
TI 2007-057/3 
Tinbergen Institute Discussion Paper 

 

Mixed Hitting-Time Models 

 Jaap H. Abbring 

 

VU University Amsterdam, and Tinbergen Institute. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 
 



Mixed Hitting-Time Models∗

Jaap H. Abbring†

August 2009

Abstract

We study mixed hitting-time models, which specify durations as the first time a

Lévy process— a continuous-time process with stationary and independent increments—

crosses a heterogeneous threshold. Such models of substantial interest because they

can be reduced from optimal-stopping models with heterogeneous agents that do not

naturally produce a mixed proportional hazards structure. We show how strategies

for analyzing the identifiability of the mixed proportional hazards model can be

adapted to prove identifiability of a hitting-time model with observed covariates

and unobserved heterogeneity. We discuss inference from censored data and give

examples of structural applications. We conclude by discussing the relative merits

of both models as complementary frameworks for econometric duration analysis.
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1 Introduction

Mixed hitting-time (MHT) models are mixture duration models that specify durations

as the first time a latent stochastic process crosses a heterogeneous threshold. In this

paper, we explore the empirical content of an MHT model in which the latent process is a

spectrally-negative Lévy process, a continuous-time process with stationary and indepen-

dent increments and no positive jumps, and the threshold is proportional in the effects

of observed covariates and unobserved heterogeneity. We show that existing strategies

for analyzing the identifiability of Lancaster’s (1979) mixed proportional hazards (MPH)

model can be adapted to prove this model’s identifiability. In particular, we show that

the latent Lévy process, the covariate effect on the threshold, and the distribution of the

unobserved heterogeneity in the threshold are uniquely determined by data on durations

and covariates. Some assumption on the tails of the heterogeneity distribution or the

latent process is required for full identification. Some conditions for identification that

may or may not be satisfied in the analogous MPH problem here follow from the Lévy

structure and do not require additional assumptions. Finally, multiple-spell data facili-

tate identification of much more general models, with arbitrary interactions of the latent

process and unobserved heterogeneity with covariates.

Mixed hitting-time models are of substantial interest because they are closely related

to economic models in which agents optimally time discrete actions, with payoffs driven

by Brownian motion (Dixit and Pindyck, 1994; Stokey, 2009) or a more general Lévy

process (Kyprianou, 2006; Boyarchenko and Levendorskĭı, 2007). Such models’ optimal

decision rules routinely involve thresholds, and heterogeneity in their primitives generates

threshold heterogeneity. In this paper, we develop a range of examples. In the simplest of

these, agents are endowed with an option to invest in a project, at a time of their choice.

Investment incurs a given cost; in return, the agent receives the project’s value at the

time of the investment. The log of this value follows a Brownian motion. At each point

in time, the agent weighs the direct payoffs of investing in the project, net of the amount
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to be invested, against the value of retaining the option of investing later, given the prim-

itive parameters and the history of project values. The agent maximizes his expected

discounted payoffs by investing when the project’s value hits a time-invariant threshold.

Primitive heterogeneity; such as variation in initial project values, investment costs, and

discount rates across agents; induces heterogeneity in the threshold. Consequently, data

on investment times and covariates can be analyzed with an MHT model, and our identi-

fication results show that this yields estimates of the latent process for project values and

the agents’ investment decision rules. These estimates may be of interest by themselves,

or can be used as inputs in a further analysis of the model’s remaining primitives. Similar

results are found for model variants in which the latent process induces a flow of payoffs,

such as wages or profits, and extensions in which the duration of interest is embedded in

a multistate transition model, such as match durations in a search-matching model.

Hitting-time models based on Brownian motion or more general Lévy processes do not

generally predict hazard rates that are proportional in the effects of elapsed duration and

those of observed and unobserved heterogeneity. Because proportionality is key to the

identifiabilility of the MPH model (Van den Berg, 2001), estimates of an MPH model on

data from an MHT model are not likely to be informative on true state dependence and

heterogeneity. Thus, there are structural reasons to use an MHT model in applications

in which agents are assumed to solve an optimal stopping problem driven by Brownian

motion or a more general Lévy process. In addition, there may be statistical reasons: We

will give examples of MHT specifications to which no observationally equivalent MPH

specifications exist.

The MHT approach to continuous-time duration analysis is inspired by the literature

on discrete-time discrete choice models pioneered by Heckman (1981a,c). As in this lit-

erature, we explicitly build a statistical model for dynamic discrete outcomes on a latent

process that can serve as the state in a dynamic discrete choice problem. In particu-

lar, Heckman and Navarro (2007) discuss a general discrete-time mixture duration model
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based on a latent process crossing thresholds (see Abbring and Heckman, 2007, 2008, for

reviews). They emphasize the distinction between this model and a discrete-time MPH

model and its extensions, and study its identifiability and its relation to dynamic discrete

choice. This paper complements theirs with an analysis in continuous time. This paper’s

continuous-time setting facilitates a different approach to the identification analysis and

connects our work to the popular continuous-time MPH model and to continuous-time

economic models.

Applications in labor economics include the analysis of job tenure, strikes, and un-

employment. In his classic text book on econometric duration analysis, Lancaster (1990,

Sections 3.4.2, 5.7 and 6.5) reviews a canonical special case of our model, a reduced-form

marginal duration model that specifies durations as the first-passage times of a Brownian

motion with drift, and relates it to Jovanovic’s (1979;1984) job tenure model. In Lan-

caster (1972), he applies this model to strike durations, interpreting the gap between the

Brownian motion and the threshold as the level of disagreement. Shimer (2008) more

recently analyzed unemployment durations using Alvarez and Shimer’s (2008) model of

search and rest unemployment, which involves a threshold rule for transitions between

rest unemployment and work. Possible applications in other fields of economics include

marriage and divorce, firm entry and exit, and credit default.

Statisticians have increasingly been studying continuous-time duration models based

on latent processes, including MHT models that are special cases of this paper’s model

(e.g. Singpurwalla, 1995; Aalen and Gjessing, 2001; Lee and Whitmore, 2004, 2006). This

literature is very informative on the descriptive implications of such models, but is silent

about their identifiability. Our contribution to both the econometrics and the statistics

literatures is a rigorous analysis of the empirical content of a nonparametric class of MHT

models with covariates.

The paper is organized as follows. Section 2 introduces the MHT model. Section 3

develops the paper’s main ideas for the well-understood, and therefore instructive, special
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case in which the latent Lévy process is a Brownian motion with drift. In particular,

the MHT model structure is explored, and the key connection between the analysis of its

empirical content and the MPH identification literature is highlighted. Section 4 presents

the general MHT model’s implications for the data and the main identification results.

Section 5 discusses estimation from complete and censored data. Section 6 presents exam-

ples of economic models that can be analyzed using the MHT model. Section 7 discusses

extensions with time-varying covariates, and to latent processes with nonstationary and

dependent increments. Finally, Section 8 concludes with some discussion of the rela-

tive merits of the MHT and MPH models as complementary frameworks for econometric

duration analysis.

2 The Model

We model the distribution of a random duration T conditional on observed covariates X

by specifying T as the first time a real-valued Lévy process {Y } ≡ {Y (t); t ≥ 0} crosses

a threshold that depends on X and some unobservables V .

A Lévy process is the continuous-time equivalent of a random walk: It has stationary

and independent increments. Bertoin (1996) provides a comprehensive exposition of Lévy

processes and their analysis. Formally, we have

Definition 1. A Lévy process is a stochastic process {Y } such that the increment Y (t+

∆) − Y (t) is independent of {Y (t′); 0 ≤ t′ ≤ t} and has the same distribution as Y (∆),

for every t,∆ ≥ 0.

We take {Y } to have right-continuous sample paths with left limits. Note that Definition

1 implies that Y (0) = 0 almost surely.

An important example of a Lévy process is the scalar Brownian motion with drift,

in which case Y (∆) is normally distributed with mean µ∆ and variance σ2∆, for some

scalar parameters µ ∈ R and σ ∈ [0,∞). Brownian motion is the single Lévy process with
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continuous sample paths. In general, Lévy processes may have jumps. The jump process

{∆Y } of a Lévy process {Y } is a Poisson point process with characteristic measure Υ such

that
∫

min{1, x2}Υ(dx) <∞, and any Lévy process {Y } can be written as the sum of a

Brownian motion with drift and an independent pure-jump process with jumps governed

by such a point process (Bertoin, 1996, Chapter I, Theorem 1). The characteristic measure

of {Y }’s jump process is called its Lévy measure and, together with the drift and dispersion

parameters of its Brownian motion component, fully characterizes {Y }’s distributional

properties. Key examples of pure-jump Lévy processes are compound Poisson processes,

which have independently and identically distributed jumps at Poisson times. In fact, in

distribution, each Lévy process can be approximated arbitrary closely by a sequence of

compound Poisson processes (Feller, 1971, Section IX.5, Theorem 2).

Let T (y) denote the first time that the Lévy process {Y } exceeds a threshold y ∈

[0,∞): T (y) ≡ inf{t ≥ 0 : Y (t) > y}. Here, we use the convention that inf ∅ ≡ ∞; that

is, we set T (y) = ∞ if {Y } never exceeds y. For completeness, we set T (∞) = ∞. The

(proportional) mixed hitting-time (MHT) model specifies that T is the first time that

Y (t) crosses φ(X)V , or

T = T [φ(X)V ] ; (1)

for some observed covariates X with support X ∈ Rk, measurable function φ : X 7→

(0,∞), and positive random variable V , with (X, V ) independent of {Y }.

The hitting times T (y) characterize durations for given thresholds y ∈ [0,∞), and thus

for given individual characteristics (X, V ). Their analysis is particularly straightforward

in the case that {Y } is spectrally negative. In this case, {Y } has no positive jumps;

that is, its Lévy measure Υ has negative support. Because {Y } is continuous from the

right, this implies that {Y } equals the threshold at each finite hitting time: Y [T (y)] = y

if T (y) < ∞. In turn, this ensures that T (y) is easy to characterize in terms of the

parameters of {Y } (see Section 4.1). Throughout the paper’s remainder, we assume that
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{Y } is spectrally negative. Note that this includes Brownian motion with drift as a special

case.

Variation in φ(X)V corresponds to heterogeneity in individual thresholds. The factor

V is an unobserved individual effect and is assumed to be distributed independently of

X with distribution G on (0,∞]. This explicitly allows for an unobserved subpopulation

{V = ∞} of stayers, on which T = T (∞) = ∞. In addition, there may be defecting

movers: For some specifications of {Y }, T = ∞ with positive probability on {V < ∞}.

The distinction between stayers and defecting movers can be of substantial interest (see

Abbring, 2002, for discussion). We exclude the two trivial cases in which T = ∞ almost

surely, the case in which the population consists of only stayers (Pr(V <∞) = 0) and the

case in which all movers defect ({Y } is nonincreasing). Because {Y } has only negative

shocks, this requires that either µ > 0 or σ > 0.

For expositional convenience, we have assumed that the threshold φ(X)V is almost

surely positive. This avoid a mass of agents who employ a zero threshold and have zero

durations. Appendix A shows that this assumption, and the assumption that φ(X) is

finite, can be relaxed.

We will pay some specific attention to a version of this model without covariates, that is

φ = 1. Such a model can be applied to strata defined by the covariates, without restrictions

across the strata, and can thus be interpreted as a more general, nonproportional MHT

model.

Because the increments of the Lévy process are independent of its history, in particular

its initial condition, an equivalent model arises if we take the initial condition Y (0) to be

heterogeneous, say equal to −φ(X)V , and fix the threshold at a common value of zero.

Similarly, we can redistribute a linear drift µt from {Y } to the threshold without changing

the implications for T . In the Lévy-based MHT model, all that matters to the specification

of T is the first time that φ(X)V −Y (t) falls below zero. In different applications, different

interpretations in terms of heterogeneous initial conditions and heterogeneous and time-
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Figure 1: Two sample paths of Y (t) = t + W (t), three possible thresholds, and the
corresponding first hitting times.

varying thresholds may be appropriate. Section 6’s structural examples illustrate this.

3 Gaussian Example

We illustrate some of this paper’s key ideas with the canonical example in which {Y } is a

Brownian motion with upward drift. In this case, we can write Y (t) = µt+σW (t), for some

µ ∈ (0,∞) and σ ∈ [0,∞); with W (t) a standard Brownian motion, or Wiener process,

and W (0) = 0. Note that the Lévy measure Υ = 0 in this example. For expositional

convenience, in this section only, we assume that V < ∞ almost surely. With µ > 0, so

that T (y) <∞ for y ∈ [0,∞), this ensures that T is nondefective.
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3.1 Characterization

Figure 1 plots two sample paths of {Y } for the case in which µ = σ = 1, with three

possible exit thresholds; 0.3, 0.8, and 1.3. For a given threshold y, the time that each

path first crosses that threshold is a realization of T (y).

If σ > 0, the distribution of T (y), y ∈ [0,∞), is inverse Gaussian with location

parameter y/µ and scale parameter (y/σ)2 (Cox and Miller, 1965). Its survival function

is

F (t|y) ≡ Pr [T (y) > t] = Φ

(
y − µt
σ
√
t

)
− exp

(
2µy

σ2

)
Φ

(
−y + µt

σ
√
t

)
, (2)

and its Lebesgue density

f(t|y) =
y

σ
√

2πt3
exp

(
−(y − µt)2

2σ2t

)
. (3)

Here, Φ denotes the standard normal cumulative distribution function. In this case, con-

ditional on the observed covariates X only, the MHT model specifies T = T [φ(X)V ] as a

mixture of inverse Gaussian distributions. This is the duration model reviewed by Lan-

caster (1990, Sections 4.2 and 5.7), extended with observed and unobserved heterogeneity

in its parameters.

In the polar case with σ = 0, we have that Y (t) = µt, and T (y) = µ−1y is a determinis-

tic linear function of the threshold y. Then, T = µ−1φ(X)V , and the MHT model reduces

to the accelerated failure time (AFT) model for T |X: V takes the role of a “baseline” du-

ration variable, which is “accelerated” or “decelerated” by the covariate-dependent factor

µ−1φ(X) (see Equation (45) and its discussion in Cox, 1972, pp. 200–201). An inter-

pretation of the AFT model based on the MHT model is that it attributes all variation

in durations for given X to ex ante unobserved heterogeneity. The fact that the MHT

model can capture situations in which little or no uncertainty is resolved during the spell

is appealing. Meyer (1990), for example, entertains this possibility (using a model due
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Figure 2: Hazard rates of T (y) for Figure 1’s three thresholds y and Y (t) = t+W (t).

to Moffitt and Nicholson, 1982) as an alternative for a job search model in his study of

unemployment insurance and durations.

Although the hazard rate of T (y), f(t|y)/F (t|y), is not a primitive of the MHT model,

it is useful to display it for comparison with hazard-based models like the MPH model.

Figure 2 plots the hazard-rate paths for Figure 1’s three threshold levels y; 0.3, 0.8, and

1.3; again for the case in which µ = 1 and σ = 1. The hazard paths have a hump-shaped

pattern: They start at 0, rise to a maximum that is attained between y2/(3σ2) = y2/3

and 2y2/(3σ2) = 2y2/3, and then fall towards a limit µ2/(2σ2) = 1/2. The hazard rate

corresponding to the lowest threshold (y = 0.3) is falling at most times, whereas that

corresponding to the highest threshold (y = 1.3) is increasing for nearly all plotted times.

Clearly, the hazard rates are not proportional; in this sense, the MHT model is structurally

different from the MPH model.

By mixing over thresholds, a wide variety of duration distributions can be generated.

Take, for example, the polar case with σ = 0, in which T = µ−1φ(X)V . If φ = 1, then T is

independent of X, and we can match any distribution of T = µ−1V , by setting G equal to

the corresponding distribution of µT . If φ is not trivial, and T depends on X; then we can

still match any distribution of T |(X = x0), by setting G in a similar way, for given x0 ∈ X .
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However, the required specification of G depends on x0, through φ(x0). Consequently, this

construction cannot be repeated to match an arbitrary distribution of T |X over the entire

support X ofX without violating the assumption that V is independent ofX. In this polar

case, the distribution of T |X is necessarily a rescaled version of that of T |(X = x0), with

scale factor φ(X)/φ(x0). In general, the MHT model does not restrict the distribution of

T |(X = x0) for given x0 ∈ X , but does restrict the way T depends on X.

3.2 Identifiability

This takes us to the question whether the model’s structural determinants; µ, σ, φ,

and G; can be uniquely determined (“identified”) from large-sample data, the distribu-

tion of T |X. The latter is uniquely characterized by its Laplace transform, LT (s|X) ≡

E [exp (−sT ) |X], s ∈ [0,∞) (Feller, 1971, Section XIII.1, Theorem 1). In turns out to be

particularly convenient, both in this Gaussian example and in the general case, to study

identification of the model’s determinants in terms of LT (·|X).

This requires that we express LT (·|X) in the model determinants µ, σ, φ, and G; and

check whether the latter are uniquely determined by LT (·|X). To this end, note that the

(unconditional) Laplace transform of T (y) is given by

LT (y)(s) = exp [−yΛ(s)] , with Λ(s) ≡


√
µ2+2σ2s−µ

σ2 if σ > 0;

s/µ if σ = 0.
(4)

so that LT (s|X, V ) = exp [−φ(X)V Λ(s)]. Here, LT (y) and LT (·|X, V ) are defined analo-

gously to LT (·|X). The Laplace transform of the data; in terms of the model determinants

µ, σ, φ, and G; follows by taking the expectation of LT (·|X, V ) conditional on X:

LT (s|X) = L [φ(X)Λ(s)] . (5)

Here, L the Laplace transform of the distribution G of V .
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One trivial identification problem requires our attention upfront. Take the time T

implied by (1) if {Y } is a Brownian motion with parameters µ and σ, with threshold

φ(X)V . Clearly, the process {κνY } and threshold κφ(X)νV ; with κ, ν ∈ (0,∞); produce

the same time T . Thus, they imply the same distribution of T |X and are observationally

equivalent. Like the latent error and index in static discrete-choice models, the latent

process and threshold in the MHT model are only identified up to scale. At best, we can

determine the distribution of {Y }, φ, and G up to two innocuous scale normalizations.

Key to this paper’s identifiability analysis is an analogy with the analysis of the

MPH model. To appreciate this, note that the right-hand side of (5) equals the sur-

vival function— rather than the Laplace transform— of T |X in an MPH model with

integrated baseline hazard Λ, covariate effect φ(X), and unobserved-heterogeneity distri-

bution G. It is easily checked that, in the MHT model, Λ is an increasing function such

that lims→∞ Λ(s) = ∞ and that, in this example, Λ(0) = 0. We can therefore borrow

insights from the MPH identification literature pioneered by Elbers and Ridder (1982),

Heckman and Singer (1984a), and Ridder (1990); exploiting the structure imposed by the

MHT model on, in particular, Λ.

Consider the case that φ(X) = exp(X ′β) for some parameter vector β ∈ Rk. Note

that Λ is differentiable on (0,∞) and that 0 < lims↓0 Λ′(s) = µ−1 <∞. Thus, Ridder and

Woutersen’s (2003) Proposition 1 implies that µ, σ, β, andG are uniquely determined from

LT (·|X) under support conditions on the covariates X, up to the two scale normalizations

discussed earlier. In the next section, we extend this result to general spectrally-negative

Lévy processes and general distributions G. Doing so, we rely on the key insight that the

representation (5) of the data in terms of the model primitives continues to hold, but with

a more general, semiparametric specification of Λ. We show that the special structure of

Λ facilitates sharper identification results than those available for the MPH model.

Note that, even in this Gaussian special case, covariate variation is crucial to identifia-

bility. For example, take again the polar case with σ = 0. Suppose that φ = 1 and µ = 1,
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so that T = V . Clearly, if V has an inverse Gaussian distribution with location parameter

µ̃−1 and scale parameter σ̃−2; with µ̃, σ̃ ∈ (0,∞); then an alternative specification with

a latent process {Ỹ } such that Ỹ (t) = µ̃t + σ̃W (t) and a homogeneous unit threshold is

observationally equivalent.

4 Empirical Content

We now return to the general framework of Section 2. So, suppose that {Y } is a spectrally-

negative Lévy process, but not necessarily a Brownian motion, and that G is general, with

possibly Pr(V <∞) < 1.

4.1 Characterization

We first characterize the hitting-time process {T} ≡ {T (y); y ≥ 0} implied by {Y }. Its

distribution can be characterized in terms of its Laplace transform, which we now define

as

LT (y)(s) ≡ E
[
exp [−sT (y)] · I [T (y) <∞]

]
, s ∈ [0,∞); (6)

with I(·) = 1 if · is true, and 0 otherwise. The factor I [T (y) <∞] makes explicit that

the distribution of T (y) may be defective. Note that Pr [T (y) =∞] = 1− LT (y)(0).

Before we can derive LT (y), we first have to introduce a common probabilistic charac-

terization of the latent Lévy process. Recall from Section 2 that {Y } can be decomposed

in a Brownian motion with drift and an independent pure-jump process with jumps {∆Y }

following a Poisson point process. Therefore, {Y } is fully characterized by the drift and

dispersion coefficients µ and σ of its Brownian motion component and the characteristic

(Lévy) measure Υ of {∆Y }. The latter satisfies
∫

min{1, x2}Υ(dx) <∞ and, because we

exclude positive jumps, has negative support. It follows (Bertoin, 1996, Section VII.1)

that E [exp (sY (t))] = exp [ψ(s)t], for s ∈ C with nonnegative real part, with the Laplace
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exponent ψ given by the Lévy-Khintchine formula,

ψ(s) = µs+
σ2

2
s2 +

∫
(−∞,0)

[esx − 1− sxI(x > −1)] Υ(dx). (7)

The Laplace exponent, as a function on [0,∞), is continuous and convex, and satisfies

ψ(0) = 0 and lims→∞ ψ(s) = ∞. Therefore, there exists a largest solution Λ(0) ≥ 0 to

ψ[Λ(0)] = 0, and an inverse Λ : [0,∞) → [Λ(0),∞) of the restriction of ψ to [Λ(0),∞).

Theorem 1 of Bertoin (1996, Chapter VII) implies that {T} is a killed subordinator with

Laplace exponent Λ:

LT (y)(s) = exp [−Λ(s)y] . (8)

That is, {T} is a nondecreasing Lévy process with Laplace exponent Λ− Λ(0), forced to

equal ∞ (the graveyard state) from some random threshold level EΛ(0) up if Λ(0) > 0.

Here, EΛ(0) has an exponential distribution with parameter Λ(0), and is independent from

({Y }, X, V ). Note that the probability Pr(EΛ(0) ≤ y) = 1 − exp [−Λ(0)y] that {T} has

been killed at or below threshold level y equals the share 1−LT (y)(0) of defecting movers

at threshold level y.

If, for example, {Y } is a Brownian motion with general drift coefficient µ ∈ R and

dispersion coefficient σ ∈ (0,∞), we have that ψ(s) = µs + σ2s2/2, so that Λ(0) =

max{0,−2µ/σ2} and Λ(s) =
[√

µ2 + 2σ2s− µ
]
/σ2. If µ ≥ 0, then Λ(0) = 0, T (y)

is nondefective, and substituting in (8) gives the Laplace transform (4) of Section 3’s

Gaussian example. If µ < 0, on the other hand, Λ(0) = −2µ/σ2 > 0 and the distribution

of T (y) has a defect of size 1 − exp(2yµ/σ2). Note that in this case, σ = 0 is excluded

to avoid the trivial outcome that T (y) =∞ almost surely. Either way, {T} is an inverse

Gaussian subordinator, killed at an independent exponential rate Λ(0) if Λ(0) > 0.

Not every subordinator is the hitting-time process of a spectrally-negative Lévy pro-

cess. For example, consider the stable subordinator of index ρ ∈ (0, 1]; that is, the Lévy
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process with Laplace exponent Λρ(s) ≡ sρ (Bertoin, 1996, Section III.1). Proposition 2(i)

in Bertoin (1996, Chapter I) implies that lims→∞ s
−2ψ(s) = σ2/2 ∈ [0,∞) if ψ is the

Laplace exponent of a spectrally-negative Lévy process. Consequently, if ρ ∈ (0, 1/2);

Λ−1
ρ (s) = s1/ρ cannot be the Laplace exponent of a spectrally-negative Lévy process. This

suggests that, when estimating the MHT model, it is more convenient to parameterize

the model in terms of ψ, than to specify Λ directly through the Lévy-Khintchine formula

for subordinators. We will come back to this in Section 5.

Now define LT (·|X, V ), LT (·|X), and L analogously to LT (y) in (6), explicitly allowing

for defects. From (1) and (8), it follows that

LT (s|X, V ) = exp [−Λ(s)φ(X)V ] , (9)

so that

LT (s|X) = L [Λ(s)φ(X)] . (10)

Note that this expression for the Laplace transform of T |X is the same as that for Section

3’s Gaussian example in (5). However, in the general case here, we do not require that

Λ has equation (4)’s inverse Gaussian two-parameter specification. Instead, we have

semiparametrically specified Λ as the inverse of the latent process’s Laplace exponent ψ

in (7). This way, we now also allow for defecting movers, Λ(0) > 0. Moreover, there can

be a mass of stayers, if the distribution G of V has a mass point at ∞.

4.2 Identifiability

The distribution of T |X implied by the MHT model only depends on its primitives

(µ, σ2,Υ) and (φ,G) through the triplet (Λ, φ,L). In this section, we study the fun-

damental question under what conditions the model triplet (Λ, φ,L) can be uniquely

determined from a “large” data set that gives the distribution of T |X.
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Because there is a one-to-one relation between (Λ, φ,L) and the MHT model’s primi-

tives, the identification analysis applies without change to these primitives. In particular,

G can be uniquely determined from L by the uniqueness of the Laplace transform (Feller,

1971, Section XIII.1, Theorem 1). The Laplace exponent ψ of {Y } is uniquely determined

from Λ by inversion and, if Λ(0) > 0, analytic extension from [Λ(0),∞) to [0,∞). Subse-

quently, the parameters (µ, σ2,Υ) of the latent Lévy process can be uniquely determined

from ψ by the uniqueness of the Lévy-Khintchine representation (Bertoin, 1996, Chapter

I, Theorem 1).

We focus on the “two-sample” case that X = {0, 1} and φ(x) = βx, for some β ∈

(0,∞), and we have data on the distributions F0 of T |(X = 0) and F1 of T |(X = 1). This

assumes minimal covariate variation and thus poses the hardest identification problem

(Elbers and Ridder, 1982, use a similar approach in their analysis of the MPH model). We

assume that β 6= 1, so that there is actual variation with the covariates. This assumption

can be tested, because F0 6= F1 if and only if β 6= 1. Note that we have implicitly fixed

φ(0) = 1, which is an innocuous normalization because the scale of V is unrestricted at

this point.

As in Section 3’s Gaussian example, our analysis exploits an analogy with the analysis

of the MPH model. Note that the right-hand side of (10) equals the survival function—

rather than the Laplace transform— of T |X in a two-sample MPH model with inte-

grated baseline Λ, covariate effect φ(X) = βX , and unobserved-heterogeneity distribution

G. Consequently, we can borrow insights from Elbers and Ridder’s (1982) and Ridder’s

(1990) analysis of this MPH model. Because of possible defects in the MHT model,

their analysis does not apply directly. In particular, the possibility that movers defect,

Λ(0) > 0, creates an identification problem similar to a left-censoring problem in the MPH

model. Fortunately, the MHT model’s mover-stayer structure can be identified without

further assumptions, and problems caused by defecting movers can be solved by analytic

extension.
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First, consider identifiability of the mover-stayer structure from (F0, F1).

Proposition 1 (Identifiability of the Share of Stayers). If two MHT triplets (Λ, β,L)

and (Λ̃, β̃, L̃) imply the same pair of distributions (F0, F1), then L̃(0) = L(0).

Proposition 1 directly implies identification of the share of stayers, Pr(V = ∞|X) =

Pr(V = ∞) = 1 − L(0). In turn, the proportion of defecting movers in sample x can be

uniquely determined from the share of stayers and Fx, using that

Pr(T =∞, V <∞|X = x) = L(0)− lim
t→∞

Fx(t); x = 0, 1.

Proposition 1’s proof, and that of all other results in this section, is given in Appendix B.

It exploits that the share of defecting movers, if positive, varies between the two samples

and, by the assumed independence of V and X, the share of stayers does not. Intuitively,

if the defects of F0 and F1 are the same, they equal the share of stayers; and movers never

defect, Λ(0) = 0. Otherwise, Λ(0) > 0, and it is clear from (10) that the data only provide

direct information about L away from 0; then, the analyticity of the Laplace transform

can be used to learn about L(0). Abbring (2002) proves a related result for the MPH

model, but relies on an additional assumption on G.

Our core result on the identifiability of (Λ, β,L) requires a regularity condition in

terms of Karamata’s concepts of slow and regular variation (Feller, 1971, Section VIII.8).

Definition 2. A function L : (0,∞)→ (0,∞) varies slowly at 0 (at∞) if L(cs)/L(s)→ 1

as s ↓ 0 (s → ∞) for every fixed c ∈ (0,∞). A function k : (0,∞) → (0,∞) varies

regularly if k(s) = sτL(t) for some exponent τ ∈ R and slowly varying function L.

Note that a slowly varying function is regularly varying with exponent 0. Any function

that has a positive (and finite) limit varies slowly; but slowly varying functions may

converge to 0 or diverge, such as L(s) = | ln(s)| and L(s) = 1/| ln(s)|. By Feller (1971,

Section VIII.8, Lemma 2), a function k that varies regularly with exponent τ at ∞ (at 0)

asymptotically satisfies sτ−ε < k(s) < sτ+ε, for any given ε > 0 (ε < 0).
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Definition 3. A MHT triplet (Λ, β,L) has a regularly varying tail if at least one of the

following is true:

(i). |L′| varies regularly at 0, with some exponent τ ∈ (−1, 0];

(ii). |L′| varies regularly at ∞, with some exponent τ ∈ (−∞,−1);

(iii). |ψ′| varies regularly at 0, with some exponent τ ∈ (−1, 1]; or

(iv). |ψ′| varies regularly at ∞, with some exponent τ ∈ [0, 1].

It is fairly innocuous to require that an MHT triplet has a regularly varying tail, because

this is implied by each of the identifying assumptions suggested by the MPH literature.

For example, in Section 3’s application of Ridder and Woutersen’s (2003) result for the

MPH model to a Gaussian MHT model with positive drift, 0 < lims↓0 ψ
′(s) = µ < ∞,

so that |ψ′| varies slowly at 0. Also, Elbers and Ridder’s (1982) finite-mean assumption

on G is equivalent to lims↓0 |L′(s)| < ∞ and, because lims↓0 |L′(s)| > 0, implies that |L′|

varies slowly at 0. Finally, Heckman and Singer (1984a) assume that |L′| varies regularly

at 0 with a prespecified exponent τ ∈ (−1, 0).

Following Definition 3, we can say that an MHT triplet has a regularly varying tail

without specifying the tail or fixing the exponent. The ranges of the exponents in Defini-

tion 3 follow from the properties of the functions involved, and do not constitute additional

restrictions, except for the exclusion of the boundary case that τ = −1 in (i)–(iii). In

particular, the ranges in (i) and (ii) are determined by the restrictions that |L′| is decreas-

ing and integrable, and the Lemma in Feller (1971, Section VIII.9). The ranges in (iii)

and (iv) follow from the Lévy-Khintchine formula (7) and that same Lemma. We will

briefly return to the boundary case that τ = −1 when discussing identification from tail

conditions on L.

We are now ready to state our core result.
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Proposition 2 (Identifiability of the MHT Model). If two MHT triplets (Λ, β,L)

and (Λ̃, β̃, L̃) both have a regularly varying tail (possibly with different exponents τ and

τ̃), and imply the same pair of distributions (F0, F1); then

β̃ = βρ,

Λ̃ = κΛρ, and

L̃(κsρ) = L(s) for all s ∈ [0,∞),

for some κ ∈ (0,∞) and ρ ∈ [1/2, 2].

Proposition 2 establishes identification up to a power transformation, indexed by ρ, and an

innocuous normalization, indexed by κ. It is analogous to Ridder’s (1990)’s Theorem 1 for

the generalized accelerated failure time model, which encompasses the single-spell MPH

identification literature. Our analysis deviates in three important ways from Ridder’s.

First, our proof makes explicit use of the assumption that both MHT triplets have a

regularly varying tail. Ridder’s Theorem 1 implicitly requires a similar regularity condition

(Abbring and Ridder, 2009). Second, we allow for defective duration distributions, which

naturally arise in the context of an MHT model. Third, we use the special structure of

the MHT model to show that ρ cannot be any positive number, but lies in [1/2, 2].

The observational equivalence characterized by Proposition 2 can be given an ap-

pealing stochastic interpretation. For expositional clarity, we set κ = 1, and focus on

the interpretation of ρ. Without loss of generality, let ρ ∈ [1/2, 1). Let {Sρ} be an

independent stable subordinator of index ρ. Then, if {T} is the hitting-time process

characterized by Λ, the process {T [Sρ(y)] ; y ≥ 0}, has Laplace exponent Λ̃ (Feller, 1971,

Section XVII.4(e)). Consequently, for each given threshold level y, Λ̃(y) corresponds to

a positive-stable mixture T [Sρ(y)] over {T}. Thus, we can interpret (Λ̃, β̃, L̃) as reas-

signing some of the threshold heterogeneity in (Λ, β,L) to the individual hitting-time

process. Indeed, |β̃ − 1| = |βρ − 1| < |β − 1|, so that there is less observed variation
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in the thresholds between the two samples. Similarly, we can interpret G̃ as specifying

less unobserved heterogeneity than G. Suppose, for example, that L(0) = 1 and that |L′|

varies regularly at 0 with exponent τ ∈ (−1, 0), as in Heckman and Singer (1984a). Then,

it follows from the Lemma in Feller (1971, Section VIII.9), Proposition 2, and Theorem 4

in Feller (1971, Section XIII.5) that 1−G and 1− G̃ vary regularly at ∞ with exponents

−1 < −(τ + 1) < 0 and −(τ + 1)/ρ < −(τ + 1), respectively. Consequently, G̃ has a

thinner right tail than G.

The restriction of ρ to [1/2, 2] in Proposition 2 relies on the special structure of ψ and ψ̃.

Recall from Section 4.1 that ψ is convex, and that ψ(s)→∞ and s−2ψ(s)→ σ2/2 ∈ [0,∞)

as s → ∞. Now suppose that Λ̃ = κΛρ characterizes the hitting-time process of a latent

process with Laplace exponent ψ̃. From the fact that Λ and Λ̃ are the inverses of ψ and

ψ̃, respectively, it follows that ψ̃(s) = ψ
[
(s/κ)1/ρ

]
. Because ψ̃ should at least be of linear

order and at most of quadratic order at ∞, just like ψ, it is necessary that ρ ∈ [1/2, 2].

Note that Λρ is the Laplace exponent of a (killed) subordinator if Λ is; for all ρ ∈ (0, 1],

and not just for ρ ∈ [1/2, 1]. Proposition 2 provides identification up to ρ ∈ (0,∞) for a

more general model that requires {T} to be a subordinator, but not necessarily the hitting-

time process of a spectrally-negative Lévy process. Any strategy for point identification

of Λ that exploits the subordinator structure of {T}, but not its hitting-time structure,

will provide overidentifying restrictions that can be used in testing the MHT model.

Point identification of the MHT model requires further assumptions on either L or Λ.

In the MPH literature, this is invariably achieved by not only requiring regular variation of

one of their tails, but also fixing the corresponding exponent of regular variation (Ridder,

1990; Abbring and Ridder, 2009).

First, consider tail assumptions on L. Elbers and Ridder (1982) have proved iden-

tifiability of the two-sample MPH model, up to scale, under the assumption that the

unobserved factor has a finite mean. Within the context of an MPH model, this is an

arbitrary normalization with substantive meaning (Ridder, 1990). In some cases, the cor-
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responding assumption on the MHT model, lims↓0 |L′(s)| = E[V I(V < ∞)] < ∞, may

follow naturally from optimal stopping models in which threshold heterogeneity is reduced

from primitive unobserved heterogeneity (see Section 6). In other cases, it will be a simi-

larly arbitrary normalization. To see how it yields point identification, suppose that |L′|

and |L̃′| vary regularly and belong to observationally equivalent models. Then, Proposi-

tion 2 implies that
∣∣∣L̃′(s)∣∣∣ = κ−1/ρs

1−ρ
ρ

∣∣∣L′ [(s/κ)1/ρ
]∣∣∣, so that |L′| and |L̃′| can only vary

regularly with the same exponent τ , at either 0 or ∞, if ρ satisfies (τ + 1)(ρ − 1) = 0.

Consequently, Elbers and Ridder’s finite mean assumption, which implies that τ = 0, fixes

ρ = 1 and yields identification up to scale. We summarize this result in

Proposition 3 (Identifiability of the MHT Model Under a Finite-Mean As-

sumption on G). If two MHT triplets (Λ, β,L) and (Λ̃, β̃, L̃) are such that lims↓0 |L′(s)| <

∞ and lims↓0 |L̃′(s)| <∞, and imply the same pair of distributions (F0, F1); then β̃ = β,

Λ̃ = κΛ, and L̃(κs) = L(s) for all s ∈ [0,∞), for some κ ∈ (0,∞).

Alternatively, following Heckman and Singer (1984a), we could fix ρ = 1 by assuming that

|L′| and |L̃′| vary regularly at 0 with the same exponent τ ∈ (−1, 0). Note that we need

to exclude the boundary case that τ = −1, in which (τ + 1)(ρ − 1) = 0 holds for all ρ.

Finally, we could make an assumption on the variation of |L′| and |L̃′| at∞. However, we

have no examples of economic models that imply either of these alternative assumptions.

In cases in which there is no substantial justification for a finite-mean assumption,

the special structure of Λ offers a more attractive approach to point identification in the

MHT model. To gain some intuition, first consider the case without defecting movers.

Let Λ and Λ̃ be two Laplace exponents that belong to observationally equivalent MHT

triplets, with Λ(0) = Λ̃(0) = 0. Assume that lims↓0 Λ′(s) < ∞ and lims↓0 Λ̃′(s) < ∞.

Then, because lims↓0 Λ′(s) > 0 always, 0 < lims↓0 Λ′(s) <∞; and, by the inverse function

theorem, 0 < lims↓0 ψ
′(s) <∞, so that |ψ′| varies slowly at 0. A similar analysis applies to

Λ̃. Consequently, both |ψ′| and |ψ̃′| vary regularly, Proposition 2 applies, and Λ̃ = κΛρ; for

some κ, ρ ∈ (0,∞). It is easily checked that 0 < lims↓0 Λ′(s) <∞ and 0 < lims↓0 Λ̃′(s) <
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∞ can only both hold if ρ = 1. Thus, in this case, the assumption that the Laplace

exponent (of {T}) has a finite derivative at 0 identifies the model up to scale.

This argument does not directly extend to the general case, in which movers may

defect and possibly Λ(0) > 0 and Λ̃(0) > 0. However, note that, in the case without

defecting movers, we have effectively obtained identification by fixing the exponents of

regular variation at 0 of both |ψ′| and |ψ̃′| to 0, by assuming that they have finite positive

limits at 0. This continues to be sufficient for identification in the general case.

Proposition 4 (Identifiability of the MHT Model Based on Conditions on {Y }).

If two MHT triplets (Λ, β,L) and (Λ̃, β̃, L̃) are such that 0 < lims↓0 |ψ′(s)| < ∞ and

0 < lims↓0 |ψ̃′(s)| < ∞, and imply the same pair of distributions (F0, F1); then β̃ = β,

Λ̃ = κΛ, and L̃(κs) = L(s) for all s ∈ [0,∞), for some κ ∈ (0,∞).

The assumption that 0 < lims↓0 |ψ′(s)| < ∞ requires that E[Y (t)] = t lims↓0 ψ
′(s) 6= 0

and E[Y (t)] > −∞ for t ∈ (0,∞). In the investment option problem introduced in

Section 1, E[Y (t)] < 0 is natural if the project depreciates over time relative to alternative

investments, say because technological progress is embodied in new projects. In this case,

the agent may end up never investing, and Λ(0) > 0. In a model of job tenure like Section

6.3’s, the accumulation of job-specific skills may lead to a similar pattern; but wear of the

job and progress elsewhere may instead imply E[Y (t)] > 0 and Λ(0) = 0. The condition

that E[Y (t)] > −∞ only has bite if Λ(0) > 0, and is a restriction on the negative jumps

in {Y }. Because we have excluded positive jumps, E[Y (t)] <∞ always holds.

Our analysis for the case without defecting movers is similar to Ridder and Woutersen’s

(2003) analysis of the MPH model (they have no equivalent to our general analysis).

In particular, Ridder and Woutersen use an assumption on the baseline hazard that is

analogous to our assumption that 0 < lims↓0 Λ′(s) <∞. Unlike their assumption for the

MPH model, however, ours can be related to more primitive conditions on {Y }.

Next, we revisit Section 3’s Gaussian example Y (t) = µt + σW (t); but with µ ∈ R,

σ ∈ [0,∞), σ > 0 if µ ≤ 0, and general G. In this case, ψ′(s) = µ + σ2s, so that |ψ′|
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varies regularly at 0; with exponent 1 if µ = 0, and exponent 0 otherwise. Consequently,

Proposition 2 applies. With

Λ(s) =


√
µ2+2σ2s−µ

σ2 if σ > 0 and

s/µ if σ = 0,

this gives

Proposition 5 (Identifiability of the Gaussian MHT Model). If two Gaussian

MHT triplets (Λ, β,L) and (Λ̃, β̃, L̃) imply the same pair of distributions (F0, F1), then

either one of the following is true:

(i). β̃ = β, Λ̃ = κΛ, and L̃(s) = L(κs) for all s ∈ [0,∞), for some κ ∈ (0,∞);

(ii). β̃ = β2 and, for all s ∈ [0,∞). Λ̃(s) = κΛ(s)2 = νs and L̃(κs2) = L(s), for some

κ, ν ∈ (0,∞); or

(iii). β̃ = β1/2 and, for all s ∈ [0,∞), Λ̃(s) = κΛ(s)1/2 = ν
√
s and L̃(κs1/2) = L(s), for

some κ, ν ∈ (0,∞).

Thus, if two Gaussian MHT triplets are observationally equivalent, then they are either

the same, up to a scale normalization, or one triplet corresponds to a degenerate upward

drift and the other to a driftless nondegenerate Brownian motion. In Section 3’s example,

we ensured identification by requiring upward drift. More generally, identification can be

achieved by either requiring σ > 0 or µ 6= 0. In terms of Proposition 2, the range of

possible ρ is restricted to {1/2, 1, 2}; because the exponents of regular variation of |ψ′|

and |ψ̃′| can only take two values in the Gaussian special case, 0 and 1.

Finally, note that the analogy with the MPH literature stretches beyond the set of

basic results exploited so far. For example, consider the case in which we have stratified

data, with one shared value of V and observations on two durations, T 1 and T 2, in

each stratum. The two durations may concern a single agent’s consecutive spells, or
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the single spells of two agents who are known to have the same value of V . Formally,

suppose we observe the joint distribution of (T 1, T 2); for now, suppress covariates X. Let

T 1 = inf{t ≥ 0 : Y 1(t) > V } and T 2 = inf{t ≥ 0 : Y 2(t) > V }, with {Y 1} and {Y 2}

independent spectrally-negative Lévy processes; and V a nonnegative random variable,

distributed independently from ({Y 1}, {Y 2}) with distribution G. Denote the Laplace

exponent of the hitting-time process corresponding to {Y j} with Λj; j = 1, 2. Then,

analogously to Section 4.1’s analysis for the single-spell case, it can be shown that

LT 1,T 2(s1, s2) ≡ E
[
I(T 1 <∞, T 2 <∞) exp

(
−s1T

1 − s2T
2
)]

= L [Λ1(s1) + Λ2(s2)] .

In the case without defecting movers; that is, Λ1(0) = Λ2(0) = 0; LT 1,T 2 fully charac-

terizes the distribution of (T 1, T 2). An expression similar to that for LT 1,T 2 appears in

Honoré’s (1993) analysis of the MPH model with multiple-spell data, for the joint survival

function of (T 1, T 2). In fact, in this special case, Honoré’s Theorem 1 applies directly:

Its proof applies to the case with stayers, even though it is stated for the nondefective

case. However, Honoré does not cover the general case in which possibly Λ1(0) > 0 and

Λ2(0) > 0. In this general case, there may be independent information about the marginal

distributions of T 1 and T 2, and in particular their defects, in the marginal transforms LT j

of T j; j = 1, 2; and we have to exploit this information to obtain identification. Moreover,

Proposition 1 does not apply here. So, the following result is of independent value.

Proposition 6 (Identifiability of the MHT Model from Stratified Data). If two

two-spell MHT triplets (Λ1,Λ2,L) and (Λ̃1, Λ̃2, L̃) imply the same joint distribution of

(T 1, T 2); then Λ̃1 = κΛ1, Λ̃2 = κΛ2, and L̃(κs) = L(s) for all s ∈ [0,∞), for some

κ ∈ (0,∞).

Note that this identification result for stratified data, unlike Propositions 3–5 for the

single-spell case, does not require additional assumptions on Λ or G. Moreover, it does

not rely on external variation with covariates X. Thus, it also applies to a model extended
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with covariates X that interact in an unrestricted way with {Y 1}, {Y 2}, and V .

4.3 Censoring

The identification analysis so far assumes that the distribution of T |X is known. In

practice, duration data are often censored. With independent censoring (Andersen et al.,

1993, Section II.1), the distribution of T |X is identified, provided that obvious support

conditions are met. This paper’s identification results carry over to such independently

censored data without change. A common example is right-censoring at times C that are

independent of T given X, and that have unbounded support.

The identification analysis does not immediately carry over to censoring mechanisms

that obstruct the identification of the distribution of T |X. However, the specific structure

implied by the Lévy assumption suggests that identifiability may continue to hold under

similar conditions with independent right-censoring, but subject to support qualifications.

For example, take the case that Y (t) = t and β = 1, so that T = V . Then, if all durations

are censored at some fixed C ∈ (0,∞), only the restriction of G to [0, C] is identified.

5 Estimation

So far, we have ignored sampling variation. This section briefly discusses estimation of an

MHT model, based on its characterization in Sections 3.1 and 4.1, and standard likelihood

and moment methods. Abbring and Salimans (2009) provide a full development of the

estimators, and code for their computation.

Let Λ, φ and G be specified up to a finite vector of unknown parameters α ∈ A.

We assume that this parameterization is one-to-one, so that α is uniquely determined by

(Λ, φ,L). In the two-sample specification φ(X) = βX , it is sufficient that X = {0, 1}.

More generally, if we have multivariate and continuous covariates, we can specify φ(X) =

exp(X ′β). Then, we require the “rank condition” that the support X of X contains a
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nonempty open set in Rk. Note that this excludes an intercept from ln [φ(X)] = X ′β, and

thus embodies a scale normalization on φ similar to that in the two-sample specification.

The Lévy-Khintchine formula (7) can be used to specify ψ; Λ then follows by inversion.

This ensures that Λ satisfies the model’s restrictions. Section 3’s Gaussian special case

offers an attractive baseline specification, with only the drift parameter µ and dispersion

parameter σ, and Υ = 0. In applications that require more flexibility, compound Poisson

shocks with a finitely discrete shock distribution can be added. Then, the integral in the

Lévy-Khintchine formula is a finite sum, so that the resulting specification of ψ is easy

to compute. Moreover, because the number of support points of the shock distribution

can be freely chosen, it is flexible. In fact, a formal reason to prefer this specification over

others is that each Lévy process can be approximated by a sequence of compound Poisson

processes (Feller, 1971, Section IX.5, Theorem 2).

The heterogeneity distribution G can be specified as in empirical applications of the

MPH model. A finitely discrete specification is particularly popular because of its versa-

tility and computational convenience, and appears in Heckman and Singer’s (1984b) in-

fluential work on semiparametric estimation of the MPH model. Alternatively, a gamma

specification of G combines naturally with the MHT model’s mixture-of-exponentials spec-

ification of LT |X (Abbring and Van den Berg, 2007).

Suppose that we have a complete random sample ((T1, X1), . . . , (TN , XN)) from the

“true” distribution of (T,X); which corresponds to the distribution of T |X induced by

the parametric MHT model with parameter vector α0, and some ancillary marginal dis-

tribution of X. Our objective is to estimate the parameters α0.

5.1 Maximum Likelihood

First, consider Section 3’s Gaussian special case: {Y } is a Brownian motion with drift

µ > 0, so that, by the analysis in the previous section, T |X has a mixed (nondefective)

inverse Gaussian distribution. Assume that φ(X) is nondegenerate; that is, the threshold
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varies with the observed covariates. Then, Proposition 5 ensures that α0 is uniquely

determined from the distribution of T |X, provided that we impose scale normalizations

on two of the three functions Λ, φ, and L. In this case, we can normalize φ as discussed

before, and add a normalization on Λ such as µ = 1. Alternatively, we may drop one of

these normalizations and fix a scale parameter of L.

In this special case, it is very easy to estimate α0 by maximum likelihood. A condi-

tional likelihood LN(α) of (T1, . . . , TN)|(X1, . . . , XN) can be constructed using the explicit

expression for the density of T (y) in (3): LN(α) =
∏N

i=1

∫
f [Ti|φ(Xi)v] dG(v). Here, the

dependence of f , φ, and G on the parameter vector α is kept implicit. Under standard

regularity conditions, the maximizer of LN(α) is a
√
N -consistent and asymptotically

normal and efficient estimator of α0.

The Gaussian special case can be estimated by maximum likelihood because it comes

with explicit expressions for the density and survival function of T |X. This feature it

shares with many of the models studied in the statistics literature (Lee and Whitmore,

2006). In the general Lévy case, however, such expressions are not available, and maxi-

mum likelihood cannot be directly implemented. For this case, we propose a generalized

method-of-moments (GMM) estimator.

5.2 Generalized Method of Moments

A GMM estimator can be based on (10), which provides a continuum of conditional

moment conditions, one for each point s at which the Laplace transform can be evaluated.

Define h(t, x; s, α) ≡ exp(−st)I(t <∞)−L [Λ(s)φ(x)]. Then, it follows from (10) that

E[h(T,X; s, α0)|X] = 0 for all s ∈ (0,∞). In our estimation procedure, we will specify an

(M × 1)-vector Z of instruments, and use the unconditional moment conditions

E[h(T,X; s, α0)Z] = 0, s ∈ (0,∞). (11)
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The canonical example takes M = K+1 and Z ′ = [1 X ′], which gives K+1 unconditional

moment conditions, E[h(T,X; s, α0)] = 0 and E[h(T,X; s, α0)X] = 0, for each s. We

assume that the set of moment conditions (11) uniquely determines α0.

We first construct a consistent GMM estimator with naive weighting of the moments.

This estimator is easy to compute; it can serve as the first step in a more efficient two-step

estimator, and may be of interest in its own right. Denote the empirical analogue to the

moment vector in the left-hand side of (11) with

hN(s, α) ≡ N−1

N∑
i=1

h(Ti, Xi; s, α)Zi. (12)

We define a feasible (one-step) GMM estimator α̂N of α0 as the value of α that minimizes

the quadratic GMM objective function

HN(α;WN , w) ≡
∫ ∞

0

hN(s, α)′QNhN(s, α)WN(ds).

Here, QN is a positive-definite and symmetric M ×M random matrix that converges in

probability to a positive-definite fixed matrix Q. For given s, the matrix QN weights

the various moments corresponding to the M instruments, with weights independent of

s. Examples include the M ×M identity matrix and
(
N−1

∑N
i=1 ZiZ

′
i

)−1

. The function

WN is a random probability measure that converges to a nonrandom measure W . It

weights the various moment conditions corresponding to the evaluation points s of the

Laplace transform, identically across the instruments in Zi. It could be finitely discrete,

and selecting only a finite number of Laplace evaluation points, or absolutely continuous.

Examples of the latter include WN(s) = exp(−$Ns) for either a fixed or a random (data-

dependent) positive $N .

The analysis of Carrasco and Florens (2000) can be adapted to prove that, under appro-

priate regularity conditions, α̂N is
√
N -consistent and asymptotically normal. Moreover,

Carrasco and Florens’s (2002) method for efficient estimation based on empirical charac-

27



teristic functions can be adapted to produce an GMM estimator of the MHT model that

efficiently weights across evaluation points of LT |X , for given finite instrument vector Z.

This estimator is a two-step estimator that uses α̂N as a first-stage estimator.

5.3 Censoring

Section 5.1’s maximum likelihood estimator for the Gaussian special case can be straight-

forwardly applied to independently censored data. For example, an observation i that is

independently right-censored at Ti would contribute a factor
∫
F [Ti|φ(Xi)v] dG(v) to the

likelihood, which can be easily computed using the explicit expression (2) for F .

The generalization of the GMM estimators to independently censored data is not

covered by Abbring and Salimans (2009), but feasible. In the two-sample case; or more

generally, in the case that the support X of X is finite; the GMM estimator can be readily

adapted to allow for independent censoring, by nonparametrically correcting the empirical

moments in (12) for censoring. To this end, first estimate the distribution of T in each

sample using the Nelson-Aalen estimator or, in special cases, the Kaplan-Meier estimator

(see e.g. Andersen et al., 1993, Section IV.1). Then, compute the empirical analogue of

the moment condition (11) using these nonparametric estimators of the distribution of

T ; instead of the empirical distribution function, as in (12). Provided that the censoring

mechanism is such that the distribution of T is identified in each sample, its nonparametric

estimator is consistent and asymptotically Gaussian, and the properties of the censoring-

corrected GMM estimator can be derived in a standard manner.

In the case that φ(X) = exp(X ′β), with X general, we cannot rely on repeated appli-

cation of the Nelson-Aalen estimator to each sample. Instead, we need a semiparametric

estimator of the distribution of T |X to compute the empirical analogue of the moment

condition (11).
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6 Structural Examples

The MHT model can be applied to the empirical analysis of heterogeneous agents’ optimal

stopping decisions. Dixit and Pindyck (1994) and Stokey (2009) analyze and review

various models based on Brownian motions and their applications. Kyprianou (2006) and

Boyarchenko and Levendorskĭı (2007) review recent extensions to general Lévy processes.

This section presents some simple examples of such models. With payoffs that are

monotonic in a Lévy state variable, threshold rules routinely arise. We primarily focus

on the way primitive heterogeneity generates heterogeneous threshold rules, and how this

squares with the MHT model. We first study the optimal timing of an irreversible invest-

ment. This well-studied problem— it is closely related to the analysis of American options

in finance— is a good vehicle to introduce the relation between optimal stopping models

and the MHT framework. We then study two models of optimal transitions between un-

employment and employment. The first is Dixit’s (1989) model of entry and exit. The

second is a stylized version of the search-matching model that has become the standard

in labor economics. Both models extend the first, investment option model by not only

specifying the transitions out of the state of interest, but also the transitions into it. This

determines the initial conditions for the MHT analysis of the durations in this state, and

tightly structures the dependence of the thresholds on primitive heterogeneity.

6.1 Investment Timing

McDonald and Siegel (1986) study the optimal timing of an irreversible investment in a

project of which the log value follows a Brownian motion. Their paper is an early and

influential example of the large “real options” literature that applies insights from the

literature on pricing financial derivatives— in this case, perpetual American call options—

to real investments (Dixit and Pindyck, 1994). Here, we discuss a version of their model,

due to Mordecki (2002), in which log project values follow a Lévy process.

Consider an agent with the option of investing an amount K > 0 in a project at a
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nonnegative time of his choice. If the agent invests at time t, the project returns a gross

payoff of U(t) ≡ U0 exp [Y (t)] to the agent, where U0 > 0 is the project’s initial value.

Mordecki allows {Y } to be a general Lévy process; we continue to assume it is spectrally

negative. The agent chooses a random investment time T that maximizes expected net

payoffs, discounted at a rate R; wM(T ) ≡ E [exp(−RT ) {U(T )−K}]. The agent’s choice

is restricted to investment times T that are feasible given the information available to the

agent, which, at time t, we take to be {Y (t′); 0 ≤ t′ ≤ t}, K, U0, and R. Formally, if {F}

is the filtration generated by these variables, then {T ≤ t} should be adapted to {F}.

Suppose that R > ln E [exp(Y (1)] = ψ(1), so that Λ(R) > 1. For example, in the

Brownian motion case, this requires that R > µ + σ2/2. Denote Y (t) ≡ supt′∈[0,t] Y (t′).

Let ER be an independent exponential time with parameter R. Then, because {Y } is

spectrally negative, Y (ER) has an exponential distribution with parameter Λ(R) (Bertoin,

1996, Section VII.1). Using this, Theorem 1 in Mordecki (2002) implies that the agent

will invest when {Y } first crosses

y
M
≡ max

{
ln

[
K

U0

Λ(R)

Λ(R)− 1

]
, 0

}
, (13)

at time T (y
M

). Note that y
M

decreases with the discount rate R. As R→∞, the agent

will invest as soon as the investment option is in the money, U(t) > K. If the option is

sufficiently deep in the money at time 0; that is, if U0 is sufficiently larger than K; then

y
M

= 0, and the agent will invest immediately.

A closely-related class of models, due to Novikov and Shiryaev (2005), alternatively

specifies the payoffs to T as

wn(T ) ≡ E [exp(−RT ) max {U0 + Y (T )−K, 0}n] , n ∈ Z+.

Here, we can interpret U0+Y (t) as a project’s value at time t, with K again the investment

cost. Theorem 2 in Kyprianou and Surya (2005) gives optimal investment thresholds for
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all n ∈ Z+. Again applying the simplifications brought by the absence of positive shocks,

these thresholds reduce to

y
1
≡ max

{
K − U0 +

1

Λ(R)
, 0

}
and y

2
≡ max

{
K − U0 +

2

Λ(R)
, 0

}
,

for n = 1 and n = 2, respectively.

In both specifications, primitive heterogeneity in investment costs K, initial project

values U0, and discount rates R generates heterogeneous nonnegative investment thresh-

olds. Suppose that we have data on investment times T and covariates X; that (K,U0, R)

is fully determined by X and an unobserved heterogeneity factor V ; and that {Y } is

independent of (X, V ). Then, we can apply any of Propositions 2–5 if we assume that the

threshold is proportional in the effects of X and that of V (if necessary, using Appendix

A’s extension with zero thresholds).

Without further data or assumptions on the model’s primitives, such a direct assump-

tion on the reduced-form dependence of the threshold on X and V needs be made; because

thresholds are nonnegative, a proportional specification is a natural first choice. Typically,

this implies that the primitive heterogeneity in (K,U0, R) depends on the parameters of

Λ, which is unattractive. For example, in Novikov and Shiryaev’s specification, with n = 1

and U0 = K, we get y
1

= φ(X)V if R = Λ−1
[
{φ(X)V }−1]. Note though that we can

invoke alternative identification results, yielding identification of more attractive specifi-

cations, if we impose additional structure or use more information. For example, if data

stratified on V are available, with multiple durations per stratum, Proposition 6 can be

applied to establish identification of a model in which X enters in an unrestricted way.

This accommodates any specification of the dependence of (K,U0, R) on X and V .

Either way, under an appropriate set of identifying assumptions, we can separately

measure agent-level investment dynamics, coded into Λ, and investment threshold het-

erogeneity. This provides a theory-based empirical distinction of state dependence and

heterogeneity in investment timing. The results can moreover be used to further ex-
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plore the model’s primitives. Obviously, without more information on these primitives, or

strong assumptions, they are typically not fully identified. Nevertheless, the MHT identi-

fication results provide a useful first stage for exploring their second-stage identification,

and that of other structural quantities. For example, in Novikov and Shiryaev’s example

with U0 = K and n = 1, the investment option’s value is w1[T (y
1
)] = exp(−1)y

1
. Thus,

from the MHT analysis, not only the distribution of R, but also the distribution of option

values is identified up to scale if we assume linear utility.

An unattractive feature of this section’s models is that they take the project’s initial

value U0 and the investment size K as primitives. Without further constraints on their

distribution in the data; it is clear from (13) that this may lead to masses of agents with

zero thresholds, who invest immediately, and nontrivial selection on primitives in the

subpopulation with positive thresholds. This complicates the model’s econometric speci-

fication, and the interpretation of the empirical results. Such problems are not specific to

the MHT framework, but are a special instance of the initial-conditions problem studied

by Heckman (1981b). This problem arises if a stochastic process is not sampled from its

origin, and is usually solved by somehow modeling the initial conditions of the sample.

Within the context of this section’s models, this requires that we model the way agents

ended up with their investment option to begin with. To this end, we will explicitly model

entry into the state of interest along with exit from this state.

6.2 Unemployment Durations and Heterogeneous Entry and Exit

Costs

Consider a labor market in which workers continuously choose between unemployment and

employment. A worker earns a flow B when unemployed, and U(t) ≡ U0 exp [µt+ σW (t)]

when employed at calendar time t. Note that U(t) is a geometric Brownian motion with

drift, and that E[U(t)] = U0 exp [(µ+ σ2/2)t]. Workers incur a lump-sum cost K ≥ 0

when they leave their job; and pay K ≥ 0 when they enter a job. They maximize
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expected earnings, discounted at a rate R > µ+ σ2/2.

This setup is equivalent to Dixit’s (1989) model of firm entry and exit, and has many

alternative applications, for example to marriage and divorce. From Dixit’s analysis, it

follows that an unemployed worker enters employment when U(t) increases above U , and

resigns when U(t) falls below U ; where U = U if K = K = 0, and U > U otherwise.

The MHT model applies to an inflow sample of unemployment durations. Normalize

the start time of each unemployment spell in the sample to 0. Then, unemployed start

the sampled spell with earnings U(0) = U , and end their spell when earnings hit the exit

threshold U ≥ U . Define Y (t) ≡ lnU(t)− lnU , and note that Y (t) is a Brownian motion

with drift term µt. Then, we can equivalently say that workers initially have normalized

log earnings Y (0) = 0, and leave for employment when {Y } hits y
D
≡ lnU − lnU . From

Dixit’s (1989) analysis it follows that y
D

varies on [0,∞) with observed and unobserved

determinants of K and K, with y
D

= 0 only in the frictionless limit. Thus, a proportional

specification y
D

= φ(X)V is natural.

If K <∞, then y
D
<∞ even if K →∞. This exemplifies that unrestricted primitive

heterogeneity may lead to bounded threshold heterogeneity. Then, threshold heterogene-

ity has a finite mean, E[V ] <∞, and Proposition 3 provides point identification.

6.3 Job Separations and Heterogeneous Search

In Dixit’s (1989) model, transaction costs are lump-sum entry and exit costs, earnings

are general, and utility is linear. In labor economics, transaction costs are often specified

as job search frictions. Moreover, key search models, such as Mortensen and Pissarides’s

(1994), entertain job-specific shocks. Therefore, we end this section with a basic model of

endogenous job separations in the presence of heterogeneous search frictions, job-specific

shocks, and nonlinear utility.

Again consider a labor market in which workers are either employed or unemployed.

When employed in their j-th job for an amount of time t, workers earn a flow utility
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U j(t) ≡ U0 exp [−αY j(t)]. Here, {Y j} is a Lévy process indexed by job tenure t that is

distributed identically and independently across jobs j, and U0 > 0 and α > 0 are job-

invariant parameters. Employed workers cannot search on the job; but, they can leave

their jobs for unemployment immediately and at no cost, and will do so when the expected

discounted utility of continued employment falls below the expected discounted utility of

unemployment. Once they are unemployed, workers can search sequentially for new jobs.

We assume that unemployed workers are offered jobs at an exogenous and independent

Poisson rate A, and earn a flow utility B < U0. Because all new jobs offer identical

earnings prospects, this ensures that unemployed workers accept the first job they are

offered. Consequently, search frictions are effectively exogenous, and we can focus on

endogenous job separations given search frictions indexed by A.

Denote the expected discounted utility in a job in state Y with v(Y ), and the expected

discounted utility of unemployment with W . We first provide some explicit results for

the special case in which {Y j} is a compound Poisson process with negative jumps and

positive drift: Y j(t) = µt+∆Y j(t); with µ > 0, and ∆Y j(t) shocks that arrive at a Poisson

rate λ > 0 and have an independent exponential distribution on (−∞, 0) with parameter

ω > 0. To ensure nontrivial job separation strategies; we assume that ω > α, so that

U j(t) has finite expectations for finite t; and we assume that the discount rate R strictly

exceeds the expected utility growth rate in employment, α
[

λ
ω−α − µ

]
, so that the expected

discounted utility v∗ of staying employed forever exists, and equals v∗(Y ) = γ exp (−αY ),

with γ ≡ U0

{
R− α

[
λ

ω−α − µ
]}−1

> 0.

From standard contraction arguments, it follows that v(Y ) weakly decreases with Y ,

so that employed workers apply a threshold strategy: They will leave their j-th job for

unemployment when Y j(t) exceeds a threshold y. Given W , the expected discounted

utility in employment v and the job separation threshold y satisfy the Bellman equation

(R + λ) v(Y ) = U0 exp (−αY )+λ

∫ ∞
0

v(Y −e)ω exp(−ωe)de+µv′(Y ), Y ∈ (−∞, y);
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with value matching, limY ↑y v(Y ) = W ; smooth pasting, limY ↑y v
′(Y ) = 0; and a no-

bubble condition, limY→−∞ [v(Y )− v∗(Y )] = 0. It is straightforward to verify that this

implies that v(Y ) = v∗(Y ) + δ(W ) exp(ζY ) and y = (ζ + α)−1 ln
(

αγ
δ(W )ζ

)
; where ζ ≡[

R + λ− µω +
√

(R + λ− µω)2 + 4Rωµ

]
/(2µ) > 0, and δ(W ) is implicitly determined

by δ(W ) = exp
(
−ζy

) [
W − γ exp

(
−αy

)]
. With W = {B + A [γ + δ(W )]} / (A+R),

this gives a unique solution (v,W, y). The job separation threshold y decreases with A,

and y ↓ 0 as A→∞. That is, smaller job search frictions make the employed less tolerant

to decreases in utility from employment; in the frictionless limit, they will not tolerate

any utility loss. As A→ 0, y may either diverge to ∞ or converge to a finite limit.

If A varies over [0,∞) in the population, then the job separation threshold y has

support (0,∞]. As before, under assumptions that ensure that y = φ(X)V , the MHT

model can be applied to employment duration data to learn about job separations. The

fact that y is, under some conditions, bounded may be exploited to justify the application

of Proposition 3.

As in Section 6.1, deeper parameters can possibly be identified if more data are avail-

able. In particular, note that the model specifies that unemployment durations conditional

on A are exponential, so that the distribution of A is identified from a random sample of

unemployment durations by the uniqueness of the Laplace transform (Feller, 1971, Section

XIII.1, Theorem 1). This is a simple example of the MHT and mixed hazard approaches

joining forces in structural duration analysis.

A similar analysis can be developed for the case that {Y } is a Brownian motion with

drift, along the lines of Stokey (2009, Section 6.4). In fact, the results extend to more

general Lévy processes (Boyarchenko and Levendorskĭı, 2007, Chapter 11). Here, we fo-

cused on the compound Poisson case to connect to the search-matching literature in labor

economics, which often relies on Poisson processes. Mortensen and Pissarides’s (1994)

model with endogenous job separations, for example, assumes that new match-specific

productivity values are drawn independently from a fixed distribution at Poisson times.
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This specification is typical of the way much of the search literature models transitions,

and ensures a stationary environment in which agents only leave their jobs at the time of

a shock. It directly implies a separation hazard, which is the arrival rate of new produc-

tivity draws times the time-invariant probability that such a draw is below a separation

threshold. This can be contrasted with the specification studied here, which involves

persistent idiosyncratic shocks that improve the payoffs in employment, combined with a

common continuous drift towards separation. Because shocks can only improve payoffs to

employment, separations do not take place at Poisson times, and a hazard specification

is not directly implied. Because shocks are persistent, the model implies that individual

workers, with given thresholds, have time-varying rates of leaving their jobs.

7 Extensions

This section discusses three important extensions that are beyond the scope of this paper.

7.1 Time-Varying Covariates

Following most of the duration-model identification literature, we have ignored time-

varying covariates. Time-varying covariates can be introduced in the MHT model as

determinants of a time-varying threshold. However, both the characterization of the

corresponding hitting-time process, and its structural interpretation as a reduced form of

an optimal stopping model are hard. This suggests that we alternatively treat time-varying

covariates as noisy measurements of the latent state process, as in Abbring and Campbell’s

(2005) discrete-time model of industry dynamics. This complicates the analysis with a

filtering problem, but respects much of the current model’s structure.

It is well known that time variation in observed covariates can be exploited to relax

some of the more controversial identifying assumptions for the MPH model, such as Elbers

and Ridder’s (1982) finite-mean assumption (see e.g. Heckman and Taber, 1994). From
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this perspective, the case of time-invariant covariates, and in fact a single binary one, can

be seen as informing us what can be learned with minimal covariate variation. Additional

time-variation in the covariates can only aid identification, as with the MPH model.

7.2 Nonstationary Increments

Aalen and Gjessing (2001) show that hitting-time models based on Brownian motions

exhibit quasi-stationarity: The distribution of Y (t)|(T ≥ t) converges to a gamma dis-

tribution and hazard rates corresponding to different thresholds converge to a common

limit as time t increases. This both suggests that the MHT model may be too restrictive

in some applications and that models with richer time effects may be identifiable. One

such model specifies T ≡ ξ(U), for an increasing time transformation ξ : [0,∞] 7→ [0,∞]

and the distribution of U |X given by the MHT model. If ξ is linear, this simply gives the

MHT model for T |X; any nonlinearities correspond to additional duration dependence.

One structural source of nonstationarity that may be captured this way is Bayesian

learning, as in Jovanovic’s (1979; 1984) model of job tenure. Lancaster (1990, Section 6.5)

suggests that we approximate job tenure T predicted by Jovanovic’s theory by ξ(U), with

ξ(u) ≡


η2u

1−ηu if u ∈ [0, η−1) and

∞ if u ∈ [η−1,∞].

Here, U the first time a Brownian motion crosses a threshold that decreases linearly

from a positive initial value, which is equivalent to the first time a Brownian motion

with upward drift crosses a positive threshold. The probability Pr(U ≥ η−1) equals the

defect Pr(T = ∞) that arises because some agents will eventually learn that they are

in a good match and never leave it. We can extend this framework to include observed

and unobserved covariates by replacing the marginal specification of U by a Gaussian

MHT model for the distribution of U |X. The resulting model is a simple, one-parameter

extension of the MHT model that allows for nonstationary increments.
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7.3 Generalized Ornstein-Uhlenbeck Processes

Lévy processes are a key component in many process-based duration models in econo-

metrics and statistics. Another frequent choice is the Ornstein-Uhlenbeck process (e.g.

Aalen and Gjessing, 2004). This process allows for mean reversion and may be more

appropriate in some applications. A specification for {Y } that includes both as special

cases is the Ornstein-Uhlenbeck process driven by a Lévy process. Such a process satisfies

dY (t) = −%Y (t)dt+ dZ(t), with % ∈ [0,∞) and {Z} a Lévy process. The usual Ornstein-

Uhlenbeck process arises if {Z} is a Brownian motion and % > 0. We explicitly include

the boundary case % = 0, in which {Y } is a Lévy process.

The Laplace transform of the distribution of T |X in a MHT model generalized this

way can be derived from Novikov (2004), who provides explicit expressions for the Laplace

transform of the hitting-time distribution of an Ornstein-Uhlenbeck process driven by a

spectrally-negative Lévy process. However, even though the generalized model adds only

one parameter, %, Novikov’s results suggest that an analysis of its identifiability requires

more than just a simple variation of the present paper’s analysis.

8 Conclusion

This paper’s main contribution is to provide fundamental insight in the empirical content

of a framework for econometric duration analysis, the MHT model, that is connected to

an important class of dynamic economic models with heterogeneous agents. It does so by

highlighting and exploiting a close analogy between the identification analysis of the MHT

model and that of the MPH model. This way, it extends the applicability of the MPH

identification literature to a new, and structurally important, class of duration models.

The analogy between the analysis of the MHT and the MPH models should not be

mistaken for a structural similarity between both frameworks. In the MPH model, the

(mixed) exponential form arises from the exponential formula for the survival function. In
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the MHT model, it arises from the infinite divisibility of the law characterizing the latent

Lévy process {Y }, which, with the assumption that {Y } is spectrally negative, ensures

that the hitting times T (y) are infinitely divisible.

In fact, as we have noted in the introduction and illustrated with Figure 2, MHT haz-

ard rates are generally not multiplicative in the effects of time and those of heterogeneity.

This implies that the empirical analysis of data generated by the MHT model with an

MPH framework will generally produce invalid structural conclusions. For example, con-

sider Section 3’s Gaussian example of the MHT model, with σ = 0 and V distributed

as a mixture of exponentials: Pr(V > v) =
∫∞

0
exp(−xv)dG∗(x), for some distribution

G∗. This MHT triplet cannot be statistically distinguished from an MPH model with a

constant baseline hazard and an unobserved heterogeneity factor with distribution G∗;

both imply a mixture of exponentials specification of T |X. However, the MHT specifica-

tion assigns all variation between individuals to time-invariant unobserved heterogeneity;

the MPH specification instead interprets part of the cross-sectional variation as driven

by idiosyncratic, time-homogeneous Poisson shocks. This strongly motivates the use of

the MHT model when the MHT structure holds, for example in applications to optimal

stopping problems of the type discussed in Section 6.

Of course, the same considerations should lead one to prefer an MPH model when an

MPH structure holds. Hazard models are particularly natural in applications to decision

processes that are driven by Poisson processes, such as sequential job search or insurance

claim behavior. The fact that such processes usually do not generate proportional hazards

(Van den Berg, 2001) may cast doubt on the structural applicability of the MPH model,

but calls for the use of specific nonproportional hazard models, rather than the MHT

model. The fact that Section 6.3’s search-matching model combines a hazard model for

job search with a hitting-time model for job tenure exemplifies the complementary nature

of the hitting-time and hazard approaches to duration analysis.

There may also be statistical reasons to prefer one framework over the over. Both
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the MHT and the MPH models are rich descriptive frameworks, which can perfectly

fit any duration distribution for a single given value of the observed covariates. They do

however impose restrictions on the variation of durations with covariates. To some extent,

these restrictions are the same in both models: The mixture of exponentials example

shows that they contain nontrivial subclasses of observationally equivalent specifications.

However, it is easy to show, by counterexample, that the MHT and MPH models are

not observationally equivalent in general. Consider again Section 3’s Gaussian example

with σ = 0, but now with V concentrated on a strict subset of (0,∞), such as (0, 1).

Then, the implied support of T |X varies with the covariates X. The MPH model cannot

reproduce this statistical implication, because it can only generate gaps in the support of

T |X through the baseline hazard, which is common across covariate values X.

An attractive feature of the MHT model is that it includes the AFT model as a special

case. In fact, this section’s two Gaussian examples with σ = 0 are both special cases of

this standard model from statistics. As discussed in Section 3, the AFT model can be

interpreted as a polar specification of the MHT model in which all variation in durations

is due to ex ante heterogeneity. More generally, the hitting-time structure, with the Lévy

assumption on the latent process, tightly specifies agent-level time effects as potentially

endogenous outcomes; whereas the MPH model offers direct control over such effects,

through the baseline hazard. This tight specification of agent-level dynamics, in terms of

a latent process that can be the state in a decision problem, is key to the MHT model’s

close relation with economic theory. It does however complicate the introduction of time-

varying covariates; which, at least from a statistical perspective, can be straightforwardly

introduced into a hazard model. Section 7.1 proposes that we respect the basic structure

of the MHT model by introducing time-varying covariates as noisy measurements of the

latent state. The further development of a theory-based and computationally feasible way

to introduce time-varying covariates in the MHT model is a key next step in its analysis.
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Appendix

A Extending the Support of the Threshold

If we extend the support of G to [0,∞], the model allows for an unobserved subpopulation

{V = 0} of agents using a zero threshold. On this subpopulation, T = T (0) = 0 almost

surely, that is Pr(T = 0, V = 0) = Pr(V = 0), because {Y } visits (0,∞) at arbitrarily

small times almost surely (Bertoin, 1996, Chapter VII, Theorem 1).

The case in which V , and therefore T , has a mass point at 0 may be of interest in

some applications; but even then, data on immediate transitions may not be available. In

applications in which a mass at 0 is indeed relevant, the analysis in the main text applies

to the distribution of V |V > 0 and all other model components. If data on immediate

transitions are available, in addition Pr(V = 0) can be identified with Pr(T = 0). Thus,

our focus on the case in which Pr(V = 0) = 0 is without loss of generality.

We could also extend the model by allowing for an observed subpopulation with a zero

threshold, by including 0 in the range of φ. Similarly, we could allow for observed stayers

by including ∞ in the range of φ. Because such subpopulations can be trivially identified

from complete data, these extensions are of little interest for the purpose of this paper.

B Proofs

Denote Lx(·) ≡ LT (·|X = x) and note that F0 and F1 uniquely determine L0 and L1.

Proof of Proposition 1. Without loss of generality, let L(0) ≤ L̃(0); and suppose that

L0 ≤ L1, so that β < 1 and β̃ < 1.

Observational equivalence implies that L ◦ (βL−1) = L1 ◦ (L−1
0 ) = L̃ ◦ (β̃L̃−1) on

(0,L0(0)), where ◦ denotes function composition. Moreover, by the real analyticity of

the Laplace transform (Widder, 1946, Chapter IV, Theorem 3a), the real analytic inverse

function theorem (Krantz and Parks, 2002, Theorem 1.5.3), and the real analyticity of

41



compositions of real analytic functions (Krantz and Parks, 2002, Proposition 1.4.2); L ◦

(βL−1) and L̃ ◦ (β̃L̃−1) are real analytic on (0,L(0)) (see also Kortram et al., 1995, for an

alternative, complex analytic approach). Taken together with L0(0) > 0, using analytic

extension (based on e.g. Krantz and Parks, 2002, Corollary 1.2.6), this implies that

L ◦ (βL−1) = L̃ ◦ (β̃L̃−1) on (0,L(0)). (14)

Note that both sides of (14) map (0,L(0)) into itself. Thus, we can compose each side n

times with itself, and find that

L ◦ (βnL−1) = L̃ ◦ (β̃nL̃−1) on (0,L(0)), n ∈ N. (15)

Because L and L̃ are continuous at 0; evaluating both sides of (15) at a fixed s ∈ (0,L(0)),

and letting n→∞, gives L(0) = L̃(0).

Proof of Proposition 2. We first show that the claimed result holds for some ρ ∈ (0,∞)

in each of the regularity condition’s four possible cases, and then prove that it holds with

1/2 ≤ ρ ≤ 2.

Without loss of generality, suppose that L0 ≤ L1, so that β < 1 and β̃ < 1.

(i). Suppose that |L′| and |L̃′| vary regularly at 0, with exponents τ, τ̃ ∈ (−1, 0].

By Proposition 1, L(0) = L̃(0). With (15), this implies that L(0)− L ◦ (βnL−1) =

L̃(0)− L̃ ◦ (β̃nL̃−1) on (0,L(0)), n ∈ N. Taking logs, and then derivatives, yields

K′(s)
K(s)

(
βnK(s)L′ [βnK(s)]

L(0)− L [βnK(s)]

)
=
K̃′(s)
K̃(s)

 β̃nK̃(s)L̃′
[
β̃nK̃(s)

]
L̃(0)− L̃

[
β̃nK̃(s)

]


for all s ∈ (0,L(0)) and n ∈ N, with K ≡ L−1 and K̃ ≡ L̃−1. Rearranging gives

K̃′(s)/K̃(s)

K′(s)/K(s)
=

βnK(s) |L′ [βnK(s)]| / {L(0)− L [βnK(s)]}

β̃nK̃(s)
∣∣∣L̃′ [β̃nK̃(s)

]∣∣∣ /{L̃(0)− L̃
[
β̃nK̃(s)

]} , (16)
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for s ∈ (0,L(0)) and n ∈ N. By Feller (1971, Section VIII.9, Theorem 1(a));

the numerator in the right-hand side of (16) converges to τ + 1 ∈ (0, 1], and the

denominator to τ̃+1 ∈ (0, 1]; for each given s ∈ (0,L(0)), as n→∞. Consequently,

K̃′/K̃ = ρK′/K on (0,L(0)), where ρ ≡ (τ + 1)/(τ̃ + 1) ∈ (0,∞). In turn, this

implies K̃ = κKρ on (0,L(0)), for some arbitrary κ ∈ (0,∞). Using the definition of

K, this gives L̃(κsρ) = L(s) for all s. Finally, from L ◦ Λ = L̃ ◦ Λ̃, we get Λ̃ = κΛρ;

and with L ◦ (βΛ) = L̃ ◦ (βΛ̃), we find that β̃ = βρ.

(ii). Suppose that |L′| and |L̃′| vary regularly at ∞, with exponents τ, τ̃ ∈ (−∞,−1).

Observational equivalence implies that L ◦ (β−1L−1) = L0 ◦ (L−1
1 ) = L̃ ◦ (β̃−1L̃−1)

on (0,L1(0)). As in Proposition 1’s proof, this gives L ◦ (β−nL−1) = L̃ ◦ (β̃−nL̃−1)

on (0,L(0)), n ∈ N. Taking logs and derivatives, and rearranging, yields

K̃′(s)/K̃(s)

K′(s)/K(s)
=

β−nK(s) |L′ [β−nK(s)]| / {L [β−nK(s)]}

β̃−nK̃(s)
∣∣∣L̃′ [β̃−nK̃(s)

]∣∣∣ /{L̃ [β̃−nK̃(s)
]} , (17)

for all s ∈ (0,L(0)). By Feller (1971, Section VIII.9, Theorem 1(a)); the numerator

in the right-hand side of (17) converges to −(τ+1) ∈ (0,∞) and the denominator to

−(τ̃ + 1) ∈ (0,∞), so that the right-hand side again converges to ρ ≡ (τ + 1)/(τ̃ +

1) ∈ (0,∞); for each given s ∈ (0,L(0)), as n → ∞. As in Case (i), this gives

L̃(κsρ) = L(s) for all s, Λ̃ = κΛρ, and β̃ = βρ.

(iii). Suppose that |ψ′| and |ψ̃′| vary regularly at 0, with exponents τ, τ̃ ∈ (−1, 1].

Observational equivalence implies that ψ ◦ (βΛ) = L−1
0 ◦ L1 = ψ̃ ◦ (β̃Λ̃) on (s,∞),

with s ≡ L−1
1 [L0(0)] = ψ [β−1Λ(0)] = ψ̃

[
β̃−1Λ̃(0)

]
. Recall that ψ(0) = 0 and

lims→∞ ψ(s) = ∞, and note that ψ is either strictly increasing or strictly convex

(or both). Consequently, ψ attains a unique minimum. Denote this minimum with

sm ∈ (−∞, 0]. Similarly, ψ̃ attains a unique minimum s̃m ∈ (−∞, 0]. Without

loss of generality, suppose that sm ≥ s̃m. Note that the inverses of ψ and ψ̃ exist
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on (sm,∞), and redefine Λ and Λ̃ to be these inverses. Because ψ and ψ̃ are real

analytic (Bertoin, 1996, Section VII.1), Λ and Λ̃ are real analytic on (sm,∞) by the

real analytic inverse function theorem, and compositions of real analytic functions

are real analytic; ψ ◦ (βΛ) and ψ̃ ◦ (β̃Λ̃) are real analytic on (sm,∞). With s <∞,

using analytic extension, this implies that

ψ ◦ (βΛ) = ψ̃ ◦ (β̃Λ̃) on (sm,∞). (18)

Note that both sides of (18) map (sm,∞) into itself. Thus, we can compose each

side n times with itself, which gives ψ ◦ (βnΛ) = ψ̃ ◦ (β̃nΛ̃) on (sm,∞), n ∈ N.

Applying calculations that parallel those for Cases (i) and (ii), we find that

Λ̃′(s)/Λ̃(s)

Λ′(s)/Λ(s)
=

βnΛ(s) |ψ′ [βnΛ(s)]| /ψ [βnΛ(s)]

β̃nΛ̃(s)
∣∣∣ψ̃′ [β̃nΛ̃(s)

]∣∣∣ /ψ̃ [β̃nΛ̃(s)
] , (19)

for all s ∈ (0,∞) and n ∈ N. Feller (1971, Section VIII.9, Theorem 1(a)) implies

that the right-hand side of (19) converges to ρ ≡ (τ + 1)/(τ̃ + 1) ∈ (0,∞); for each

given s ∈ (0,∞), as n→∞. With continuity of Λ and Λ̃ at 0, this gives Λ̃ = κΛρ,

for some arbitrary κ ∈ (0,∞). With observational equivalence, and using analytic

extension, it follows that L̃(κsρ) = L(s) for all s, and that β̃ = βρ.

(iv). Suppose that |ψ′| and |ψ̃′| vary regularly at ∞, with exponents τ, τ̃ ∈ [0, 1].

Observational equivalence implies that ψ ◦ (β−1Λ) = L−1
1 ◦ L0 = ψ̃ ◦ (β̃−1Λ̃) on

(0,∞). Analogously to the analysis for Case (iii), this can be used to show that

(19) extends from n ∈ N to all n ∈ Z. Feller (1971, Section VIII.9, Theorem 1(b))

implies that the right-hand side of (19) converges to ρ ≡ (τ + 1)/(τ̃ + 1) ∈ [1/2, 2];

for each given s ∈ (0,∞), as n → −∞. Consequently, the conclusion of Case (iii)

extends to this case, but with ρ ∈ [1/2, 2].

At least one of these four cases holds by assumption; so their common conclusion that
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β̃ = βρ, Λ̃ = κΛρ, and L̃(κsρ) = L(s) for all s; for some κ ∈ (0,∞) and ρ ∈ (0,∞); holds.

Remains to show that Case (iv)’s tighter bound on ρ holds generally. To this end, note

that both ψ and ψ̃ should satisfy the Lévy-Khintchine formula (7). Because ψ is convex

and ψ(s)→∞ as s→∞ (Bertoin, 1996, Chapter VII, Section 1), s−1ψ(s) either converges

to a strictly positive constant or diverges to∞ as s→∞. Moreover, s−2ψ(s)→ σ2/2 <∞

(Bertoin, 1996, Chapter I, Proposition 2). Obviously, the same asymptotic behavior is

displayed by ψ̃. From ψ [Λ(s)] = s = ψ̃
[
Λ̃(s)

]
, it follows that ψ̃(s) = ψ

[
(s/κ)1/ρ

]
,

s ∈ [Λ̃(0), 0). Therefore, if ρ > 2, then lims→∞ s
−1ψ̃(s) = lims→∞ κ

−1s−ρψ(s) = 0.

Consequently, ρ ≤ 2 and, by symmetry, ρ ≥ 1/2.

Proof of Proposition 3. Because |L′| and |L̃′| have finite positive limits at 0, they vary

slowly at 0, and the argument for Case (i) in the proof of Proposition 2 holds with τ =

τ̃ = 0. Consequently, Proposition 2’s conclusion holds with ρ = (τ + 1)/(τ̃ + 1) = 1.

Proof of Proposition 4. Because |ψ′| and |ψ̃′| have finite positive limits at 0, they vary

slowly at 0, and the argument for Case (iii) in the proof of Proposition 2 holds with τ =

τ̃ = 0. Consequently, Proposition 2’s conclusion holds with ρ = (τ + 1)/(τ̃ + 1) = 1.

Proof of Proposition 5. Because the case that both µ = 0 and σ = 0 is excluded, |ψ′| and

|ψ̃′| vary regularly at 0, with either exponent 0 or exponent 1. Therefore, the argument for

Case (iii) in the proof of Proposition 2 holds with τ ∈ {0, 1} and τ̃ ∈ {0, 1}. Consequently,

Proposition 2’s conclusion holds with ρ = (τ + 1)/(τ̃ + 1) ∈ {1/2, 1, 2}.

Proof of Proposition 6. Denote Lj ≡ LT j and L12 ≡ LT 1,T 2 ; and note that L1, L2 and L12

are uniquely determined by the distribution of (T 1, T 2). Denote Λ12(s) ≡ Λ1(s) + Λ2(s),

s ∈ [0,∞).

Observational equivalence implies that

Λ′1(s1)

Λ′2(s2)
=
∂L12(s1, s2)/∂s1

∂L12(s1, s2)/∂s2

=
Λ̃′1(s1)

Λ̃′2(s2)
, (s1, s2) ∈ (0,∞)2.
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Consequently,

Λ̃j − Λ̃j(0) = κ [Λj − Λj(0)] ; j = 1, 2; (20)

for some κ ∈ (0,∞). Analogously to Honoré’s (1993) proof of his Theorem 1, this would

provide identification up to scale if we would know that Λj(0) = Λ̃j(0) = 0; j = 1, 2.

However, at this point, Λj(0) and Λ̃j(0); j = 1, 2; are not yet determined; and (20) only

identifies the Laplace exponents up to location and the common scale factor κ.

To resolve this problem, note that observational equivalence also implies that

Λ−1
j ◦ Λ12 = (Lj)−1 ◦ L12 = Λ̃−1

j ◦ Λ̃12 on [0,∞); j = 1, 2. (21)

Substituting (21) in (20) gives

Λ̃12 − Λ̃j(0) = κ [Λ12 − Λj(0)] ; j = 1, 2. (22)

Moreover, (20) implies that

Λ̃12 − Λ̃1(0)− Λ̃2(0) = κ [Λ12 − Λ1(0)− Λ2(0)] . (23)

Together, (22) and (23) imply that Λ̃j(0) = κΛj(0); j = 1, 2. With (20), this gives

Λ̃j = κΛj; j = 1, 2.

Finally, observational equivalence implies that L̃(κs) = L(s), s ∈ (minj Λj(0),∞).

Because minj Λj(0) < ∞, this equality analytically extends to all s ∈ (0,∞). Finally,

because L and L̃ are continuous at 0, we have that L(0) = L̃(0).
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