
TI 2007-001/1 
Tinbergen Institute Discussion Paper 

 

Do Auctions select Efficient Firms? 

 Maarten C.W. Janssen1,2 

Vladimir A. Karamychev1 

 

1 Erasmus Universiteit Rotterdam, 2 Tinbergen Institute. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 
 



Do Auctions Select Efficient Firms?1

Maarten C. W. Janssen 

Vladimir A. Karamychev 

Tinbergen Institute and Erasmus University Rotterdam 

Abstract.  This paper considers a government auctioning off multiple licenses to firms 

who compete in a market after the auction.  Firms have different costs, and cost 

efficiency is private information at the auction stage and the market competition stage.  

If only one license is auctioned, standard results say that the most efficient firm wins the 

auction (license) as it will get the highest profit in the aftermarket, i.e., it has the highest 

valuation for the license.  This paper argues that this result does not generalize to the 

case of multiple licenses and aftermarket competition.  In particular, we determine 

conditions under which auctions may select inefficient firms and therefore lead to an 

inefficient allocation of resources.  Strategic interactions in the aftermarket, in particular 

firms’ preferences to compete with the least cost-efficient firms rather than with the 

most efficient firms, are responsible for our result. 
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1. Introduction 

In many liberalization or privatization projects, governments eventually face the issue 

how to select firms that will provide the formerly publicly provided service.  One of the 

advantages of using auctions as a selection mechanism, so it is often thought, is that 

auctions select the most cost-efficient firms.  Markets where more cost-efficient firms 

are active typically yield more efficient market outcomes than when these same markets 

are served by less cost-efficient firms, i.e., other things being equal cost-efficiency is 

good for overall economic welfare.  One forceful statement of this view is by Demsetz 

(1968).  Demsetz argues that competition for the market may be a good substitute for 

competition in the market.  Moreover, in a monopoly context he argues that the most 

cost-efficient firm will win the competition for the market (read: will win the auction).  

In this paper, we will refer to this result as the monopoly result of Demsetz.  This result 

has permeated a large literature on procurement issues and, indeed, Laffont and Tirole 

(2002, pp. 307-8) state that if one ignores the processing, capture and dynamic costs of 

auctions, it is easy to see that auctions typically select the firm with the lowest cost. 

Recently, many governments have relied on a combination of competition for and 

competition in the market. An important case in point is the wave of 3G mobile 

telephony spectrum auctions that have been held around the world (see, e.g., Klemperer 

2002a, 2002b, Binmore and Klemperer 2002, and Jehiel and Moldovanu 2004 for 

overviews).  In all of the 3G auctions, multiple licenses were sold and as there were 

more firms participating in the auction than available licenses, firms had to compete to 

obtain a license.  Many governments formally or informally stated that efficient 

assignment of frequency spectrum was one of the goals to be achieved.  With cost 

asymmetries between firms, efficient assignment implies that the most cost-efficient 

firms should win licenses, and indeed the Dutch government, among others, mentioned 

selecting the most efficient firms as one of the reasons for holding an auction (see, e.g., 

Janssen et al. 2001). 

In this paper, we will argue however that the monopoly result of Demsetz does not 

carry over to the case of multiple licenses, i.e., to the case where firms compete in an 

oligopolistic fashion in the aftermarket.  In particular, there are market conditions under 

which the most cost-efficient firms will not necessarily obtain the licenses, or even 
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worse, that the least cost-efficient firms will necessarily secure them.  The main reason 

that the Demsetz result does not generalize is that in an auction with multiple licenses, a 

strategic effect works against the Demsetz result.  Basically, the strategic effect is 

present in almost all market settings as it simply confirms the fact that any firm prefers 

to compete with high-cost firms rather than with low-cost firms.  Depending on the 

market conditions and the ex-ante distribution of firms’ costs, the strategic effect can be 

so strong that the most cost-efficient firms make less profit in the aftermarket when they 

compete with each other than the least cost-efficient firms do. 

More technically, we consider a standard multi-unit uniform-price auction where 

firms have private information about their costs, and overall economic efficiency 

requires the most efficient firms to win the auction.  A strategy for the firms is a 

function specifying how a firm’s bid depends on its efficiency parameter.  The 

generalization of the Demsetz monopoly result to the case where multiple licenses are 

auctioned requires that the more efficient a firm is, the higher it bids in the auction, i.e., 

there should exist a monotone symmetric bidding equilibrium where firms’ bidding 

strategy is increasing in their efficiency parameter.  We identify conditions under which 

such a symmetric increasing bidding equilibrium exists and when it does not exit. 

A first, more easily identifiable condition under which a symmetric increasing 

bidding equilibrium fails to exist is that firms’ efficiency parameters are positively 

correlated (affiliated) so that learning one’s own efficiency parameter provides 

information about other firms’ private information.  In practice, positive affiliation of 

firms’ efficiency parameters may naturally arise in sectors where firms use similar 

production technologies and prices of inputs fluctuate with (macroeconomic) shocks 

that are common to all firms.  Alternatively, firms may implement cost-saving 

technologies that arise from an exogenous stochastic process.  In both cases, if a firm is 

more cost-efficient itself, it infers that all other firms are more cost-efficient as well.  

Therefore, more efficient firms expect to be competing with other efficient firms (who 

are known to be fierce competitors) and thus expect to make less profit in the 

aftermarket than less efficient firms.2  We will show, that for any oligopolistic market, 

no matter how weak the strategic effect is, there are distributions of firms’ types for 

which a symmetric increasing bidding equilibrium does not exist. 
                                                                          

2 In other words, in an increasing bidding equilibrium there is a kind of winner’s curse or adverse 
selection effect present, the strength of which depends on the type of bidder.  Bidders optimally “adjust” 
their bids for this effect and as the effect is stronger for more efficient firms, highly efficient firms may 
“adjust” their bid so much that the increasing bidding equilibrium strategy is destroyed. 
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A second, more surprising condition under which a symmetric increasing bidding 

equilibrium fails to exist is where firms’ efficiency parameters are ex-ante independent.  

Despite firms’ types being ex-ante independent, the types of firms that win licenses will 

be correlated.  This is so because all winning firms outbid the firm with the highest 

loosing bid.  As this ex post form of positive correlation (affiliation) actually is the only 

correlation that is relevant for determining the optimal bidding strategy, the intuitive 

reason for the nonexistence of a symmetric increasing bidding equilibrium is then the 

same as above.  We will show that in this case of statistically independent types an 

increasing equilibrium fails to exist only if the strategic effect is sufficiently strong. 

When one of these two conditions holds, a symmetric increasing bidding 

equilibrium does not exist.  This implies that only (i) asymmetric equilibria exist in 

which different firms have different bidding functions, or (ii) the equilibrium bidding 

functions are not monotone, or (iii) firms use random bidding strategies, or (iv) a 

decreasing equilibrium exists.  In all of these four cases, there is at least a positive 

probability that less efficient firms will bid more than more efficient firms and therefore 

obtain the licenses.  Thus, if firms’ types are highly correlated, or the strategic effect is 

strong enough, the overall outcome is inefficient with positive probability.3

We also show, by means of an example, that if firms’ types are correlated and the 

strategic effect is strong enough, a unique monotone symmetric bidding equilibrium is 

decreasing.  In this case, auctions always select the least efficient firms implying lower 

overall welfare than any other selection mechanism. 

The rest of the paper is organized as follows.  Section 2 describes the two-stage 

model with an auction stage and a market competition stage.  In Section 3 we then 

provide necessary and sufficient conditions for an increasing equilibrium to exist and 

illustrate what these general conditions imply in case of Bertrand and Cournot 

competition in the aftermarket.  Then, in section 4, we provide an example in which a 

unique monotone symmetric bidding equilibrium exists and that it is decreasing.  

Section 5 concludes and provides a discussion of related literature and remaining issues.  

The appendix contains all proofs. 
                                                                          

3 There are now many papers studying inefficiencies created by auctions due to aftermarket competition. 
For a recent overview, see Jehiel and Moldovanu (2006).  Hoppe, Jehiel and Moldovanu (2006) focus on 
the interaction between incumbents and entrants, Janssen (2006) considers how auctions may lead to 
coordination in the market stage and Janssen and Karamychev (2006) study selection effects in markets 
where demand uncertainty is important. Jehiel and Moldovanu (1996) and Jehiel, Moldovanu and 
Stacchetti (1996) show that even when one license is auctioned, inefficiencies may arise due to the 
existence of externalities between the bidders. 
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2. The Model 

Access to the aftermarket is limited to the firms that have obtained licenses to operate in 

the market.  The government allocates  licenses in a multi-unit auction to the 

highest bidding firms, and we assume that  firms participate in the auction.  

In the oligopolistic aftermarket, firms compete by simultaneously choosing a value of 

the strategic variable s.  Depending on the market, we can interpret s as either a price p 

or a quantity q, or any other relevant strategic variable.  The profit πi of firm i is 

determined by the level of s that firm i and the other (n - 1) firms choose, and by the 

firm’s efficiency parameter ei.  As we assume that πi is symmetric in all sj for 

2≥n

( )1+n

i

≥N

j ≠ , it 

can be written as 

( )iii
i ess ,, −= ππ , 

where s-i is a vector of strategic variables chosen by all other firms.  To shorten 

notation, we denote the partial derivatives of π as follows: 

ii s∂∂≡ /ππ , jj s∂∂≡ /ππ  for ij ≠ , ie e∂∂≡ /ππ , , etc. jiii ss ∂∂∂≡ /2
, ππ

The efficiency parameter ei positively influences the profit of firm i by reducing its total 

as well as marginal costs.  Therefore, for a typical cost function f(e, q) of a firm we will 

have: 

( ) 0, <qefe , , and . ( ) 0, >qefq ( ) 0,, <qef qe

When firms compete in quantities (Cournot competition), si = qi and firms’ profit 

function is given by 

( ) ( ) ( )iij jiiii qefqpqeqq ,,, −= ∑−π , 

so that 0>−= ee fπ  and 0,, >−= qeei fπ .  When firms compete in prices (differentiated 

Bertrand competition), si = pi and firms’ profit function is given by 

( ) ( ) ( )( )iiiiiiiii ppqefpppqepp −−− −= ,,,,,π , 

where  is firm i‘s market demand, so that ( ii ppq −, ) 0>−= ee fπ  and 0,, <−= iqeei qfπ . 

In order to ensure the existence, uniqueness and stability of the Nash equilibrium in 

the aftermarket, firms’ marginal profit function must satisfy a stability requirement.  We 

follow Bulow et al. (1985) and assume in the case of strategic complements, where 

0, >jiπ , that ( ) 0,, <+∑ ≠ik kiii ππ  and in case of strategic substitutes, where 0, <jiπ , 

that ( ) 0,, <− jiii ππ . 
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We analyze the case where the government organizes a multi-unit uniform-price 

auction to allocate the n licenses, where all the winning firms pay the same license fee 

w, which is equal to the highest non-winning bid.  This uniform-price auction allows us 

to simplify the exposition of results while keeping the formulation of the aftermarket 

competition stage quite general.  In the main body of the paper we assume that resale of 

licenses is not allowed.  In the final section, we discuss how allowing for different 

auction formats and resale of licenses after the auction will affect our results. 

A firm’s efficiency parameter ei, i.e., the type of firm i, is its private information in 

the auction stage.  The prior joint distribution of types is denoted by F(ei, e-i).  This 

distribution has a finite support [ ee, ], and is assumed to be weakly affiliated (thus 

allowing for statistical independence).  A firm i submits a bid bi based on ei.  We denote 

a monotone symmetric equilibrium bidding function by b(e), so that firm i bids b(ei) in 

equilibrium. 

Depending on what information is revealed immediately after the auction is held, 

three different scenarios can be considered: 

a) A private information scenario, where neither firms’ types nor the winning bids 

become public. 

b) An imperfect information scenario, where only the bids of the winning firms but 

not their types become public. 

c) A full information scenario, where types of all winning firms become public. 

In what follows, we mainly focus on the private information scenario.  The imperfect 

information scenario is too complicated to analyze as signaling issues significantly 

complicate firms’ bidding behavior.  As each firm has an incentive to pretend to be 

more efficient than it actually is, the auction stage would have to be analyzed as an N 

firm signaling game with each player being a sender and a potential receiver of signals.4  

The full information scenario, on the other hand, does not seem to be realistic.  

Moreover, this scenario can be analyzed in a similar way to the private information 

scenario, as we will briefly indicate in footnote 5 below. 

In the private information scenario, a type ei paying a license fee w and choosing si 

in the aftermarket has an expected market profit conditional on winning the auction of 

                                                                          
4 Goeree (2003) contains an analysis of how single-agent signaling affects bidding behavior in auctions. 
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( ) ( ) ( )( )kliiii ebwebeessE <≤− ,,,π , 

where we indicate all winning firms other than firm i by the index k and all loosing 

firms by index l.  Maximizing expected profit with respect to si and assuming that all 

other winning firms choose sk optimally yields the first-order conditions defining firms’ 

aftermarket Nash equilibrium strategy.  In case the bidding function b(e) monotonically 

increases, we denote it as b(+)(e), and write these first-order conditions as follows: 

( )( )kliiiii ezeeessE <≤= − ,,,0 **π , , ni ,,1K=

where z denotes the type of firm that submits the nth highest bid among (N – 1) firms 

other than firm i determining the license fee w, i.e., w = b(+)(z).  Under the assumptions 

that we made about the profit function ( iii ess ,, − )π , these first-order conditions uniquely 

define a market stage Nash equilibrium strategy . ( )zess ii ,* =

3. When an increasing bidding equilibrium does not exist 

We are now ready to analyze the necessary and sufficient conditions for an increasing 

symmetric bidding equilibrium to exist.  We first derive these conditions for the general 

case described in the previous section.  Then we analyze two sets of circumstances 

(firms’ types being independently distributed, and affiliated types) under which the 

necessary conditions cannot be satisfied so that the auction stage does not have an 

increasing symmetric bidding equilibrium.  With independent types, we also indicate 

what these conditions imply in case of Bertrand and Cournot competition. 

Let b(+)(e) be an increasing symmetric equilibrium bidding function and 

 be the corresponding firms’ aftermarket Nash equilibrium strategy.  

Denoting a firm’s reduced-form profit by 

( zess ii ,* = )

( )zee ii ,, −π , i.e., 

( ) ( )iiiii esszee ,,,, **
−− ≡ ππ , 

allows us to write the expected profit of type x conditional on getting a license as 
( ) ( ) ( )( )kliii ezexezeeEzxv <≤=≡ −
+ ,,,, π . 

The function v(+)(x, z) is a firm’s valuation function, which is used in the auction stage 

to determine the optimal bidding strategy.  The following proposition derives an 

equilibrium bidding function and necessary and sufficient conditions for an increasing 

symmetric bidding equilibrium to exist. 
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Proposition 1.  If  and  for all ( ) 0>+
xv ( ) ( ) ( ) ( ) 0,, >+ ++ eeveev zx [ ]eee ,∈ , then there exists 

a unique symmetric increasing bidding equilibrium given by b(+)(e) = v(+)(e, e).  If the 

equilibrium exists, then  and  for all ( )+ ( ) ( )++( ) 0, ≥eevx ( ) ( ) 0,, ≥+ eeveev zx [ ]eee ,∈ . 

The statements made in Proposition 1 can be understood as follows.  Suppose that x = z.  

In other words, suppose that firm i and another firm, let us say firm m, have the same 

type, i.e., , so that they together determine the auction price w, and ek >z 

for all other winning firms k.  In this case, firms i and m compete for only one 

remaining license.  They will bid their entire expected market profits v(+)(z, z), so that 

the equilibrium bidding function b(+)(e) must satisfy b(+)(z) = v(+)(z, z). 

mi ezxe ===

Suppose now that x is marginally larger than z.  Then, in order to get a license, firm 

i must get a marginally higher expected profit v(+)(x, z) than firm m, so that firm i can 

bid marginally higher than firm m.  Thus, v(+)(x, z) must be an increasing function of x at 

x = z, i.e.,  is the first necessary condition.  The other necessary condition 

 then guarantees that the actual bid v(+)(x, x) of firm i is indeed 

higher than the bid v(+)(z, z) of firm m. 

( ) ( ) 0, ≥+ eevx

( ) ( ) ( ) ( ) 0,, ≥+ ++ eeveev zx

On the other hand, if b(+)(e) = v(+)(e, e) is a strictly increasing bidding function, the 

sufficient condition , which basically is the second-order condition for profit 

maximization, guarantees that a firm has no profitable deviation from b(+)(e). 

( ) 0>+
xv

From the point of view of a winning firm i, the types of all other (n - 1) winning 

firms are affiliated even if the types are ex-ante independent.  The degree of this 

affiliation, in general, is determined by firm i’s own type and by the ex-ante distribution 

of types.  In the limit case, when types of all competitors of firm i are perfectly 

correlated, i.e., when  for all k, the partial derivatives of the reduced-form profit 

function 

zek =

π  can be analytically calculated.  This is the content of the following lemma.  

Lemma 1.  In case  for all k, the partial derivatives of the reduced-form profit 

function of firm i 

zek =

( )zee ii ,, −π  at  are: xzee ji ===

( ) 0,, >= ei xxx ππ , 

( ) 0,,
,

, <−=
ii

eij
j xxx

π
ππ

π  and 
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( ) ( )
( )( ) iijiii

eijij
z n

n
xxx

,,,

,,
2

1
1

,,
πππ

πππ
π

−+
−

= . 

Lemma 1 turns out to be useful in the rest of this section.  Using a continuity argument, 

it is easy to see that the inequalities 0>π i  and 0<π j  also hold if competitors’ types 

are highly (but not perfectly) correlated, and if x and z are close to each other (but not 

coincide).  Hence, in accordance with Lemma 1, if the ex post correlation of all winning 

firms’ types is large, the direct effect iπ  is always positive, i.e., each firm wants to be 

more efficient, and the indirect strategic effect jπ  is negative, i.e., each firm wants to 

compete with less efficient firms.  It follows that there is a tension in the auction stage 

of the model.  On one hand, the positive direct effect forces a firm to bid higher if the 

firm is more efficient.  On the other hand, the negative strategic effect influences a firm’ 

valuation through the ex post affiliation and forces a firm to bid lower if the firm is 

more efficient. 

An interesting consequence of Lemma 1 is that the auction price w = b(+)(z) cannot 

be considered a sunk cost for a firm in the aftermarket stage, i.e., 0≠zπ .  This is 

because the auction price effects the distribution of firms’ competitors and through their 

aftermarket strategy it indirectly influences a firm’s profits. 

Statistically independent type 

Using Proposition 1 and Lemma 1 as a general tool, we now first analyze the case 

where firms’ types are independent.  Let the firms’ efficiency parameters ei be 

identically and independently distributed over a compact and bounded support in 

accordance with an arbitrary twice differentiable distribution function , which 

density is denoted by .  The following proposition states a condition under which 

an increasing equilibrium fails to exist. 

( )xFe

( )xfe

Proposition 2.  If the condition 

( )
( )( )jiii

eij
e n

n

,,

,

1
1

2
ππ

ππ
π

−+
−

<  

holds at eee ji == , then the auction stage does not have a symmetric increasing 

bidding equilibrium. 
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We have argued above that firms’ types (conditional on winning) are ex-post affiliated 

even if the types are ex-ante independent.  Proposition 2 uses the fact that if z is close to 

the upper end of the distribution e , this affiliation is reasonably strong because the 

types of all winning firms will be between z and e .  Together with a sufficiently strong 

strategic effect given by the inequality in Proposition 2, an increasing bidding 

equilibrium fails to exist.5

We will illustrate Proposition 2 by considering some specific functional forms 

under Cournot and differentiated Bertrand competition.  These examples strengthen the 

idea conveyed in this section, namely that if the strategic effect is strong enough a 

symmetric increasing bidding equilibrium fails to exist.  The examples identify 

conditions in terms of demand elasticities and cross-price effects guaranteeing a strong 

enough strategic effect. 

Example 1:  Cournot competition. 

Let firms have constant marginal cost so that the cost function is , 

with 

( ) ( ecqqef −=, )

ec ≥ , and let market demand be characterized by a constant price elasticity r, 

i.e., .  Under Cournot competition, a firm’s profit function becomes rpQ −=

( ) ( ) ( )( )i
r

j jiiii ecqqeqq −−= −
− ∑ /1,,π , 

so that equilibrium output levels at ei = ej = e are given by 

( )
( )

r

ji ecnr
nr

n
qqq ⎟

⎠

⎞
⎜
⎝

⎛
−
−=== 11* .  

Proposition 2 tells us that a sufficient condition for a symmetric increasing bidding 

equilibrium not to exist can be obtained by investigating the partial derivatives of 

the profit function at this point.  One can easily calculate them to be: 

( )
1−

−−=
nr

ec
jπ , 

( )( )(
( )

)
*, 1

12
nrqnr

ecrnr
ii −

−+−−=π , 

( )( )(
( )

)
*, 1

1
nrqnr

ecrnr
ji −

−+−−=π , 
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informational scenarios.  Consequently, Proposition 2 holds in both settings. 



*qe =π , and 1, =eiπ . 

Substituting these values into the condition of Proposition 2 we get that if 

 a symmetric increasing bidding equilibrium does not exist.  Thus, if 

demand is relatively inelastic the strategic effect is strong enough to dominate the 

direct effect.  This is quite intuitive as in this case a small reduction in total output 

(due to higher cost) has large price (and thus, profit) effects.  On the other hand, 

we do not want this non-existence result to be driven be by the fact that the market 

stage equilibrium is not well-defined.  It is easy to see that the stability condition 

( 1/2 +< nr )

( ) 0,, <− jiii ππ  that we imposed reduces in this case to , i.e., the price 

elasticity of demand should not be too small.  Consequently, if 

nr /1>

( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
+

∈
1

2,1
nn

r , 

the condition of Proposition 2 as well as the stability assumption mentioned in 

Section 2 are satisfied for any ex-ante independent distribution of types.  Thus, for 

any number of licenses  that are auctioned there exist values of the price 

elasticity of demand such that an increasing bidding equilibrium does not exist.

2≥n
6

Example 2:  Differentiated Bertrand competition. 

If, to the contrary, firms compete in prices with the same cost function as in 

Example 1, and firms’ market demands are linear and given by 

( ) ∑ ≠− +−=
ij jiii papppq 1, , 

then the profit function becomes 

( ) ( )( )( )∑ ≠− +−−−=
ij jiiiiii papecpepp 1,,π . 

Equilibrium prices at ei = ej = e can be easily calculated to be given by 

( )( ) (( )12/1* −−−−=== naecppp ji ) . 

Again, to invoke Proposition 2 we have to investigate the partial derivatives of the 

profit function π.  One can easily see that at this point they are: 

( ) ( )( )
( )( )12

111
−−

−−−−=
na

naecajπ , 

                                                                          

)1/2,1/1 +−∈ nn 0, <ji
6 In this example, quantities are strategic substitutes if r  as ( ) (( ) π , and are 

strategic complements if  as (( )1/1,/1 −∈ nnr 0, >ji) π . 

 11



( ) ( )( )
( )( )12

111
−−

−−−−=
na

naec
eπ , 

2, −=iiπ , aji =,π , and 1, −=eiπ . 

As in Example 1, we need take two constraints into account.  On one hand, 

substituting these values into the condition of Proposition 2 we can check that if 

 a symmetric increasing bidding equilibrium does not exist.  The 

parameter a measures the strategic effect in this case and this effect must be 

sufficiently strong.  On the other hand, the stability condition 

(( 13/4 −> na ))

( ) 0,, <+∑ ≠ik kiii ππ  

reduces in this case to , i.e., the strategic effect cannot be too large.  

Thus, if 

( 1/2 −< na )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∈
1

2,
13

4
nn

a , 

a symmetric increasing bidding equilibrium does not exist for any ex-ante 

independent distribution of firms’ types.  Again, it is easy to see that for any  

there are parameter values such that this is the case. 

2≥n

Affiliated types 

In the examples above, we have shown that if the strategic effect is stronger than the 

direct effect then for any independent prior distribution of firms’ types, an increasing 

equilibrium does not exist.  It turns out that that even if the strategic effect is weak (but 

still exists) an increasing equilibrium may still fail to exist provided firms’ types are ex-

ante affiliated.7  

In the sequel we consider a market stage with conditions that commonly hold in 

oligopoly markets, namely 0>iπ , i.e., firms prefer being more cost-efficient 

themselves, and 0<jπ , i.e., firms prefer competing with less cost-efficient 

competitors.  For simplicity, we assume that firms’ cost function is given by 

, c ≥ 2, and that all efficiency parameters ej with probability a half are 

uniformly and independently distributed over the range [0, 1], and with probability a 

( ) ( ecqqef −=, )

                                                                          

7 It is easy to see that if the strategic effect is completely absent, i.e., if 0== zj ππ , so that firms have 

local monopolies, the Demsetz monopoly result continues to hold. 

 12



half they are uniformly and independently distributed over the range [1, 2].  If the type 

of firm i is marginally below 1, i.e., ε−= 1ie  where ε > 0 is small, it expects to 

compete with firms which types are distributed over [1 – ε, 1], in which case: 
( )( ) ( )( ) ( ) [ ]( )1,11,,11,11 εεεπεεε −∈−−=−−=− −

++
ki eeEvb . 

If, on the other hand, the type of firm i is marginally above 1, i.e., ε+= 1ie , the firm 

expects to compete with firms which types are distributed over [1 + ε, 2], in which case: 
( )( ) ( )( ) ( ) [ ]( )2,11,,11,11 εεεπεεε +∈++=++=+ −

++
ki eeEvb . 

It is easy to see that the bidding function is discontinuous and actually decreases at 1: 
( )( ) ( )( )( ) ( ) ( ) [ ]( ) 02,11,1,11,,111lim

0
<∈−=−−+ −

++

→ ki eeEbb ππεε
ε

, 

due to 0<jπ .  Hence, a symmetric increasing bidding equilibrium fails to exist no 

matter how weak the strategic effect is. 

4. On decreasing bidding equilibria 

The analysis in the previous section leads us to a natural question, namely whether there 

exist market structures and types’ distributions, for which not only an increasing 

equilibrium fails to exist, but instead a symmetric decreasing equilibrium does exist.  In 

such an equilibrium, the least-efficient firms always submit the highest bids and obtain 

the licenses to compete in the aftermarket.  In this section, we first argue that the 

strategic effect and ex-ante affiliation of firms’ types are both necessary for a decreasing 

equilibrium to exist.  Next, we provide an example of specific market conditions under 

which a decreasing equilibrium exists. 

When a monotone symmetric equilibrium bidding function is a decreasing 

function, firm’s valuation function v(-)(x, z) must be defined as follows 
( ) ( ) ( )( )lkiii ezexezeeEzxv ≤<=≡ −
− ,,,, π . 

The following proposition derives an equilibrium bidding function and necessary and 

sufficient conditions for a symmetric decreasing bidding equilibrium to exist. 
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Proposition 3.  If  and  for all ( ) 0<−
xv ( ) ( ) ( ) ( ) 0,, <+ −− eeveev zx [ ]eee ,∈ , then there exists 

a unique symmetric decreasing bidding equilibrium given by b(-)(e) = v(-)(e, e).  If the 

equilibrium exists, then  and  for all ( )− ( ) ( )−−( ) 0, ≤eevx ( ) ( ) 0,, ≤+ eeveev zx [ ]eee . ,∈

( ) 0<−
xv

The proof of Proposition 3 is similar to the proof of Proposition 1 and is, therefore, 

omitted.  Consider first the condition .  If firms types are independent, then 

( ) ( ) ( )( )le≤kiix zezexEzxv <≡ −
− ,,, π . 

Under the assumption that firms prefer being more cost-efficient themselves we have 

that ( ) 0,, >− zex iiπ  and, therefore, v .  Hence, a decreasing equilibrium never 

exists if types are statistically independent. 

( ) 0>−
x

If, on the other hand, there is no strategic effect, i.e., 0== zj ππ , and firms have 

local monopolies, we have ( ) ( ) 0, >==−
eix zxv .  Hence, also in this case a decreasing 

equilibrium does not exist. 

ππ

In the remaining of this section, we provide an example of market conditions where 

a unique symmetric bidding equilibrium exists that is decreasing.  To this end, we take 

the following distribution F* of firms’ efficiency parameters ej.  Let a macroeconomic 

fundamental (e.g., interest rate, oil price, the growth rate of the economy etc.) β be 

distributed over the interval [0, 1] in accordance with an arbitrary (twice differentiable) 

distribution function ( ) ( )ttF <≡ ββ Pr .  Then, for any given β let all ej be independently 

and uniformly distributed over the interval ( ) ( )[ ]ββ xx , , where ( ) ( )βεβββ −−≡ 1x , 

( ) ( )βεβββ −+≡ 1x , and ( 1,0∈ )ε  is a parameter, i.e., let the conditional distribution 

( ) ( )txetxF je =<≡ βPr  be 

( ) ( )
( ) ( )txtx

txxtxFe −
−=  for ( ) ( )[ ]txtxx ,∈ . 

The reason why we consider this specific distribution is that for small values of ε, if a 

firm i has a type x, the distribution of types of all other firms conditional on x is 

concentrated on a small neighborhood of x.  Therefore, all firms that are competing in 

the aftermarket have approximately the same type, the Nash equilibrium is almost 

symmetric, and a decreasing equilibrium bidding function can be analytically calculated 
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Figure 1.  Support of the conditional distribution ( ) ( )txetxF je =<= βPr . 

in the limit when ε converges to zero.  Figure 1 shows the support ( ) ( )[ ]txtx ,  of the 

conditional distribution ( )txFe . 

Proposition 4.  Let  firms with constant marginal costs  compete in 

an auction for n licenses, let the winning firms compete in quantities in a market with 

constantly elastic demand Q , and let firms’ efficiency parameters ei be 

distributed in accordance with the distribution F*.  If the price elasticity r satisfies 

1+= nN 0>− iec

r−= p

( )
233

21
2

2

−+
++≡<<
nn

nnnrr
n

, 

then there exists an ( ) 0,~ >nrε  so that for all ( )εε ~,0∈  the auction stage has a unique 

symmetric bidding equilibrium that is decreasing. 

In the example considered in Proposition 4, the demand elasticity r must not be too 

small (r > 1/n) in order to ensure that the aftermarket Nash equilibrium exists and is 

stable.  On the other hand, r must be small enough ( ( )nrr < ) so that the strategic effect 
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is sufficiently strong.  The minimum number of licenses for this decreasing equilibrium 

to exists is n = 3. The main reason is that the strategic effect should be strong enough 

and this effect gets stronger, the larger the number of firms competing in the market 

place.8  

5. Discussion and Conclusion 

In this article, we have shown that when multiple licenses are auctioned to firms which 

compete in an aftermarket, these licenses do not have to end up in the hands of the most 

efficient firms.  This implies that auctions may create aftermarket inefficiencies.  The 

main reasons for this result are the presence of an informational externality and the fact 

that rational bidders take a kind of adverse selection or winner’s curse into account.  

Jehiel and Moldovanu (2006) argue that in case firms’ aftermarket profits depend on 

private information in the hands of other winning firms (in our case cost) there is an 

informational externality.  The kind of adverse selection or winner’s curse that is 

present in our context is that firms prefer to compete with less efficient firms and that 

when the auction selects the most efficient firms, bidding firms have to take this 

selection effect into account.  We have identified conditions under which efficient firms 

downsize their bid so much more than less efficient firms that an increasing bidding 

equilibrium does not exist. 

The model developed in this paper does not fit into the now standard assumptions 

of the affiliated valuation model (Milgrom and Weber, 1982).  An important assumption 

in the affiliated valuation model is that a player’s valuation is an increasing function of 

his own signal as well as of the private signals received by all other players.  In our 

case, where firms receive a signal of their cost parameter, firms’ valuation is an 

increasing function of its own signal, but a decreasing function of the signals of other 

firms.  Moreover, but less important, a firm only cares about the signals received by 

other winning firms. 

In this paper, we have focused our attention only on a standard multi-unit uniform-

price auction.  It can be shown, however, that other simultaneous-bid multi-unit 
                                                                          

8 Formally, the proposition is stated for the case where the number of interested firms is just one more 

than the number of available licenses. This is a technical requirement as otherwise we cannot integrate out 

the expressions in the profit function. 
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auctions, e.g., a pay-your-bid auction, also suffer from aftermarket inefficiency 

provided the strategic effect or the ex-ante types’ correlation is sufficiently strong.  

Firms’ desire to compete with less efficient competitors is responsible for such 

inefficiency. The analysis is much more complicated in case of sequential auctions, 

where licenses are sold one-by-one.  It is easy to see that the last license ends up in 

hands of the most efficient remaining firm.  Nevertheless, the strategic effect might 

create inefficient allocations in selling preceding licenses. 

We have not allowed for resale in this paper.  Resale opens up the possibility that 

in case of an inefficient allocation of licenses, an efficient firm buys a license from a 

less efficient firm.  Such a single transaction would also be mutually beneficial because 

for given competitors’ efficiency levels, an efficient firm makes more profits than a less 

efficient firm does.  However, it is much less clear whether such a transaction is feasible 

in case other firms are also allowed to transact so that a sequential resale market would 

emerge.  Analyzing the model while allowing for reselling turns out to be quite 

complicated.  Apart from the fact that reselling is sometimes not allowed or 

prohibitively costly, there is another good reason not to consider the possibility of 

reselling. For example, in case a decreasing equilibrium exists, n most efficient firms 

together make less profit than n least efficient firms do.  If, together with reselling, we 

allow firms to make side payments to other firms for not selling their licenses, one can 

show that the license holders (together) can “outbid” an offer of a more efficient firm as 

the profits they would loose when this new firm competes in the market are larger than 

the profit the newcomer could make.  Hence, a decreasing bidding equilibrium yields an 

ex-post efficient allocation from the perspective of the coalition of winning firms. 

This paper does not consider the question whether an optimal mechanism exist in 

the present situation.  This is an interesting, but non-trivial, question.  What is clear, 

however, is that the results obtained by Ausubel (2004) do not directly apply, as the 

present model does not satisfy the standard assumptions of the affiliated valuation 

model (as indicated above). 
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Appendix 

Proof of Proposition 1.  Let us define Z to be the type of the firm that submits the nth 

highest bid amongst all (N - 1) firms other than firm i, i.e., Z is the nth highest order 

statistics among ej, j ≠ i.  We denote the distribution of Z conditional on ei = x by 
( ) ( ) ( )+ ( )xezZxzG i =<= Pr , and the corresponding density function by ( )+ xzg . 

Suppose that all firms other than i follow the bidding function b(+)(e), and Z takes a 

value z.  We consider a firm i, which has a cost parameter ei = x and which bids b(+)(y).  

If y < z, firm i looses the auction and receives no profit.  If, on the other hand, y > z, firm 

i gets a license at the auction price , which yields the conditional expected 

profit  to firm i.  The unconditional expected profit of a firm with cost 

parameter x and a bid b(+)(y) is 

( ) ( )zbw +=
( ) ( ) ( ) ( )zbzxv ++ −,

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )∫
<

++++ −=
yz

dzxzgzbzxvyxV ,, . 

Maximizing  with respect to y yields the first-order condition 

, i.e., .  The necessary second-order condition in this 

case can be written as .  Finally,  is an increasing 

function only if . 

( ) ( yxV ,+ )
) )

)

) )

( yxx
y

,maxarg= ( ) ( ) ( ) ( xxvxb ,++ =

( ) ( ) 0, ≥+ xxvx
( ) ( ) ( ) ( xxvxb ,++ =

( ) ( ) ( ) ( ) 0,, ≥+ ++ xxvxxv zx

Suppose now that  and .  In order to check that 

 is indeed an optimal bid, we evaluate  for any 

y ≠ x: 

( ) 0>+
xv ( ) ( ) ( ) ( ) 0,, >+ ++ xxvxxv zx

( ) ( ) ( ) ( xxvxb ,++ = ( ) ( ) ( ) ( yxVxxV ,, ++ −

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) 0,

,,,,

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−=−

∫ ∫

∫

++

<<

+++++

x

y

x

z
x

xzy

dzxzgdtztv

dzxzgzzvzxvyxVxxV

 

This shows that firm i has no profitable deviations. ■ 

Proof of Lemma 1.  If a firm i gets a license, has a type ei = x, and chooses si, whereas 

all its competitors have the same type z, the market profit of firm i can be written as 

follows: 

( )( )zexeessE kiiii ==− ,,,π . 
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Maximizing this expression with respect to si yields the following first-order condition: 

( )( ) ( )( )xszxszexeessE iikiiiii ,,,,,,0 ***
−− ==== ππ . 

Differentiating it with respect to x and z, taking into account that firm i is of type x and 

all other firms are of type z and choose , and evaluating the resulting 

expression at z = x yields: 

( zzssk ,* = )

eiii e
s

,,0 ππ +
∂
∂=  and 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+

∂
∂−+

∂
∂=

z
s

e
sn

z
s

jiii ,, 10 ππ . 

Solving them together provides us with the following partials of the Nash equilibrium 

strategy  at z = x: ( zxs , )

ii

ei

e
s

,

,

π
π

−=
∂
∂  and 

( )
( )( ) iijiii

eiji

n
n

z
s

,,,

,,

1
1

πππ
ππ

−+
−

=
∂
∂ . 

Then, substituting these expressions into ( ) jj es ππ ∂∂= /  and ( )( ) jz zsn ππ ∂∂−= /1  

finally yields 

( ) 0,, >= ei xxx ππ , 

( ) 0,,
,

, <−=
ii

eij
j xxx

π
ππ

π  and 

( ) ( )
( )( ) iijiii

eijij
z n

n
xxx

,,,

,,
2

1
1

,,
πππ

πππ
π

−+
−

= . 

In quantity competition settings it is 0<jπ  and 0, >eiπ  whereas in price competition for 

substitutes it is 0>jπ  and 0, <eiπ .  Therefore, ( ) 0,, >xxxzπ  when s are strategic 

substitutes ( 0, >jiπ ), and ( ) 0,, <xxxzπ  when s are strategic complements ( 0, <jiπ ). ■ 
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Proof of Proposition 2.  We will show that under the condition of the proposition, the 

necessary existence condition  for an increasing equilibrium fails 

at 

( )( ) ( )( )++ 0,, ≥+ eeveev zx

ee = .  To this end, we first calculate firms’ aftermarket Nash equilibrium strategy 

( ) ( )ees ,  and its partial derivatives.  Then, we calculate firms’ valuation function ( )+ eev ,  

and its partial derivatives. 

In the limit when ( ) ( eezx ,, → ) ), the Nash equilibrium strategy  can be 

written as 

( zxs ,

( ) ( ) ( ) ( ) ( ) ( )210, szesxeszxs −−−−= , where 

( ) ( )eess ,0 ≡ , 

( ) ( ee
x
ss ,1

∂
∂≡ ) , and 

( ) ( )ee
z
ss ,2

∂
∂≡ . 

Dropping arguments in all functions evaluated at ( ) ( eezx ,, = ), the first-order condition 

( )( kliiiii ezexeessE <≤== − ,,,0 **π ) for independent types in the first-order 

approximation becomes 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )zes

ze
ezeeE

snsxes

ezxeszeseenszesxeE

kk

ezjiiieiiii

keijikiii

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
<−

+−+−−+−=

<−−−+−−−−+−−=

↑

12
,

2
,,

1
,

,,
21

,
21

lim1

10

πππππ

ππππ
 

At ( ) ( eezx ,, = ), the first-order condition implies iπ=0 .  Then, denoting 

( )
ze

ezeeE
E kk

ez −
<−

≡
↑

lim~ , 

the first-order condition implies the following two equations determining  and : ( )1s ( )2s
( )

( ) ( ) ( ) ( )( )⎩
⎨
⎧

+−+=
+=

12
,

2
,

,
1

,
~10

0
sEsns

s

jiii

eiii

ππ
ππ

. 

Solving this system yields 

( )

( ) ( )
( )( )⎪

⎪
⎩

⎪⎪
⎨

⎧

−+
−

=

−=

E
n

n
s

s

jiiiii

eiji

ii

ei

~
1

1

,,,

,,2

,

,1

πππ
ππ

π
π

 

Hence, firms’ valuation function  in the limit ( )( )( zxv ,+ ) ( eezx ,, = ) can be written as 
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( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

( )
( )( )( ) ( ) e

jiii

eij

ej

kejk

xeze
n

En

xezessEn

ezxeszeseenEzxv

π
ππ

ππ
π

πππ

πππ

−−−
−+

−
+=

−−−+−−=

<−−−+−−−=+

,,

,

21

21

1

~1

~1

1,

 

Finally, the necessary condition  for an increasing equilibrium to 

exist fails at 

( )( ) ( )( ) 0,, ≥+ ++ eeveev zx

ee =  if 

( ) ( ) ( ) ( ) ( )
( )( )jiii

eij
ezx n

En
eeveev

,,

,

1

~1
,,0

ππ
ππ

π
−+

−
−=+> ++ . 

In accordance with Lemma 1, 0, <eijππ .  Hence, the above inequality can be written as 

( )( )
( ) eij

jiiie

n
n

E
,

,,

1
1~

ππ
πππ

−
−+

> . 

Calculating E~  yields: 

( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) 2

1
'2

lim1limlim~ ≥
−−

−=
−

−
=

−
<−

=
↑↑↑

∫

∫
zfzezf

zf

dxxfze

dxxfxe

ze
ezeeE

E
ee

e

eze

z
e

e

z
e

ez

kk

ez
. 

The last inequality holds as an equality if ( ) 0>↑ ezfe , and as a strict inequality if 

( ) 0=↑ ezfe  (so that ( ) 0' ≤↑ ezfe ).  Therefore, the necessary existence condition fails 

if 

( )
( )( )jiii

eij
e n

n

,,

,

1
1

2
ππ

ππ
π

−+
−

< . 

This ends the proof. ■ 

Proof of Proposition 4.  First, we derive firms’ aftermarket Nash equilibrium strategy, 

which we denote by ( )ε;, zxs

( )

 to emphasize its dependence on ε, under the assumption 

that in the auction stage all they follow an increasing bidding function b(+)(e).  Under the 

assumption that the profit function π is twice continuously differentiable, ε;, zxs  is 

continuously differentiable with respect to all its argument, and we represent it as a 

first-order Tailor expansion.  We show that this bidding function b(+)(e) does not satisfy 

the second order condition, hence, an increasing symmetric bidding equilibrium does 

not exist.  Second, we repeat the previous exercise for a decreasing bidding function 
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b(-)(e) and analyze conditions under which b(-)(e) is indeed an equilibrium bidding 

function. 

From now on we denote by x a type of a firm i.  Types of all other (winning and 

loosing) firms are ej, (ek and el = z respectively), and we define 

( ) ελ /xejj −≡ , 

( ) ( ) ( ) ( )εεεε 2/411 2 ⎟
⎠
⎞⎜

⎝
⎛ −+−+≡ xxt  and 

( ) ( ) ( ) ( εεεε 2/141 2 ⎟
⎠
⎞⎜

⎝
⎛ −−+−≡ xxt ) , 

so that for any : [ ]1,0∈x

( )( xtxx ≡ ) and ( )( )xtxx ≡ . 

Thus, for given x, conditional distribution ( ) ( xetxtF i =<≡ ββ Pr ) has the support 

[ ( ) ( )xtxt , ], and conditional distribution ( ) ( xexF ije =<≡ λλλ Pr ) has the support 

[ ( ) ( )xx λλ , ], where both ( )xλ  and ( )xλ  are bounded:9

( ) ( ) ( ) 5.01/ −≥−−−= ttxtx ελ  and 

( ) ( ) ( ) 5.01/ ≤−+−= ttxtx ελ . 

Denoting ( )ε;, zxs  itself and its partial derivatives evaluated at  as ( )0;, xx
( )( ) ( )0;,0 xxsxs ≡ , 

( )( ) ( )0;,1 xx
x
sxs

∂
∂≡ , 

( )( ) ( 0;,2 xx
z
sxs

∂
∂≡ ) , and 

( )( ) ( )0;,3 xxsxs
ε∂

∂≡ , 

allows ( )ε;, zxs  and ( )ε;, zes j  to be written in the first-order approximation as 

( ) ( ) ( ) ( )( )ελε 320;, ssszxs z ++=  and 

( ) ( ) ( ) ( ) ( )( )ελλε 3210;, sssszes zjj +++= . 

Dropping arguments lists in all functions evaluated at z = x, we write the first-order 

condition 

                                                                          

9 These inequalities can be obtained by minimizing ( )xλ  and maximizing ( )xλ  with respect to x. 

 24



( ) ( )( )( )kliii ezexeezeszxsE <=== ,,,;,,;,0 1 Kεεπ  

as follows: 
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )( )

( ) ( )( ) ( ) ( ) ( ) ( )( )( )( )( )
( )( ) ( ) ( )( ) ( ) ( ) ( )( )ελπλπππ

λλπλπεπ

ελλελπ

ε klikjizjiiii

klizk kjiziii

klizzi

ezexeEsnssn

ezexessnsssE

ezexexsssssssE

<==−++−++=

<==+−++++=

<==+++++=

→

∑
,lim11

,1

,,,,0

0

1
,

32
,,

321
,

32
,

321
1

0320 K

 

Let, first, 0=ε .  In this case, the first-order condition implies iπ=0 , which for a given 

profit function 

( ) ( )( )i
r

j jiiii ecssess +−= −
− ∑ /1,,π  

yields the symmetric aftermarket Nash equilibrium strategy (see section 3): 

( ) ( ) ( )
( )

r

xcnr
nr

n
sxxs ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−== 110;, 0 . 

In this case 

( ) ( )

( )1

0

−
−=
nr

sxcπ , 

( )
( )1−

−−=
nr

xc
jπ , 

( )( )(
( ) ( )

)
0, 1

12
nrsnr

xcrnr
ii −

−+−−=π , 

( )( )(
( ) ( )

)
0, 1

1
nrsnr

xcrnr
ji −

−+−−=π , and 

( ) ( )
( )

( )xc
rsss
−

=+
0

21 . 

Using iπ=0 , we rewrite the first-order condition for 0≠ε  and 0=zλ  as follows: 

( )( ) ( ) ( ) ( ) ( )
ε

πππ
ε

xezexeeE
snsn klik

jijiii
−<==

−+−+=
→

,
lim110

0

1
,

3
,, , 

so that 

( ) ( )
( )( )

( )
( )( )

εππ
π

ε

xxxHs
n

n
s

jiii

ji −
−+

−
−=

+

→

,lim
1

1
0

1

,,

,3 , 

where we defined functions 
( )( ) ( )klik ezzexeeEzxH ±<±==≡± ,,, . 
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Properties of  are derived in the following lemma, which is proven after the 

proof of the proposition. 

( )( zxH ,± )

( )( )zxH ,±

Lemma 2.  Let ei be distributed in accordance with the distribution function F*.  Then, 

 for small ε can be written as follows: 

( ) ( ) ( )
( )

( )
( ) ( )εε o
n

xnx
n

znnxzxH +
+
−±

+
++=±

1
1

12
2, , 

Using Lemma 2, we rewrite  as follows: ( )3s

( ) ( ) ( )
( ) ( )( )

( )1

,,

,3

11
11

s
nn

xxnn
s

jiii

ji

ππ
π

−++
−−

−=  

Plugging this expression into the first-order condition yields: 

( ) ( )
( ) ( )( )

( ) ( ) ( )( ) ( )
( )

( )( )
( ) ( )( )

( )1

,,

,

0

1

,,

,2

112
12

1,1
lim

11
1

s
nn

nn
xz

xnxxezexeeEn
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nn
n

s

jiii
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jiii
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ππ
π

ε
ππ

π
ε

−++
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−=

−
−−−<==+

−++
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−=
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Solving  together with the above expressions for  and  

finally yields: 

( ) ( ) ( ) ( xcrsss −=+ /021 ) ( )2s ( )3s

( ) ( ) ( )( )
( ) ( ) ( )( )

( )0

,,

,,1
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112

s
nnnxc

nnr
s

jiii
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ππ
ππ
−++−

−++
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( ) ( )( )
( ) ( ) ( )( )

( )0
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112
12

s
nnnxc
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s

jiii
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ππ
π

−++−
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( ) ( ) ( )
( ) ( ) ( )( )

( )0

,,
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s
nnnxc
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s
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ji

ππ
π

−++−
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−= . 

Hence, the aftermarket Nash equilibrium strategy ( )ε;, zxs  for small ε and (z – x) is 

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )

( )0

,,

,

112
1221

1;, s
nnnxc

xnxxznnr
zxs

jiii

ji

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−++−
−+−+−

−=
ππ

επ
ε . 

This ends the analysis of the aftermarket stage of the game. 

In order show that an increasing symmetric bidding equilibrium does not exist for 

small ε, we calculate firms’ valuation function , and verify that for given 

parameters’ restrictions, .  Using the first-order approximation for 

( ) ( ε;, zxv + )

)

( ) ( ) 00;, <+ xxvx

( ε;, zxs , firms’ valuation function  in the first-order approximation can be 

written as follows: 

( ) ( ε;, zxv + )
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( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )( )
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Substituting expressions for π, πj, πi,i, πi,j, and  finally yields the following valuation 

function : 

( )0s
( ) ( )ε;, zxv +

( ) ( )
( )

( ) ( )( ) ( )( ) (( )
( ) ( ) ( )( ) ( ) (( )( )

)
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⎠
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⎜⎜
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xcnr

rn
v

r

111212
1221211

1
1

1

2

ε  

But then 

( ) ( ) ( )
( )
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x , 

provided ( )nrr < .  This implies that  for sufficiently small (but strictly 

positive) ε, so that an increasing symmetric bidding equilibrium does not exist. 

( ) ( ) 0;, <+ εxxvx

Suppose now that there exists a symmetric decreasing equilibrium bidding function 

b(-)(e).  In a similar way as above, firms’ valuation function  can be written 

as follows: 

( )( ε;, zxv − )

( ) ( )
( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) (( )( )) ⎟⎟
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⎝
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1
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for ( )nrr < , and 
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By continuity argument, there exists an 0~ >ε  so that  and  

for all 

( )( ) 0;, <− εzxvx
( )( ) 0;, <− εzxvz

( )εε ~,0∈  and feasible z.  Therefore, the proposed function  is 

indeed decreasing and is a unique symmetric equilibrium bidding function. ■ 

( )( ) ( )( xxvxb ,−− = )
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Proof of Lemma 2.  We denote distribution functions as follows: 

( ) ( )ttF <≡ ββ Pr , 

( ) ( zexezxF kie ><≡ ,Pr, ) , and 

( ) ( )tzexetzxF kie =><≡ β,Pr, , 

and the corresponding densities be 

( ) ( ) 1/ =≡ dxtdFtf ββ , 

( ) ( ) dxzxdFzxf ee /,, ≡ , and 

( ) ( ) dxtzxdFtzxf ee /,, ≡ . 

As ( ) ( )( ββ xxUei ,~ ), it follows that for ( ) ( )[ ]txtxx ,∈ : 

( )
( )( ) ( )( )
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And, therefore, 
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Hence, 
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,

1
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β

 

where t  and t  are as defined in Proof of Proposition 4. 

We define ( )( ) ( tezexeeEtzxH klik =<==≡+ β,,,, )~  and consider two cases. 

a) When xz ≥ , ( )( ) ( )( )ztxtzxH +=+
2
1,,~  for ( ) ( )( xtztt ,∈ ) ).  Hence,  can be 

written as 

( )( zxH ,+

( )( ) ( )( )( ) ( ) ( zxQzxPezexezxHEzxH kli ,/,,,, )~, 11=<=== ++ ββ , where 
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( ) ( ) ( )( ) ( )
( )

( ) ( )( ) ( )( ) ( )
( ) ( )( )( )

( )
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nxt
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e dt
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tfztxztx
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1 ,,, . 

b) When xz ≤ , ( )( ) ( )( )ztxtzxH +=+
2
1,,~  for ( ) ( )( )ztxtt ,∈  and ( )( ) ttzxH =+ ,,~  for 

( ) ( )( )xtztt ,∈ .  Hence,  can be written as ( )( zxH ,+ )
( )( ) ( )( )( ) ( ) ( zxQzxPezexezxHEzxH kli ,/,,,, )~, 22=<=== ++ ββ , where 
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In order to evaluate  and its partials for small values of ε we use the 3rd-order 

approximation 

( )( zxH ,+ )

( )33121111 εεεεε o++−+=+ 1682 , so that 

( ) ( ) ( ) ( )( ) ( )3322 21121212141 εεεεεε oxxxxxxx +−−+−+−+=+− , and 

( ) ( ) ( ) ( )( ) ( )3322 21121212141 εεεεεε oxxxxxxx +−−−−+−−=−+ . 

Hence, 

( ) ( ) ( )( ) ( )222111 εεε oxxxxxxxt +−−+−+= , ( ) ( )11' oxt += , 

( ) ( ) ( )( ) ( )222111 εεε oxxxxxxxt +−−+−−= , and ( ) ( )11' oxt += , 

The uniform convergence with respect to ( ) ( 1,0,0 ⊂∈ εε ) of the limits 

( ) ( )
( )ε−

=
−

−=
→→ 1

1
1

1limlim
10 x

xt
x
xt

xx
, and ( ) ( )

( )ε+
=
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→→ 1
1

1
1limlim

10 x
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x
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, 

implies the following expressions for t  and t : 

( ) ( ) ( ) ( )( )εεε oxxxxxt +−+−+= 2111 , and 

( ) ( ) ( ) ( )( )εεε oxxxxxt +−−−−= 2111 . 

We consider cases xz ≥  and xz ≤  separately. 
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a) Let xz ≥ .  Using the above Tailor expansions yields 
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Hence, 
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b) Let xz ≤ .  As  and , it follows that 

.  Similarly, as , , 

, and  at , it follows that 

 and . 

( ) ( xxPxxP ,, 12 = ) )
)

)

)
( )( ) ( )( ) ( )112/, onnxxHx ++=+ ( )( ) ( ) ( )( ) ( )112/2, onnxxH z +++=+

( ) ( xxQxxQ ,, 12 =

( )( ) ( )( 0,0, +=− ++ xxHxxH xPxP ∂∂=∂∂ // 12 zPzP ∂∂=∂∂ // 12

xQxQ ∂∂=∂∂ // 12 zQzQ ∂∂=∂∂ // 12 ( xx,

( )( ) ( )( )0,0, +=− ++ xxHxxH xx
( )( ) ( )( )0,0, +=− ++ xxHxxH zz

Thus at ,  is continuously differentiable with the partials 

 and  and, therefore, can 

be written as 

( )xx, ( )( zxH ,+

( )( ) ( )
( )

( )
( ) ( )εε o
n
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n

znnxzxH +
+
−+

+
++=+

1
1

12
2, . 

The expression for ( )−H  immediately follows from  ■ ( )( ) ( )( )zxHzxH −−−= +− 1,11, .
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