (1990). We refer to appendix

F for details. As noted in appendix E the changes to the state space system are minimal. There

is one additional parameter to be estimated, namely ρ. A Bayesian prior for ρ is obtained from

Campbell and Mankiw (1990, table 2 row 9). The mean of ρ is 0.41 with standard error 0.09. The

prior distribution is assumed to be a beta distribution.
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5.2 Results.

In tables 4 and 5 the results are presented for the estimation of eqs.(20) and (13)-(16) for different

priors for δ2 and δ3. The conclusions drawn for the basic model are valid for the extended model as

well. Structural increases in the transfer to GDP rate decrease the slope of the consumption path.

Based on the model, the channel through which this occurs is through a reduction in idiosyncratic

labour income risk. Again, idiosyncratic labour income uncertainty matters for the aggregate.

The higher frequency movements in the change of consumption are mostly explained by the

income shock and now also by the anticipated changes in disposable income. Indeed, note that for

the latter regressor the posterior mean of ρ is positive with a value of 0.2. This value however is

lower than what is usually found for this excess sensitivity parameter in the literature. There are a

number of reasons that can explain why the posterior mean is only half the prior mean. First, the

sample period we consider is longer than the one considered by Campbell and Mankiw (1990) —

which is 1947-1985 — since it also contains the second half of the eighties and the nineties. During

this period further financial liberalization may have reduced the number of liquidity constrained

consumers leading to lower excess sensitivity (see e.g. Bacchetta and Gerlach 1997). Peersman and

Pozzi (2007) find that the excess sensitivity of private consumption growth to anticipated disposable

income growth is about 0.28 in the US over the period 1965-2000. Second, and more importantly in

the context of the paper, most studies estimate the excess sensitivity parameter whilst improperly

omitting labour income uncertainty terms. As noted also by Hahm and Steigerwald (1999) this

may produce an upward bias in the excess sensitivity parameter. We take this into account by

proxying idiosyncratic labour income risk with transfers and this can explain the lower value found

for the excess sensitivity parameter in our estimations. Hahm and Steigerwald use survey responses

to proxy income uncertainty and also find, for the US over the period 1981-1994, excess sensitivity

estimates of about 0.2.

6 Conclusions.

In the theoretical section of this paper the effect of labour income risk on consumption changes is

decomposed into an aggregate and into an idiosyncratic part. Analytical results are obtained under

CARA preferences, general ARIMA processes for labour income, and GARCH(1, 1) processes for

labour income shocks.

Three important conclusions can be withheld from the estimation results reported in the paper.
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First, idiosyncratic labour income risk — which in this paper is proxied through aggregate transfers

received by consumers — has a significant impact on aggregate consumption changes and aggregate

savings. From the eighties onward the trend change in transfers received by consumers provides a

reasonable explanation for the low frequency movements in US consumption changes. Second, the

results confirm the general presumption that aggregate labour income risk is not volatile enough

to have a significant impact on consumption growth given realistic estimates for the coefficient of

risk aversion. Aggregate labour income risk does not affect aggregate consumption changes and

aggregate savings. Third, the estimation results can be reconciled with the well-known excess

sensitivity and excess smoothness puzzles present in US data.
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Appendix A: derivation of eq.(2).

We take a second-order Taylor expansion of e−γ∆cit+1 around Eit∆cit+1 which gives the result

(after taking expectations),

Eite
−γ∆cit+1 = e−γEit∆cit+1

∙
1 +

γ2

2
Eit(cit+1 −Eitcit+1)

2

¸
(A1)

Substituting this into eq.(1) and then taking logs gives, after some rearrangements, eq.(2) in

the text.

Appendix B: derivation of eq.(8).

The proof is based on Caballero (1990). Combining eqs.(4) and (6) we obtain,

∆yit+1 = μ+A(L)εyt+1 +B(L)ηit+1 (B1)

where A(L) and B(L) are infinite order lag polynomials given by A(L) = π∗(L)π(L)−1 =

A0 + A1L + A2L
2 + ... with

P∞
j=0 |Aj | < ∞ and B(L) = φ∗(L)φ(L)−1 = B0 + B1L + B2L

2 + ...

with
P∞

j=0 |Bj | <∞ (see e.g. Hamilton 1994, chapter 2).
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After solving eq.(3) forward and imposing a transversality condition we write the intertemporal

budget constraint as,

wf
it =

∞X
j=1

αjcit+j −
∞X
j=1

αjyit+j (B2)

where α = (1 + r)−1 (see e.g. Deaton 1992, p.81). After adding and subtracting the termP∞
j=1 α

jEityit+j to the RHS of eq.(B2) we obtain,

wf
it =

∞X
j=1

αjcit+j −
∞X
j=1

αj(yit+j −Eityit+j)−
∞X
j=1

αjEityit+j (B3)

With the use of eq.(B1) it is straightforward to show that,

yit+j −Eityit+j =

jX
k=1

A∗j−kεyt+k +

jX
k=1

B∗j−kηit+k (B4)

with partial sums A∗0 = A0, A∗1 = A0 + A1,..., A∗j−1 = A0 + A1 + ... + Aj−1 and B∗0 = B0,

B∗1 = B0 +B1, ..., B∗j−1 = B0 +B1 + ...+Bj−1.

We write eq.(2) for period t+ j as,

cit+j = cit+j−1 +
1

2
γEit+j−1ε

2
cit+j + εcit+j (B5)

Writing eq.(B5) for period t+ j− 1, substituting this into eq.(B5) and re-iterating until period
t gives,

cit+j = cit +

jX
k=1

εcit+k +

jX
k=1

γ

2
Eit+k−1ε

2
cit+k (B6)

By adding to and subtracting from the RHS of eq.(B6) the term
Pj

k=1
γ
2Eitε

2
cit+k we obtain,

cit+j = cit +

jX
k=1

γ

2
Eitε

2
cit+k +

jX
k=1

εcit+k +

jX
k=1

γ

2
(Eit+k−1ε

2
cit+k −Eitε

2
cit+k) (B7)

After substituting eqs.(B4) and (B7) into eq.(B3) we obtain,

wf
it =

∞X
j=1

αj{cit +
jX

k=1

γ

2
(Eit+k−1ε

2
cit+k −Eitε

2
cit+k) (B8)

+

jX
k=1

γ

2
Eitε

2
cit+k +

jX
k=1

εcit+k

−
jX

k=1

A∗j−kεyt+k −
jX

k=1

B∗j−kηit+k

−Eityit+j}
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Taking expectations conditional on information set Ωit of the LHS and RHS of eq.(B8) we

obtain, after some rearrangements, eq.(8) in the text.

Appendix C: derivation of eq.(9).

The proof is based on Caballero (1990). Substituting eq.(8) back into eq.(B8) gives,

∞X
j=1

αj{
jX

k=1

γ

2
(Eit+k−1ε

2
cit+k −Eitε

2
cit+k) +

jX
k=1

εcit+k −
jX

k=1

A∗j−kεyt+k −
jX

k=1

B∗j−kηit+k} = 0 (C1)

The aim is now to find an expression for εcit+k in terms of the 4 shocks εyt+k, ηit+k, ω
ε
t+k and

ωηit+k (we neglect higher-order terms, i.e. the second and higher moments of the shocks ω
ε
t+1 and

ωηit+1). We use the method of undetermined coefficients. We guess that,

εcit+k = π1εyt+k + π2ηit+k + π3ω
ε
t+k + π4ω

η
it+k (C2)

and we find expressions for π1,π2, π3 and π4. First, using the assumption that the errors

εyt+1, ηit+1, ω
ε
t+1 and ωηit+1 are mutually uncorrelated and neglecting higher-order terms (i.e. the

conditional variances of ωεt+1 and ωηit+1) we find, using eq.(C2),

write Eit+k−1ε
2
cit+k=Eit+k−1

¡
π1εyt+k + π2ηit+k + π3ω

ε
t+k + π4ω

η
it+k

¢2
=

π21Eit+k−1ε
2
yt+k + π22Eit+k−1η

2
it+k. Similarly we can write Eitε

2
cit+k=

π21Eitε
2
yt+k + π22Eitη

2
it+k. After subtracting the second result from the first we obtain,

Eit+k−1ε
2
cit+k −Eitε

2
cit+k = π21

¡
Eit+k−1ε

2
yt+k −Eitε

2
yt+k

¢
+ π22

¡
Eit+k−1η

2
it+k −Eitη

2
it+k

¢
(C3)

Second, we find expressions for Eit+k−1ε
2
yt+k−Eitε

2
yt+k and Eit+k−1η

2
it+k −Eitη

2
it+k. We only

present the derivation of Eit+k−1ε
2
yt+k − Eitε

2
yt+k as the derivation of Eit+k−1η

2
it+k − Eitη

2
it+k is

completely identical. Note that we can write eq.(5) as ε2yt+1 = δ1+(δ2+ δ3)ε
2
yt− δ3ω

ε
t +ωεt+1 and

for period t + k as ε2yt+k = δ1 + (δ2 + δ3)ε
2
yt+k−1 − δ3ω

ε
t+k−1 + ωεt+k. After repeated backward

substitution we obtain,

ε2yt+k = δ1
¡
1 + (δ2 + δ3) + (δ2 + δ3)

2 + ...+ (δ2 + δ3)
k−1¢ (C4)

+ωεt+k + ωεt+k−1(δ2 + δ3)
0δ2 + ωεt+k−2(δ2 + δ3)

1δ2

+ωεt+k−3(δ2 + δ3)
2δ2 + ...+ ωεt+1(δ2 + δ3)

k−2δ2

−ωεt (δ2 + δ3)
k−1δ3 + (δ2 + δ3)

kε2yt
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Taking expectations of eq.(C4) with respect to info set Ωit+k−1 and info set Ωit and subtracting

the last result from the first we obtain,

Eit+k−1ε
2
yt+k −Eitε

2
yt+k =

k−1X
h=1

δ2(δ2 + δ3)
k−1−hωεt+h (C5)

Similarly we can write,

Eit+k−1η
2
it+k −Eitη

2
it+k =

k−1X
h=1

ξ2(ξ2 + ξ3)
k−1−hωηit+h (C6)

Using eqs.(C5) and (C6) into eq.(C3) and the result into eq.(C1) we can write,

∞X
j=1

αj{(j > 2)
jX

k=2

γ

2
π21

k−1X
h=1

δ2(δ2 + δ3)
k−1−hωεt+h + (j > 2)

jX
k=2

γ

2
π22

k−1X
h=1

ξ2(ξ2 + ξ3)
k−1−hωηit+h

+

jX
k=1

εcit+k −
jX

k=1

A∗j−kεyt+k −
jX

k=1

B∗j−kηit+k} = 0 (C7)

This condition should be satisfied period-by-period since εyt+1, ηit+1, ω
ε
t+1, ω

η
it+1and εcit+1 are

white noise terms. This means that the sum of the terms in εyt+1, ηit+1, ω
ε
t+1, ω

η
it+1and εcit+1

equals 0 and so on for t+ 2,... The sum of terms containing ωεt+1 in eq.(C7) is

∞X
j=1

αj
hγ
2
δ2π

2
1

¡
(δ2 + δ3)

0 + (δ2 + δ3)
1 + (δ2 + δ3)

2...
¢
ωεt+1

i

or α
1−α

γ
2π

2
1

δ2
1−δ2−δ3ω

ε
t+1.

Similarly for ωηit+1 we have
α
1−α

γ
2π

2
2

ξ2
1−ξ2−ξ3

ωηit+1.

The sum of terms in εcit+1 is given by
P∞

j=1 α
jεcit+1 =

α
1−αεcit+1.

The terms in εyt+1 are given by
P∞

j=1 α
jA∗j−1εyt+1 where we note, from the definition of the

partial sum A∗j−1 in the main text, that
P∞

j=1 α
jA∗j−1 =

P∞
j=1 α

j (A0 +A1 + ....+Aj−1). It is

easy to show that this expression can be written as α
1−α

¡
A0 +A1α+A2α

2 + ....
¢
so that for the

terms in εyt+1 we have α
1−α

P∞
j=0 α

jAjεyt+1 =
α
1−αAεyt+1 where A =

P∞
j=0 α

jAj < ∞ sinceP∞
j=0Aj <∞.

Similarly for the terms in ηit+1 we find
α
1−α

P∞
j=0 α

jBjηit+1 =
α
1−αBηit+1 whereB =

P∞
j=0 α

jBj <

∞ since
P∞

j=0Bj <∞.

Adding the terms in εyt+1, ηit+1, ω
ε
t+1, ω

η
it+1and εcit+1 and setting equal to zero gives,

εcit+1 = Aεyt+1 +Bηit+1 −
γ

2
A2

δ2
1− δ2 − δ3

ωεt+1 −
γ

2
B2 ξ2
1− ξ2 − ξ3

ωηit+1 (C8)
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where A =
P∞

j=0Ajα
j and B =

P∞
j=0Bjα

j with Aj and Bj (∀j) as defined above.8 From

confronting eq.(C2) and eq.(C8) we thus find π1 = A, π2 = B, π3 = −γ
2A

2 δ2
1−δ2−δ3 and π4 =

−γ
2B

2 ξ2
1−ξ2−ξ3

. By substituting this result into eq.(2) and neglecting the higher-order terms (i.e.

the conditional variances of ωεt+k and ωηit+k) we obtain eq.(9) in the text.

Appendix D: derivation of eq.(10).

Averaging eq.(9) over the n consumers gives,

∆ct+1 =
γ

2
A2n−1

nX
i=1

E
£
ε2yt+1|Ωit

¤
(D1)

+
γ

2
B2n−1

nX
i=1

E
£
η2it+1|Ωit

¤
+Aεyt+1

−γ
2
A2

δ2
1− δ2 − δ3

ωεt+1

where ∆ct+1 = n−1
Pn

i=1 ∆cit+1 and where we use n
−1Pn

i=1 ηit+1 = 0

and n−1
Pn

i=1 ω
η
it+1 = 0 to obtain the result. Note that for the aggregate information set in

period t, Ωt, we have Ωt ⊂ Ωit (∀i). By taking expectations of the LHS and of the RHS of eq.(D1)
conditional on the information set Ωt we obtain, after using the law of iterated expectations,

E [∆ct+1|Ωt] =
γ

2
A2n−1

nX
i=1

E
£
ε2yt+1|Ωt

¤
(D2)

+
γ

2
B2n−1

nX
i=1

E
£
η2it+1|Ωt

¤
Note that this result follows from the fact that we assume that εyt+1 and ωεt+1 cannot be

predicted with info set Ωit for i = 1, ..., n. Since Ωt ⊂ Ωit (∀i) these terms cannot be predicted
with info set Ωt either. Note further that the difference between ∆ct+1 and E [∆ct+1|Ωt] (i.e. the
period t "surprise" in the aggregate change in consumption) equals Aεyt+1− γ

2A
2 δ2
1−δ2−δ3ω

ε
t+1. So,

after adding ∆ct+1 − E [∆ct+1|Ωt] to the RHS and LHS of eq.(D2) and forcing the summation
signs through the expectations operators we obtain eq.(10) in the text.

8 It is easy to show that A and B are finite. For instance, for A, note that given that ∞
j=0 |Aj | <∞ the theory

on convergence of series implies limj→∞
Aj+1
Aj

≤ 1 . Since 0 < α < 1 this implies that limj→∞
αAj+1
Aj

< 1.

Multiplying numerator and denominator by αj gives limj→∞
Aj+1α

j+1

Ajαj
< 1. This condition implies that the

series A0 +A1α+A2α2 + ....converges.
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Appendix E: state space system.

We write eqs.(12)-(16) as a Gaussian linear state space system with GARCH effects (see Harvey

et al. (1992) and Kim and Nelson 1999, chapter 6) where the state vector is St+1,

mt+1 = Zt+1St+1 + εt+1

St+1 = Tt+1St + πt+1

with

εt+1|Ωt ∼ N(0,Ht+1)

πt+1|Ωt ∼ N(0, Qt+1)

where

mt+1 =
h
∆ct+1 ∆yt+1

i0
, St+1 =

h
1 εyt+1 εct+1 εct ψt+1

i0
, εt+1 =

h
0 0

i0
,

Ht+1 =

⎡⎣0 0

0 0

⎤⎦, Zt+1 =

⎡⎣12γht+1 1 1 θ 1

μ 1 0 0 0

⎤⎦, πt+1 = h
0 εyt+1 εct+1 0 εψt+1

i0
,

Tt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

(λ1 + λ3xt) 0 0 0 λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Qt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 ht+1 0 0 0

0 0 σ2c 0 0

0 0 0 0 0

0 0 0 0 σ2ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and where σ2c is the variance of εct+1, and σ2ψ is the variance of εψt+1.

9

To initialize the system we use E0S1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

λ1+λ3x0
1−λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and V0S1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 δ1
1−δ2−δ3 0 0 0

0 0 σ2c 0 0

0 0 0 σ2c 0

0 0 0 0
σ2ψ
1−λ22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that in section 5 the matrix Zt+1 is given by Zt+1 =

⎡⎣12γ(1− ρ)ht+1 + ρEt∆y
d
t+1 1 1 θ 1

μ 1 0 0 0

⎤⎦.
9Note that to apply the method proposed by Harvey et al. (1992) the conditional distributions of the errors in

the state space model are assumed to be Gaussian. Given that εyt+1 follows a GARCH process, its unconditional

distribution is of course not normal (see Hamilton 1994, p.662).
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The GARCH effects ht+1 complicate the otherwise standard state space framework since ht+1

and thus Qt+1 is a function of the unobserved state εyt+1. Harvey et al. (1992) suggest to replace

ht+1 in the system by h∗t+1 = δ1+δ2ε
∗2
yt+δ3h

∗
t where the unobserved ε

2
yt is replaced by its conditional

expectation ε∗2yt = Etε
2
yt. Note that we can write Etε

2
yt = (Etεyt)

2 + Et

£
(εyt −Etεyt)

2
¤
.10 From

the period t Kalman filter recursions we obtain Etεyt = Et(St) [2, 1] and Et

£
(εyt −Etεyt)

2
¤
=

Vt(St) [2, 2]. Thus, for given parameter values, given h∗t (which is initialized by the unconditional

variance of εyt+1) and given the Kalman filter output from period t, namely Et(St) and Vt(St), we

can calculate h∗t+1 and the system matrices Qt+1 and Zt+1. These make it possible to calculate

Et(St+1), Vt(St+1) and Et+1(St+1), Vt+1(St+1), and so on... .11

Appendix F: data.

Data are quarterly and the sample period is 1952:01-2001:02 (and 1953:01-2001:02 for the estima-

tions with fitted disposable income in section 5).

Data description.

ct: per capita consumption on nondurables and services excluding shoes and clothing, seasonally

adjusted, at annual rates, in 1996 dollars.

yt: per capita after-tax labour income, seasonally adjusted, at annual rates, in 1996 dollars.

tt: trend obtained from Hodrick-Prescott filter applied to personal current transfer receipts

(current prices, seasonally adjusted, annual rates) to gdp (current prices, seasonally adjusted,

annual rates) rate in percent.

ut: unemployment rate in percent, seasonally adjusted.

ydt : per capita after-tax total personal income, seasonally adjusted, at annual rates, in 1996

dollars.

it: nominal 3 month T-bill rate, annual rate.

10Note that the variance of a stochastic variable z can be written as V (z) = E(z2) − (E(z))2. Thus E(z2) =
V (z) + (E(z))2.
11The Kalman filter recursions are (for period t):

Et(St) = Et−1(St) + Vt−1(St)Z0tF
−1
t (mt − ZtEt−1(St))

Vt(St) = Vt−1(St)− (Vt−1(St)Z0t)F
−1
t (Vt−1(St)Z0t)

0

Et(St+1) = Tt+1Et(St)

Vt(St+1) = Tt+1Vt(St)T 0t+1 +Qt+1

where Ft = ZtVt−1(St)Z0t +Ht
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∆ct, ∆yt, ∆tt, ∆ut: first difference in ct, yt, tt, ut respectively.

Et−1∆y
d
t : fitted series obtained from a least squares regression (with R2=0.161) of the first

difference of ydt , namely ∆y
d
t , on a constant, on lags 1-3 of ∆ct, on lags 1-3 of ∆y

d
t , on lags 1-3 of

the first difference of it, namely ∆it, and on lag 1 of the error correction term ct− ydt . We refer to

Campbell and Mankiw (1990) for a justification of these explanatory variables for ∆ydt .

Data sources.

ct, yt: taken directly from updated datset for paper Lettau and Ludvigson (2001).

on http://www.econ.nyu.edu/user/ludvigsons.

tt: personal current transfer receipts (from table 2.1: personal income and its disposition) and

gdp taken from US Department of Commerce (Bureau of Economic Analysis).

ut: from Bureau of Labor Statistics.

ydt : after-tax total personal income in current prices, seasonally adjusted at annual rates, is

taken from US Department of Commerce (Bureau of Economic Analysis). Deflator used is deflator

for nondurables and services (minus clothing and shoes), seasonally adjusted, constructed from

tables 2.3.4 and 2.3.5 US Department of Commerce (Bureau of Economic Analysis) with baseyear

adjustment (from baseyear 2000 to baseyear 1996). Population is taken from Bureau of Labor

Statistics.

it: from IMF, International Financial Statistics.

Appendix G: importance sampling.

Suppose that m =
h
m0
1 ... m0

T

i0
(with mt+1 as defined in appendix E) and Φ is the parameter

vector. Denote the prior parameter density by p(Φ), the (sample) likelihood by p(m|Φ) and the
posterior parameter distribution by p(Φ|m). Then the mode of the posterior parameter distribution
is given by bΦo = argmax [ln p(Φ|m)] = argmax [ln p(Φ) + ln p(m|Φ)]. The corresponding Hessian-
based parameter covariance matrix is obtained as bV o =

³h
−∂2 ln p(Φ)

∂Φ∂Φ0 −
∂2 ln p(m|Φ)

∂Φ∂Φ0

i
Φ=Φo

´−1
. We

use importance sampling with sequential updating to obtain posterior parameter distributions and

posterior states (see Bauwens et al 1999 chapter 3). For given m the posterior state distribution is

determined by knowledge of the posterior parameter distribution, so that we can restrict interest

to quantities X of the form,

X =

Z
Φ

X(Φ)p(Φ|m)dΦ (F1)
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where X(Φ) is some function of the parameter vector Φ. Since the posterior parameter dis-

tribution p(Φ|m) is unknown, we use g(Φ|m) as an importance density. Now we write eq.(F1)

as,

X =

Z
Φ

X(Φ)
p(Φ|m)
g(Φ|m)g(Φ|m)dΦ (F2)

which, by using Bayes’ law, can be rewritten as,

X =

R
Φ
X(Φ)zg(Φ,m)g(Φ|m)dΦR
Φ
zg(Φ,m)g(Φ|m)dΦ =

Eg [X(Φ)z
g(Φ,m)]

Eg [zg(Φ,m)]
(F3)

where Eg denotes the expectations operator with respect to g(Φ|m) and zg(Φ,m) = p(Φ)p(m|Φ)
g(Φ|m) .

We set g(Φ|m) = N(bΦs, ξ bV s) as an importance density where bΦs and bV s are sequentially updated

matrices and where ξ is a tuning constant (see Bauwens et al 1999). At the start of the sampling

process we set bΦs = bΦo and bV s = bV o. By taking draws Φi for i = 1, ..., n from g(Φ|m) we estimate
X by, bX =

Pn
i=1X(Φ

i)ziPn
i=1 z

i
(F4)

where zi = p(Φi)p(m|Φi)
g(Φi|m) . Parameter draws from g(Φ|m) that violate parameter restrictions

imposed by the model are discarded.12 Posterior parameter means are calculated from eq.(F4)

as bΦ =
n
i=1 Φ

izi

n
i=1 z

i . Posterior parameter covariance matrices are then calculated as bV (Φ|m) =
n
i=1(Φ

i)(Φi)0zi
n
i=1 z

i − bΦbΦ0. We then set bΦs = bΦ and bV s = bV and the sampling process is repeated.

We repeat this sequential sampling process until the coefficient of variation of the weights zi

is sufficiently reduced (see Bauwens et al. 1999, chapter 3). Further, the error bounds of the

parameter means (see Bauwens et al. 1999 chapter 3, p78) indicate that the approximations of

the parameter means obtained through the sampling process are of good quality (only for one

parameter is the error bound somewhat high yet it is still below the "critical" threshold reported

in Bauwens et al.). Note that in all cases convergence is achieved with 2, 3, or 4 updates of the

importance density when setting n = 20 000 and ξ = 1.2. The final coefficients of variation of the

weights and the error bounds of the parameter means are not reported but the results are available

from the author upon request. We do report the means, the variances and percentiles of the

final posterior parameter distributions. Note that the 100k% percentile of the posterior parameter

distribution is Φ[m] taken from the ordered sequence Φ[i] of Φi for which
m
i=1 z

[i]

n
i=1 z

[i] ≈ k where z[i]

is the sequence of zi associated to Φ[i]. Note, finally, that the distributions of the posterior states

(in particular, state means and state variances) are calculated by running the Kalman filter (as

described in section appendix E) using the posterior parameter distributions.

12We reject draws that violate γ > 0, σ2c > 0, −1 < λ2 < 1, −1 < θ < 1, δ1 > 0, δ2 > 0, δ3 > 0 and δ2 + δ3 < 1.
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Tables.

Table 1: Descriptive statistics, US data, 1952:01-2001:02 (see appendix F for description and

sources).

mean std. dev. maximum minimum skewness kurtosis

ct 13627 3881.0 20933 7662.5 0.122 1.800

yt 11235 3450.7 17374 5802.0 -0.045 1.720

tt 8.231 2.818 11.758 3.193 -0.373 1.571

ut 5.719 1.561 10.666 2.556 0.513 3.256

∆ct 66.953 62.502 220.927 -186.841 -.627 4.379

∆yt 58.489 96.684 512.242 -410.224 -.073 7.862

∆tt .041 .048 .131 -.038 .209 2.150

∆ut .005 .380 1.667 -.966 1.296 6.614

Et−1∆y
d
t 74.868 62.656 240.283 -153.493 -.682 4.594

Note: descriptive statistics for the series Et−1∆y
d
t are calculated over the sample period 1953:01-

2001:02.
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Table 2: Estimation results, eqs.(12)-(16), US data, 1952:01-2001:02 ("high" prior for δ2 and

"low" prior for δ3).

coeff prior distribution posterior distribution

type mean sdv mode mean sdv percentiles

5 50 95

θ diffuse - - -0.3983 -0.4161 0.1598 -0.7313 -0.3904 -0.2046

γ gamma .0003 .0001 .00027 .00028 .0001 .00015 .00027 .00046

μ diffuse - - 60.137 59.919 6.298 49.648 59.937 70.225

δ1 diffuse - - 5221.3 5315.2 870.73 4019.3 5247.2 6878.0

δ2 beta 0.5 0.2 0.5117 0.5143 0.1436 0.2883 0.5071 0.7643

δ3 beta 0.1 0.05 0.0583 0.0764 0.0388 0.0245 0.0706 0.1485

λ1 diffuse - - 115.38 122.05 23.086 83.162 122.92 159.06

λ2 diffuse - - -0.5165 -0.6198 0.2579 -0.9661 -0.6586 -0.1381

λt3 diffuse - - -324.92 -336.18 149.78 -587.13 -331.79 -99.244

λu3 diffuse - - 8.1689 4.0229 17.491 -24.797 4.1956 32.826

σ2c diffuse - - 5688.3 5815.9 889.31 4322.9 5826.3 7243.5

σ2ψ degenerate 0 0 - - - - - -

Ljung-Box tests for autocorrelation in the one-step ahead prediction errors

∆ct ∆yt

p-val (k) p-val (k)

0.153 (4) 0.391 (4)

0.373 (8) 0.137 (8)

Note: sdv denotes standard deviation. p-val (k) denotes the p-value of the null hypothesis of no

autocorrelation up to lag k in the one-step ahead prediction errors of the specified observation equation.
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Table 3: Estimation results, eqs.(12)-(16), US data, 1952:01-2001:02 ("low" prior for δ2 and

"high" prior for δ3).

coeff prior distribution posterior distribution

type mean sdv mode mean sdv percentiles

5 50 95

θ diffuse - - -0.3958 -0.4133 0.1563 -0.7283 -0.3888 -0.2056

γ gamma .0003 .0001 .00027 .00028 0.0001 .00014 .00027 .00046

μ diffuse - - 59.827 59.648 6.693 48.637 59.567 70.670

δ1 diffuse - - 3898.3 4722.7 1434.6 2393.0 4691.3 7116.1

δ2 beta 0.1 0.05 0.1341 0.1514 0.0570 0.0689 0.1452 0.2539

δ3 beta 0.5 0.2 0.4330 0.3416 0.1600 0.0951 0.3324 0.6181

λ1 diffuse - - 114.98 121.59 23.829 81.551 121.86 160.28

λ2 diffuse - - -0.515 -0.611 0.259 -0.962 -0.646 -0.125

λt3 diffuse - - -321.80 -335.23 148.26 -581.78 -329.56 -98.682

λu3 diffuse - - 8.770 5.130 17.540 -23.377 5.358 33.796

σ2c diffuse - - 5698.2 5838.8 882.12 4339.1 5849.6 7270.8

σ2ψ degenerate 0 0 - - - - - -

Ljung-Box tests for autocorrelation in the one-step ahead prediction errors

∆ct ∆yt

p-val (k) p-val (k)

0.175 (4) 0.572 (4)

0.409 (8) 0.279 (8)

Note: sdv denotes standard deviation. p-val (k) denotes the p-value of the null hypothesis of no

autocorrelation up to lag k in the one-step ahead prediction errors of the specified observation equation.

29



Table 4: Estimation results, eqs.(20) and (13)-(16), US data, 1953:01-2001:02 ("high" prior

for δ2 and "low" prior for δ3).

coeff prior distribution posterior distribution

type mean sdv mode mean sdv percentiles

5 50 95

θ diffuse - - -0.4306 -0.445 0.1635 -0.7713 -0.4186 -0.2239

γ gamma .0003 .0001 .00027 .00028 .0001 .00014 .00027 .00045

μ diffuse - - 59.218 59.519 6.338 49.173 59.537 70.011

ρ beta 0.41 0.09 0.1999 0.2017 0.0488 0.1275 0.1987 0.2872

δ1 diffuse - - 5190.1 5307.1 887.30 3951.0 5250.2 6887.2

δ2 beta 0.5 0.2 0.5235 0.5208 0.1427 0.2943 0.5156 0.7654

δ3 beta 0.1 0.05 0.0584 0.0754 0.0384 0.0248 0.0692 0.1471

λ1 diffuse - - 84.910 93.124 20.921 59.990 92.458 129.06

λ2 diffuse - - -0.4362 -0.5784 0.2524 -0.9449 -0.6023 -0.1269

λt3 diffuse - - -233.85 -248.48 144.52 -429.34 -245.52 -18.613

λu3 diffuse - - 18.895 14.876 18.686 -15.928 14.785 44.901

σ2c diffuse - - 5811.5 6049.6 995.59 4375.1 6045.8 7705.4

σ2ψ degenerate 0 0 - - - - - -

Ljung-Box tests for autocorrelation in the one-step ahead prediction errors

∆ct ∆yt

p-val (k) p-val (k)

0.140 (4) 0.295 (4)

0.436 (8) 0.116 (8)

Note: sdv denotes standard deviation. p-val (k) denotes the p-value of the null hypothesis of no

autocorrelation up to lag k in the one-step ahead prediction errors of the specified observation equation.
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Table 5: Estimation results, eqs.(20) and (13)-(16), US data, 1953:01-2001:02 ("low" prior for

δ2 and "high" prior for δ3).

coeff prior distribution posterior distribution

type mean sdv mode mean sdv percentiles

5 50 95

θ diffuse - - -0.4284 -0.4465 0.1658 -0.7836 -0.4182 -0.2254

γ gamma .0003 .0001 .00027 .00028 .0001 .00014 .00027 .00046

μ diffuse - - 59.032 59.613 6.796 48.464 59.600 70.724

ρ beta 0.41 0.09 0.1999 0.2019 0.0483 0.1255 0.1995 0.2842

δ1 diffuse - - 3925.2 4737.0 1465.5 2342.6 4715.4 7175.6

δ2 beta 0.1 0.05 0.1346 0.1513 0.0555 0.0672 0.1468 0.2514

δ3 beta 0.5 0.2 0.4327 0.3418 0.1594 0.0971 0.3294 0.6182

λ1 diffuse - - 84.678 92.943 21.418 59.252 92.448 128.92

λ2 diffuse - - -0.4346 -0.5699 0.2538 -0.9430 -0.5941 -0.1152

λt3 diffuse - - -231.32 -240.11 143.20 -479.20 -237.06 -9.549

λu3 diffuse - - 19.355 15.875 18.551 -15.023 16.183 45.776

σ2c diffuse - - 5820.2 6012.8 980.10 4340.6 6009.9 7630.5

σ2ψ degenerate 0 0 - - - - - -

Ljung-Box tests for autocorrelation in the one-step ahead prediction errors

∆ct ∆yt

p-val (k) p-val (k)

0.157 (4) 0.486 (4)

0.470 (8) 0.264 (8)

Note: sdv denotes standard deviation. p-val (k) denotes the p-value of the null hypothesis of no

autocorrelation up to lag k in the one-step ahead prediction errors of the specified observation equation.

Figures.
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Figure 1: First difference of real per capita after-tax labour income, US, 1952:01-2001:02 (source:

see appendix F)

-500

-300

-100

100

300

500

1952Q1 1957Q4 1963Q3 1969Q2 1975Q1 1980Q4 1986Q3 1992Q2 1998Q1

Figure 2: GARCH series ht with different priors on δ2 and δ3 (case tables 2 and 3)
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Figure 3: Unobserved state ψt with 90% confidence bands (case table 2)
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Figure 4: Real per capita consumption changes, trend, and unobserved state ψt
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Figure 5: Unobserved state ψt with 90% confidence bands (case table 4)
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Figure 6: Real per capita consumption changes, trend, and unobserved state ψt
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