
TI 2006-101/4 
Tinbergen Institute Discussion Paper 

 

Periodic Unobserved Cycles in 
Seasonal Time Series with an 
Application to US Unemployment  

 Siem Jan Koopman1,2 

Marius Ooms1 

Irma Hindrayanto1,2 

 

1 Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam, 
2 Tinbergen Institute. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 
 



Periodic unobserved cycles in seasonal time series

with an application to US unemployment

Siem Jan Koopman∗, Marius Ooms, Irma Hindrayanto

Vrije Universiteit Amsterdam

Tinbergen Institute Amsterdam

Abstract

This paper discusses identification, specification, estimation and forecasting for a general

class of periodic unobserved components time series models with stochastic trend, seasonal

and cycle components. Convenient state space formulations are introduced for exact maxi-

mum likelihood estimation, component estimation and forecasting. Identification issues are

considered and a novel periodic version of the stochastic cycle component is presented. In

the empirical illustration, the model is applied to postwar monthly US unemployment series

and we discover a significantly periodic cycle. Furthermore, a comparison is made between

the performance of the periodic unobserved components time series model and a periodic

seasonal autoregressive integrated moving average model. Moreover, we introduce a new

method to estimate the latter model.
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1 Introduction

Seasonal time series with sample autocorrelation functions that change with the season are re-

ferred to as periodic time series. To enable the identification of such dynamic characteristics in a

time series, Tiao & Grupe (1980) have formally defined periodic autocorrelations. Once periodic

properties of a time series are detected, the time series analyst can consider time series models

that allow for these periodic correlations. A model–based periodic time series analysis becomes

effective when appropriate methods and algorithms are developed for estimation, decomposition,

diagnostic checking and forecasting. This aim is the primary concern of our paper.

The dynamic properties of a particular seasonal time series model are governed by parameters

that are usually assumed fixed throughout a given time period. For example, in the context

of autoregressive moving average (ARMA) models, the parameters associated with the AR and

MA lag polynomials are oftentimes assumed fixed. In case these parameters are allowed to

be deterministic functions of the season index, the ARMA model becomes part of the class of

periodic linear time series models. Various developments on periodic time series are given in the

statistics and econometrics literature. Furthermore, many environmental and economic studies

have given empirical evidence that time series models require periodically changing parameters,

see for example, Bloomfield, Hurd & Lund (1994) and Ooms and Franses (1997, 2001).

Periodic models have been introduced as early as 1955 in the article of Hannan (1955) and

found widespread interest in geophysics and environmental empirical studies. The notable vec-

tor representation of periodic time series was proposed by Gladysev (1961). Osborn & Smith

(1989) introduced the periodic framework in dynamic macroeconomic models while Franses

& Paap (2004) discussed periodic analyses and applications in econometrics. In the context

of autogressive models, Franses, Boswijk & Haldrup (1997) derived tests for periodic stochas-

tic nonstationarity and Burridge & Taylor (2004) developed simulation based seasonal unit root

tests in the presence of periodic heteroskedasticity. Exact maximum likelihood estimation meth-

ods for ARMA models are discussed by Jimenez, McLeod & Hipel (1989) and Lund & Basawa

(2000). Anderson & Meerschaert (2005) provide asymptotic theory for efficient moment based

estimation. Most of these periodic studies explore periodic versions of ARMA models. Economic

applications are often limited to quarterly data. In hydrology and meteorology there are more

high frequency applications, see, i.a., the study by Lund, Shao & Basawa (2006) where a Fourier

parameterisation of periodic ARMA models is applied to a daily time series of temperature data

and Tesfaye, Meerschaert & Anderson (2006) for periodic ARMA modelling of monthly river

flows.
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In this paper we focus on periodic extensions of the unobserved components (UC) time series

models that are reviewed in Harvey (1989). This set of linear models describes a time series

process as a sum of components that can be directly interpreted as trend, season and cycle.

Each component is specified as an independent linear dynamic process. For example, the trend

component can be associated with a random walk process while the cycle component can be

modelled as a stationary ARMA process. Additional to lag polynomial coefficients, parame-

ters consist of variances associated with disturbances that drive the random walk and ARMA

processes. Once these parameters are allowed to be deterministic functions of the season index,

the resulting UC models are referred to as periodic unobserved components time series models.

Earlier periodic extensions of the UC models have been explored by Koopman and Ooms (2002,

2003, 2006), Proietti (2004) and Tripodis & Penzer (2004). In these contributions, straight-

forward applications of the vector representation of periodic UC models are considered or only

specific parameters in the model are considered to be periodic. More specifically, Proietti (2004)

considers a UC model with the trend component modelled as a weighted average of separate

independent random walks for each season, Tripodis & Penzer (2004) consider a seasonal compo-

nent with a periodic variance, while Koopman and Ooms (2002, 2006) explore different periodic

specifications of the UC model using standard available software.

We present a comprehensive treatment of a general class of periodic UC models that include

trend, seasonal and stationary cyclical components. Given the general concepts of both UC and

periodic models, there are many ways to specify a periodic UC model. In case the periodic

UC model is represented as a vector of independent time series where each element represents

a particular season, the seasonal component is effectively eliminated. The seasonal process can

not be identified from an observed time series when remaining components are periodically

independent for all seasons. Since we are particularly concerned with the decomposition of a

time series into trend, seasonal and cycle, we propose a convenient periodic formulation of the

UC model that preserves the ability to extract a seasonal component from a time series (seasonal

adjustment). These periodic UC models can still be represented in the Gladysev vector form but

the components do not consist of periodically independent processes. Each component remains

linearly dependent of a common underlying stochastic process for all periods. As a result, this

approach facilitates the detrending, seasonal adjustment and trend-cycle decomposition of a

time series based on a periodic model.

Since all parameters of the model, except for the cycle lengths, will be considered as periodic,

the number of parameters in a periodic UC model increases rapidly with the seasonal length.

Therefore, a specific attention is given to the identification of the parameters in the model.
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Perhaps somewhat counter-intuitive, it turns out that some parameters can not be identified

when the seasonal length S is small, particularly for a bi–annual time series where S = 2.

However, when the seasonal length is sufficiently large, all parameters can be identified.

Many aspects of time series analysis will be discussed and implemented for this class of periodic

UC models, including signal extraction, seasonal adjustment, trend-cycle decomposition, diag-

nostic checking of standardised prediction errors and forecasting. In the empirical illustration,

we apply the periodic model to a long monthly time series of postwar US unemployment. The

unemployment series is chosen as it is a key variable in economics. More importantly, it is also

subject to seasonal variation since labour supply and demand in many sectors of the economy

depend on seasonal factors such as school calendars, summer work, winter breaks, et cetera.

Furthermore, it is well known that unemployment is highly dependent on business cycle dynam-

ics and therefore cycle components also need to be considered in the analysis. Most important

for this paper, it is argued that unemployment is also subject to significant periodic serial cor-

relation. The empirical results obtained by the periodic UC model will be compared with those

of a periodic seasonal ARMA model. Estimation procedures for all periodic models are based

on exact maximum likelihood procedures using computationally efficient state space methods.

The approach taken is also novel in the context of estimating parameters in a periodic seasonal

autoregressive integrated moving average (SARIMA) model.

The remaining part of the paper is organised as follows. The next section reviews the UC model.

The third section introduces periodic UC models and corresponding univariate and multivariate

state space representations. It also addresses asymptotic identification by considering systems

of moment conditions. In the last part of this section a novel periodic version of the stochastic

cycle model is presented. The fourth section analyses monthly US unemployment using both

periodic SARIMA and periodic UC models where we reveal significant periodicity in the cycle

component. We also take account of the cycle variance moderation in postwar US unemployment

in our models. The fifth section concludes. The Appendices discuss extensions and details.

2 Unobserved component models

In this section we introduce unobserved component (UC) time series models. The established

notation following Harvey (1989) and Durbin & Koopman (2001) will be used throughout the

paper. The univariate unobserved components time series model that is particularly suitable for

many economic data sets is given by

yt = µt + γt + ψt + εt, εt ∼ NID(0, σ2
ε ), t = 1, . . . , n, (1)
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where µt, γt, ψt and εt represent trend, seasonal, cyclical and irregular components, respectively.

The trend and seasonal components are modelled by linear dynamic stochastic processes driven

by random disturbances. The cycle is based on a stochastic trigonometric function that relies

on a damping factor, frequency and random disturbances.

The simplest form of a UC model, the so-called local level model, is obtained from equation (1)

where γt and ψt are zero for all t. The trend can be specified as the random walk process

µt+1 = µt + ηt, ηt ∼ NID(0, σ2
η), (2)

for t = 1, . . . , n. By adding a slope term βt, that is also generated by a random walk to equation

(2), we obtain the so-called local linear trend model,

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η),

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ),

(3)

for t = 1, . . . , n, where the trend and slope disturbances, ηt and ζt, respectively, are mutually

uncorrelated sequences from a Gaussian density with zero mean and variance σ2
η for ηt and σ2

ζ

for ζt. If σ2
ζ is zero, we have ζt = 0 and βt+1 = βt = β for all t. This implies a random walk plus

drift process for the trend µt. When σ2
η is zero as well, a deterministic linear trend is obtained

for µt. If only σ2
η is zero, then we have a so–called smooth trend model or an integrated random

walk process. This implies that ∆µt follows a random walk process where ∆ = 1 − L is the

difference operator and L is the lag operator with Lpyt = yt−p.

To take account of the seasonal variation in the time series yt, the seasonal component γt is

included. A deterministic seasonal component should have the property that it sums to zero

over the previous year to ensure that it is not confounded with the trend. Flexibility of the

seasonal component is achieved when it is allowed to change over time. This can be established

by adding a disturbance term (with mean zero) to the sum of the S seasonal effects over the

past year. In this way we obtain the stochastic dummy variable form of the seasonal component

as given by

SS(L)γt+1 = ωt, ωt ∼ NID(0, σ2
ω), (4)

where SS(L) is the summation operator defined as SS(L) = 1 +L+ · · ·+LS−1. Since economic

time series are often subject to cyclical dynamics, a stochastic cycle may be included in the

model and be specified as





ψt+1

ψ∗
t+1



 = ρ





cos λ sinλ

− sinλ cos λ









ψt

ψ∗
t



 +





κt

κ∗t



 , 0 < ρ < 1, (5)

5



where the period of the cycle is given by 2π/λ. This dynamic process can be written as an

ARMA process with complex roots in the autoregressive polynomial. It therefore generates a

cyclical pattern in the theoretical autocorrelation function of process (5).

3 Periodic unobserved components models

Univariate seasonal time series yt are considered with seasonal length S (S = 4 for quarterly data

and S = 12 for monthly data). Seasonal time series are often analysed by seasonal autoregressive

moving average (SARMA) models and by the UC models of the previous section. The standard

formulations of these models assume that all parameters are constant through time. In case

the models are periodic, the parameters are allowed to vary with the season. As a result, the

number of parameters increases by a multiple of S. This section develops a statistical periodic

time series approach for univariate unobserved component models with trend, season, cycle and

irregular.

We start our analysis in § 3.1 with the simplest periodic basic structural model (BSM) which

contains only three components: trend, season and irregular. Considering the moments of this

model, we show that the univariate time-varying-parameter BSM does not correspond to a

multivariate constant-parameter BSM. Next, in § 3.2 we develop two convenient ways of putting

a periodic UC model into state space form, namely a univariate time–varying and a multivariate

time–invariant representation. Both forms enable exact maximum likelihood (ML) estimation,

filtering and smoothing. In § 3.3 we derive the second order moments of the periodic BSM and we

argue that not all the parameters of periodic UC models are automatically identified. Section 3.4

introduces a novel periodic stochastic cycle component. We derive the moments and we show

that exact ML estimation can be implemented without additional identifying restrictions.

3.1 Periodic basic structural time series model

Consider a univariate basic structural time series model (BSM) with periodic variances for the

disturbances associated with trend, seasonal and irregular components. This model can be

expressed by

yt = µt + γt + εt, εt ∼ NID(0, σ2
ε,s),

µt+1 = µt + ηt, ηt ∼ NID(0, σ2
η,s),

γt+1 = −
∑S−2

j=0 γt−j + ωt, ωt ∼ NID(0, σ2
ω,s),

(6)

for t = 1, . . . , n, n = n∗S, where σ2
ε,s, σ

2
η,s and σ2

ω,s are the variances for εt, ηt and ωt respectively,

and for season s = 1, . . . , S. To simplify notation for the multivariate representations of the
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model, we assume we have n∗ complete years of data, but this assumption is not essential for

the subsequent statistical analysis.

Once model (6) is written as a multivariate process (each equation is for a particular season), it

is shown below that the periodic BSM (6) does not reduce to a standard multivariate local level

model for yearly observations. Denote ys,t∗ as the observation for period s and year t∗ such that

yt ≡ ys,t∗, where t = (S − 1)t∗ + s for t = 1, . . . , n∗S, t∗ = 1, . . . , n∗ and s = 1, 2, . . . , S. For the

case of S = 2 we have

y1,t∗ = µ1,t∗ + ε1,t∗ , y2,t∗ = µ2,t∗ + ε2,t∗ (7)

where

µ1,t∗ = µt + γt, µ2,t∗ = µt+1 + γt+1, ε1,t∗ = εt, ε2,t∗ = εt+1, (8)

so that the trend becomes

µ1,t∗+1 = µ1,t∗ + η1,t∗ , µ2,t∗+1 = µ2,t∗ + η2,t∗ . (9)

The trend disturbances in (9) include the seasonal disturbances by construction, since it follows

that

η1,t∗ = ηt + ηt+1 − ωt + ωt+1, η2,t∗ = ηt+1 + ηt+2 − ωt+1 + ωt+2. (10)

In matrix form, the above model can be written as

y∗t∗ = µ∗t∗ + ε∗t∗ (11)

µ∗t∗+1 = µ∗t∗ + η∗t∗ (12)

where we denote the vectors as y∗t∗ = (y1,t∗ , y2,t∗)
′, µ∗t∗ = (µ1,t∗ , µ2,t∗)

′, ε∗t∗ = (ε1,t∗ , ε2,t∗)
′ and

η∗t∗ = (η1,t∗ , η2,t∗)
′. The variance matrix of the total disturbance vector (ε1,t∗ , ε2,t∗ , η1,t∗ , η2,t∗)

′ is

given by

















σ2
ε,1 0 0 0

0 σ2
ε,2 0 0

0 0 σ2
η,1 + σ2

η,2 + σ2
ω,1 + σ2

ω,2 σ2
η,2 − σ2

ω,2

0 0 σ2
η,2 − σ2

ω,2 σ2
η,1 + σ2

η,2 + σ2
ω,1 + σ2

ω,2

















. (13)

Further,

E









η1,t∗+1

η2,t∗+1









η1,t∗

η2,t∗





′

 =





0 σ2
η,1 − σ2

ω,1

0 0



 (14)
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and

E









η1,t∗+j

η2,t∗+j









η1,t∗

η2,t∗





′

 = 02×2 for j > 1. (15)

Since (14) is not a zero matrix, the level disturbance vector η∗t∗ follows a moving average process.

Therefore, we do not obtain a standard multivariate version of the local level model with a

serially independent sequence of η∗t∗ . Unfortunately, it means we cannot estimate this simple

model using standard software for multivariate basic structural models. This is a disadvantage

compared with other periodic unobserved component models discussed in Koopman & Ooms

(2006). To implement maximum likelihood estimation, filtering and smoothing we therefore

have to develop different convenient state space forms.

3.2 Convenient state space representations of the periodic BSM

The state space form provides a unified representation of a wide range of linear Gaussian time

series models including the structural time series model; see, for example, Harvey (1989), Kita-

gawa & Gersch (1996) and Durbin & Koopman (2001). The Gaussian state space form consists

of a transition equation for the m×1 vector αt and a measurement equation for the N×1 vector

yt. We formulate the model as in de Jong (1991), that is

αt+1 = Ttαt +Htǫt, α1 ∼ N (a, P0) , t = 1, . . . , n, (16)

yt = Ztαt +Gtǫt, ǫt ∼ NID(0, I), (17)

where ǫt is an independent sequence of standard normal distributed random vectors. The ma-

trices Tt,Ht, Zt and Gt are referred to as the state space system matrices. The observations at

time t are placed in an N × 1 vector yt for t = 1, . . . , n. Periodic models can be formulated with

a univariate measurement equation and time varying system matrices, N = 1, Tt,Ht, Zt and Gt,

t = 1, . . . , n or with a multivariate measurement equation for y∗t∗ and constant system matrices,

where N = S equal to the number of seasons per year. We discuss two convenient state space

representations, (16)–(17) of (6), one univariate, and one multivariate.

The state space matrices of the univariate time–varying–parameter form of (6) are given by

T =





1 0

0 −1



 , Ht =





0 ση,t 0

0 0 σω,t



 , (18)

Z =
[

1 1
]

, Gt =
[

σε,t 0 0
]

, (19)
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where ση,t, σω,t and ση,t vary deterministically according to the season. Note that the matricesHt

and Gt are time–varying, while T and Z are constant over time. The state vector αt = (µt γt)
′

and ǫt is a 3 × 1 vector. The initialization of αt is diffuse: a1 is a vector of 0’s and P0 is κI2

with κ→ ∞.

The multivariate time-invariant state space form of model (6) can be written as:

α∗
t∗+1 = T ∗α∗

t∗ +H∗ǫ∗t∗ , α∗
1 ∼ N (a∗, P ∗

0 ) , t∗ = 1, . . . , n∗, (20)

y∗t∗ = Z∗α∗
t∗ +G∗ǫ∗t∗ , ǫ∗t∗ ∼ NID(0, I). (21)

To simplify notation we consider model (6) for S = 2, where y∗t∗ = (yt, yt+1)
′, t = 1, 1 + S, 1 +

2S, . . . , 1 + (n∗ − 1)S. We derive convenient expressions for α∗
t∗ , ǫ

∗
t∗ , T

∗, H∗, Z∗ and G∗ as

follows. The measurement equations are given by

yt = µt + γt + εt, εt ∼ NID(0, σ2
ε,1),

yt+1 = µt+1 + γt+1 + εt+1 = µt + ηt − γt + ωt + εt+1, εt+1 ∼ NID(0, σ2
ε,2).

Further, we take α∗
t∗ = (µt, ηt, γt, ωt)

′ as the state vector and it follows from the transition

equations that

µt+2 = µt+1 + ηt+1 = µt + ηt + ηt+1, ηt+1 ∼ NID(0, σ2
η,2),

γt+2 = −γt+1 + ωt+1 = γt − ωt + ωt+1 ωt+1 ∼ NID(0, σ2
ω,2).

The state space matrices are then given by

T ∗ =

















1 1 0 0

0 0 0 0

0 0 1 −1

0 0 0 0

















, H∗ =

















0 0 ση,2 0 0 0

0 0 0 ση,1 0 0

0 0 0 0 σω,2 0

0 0 0 0 0 σω,1

















, (22)

Z∗ =





1 0 1 0

1 1 −1 1



 , G∗ =





σε,1 0 0 0 0 0

0 σε,2 0 0 0 0



 , (23)

with a 3S × 1 vector ǫ∗t∗ , for t∗ = 1, 2, . . . , n∗ and t = 1, 1 + S, 1 + 2S, . . . , 1 + (n∗ − 1)S, so that

α∗
t∗+1 = (µt+2, ηt+2, γt+2, ωt+2)

′. The initialization of α∗
t∗ is diffuse: a∗1 is a vector of 0’s and

P0 is κI2S with κ→ ∞.

It is numerically verified that the multivariate time–invariant system is observationally equivalent

to the univariate time varying system. In particular, the Gaussian likelihood of model (22)–(23)

is exactly equal to the likelihood of model (18)–(19). Both state space representations have

serially independent disturbances for the trend and seasonal component of model (6). The two
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state space forms are therefore easier to handle and interpret than the multivariate representation

(11)–(12), where the trend and the seasonal component are confounded.

For both specifications, it is clear that there is only one trend for the whole observed series.

Although the multivariate representation may suggest that we have a separate trend for each

season, the state vector α∗
t∗ only has a single trend, µt, and a single seasonal component, γt.

The merit of the univariate specification is its straightforward treatment although the state

space formulation has time–varying system matrices. The merit of the multivariate form is that

the system matrices are time–invariant, which is the standard format to examine the dynamic

properties of the time series.

3.3 Moments, identification and estimation,

To investigate whether all parameters in the UC models are identified, we use systems of moment

conditions. The moment conditions are based on the autocovariance function of the stationary

form of the UC models. Consider model (6) with S = 2 where we have 6 parameters to estimate,

namely σε,1, σε,2, ση,1, ση,2, σω,1 and σω,2. The stationary form of model (6) is based on yearly

differences ∆Syt = (1 − LS)yt of the observations yt. For S = 2, that is

∆2yt+i = ηt+i−2 + ηt+i−1 − ωt+i−2 + ωt+i−1 + εt+i − εt+i−2, (24)

for i = . . . ,−2,−1, 0, 1, 2, . . . and t = 1, S + 1, 2S + 1, . . . . It follows that E[∆2yt+i] = 0 for all

i. The yearly autocovariance function for t = 1, S + 1, 2S + 1, . . . is given by

Γ0 = E









∆2yt

∆2yt+1









∆2yt

∆2yt+1





′



=





σ2
η,1 + σ2

η,2 + σ2
ω,1 + σ2

ω,2 + 2σ2
ε,1 σ2

η,2 − σ2
ω,2

σ2
η,2 − σ2

ω,2 σ2
η,1 + σ2

η,2 + σ2
ω,1 + σ2

ω,2 + 2σ2
ε,2



 (25)

Γ1 = E









∆2yt

∆2yt+1









∆2yt−2

∆2yt−1





′

 =





−σ2
ε,1 σ2

η,1 − σ2
ω,1

0 −σ2
ε,2



 (26)

Γj = E









∆2yt

∆2yt+1









∆2yt−2j

∆2yt+1−2j





′

 = 0 for j = 2, 3, 4, . . . , (27)

which is equivalent to the autocovariance function of a vector moving average process with one

lag. Note that the autocovariance matrix of lag 1, Γ1, is not symmetric, namely

Γ−1 = E









∆2yt

∆2yt+1









∆2yt+2

∆2yt+3





′

 =





−σ2
ε,1 0

σ2
η,1 − σ2

ω,1 −σ2
ε,2



 = Γ′
1. (28)
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These moment expressions reconfirm that we do not have a standard multivariate local level

model for y∗t∗ as we saw earlier in the discussion of (11)–(12).

To identify the parameters from the autocovariances, we need to solve a linear system of moment

equations. Asymptotically, the expressions for the autocovariances determine the Gaussian

likelihood that we use in estimation. If two instances of a time series model with different

parameters have the same autocovariance function and therefore the same spectrum and the

same moving average representation, the parameters cannot be identified by the Gaussian ML

estimator, see, e.g. Brockwell & Davis (1993, § 10.8) and Yao & Brockwell (2006).

Rewriting expressions (25)–(27) we get the following system of moment equations for model (6)





























1 1 1 1 2 0

0 1 0 −1 0 0

1 1 1 1 0 2

0 0 0 0 −1 0

1 0 −1 0 0 0

0 0 0 0 0 −1

























































σ2
η,1

σ2
η,2

σ2
ω,1

σ2
ω,2

σ2
ε,1

σ2
ε,2





























=





























Γ0(1, 1)

Γ0(1, 2)

Γ0(2, 2)

Γ1(1, 1)

Γ1(1, 2)

Γ1(2, 2)





























, (29)

where Γj(i, k) indicates the element on row i and column k of matrix Γj . The system of equations

(29) clearly has multiple solutions as the the first matrix only has rank 5. The null space of

this matrix is spanned by the vector (1 − 1 1 − 1 0 0)′. Hence, we have to impose a

restriction on the first four parameters to obtain identification, for example

σ2
η,1 − σ2

η,2 + σ2
ω,1 − σ2

ω,2 = 0. (30)

Note that the restriction is not unique, we can also impose

σ2
η,1 = σ2

η,2 or σ2
ω,1 = σ2

ω,2. (31)

The identification problem for S = 2 also applies to extended versions of the model. The

identification of the model with a local linear trend is discussed in Appendix A. In the periodic

local linear trend model, we have 4S parameters: trend, slope, seasonal and irregular variances,

and 2S2 linear equations, so for S = 2 we get 8 equations for 8 parameters, but we get a similar

identification problem as in model (6) as the rank condition is not satisfied.

The reduced rank problem as described above for S = 2 does not occur when S > 2. For the

periodic BSM in equation (6) we have S(S + 1) linear equations to estimate 3S parameters. It

is clear that for S ≥ 3 we have more nonzero moment equations than parameters, so the order

condition for identification is satisfied. Moreover, only 3S unique equations exist in the system.
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Therefore all parameters are exactly identified. This result extends to the periodic local linear

trend model. We conclude that the parameters are exactly identified in these two standard

periodic unobserved component models for all S > 2.

The parameters of the periodic UC models are estimated by Gaussian ML. The exact likelihood

of the model is efficiently obtained by the Kalman Filter based on the prediction error decompo-

sition of the Gaussian model. We use diffuse initialisation for nonstationary states to obtain the

exact likelihood. Further, we employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS) numerical

optimisation algorithm, c.f. Fletcher (1987), to maximise with respect to the unknown parame-

ters. The number of parameters in periodic models is large for a high value of S. However, this

is not a problem in practice if the time series is sufficiently long, as we illustrate below in § 4.3.

3.4 Periodic stochastic cycle model

Macroeconomic time series often require a cyclical component in their specification. In this

section we introduce a novel periodic version of the stochastic cycle component as part of the

UC time series models. We extend equation (5) by having ρ and σ2
κ periodic. To save space we

only present the equations for a model with two periodic components, cycle and irregular, and

with S = 2. We define for t = 1, S + 1, 2S + 1, . . . , (n∗ − 1)S + 1:

yt = ψt + εt, εt ∼ NID(0, σ2
ε,1)

yt+1 = ψt+1 + εt+1, εt+1 ∼ NID(0, σ2
ε,2),

where




ψt+1

ψ+
t+1



 = ρ1





cos λ sinλ

− sinλ cos λ









ψt

ψ+
t



 +





κt

κ+
t



 , κt, κ
+
t ∼ NID(0, σ2

κ,1)





ψt+2

ψ+
t+2



 = ρ2





cos λ sinλ

− sinλ cos λ









ψt+1

ψ+
t+1



 +





κt+1

κ+
t+1



 , κt+1, κ
+
t+1 ∼ NID(0, σ2

κ,2),

(32)

with mutually uncorrelated white noise disturbances (κt, κt+1) and (κ+
t , κ

+
t+1). A restriction on

the damping terms 0 <
∏S
s=1 ρs < 1 ensures that the stochastic process ψt is stationary. The

overall frequency of the stochastic cycle is fixed at 0 < λ < π for all seasons s. This implies

that the average period of the cycle is 2π/λ in terms of t, i.e. semesters for S = 2, and equal to

2π/(λS) years.

The dynamic properties of the stationary periodic cycle process are given by expressions for the

variances and covariances of ψt and ψt+1. These are derived from their vector autoregressive

representation of order 1, VAR(1). This yearly VAR(1) is obtained by substituting the expression

12



for (ψ+
t+1, ψ

+
t+1)

′ in the second equation of (32). We get:

Ψt∗+1 = ΦΨt∗ + κt∗ (33)
















ψt+2

ψ+
t+2

κt+2

κ+
t+2

















=

















ρ1ρ2 cos 2λ ρ1ρ2 sin 2λ ρ2 cos λ ρ2 sinλ

−ρ1ρ2 sin 2λ ρ1ρ2 cos 2λ −ρ2 sinλ ρ2 cos λ

0 0 0 0

0 0 0 0

































ψt

ψ+
t

κt

κ+
t

















+

















κt+1

κ+
t+1

κt+2

κ+
t+2

















,

for t∗ = 1, 2, . . . , n∗ and for t = 1, S + 1, 2S + 1, . . . , (n∗ − 1)S + 1. First we derive the variance

covariance matrix Λ0 of Ψt∗ :

E[Ψt∗+1Ψ
′
t∗+1] = Φ E[Ψt∗Ψ

′
t∗ ]Φ

′ + Σκ ⇔

Λ0 = ΦΛ0Φ
′ + Σκ,

where

Σκ = diag
(

σ2
κ,2 σ2

κ,2 σ2
κ,1 σ2

κ,1

)

and

Λ0 =

















σ2
ψ,1 E(ψtψ

+
t ) 0 0

E(ψtψ
+
t ) σ2

ψ,1 0 0

0 0 σ2
κ,1 0

0 0 0 σ2
κ,1

















,

with

E(ψtψ
+
t ) = 0, σ2

ψ,1 =
σ2
κ,2 + ρ2

2σ
2
κ,1

1 − ρ2
1ρ

2
2

, (34)

E(ψt+1ψ
+
t+1) = 0, σ2

ψ,2 =
σ2
κ,1 + ρ2

1σ
2
κ,2

1 − ρ2
1ρ

2
2

. (35)

Subsequently, the periodic autocovariance function (ACF) of yt for S = 2, t = 1, S+1, 2S+1, . . .

and t∗ = 1, 2, . . . is expressed in terms of σ2
ψ,s, σ

2
ε,s, ρs and λ:

Γ0 = E









yt

yt+1









yt

yt+1





′

 = E









y1,t∗

y2,t∗









y1,t∗

y2,t∗





′

 =





σ2
ψ,1 + σ2

ε,1 ρ1 cos(λ)σ2
ψ,1

ρ1 cos(λ)σ2
ψ,1 σ2

ψ,2 + σ2
ε,2





Γ1 = E









yt

yt+1









yt−2

yt−1





′

 = E









y1,t∗

y2,t∗









y1,t∗−1

y2,t∗−1





′

 =





ρ1ρ2 cos(2λ)σ2
ψ,1 ρ2 cos(λ)σ2

ψ,2

ρ2
1ρ2 cos(3λ)σ2

ψ,1 ρ1ρ2 cos(2λ)σ2
ψ,2





...

Γj = E









yt

yt+1









yt−2j

yt+1−2j





′

 = E









y1,t∗

y2,t∗









y1,t∗−j

y2,t∗−j





′



=





ρj1ρ
j
2 cos(2jλ)σ2

ψ,1 ρj−1
1 ρj2 cos((2j − 1)λ)σ2

ψ,2

ρj+1
1 ρj2 cos((2j + 1)λ)σ2

ψ,1 ρj1ρ
j
2 cos(2jλ)σ2

ψ,2



 j = 1, 2, . . . .
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The autocovariance function of yt has a nonlinear structure in terms of σψ,s, ρs and λ with

s = 1, 2. Since σψ,s also depends on σκ,s and ρs, the structure of the ACF becomes intricate. As

a result, identification can not be analysed analytically and we therefore carry out some Monte

Carlo experiments for Maximum Likelihood estimation to investigate whether the parameters

can be estimated from simulated data. Model (32) is already in state space form, which makes

it very suitable for exact ML estimation. However, the construction of the exact likelihood

function of models with a periodic cyclical component involves one non–standard step. The

expression for σ2
ψ,1 is needed for the exact initialisation, since (ψ1, ψ

+
1 ) is included in the state

vector corresponding to the first observation. The other terms in the likelihood for t = 2, . . .

follow in a standard way from the periodic Kalman Filter equations.

0.00 0.01 0.02 0.03 0.04 0.05
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Figure 1: Simulated densities and histograms of the exact ML parameter estimates in periodic

cycle model (32) with true values: σκ,1 = 0.03, σκ,2 = 0.06, ρ1 = 0.95, ρ2 = 0.70 and λ = 0.3.

Based a on Monte Carlo experiment of 1000 simulations with 100 observations.

The Monte Carlo experiments are implemented for different values for the parameters σκ,1, σκ,2,

ρ1, ρ2 and λ. We look at the finite sample distribution of the exact ML estimators of these

parameters and run this experiments 1000 times with 100 observations. All computations and

graphs in this paper are made using recent versions of SsfPack, see Koopman, Shephard &

Doornik (1999) and Ox, see Doornik (1999). Figure 1 reports the simulated densities for one

representative set of parameter values, based on empirical estimates for half-yearly postwar data

of log US unemployment. We see that the simulated means lie around the true values and the
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simulated densities are approximately normal. This confirms that a periodic cycle in a periodic

model does not lead to additional identification problems for parameter estimation, not even for

S = 2. Of course in larger models, we have to exclude extreme cases where the parameters ρs

are nearly one and λ is very close to π, to avoid confusion with the seasonal component.

The extension of the periodic cycle model to a general S = 2, 3, . . . is straightforward. The Φ

matrix in the multivariate VAR(1) form (33) becomes











∏S
i=1 ρiC(Sλ)

∏S
i=2 ρiC((S − 1)λ) . . . ρSC(λ)

O2(S−1)×2S











(36)

where

C(iλ) =





cos iλ sin iλ

− sin iλ cos iλ





for i = 1, . . . , S and the general solution for σ2
ψ,1 in (34) becomes

σ2
ψ,1 =

∑S−1
i=1

{

σ2
κ,i

[

∏S
j=i+1 ρ

2
j

]}

+ σ2
κ,S

1 −
∏S
i=1 ρ

2
i

. (37)

The construction of the state space form for more extensive models with a periodic stochastic

cycle is not problematic. Adding a cyclical component to the T ∗, Z∗ and H∗ matrices in § 3.2

is easily done, as we assume independence between the unobserved components, µt, γt and ψt.

3.5 Model summary

In sum, we have analysed the following periodic unobserved components model for decomposing

and forecasting univariate periodic time series:

yt = µt + γt + ψt + εt, t = 1, . . . , n, (38)

where µt and γt are defined in (3) and (4), with disturbance variances σ2
η,s, σ

2
ζ,s, and σ2

ω,s,

where ψt is defined in (32), where εt has variances σ2
ε,s, where all disturbances are independent,

s = 1, . . . , S and n = n∗S. Periodic trigonometric seasonality instead of dummy variable

seasonality can be specified in this framework by a set of periodic stochastic cycles with fixed

seasonal frequencies λj = 2πj/S, j = 1, . . . , S/2, where the corresponding damping factors

ρj,s might be fixed at one to allow nonstationary seasonality. Parameter estimates, time series

decompositions, diagnostics and forecasts are based on the Gaussian state space form of the

model that we discussed in § 3.2. We use exact maximum likelihood estimation with diffuse

15



initialisation of the nonstationary state variables. Conditional on the ML estimates of the

hyperparameters, σ̂η,s, σ̂ζ,s, σ̂ω,s ρ̂s, σ̂κ,s and λ̂, we compute the decomposition into trend,

seasonal, cycle and irregular components as

µ̂t = E(µt|y1, . . . , yn), γ̂t = E(γt|y1, . . . , yn), ψ̂t = E(ψt|y1, . . . , yn),

and

ε̂t = E(εt|y1, . . . , yn)

respectively. The seasonally adjusted series is defined as yt − γ̂t. The diagnostics are based on

the one–step–ahead forecast errors

vt = yt − E(yt|y1, . . . , yt−1)

that are scaled by their standard errors

s.e.(vt) = [E(v2
t )|y1, . . . , yt−1]

1/2.

The optimal linear out–of–sample forecasts are computed as

ŷn+i = E(yn+i|y1, . . . , yn), i = 1, 2, . . . .

4 Application to US unemployment data

4.1 Data analysis

In this section we analyse a monthly time series of US unemployment data using both periodic

seasonal autoregressive integrated moving average (SARIMA) and periodic unobserved compo-

nents time series models. The data consists of seasonally unadjusted monthly US unemployment

levels (in thousands of persons) for age 16 years or over. The estimation sample, 1948.1-2005.12,

has 696 observations. We use 2006.1-2006.8 to evaluate forecasts. This series is published by

the US Bureau of Labor Statistics (BLS) and is obtained via www.economagic.com.

Figure 2 presents time series plots of log monthly unemployment, yt. The top panel shows

the data month by month, while the bottom panel presents the data in multivariate form,

year by year for each month. The monthly unemployment series is slowly trending upwards

and contains a pronounced cyclical pattern. Although the plots of the series in the bottom

panel do not contain seasonal movements, this does not mean that the seasonal dependence has

disappeared. The yearly series are smoother than the monthly series and have clearly common

dynamics.
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Figure 2: US unemployment (in logs, seasonally unadjusted), 1948.1 − 2005.12. Top: Monthly

time series, Bottom: Yearly time series for each month of the year, s = 1, . . . , 12.

Figure 3 shows a selection of the periodic sample autocorrelations of yearly changes in US un-

employment growth rates, ∆∆12yt. Their precise definition is given in Appendix C. These

sample autocorrelation coefficients are clearly periodic. They differ significantly from month to

month. For example, for March (top left panel), there is a pronounced short cyclical movement

of approximately 24 months, while we see a much longer cyclical movement for June (top right

panel). There is also a significant difference between March and June for the seasonal auto-

correlation at lag 12. The periodicity in the autocorrelation structure is the main motivation

for periodic modelling of log US unemployment. The autocorrelations indicate the need for a

periodic cyclical component and a periodic seasonal component in time series models.

4.2 Periodic SARIMA model for US unemployment

For a closer statistical examination of the dynamic properties of the series, we first model the

monthly US unemployment dataset using a reduced form periodic seasonal autoregressive inte-

grated moving average (SARIMA) model. Periodic SARIMA models provide good benchmarks

for periodic unobserved component (UC) time series models. They provide an alternative frame-

work for tests for periodicity and for forecasting ability, although they do not allow for time series
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Figure 3: Periodic autocorrelations of ∆∆12yt: monthly changes in the yearly growth rates of US

unemployment, 1949.1−2005.12. Autocorrelations for lags of 1 to 120 months, for s = 3, 6, 9, 12.

decomposition yet. Moreover, as we have argued above, periodic UC models can be interpreted

as restricted periodic SARIMA models.

Empirically, we obtain our best SARIMA results for the seasonally differenced series, y†t = ∆12yt.

We define βs as the yearly growth rate of yt in season s, so we allow for periodic slopes in the

long term trend. In our specification y†t follows a periodic SARIMA(2, 0, 1)(0, 0, 1)12 process,

that is, for t = 13, . . . , n:

y†t = βs + φ1,s(y
†
t−1 − βs) + φ2,s(y

†
t−2 − βs) + εt + θ1,sεt−1 + Θ1,sεt−12 + θ1,sΘ1,sεt−13, (39)

where εt ∼ N(0, σ2
ε,s) and where βs, φ1,s, φ2,s, θ1,s,Θ1,s and σ2

ε,s apply when y†t falls in period

s, and n = n∗S. In our application we simplify further by dropping the term associated with

εt−13. This has not led to a significant deterioration of the model fit.

In order to facilitate comparison with the periodic UC model we cast the periodic SARIMA

model (39) directly in a state space form for yt. This requires the modification and extension

of existing SARIMA state space forms for differenced series, as employed by e.g. Jimenez et al.

(1989). The sample for yt starts at t = 1 and nonstationary elements of the state vector are ini-

tialised with a diffuse distribution in order to obtain an exact likelihood which can be compared

with the likelihoods for the periodic UC model. The details are presented in Appendix D.
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In sum, yt is specified as a restricted periodic SARIMA(2, 0, 1)(0, 1, 1)12 model with 72 unknown

parameters, βs, φ1,s, φ2,s, θ1,s,Θ1,s and σε,s for s = 1, 2, . . . , 12. Given the state space form for yt,

maximum likelihood estimation of φ1,s, φ2,s, θ1,s,Θ1,s and σε,s and the computation of forecasts

and diagnostics is based on the same procedures as discussed in § 3.5. The periodic growth

rates, βs, are included in the state vector. In this way, they are effectively concentrated out of

the likelihood function. Although the remaining number of 60 parameters is large, it should be

emphasised that we have more than 50 years of monthly data. Empirically, it turns out to be

quite feasible to estimate this model.
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Figure 4: Estimated parameters for periodic SARIMA model (39) for log US unemployment

with s = 1, . . . , 12. Top: φ̂1,s, φ̂2,s. Middle: θ̂1,s, Θ̂1,s. Bottom: σ̂ε,s. All estimated parameters

are plotted with ± 2 standard errors.

Figure 4 gives a graphical presentation of the parameter estimates of the periodic SARIMA model

for US unemployment with ± 2 standard errors. We see significant fluctuations in parameter

estimates across the different months of the year which suggests that a non–periodic SARIMA

specification is implausibly restrictive.

The possible presence of a cycle in the model can be derived from the eigenvalues of the AR-part

of the periodic SARIMA model, analogous to the eigenvalues of Φ in (33). In our case, we obtain

the two real eigenvalues 0.00 and 0.63. This implies that the model does not capture cyclical

dynamics.
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Figure 5 shows graphical diagnostics for the periodic SARIMA model and for our periodic UC

model that we discuss in the next subsection. The top row of Figure 5 shows the standardised

one–step ahead prediction errors of the periodic SARIMA model, together with the sample

autocorrelation function, a histogram and a density estimate. Most aspects of these diagnostics

appear to be satisfactory, but there is one notable exception: the forecast errors are clearly more

volatile in the first half of the series compared to the second half. This is an important point

that we address in § 4.4.
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Figure 5: Time series plot of scaled one-step-ahead prediction errors, their density and sample

ACF for the periodic SARIMA model (top panel) and for the periodic UC model (bottom panel).

Note the heteroskedasticity in both sets of residuals.

4.3 Periodic unobserved component model for US unemployment

We have shown thau US unemployment is subject to periodic dynamics and therefore we con-

tinue our analysis by considering a periodic UC model, consisting of trend, season and cycle

components as given in (38). The disturbance variances of the trend, season, cycle and irregular

components are all periodic. The model is cast into a state space form containing 6S+1 known

parameters, ση,s, σζ,s, σω,s, σκ,s, σε,s, ρs and λ for s = 1, . . . , S. The parameters are estimated by

numerically maximising the exact loglikelihood. In our case with S = 12, we have to estimate

73 parameters. The parameters ση,s and σε,s are estimated at zero for all seasons. For σζ,s
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we obtain one nonzero estimate at s = 9. We present estimated components and associated

parameters in Figures 6, 7, and 8.

Figure 6 presents the estimated trend component and the seasonally adjusted series. The top

panel shows the trend, µ̂t, together with the unadjusted observations, yt. In the bottom panel we

show the trend and the seasonally adjusted data, yt− γ̂t. The trend is very smooth, it increases

steadily until early 1980 and flattens out afterwards. The difference between the two series in

the bottom graph, yt − γ̂t − µ̂t can be interpreted as the estimated cycle, ψ̂t, as the irregular

component, ε̂t, is estimated as zero.

Figure 7 shows the estimated slope, β̂t, and the cyclical component, ψ̂t. The corresponding

parameters are shown underneath. The slope has a somewhat surprising shape, jumping in

discrete steps. This occurs because the slope is a random walk with zero innovations for all

months except October (s = 9). Further, the slope remains stepwise periodic throughout the

sample but it becomes nearly constant after 1982, which results in a smoother trend. The

cyclical component shows large swings throughout the whole sample.
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Figure 6: Top panel: log of US unemployment with the estimated trend from the periodic UC

model. Bottom panel: the model based seasonally adjusted series together with the estimated

trend.

The bottom panel of Figure 7 shows the estimated parameters for the trend and cycle, where

we present σζ,s, σκ,s and ρs for s = 1, . . . , 12. The estimated slope parameters, σζ,s, show a
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particular form of periodicity, they are all zero except for σζ,9. This might be interpreted as a

structural change in the unemployment trend due to newcomers on the job market in October.

Note that the nonzero σζ,9 in the bottom left graph of Figure 7 corresponds to the slope in

month 10, hence October, as βt+1 = βt + ζt with ζt ∼ NID(0, σ2
ζ,s). The damping factors of the

cycle, ρs, look periodic as they have different values for each month and vary between 0.8 and

1.1. Despite the fact that some ρ’s are estimated to be larger than one, the cyclical component

is still stationary as the product of all the ρ’s is less than one. The lowest ρ is found in June

(ρ5) and the highest in December (ρ11). Note that ρ1 is linked with the transition equation for

February and ρ12 appears in the equation for January. The shocks in the cyclical component

have periodic standard errors that vary between 0.03 and 0.07 throughout the year. To conclude

our discussion of the trend and cycle estimates we report that λ̂ = 0.049 with a standard error

of 0.013. This corresponds to an estimate of the average cycle length of 10.7 with a standard

error of 2.8 years.
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Figure 7: Estimated slope and cycle components (top row) and the corresponding periodic

parameters ± 2 standard errors (bottom row) for the periodic UC model.

Figure 8 provides a closer look on the estimate of the periodic seasonal component γ̂t. The

top panel shows γ̂t throughout the whole sample period and the middle panel shows the yearly

sub–plots for each month separately. The seasonal pattern for May, June and July turns out to

be more volatile than for other months. This is especially clear during the years 1965 – 1970
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as one can see from the top panel. The bottom panel shows how the periodic volatility in the

seasonal component is reflected in the standard errors of the seasonal shocks, σω,s.
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Figure 8: Monthly seasonal component. Top: γ̂t, t = 1, . . . , 696 , Middle: γ̂s,t∗, t
∗ = 1, . . . , 58,

s = 1, . . . , 12. Bottom: σ̂ω,s ± 2 s.e., s = 1, . . . , 12 .

Note again that the standard errors of the two other possible types of shocks in the model, σε,s

and ση,s, are excluded from the graphs as they are estimated as zero and subsequently fixed.

The remaining 73 − 24 = 49 parameters are estimated unrestrictedly.

In order to formally test whether the ρ’s and σκ’s are periodic we also estimate the model with

additional restrictions. The first set of restrictions imposes that all ρ’s are equal. This results

in a more volatile trend estimate and in a shorter average period for the cycle, namely 5.3 years

instead of the 10.7 years we obtained for the unrestricted model. The second set of restrictions

imposes that all σκ’s are equal. This also results in a more volatile trend estimate and in an

even shorter cyclical period of 3.2 years. We observe an interesting trade-off between estimates

of ρ’s, σκ’s and λ, that is if ρ’s or σκ’s are not periodic, we have a large value of λ while if ρ’s

and σκ’s are both periodic, we have a small value of λ which results in a longer average length

of the cycle.

Table 1 compares the likelihoods of the different periodic and nonperiodic models. The LR–tests

for nonperiodicity in the cyclical component are highly significant (compared to the χ2
11 critical
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Table 1: Likelihood Ratio tests for periodicity in UC and SARIMA models (sample 1948−2005).

Model logL p LR k χ2
k;95%

H1,1 : PUC model 1116.13 49

H0,1 : all σκ,s equal 1101.28 38 29.70∗ 11 19.68

H0,2 : all ρs equal 1090.69 38 50.88∗ 11 19.68

H0,3 : all PUC parameters are nonperiodic 1061.28 5 109.70∗ 44 60.48

H1,2 : PSARIMA model 1128.23 60

H0,4 : all PSARIMA parameters are nonperiodic 1076.04 5 104.35∗ 55 73.31

NOTES: log L: log likelihood. LR: LR test against H1,1, H1,2, respectively. p is the number of estimated

parameters. k is the number of restricted parameters. H1,1 : PUC model in (38), σ2

η,s = σ2

ε,s = 0, s = 1, . . . , 12.

H1,2 : PSARIMA model in (39), without term for εt−13.
∗ : H0,i is rejected at 5% significance level.

value for a significance level α = 0.05) which indicates that all ρs and σκ,s are periodic indeed.

An additional LR statistic examines the overall periodicity of the periodic UC model, testing

whether all variances and damping factors are equal throughout the year against our periodic

alternative. The test clearly rejects at 5% significance level. Table 1 confirms the conclusion from

the data analysis and the graphical assessment of the time series decomposition that periodicity

is statistically significant in US unemployment series.

The bottom panel of Figure 5 presents graphical diagnostics for the periodic UC model, which

can be compared with the equivalent results for the periodic SARIMA model. As we noted

earlier for the SARIMA model, we observe that the variance of the one-step-ahead forecast

errors is higher between 1948 and 1980. The ACF of the forecast errors shows weak cyclical

movements.

To conclude our first periodic unobserved component analysis of US unemployment we compare

the likelihoods of the periodic UC and the periodic SARIMA models in Table 1. Thanks to our

common state space framework for SARIMA and UC models in terms of the undifferenced series

yt, the loglikelihoods of the different models can be compared to each other. The loglikelihoods

for both periodic models are clearly higher than for their non–periodic counterparts and the

differences are significant on the basis of standard asymptotic χ2–tests. The loglikelihood for

the periodic SARIMA model is higher than for the periodic UC model, but the latter has a

smaller number of parameters. Our periodic SARIMA model in § 4.2 has 60 free parameters,

while our periodic UC model only has 49.
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4.4 Cycle variance moderation in US unemployment

It appears from Figure 5 that the forecast error variance for US unemployment is much lower

after 1980 than before. This structural volatility change is a well documented stylised fact

occurring in several US macroeconomic time series, see, e.g., Sensier & van Dijk (2004) and

Kim, Nelson & Piger (2004). A structural explanation of this decrease in volatility is still

a matter of discussion. In monetary economics, the decrease in US unemployment volatility

can be associated with a change in monetary policy. Warne & Vredin (2006) find support for

this explanation in a bivariate Structural Vector Autoregressive (SVAR) model for inflation

and unemployment, where volatility breaks are captured by endogenous two-regime Markov-

Switching. Primiceri (2005) captures the changing variance in a stochastic volatility specification

of a trivariate SVAR, also including an interest rate. Sims & Zha (2006) analyse a SVAR with

six variables switching between nine regimes. All these authors use seasonally adjusted data

and find significant changes in US unemployment volatility. As the forecast standard error has

decreased by 50% this is a crucial issue for realistic interval forecasting at the end of our sample.

We take the approach of, i.a., Sensier & van Dijk (2004) by allowing for breakpoints in the

stochastic process governing US unemployment, starting with one breakpoint. By estimating

the parameters for two sub–samples, we found that only by varying the σκ’s parameters (the

shocks of the cycle component), large increases in the likelihood are obtained. Formally, we

extend the model for the variances of the cycle component as σ2
κ,s,τ , adding an extra variance

factor τ , with

τ =







1, for t in the period from 1948.1 to h.12

2, for t in the period from (h+ 1).1 to 2005.12

where h is the breakpoint year. The largest increase in the likelihood was found by having

the break in the early 1980s, which is in line with results in the literature. The differences in

the likelihoods for different breakpoints in the early 1980s are small. We decided to fix the

breakpoint in 1982. Warne & Vredin (2006) found additional variance switches before 1982, but

for the purpose of this paper we found one variance break to be satisfactory.

We emphasise that while the cyclical shock volatilities σκ,s are distinctly different before and

after 1982, the other variances in the model are similar for the two eras. On average, σκ was

0.06 in 1948-1981 and 0.03 after 1982. Between the individual σκ’s for the different periods, the

values of σκ’s can differ by a factor 3. These results agree with those obtained by Kim et al.

(2004), who compared univariate unobserved component models with structural variance breaks

and Markov Switching. They showed that “the growth rate of aggregate real GDP has been less
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volatile since the early 1980’s, and that this volatility reduction is concentrated in the cyclical

component of real GDP”. As the variance in unemployment is closely related to the variance in

GDP growth, it is not surprising to find a similar phenomenon in the unemployment series.

We introduce a similar variance change in the SARIMA model. As we do not distinguish between

different variance components in the periodic SARIMA model, we allow for different values of

the σε,s’s in the two subsamples. The estimated σε,s are on average 0.07 before 1982 and 0.03

after 1982, which is in line with the variance estimates for the two unemployment regimes in the

model of Warne & Vredin (2006). The variance moderation has a large effect on the estimates

of the long term growth rates in the periodic SARIMA model. While we obtained an overall

annual growth rate of 2% in the homoskedastic model, in the model with variance moderation,

the annual growth rate is a mere 0.8%.

Table 2: Estimation results for models with variance moderation in 1982 (sample 1948− 2005).

non–periodic models periodic models

SARIMA UC PSARIMA PUC

logL 1142.93 1131.04 1188.34 1188.64

AIC -3.26 -3.23 -3.17 -3.27

BIC -3.22 -3.19 -2.62 -2.94

LR 90.82∗ 115.20∗

N 1.35 0.06 0.81 1.20

Q(96) 153.51∗ 131.54∗ 177.18∗ 119.58∗

Q(144) 236.61∗ 189.01∗ 248.05∗ 173.29∗

p̃ 6 6 72 50†

n∗S 696 696 696 696

NOTES: log L: log-likelihood. AIC: Akaike Information Criterion. BIC: Bayesian Information Criterion. LR is

LR test of the nonperiodic model against its periodic counterpart, N is a normality test on the prediction errors;

N
a
∼ χ2(2). Q is a Portmanteau autocorrelation test; Q(l)

a
∼ χ2(l− p̃) where l is the number of lags and p̃ is the

number of parameters. ∗ : the test rejects at a 5% significance level. † : the number of parameters is calculated as

49 + 12 (cycle variance moderation parameters σκ,s,1982) − 11 (zeros in σζ,s). n∗S is the number data points.

Table 2 reports the loglikelihood values, Akaike’s information criteria (AIC), Bayes information

criteria (BIC) and tests on the one-step-ahead prediction errors for the models with the vari-

ance moderation. By introducing a breakpoint in 1982, heteroskedasticity and nonnormality

of the one–step prediction errors have largely disappeared. The loglikelihoods show a dramatic

improvement because of the variance moderation. For example, in the periodic UC model we
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Figure 9: Graphical diagnostics for models reported in Table 1. From left to right: Standardised one-step-ahead prediction errors time series plot,

histogram and nonparametric density estimate, sample ACF for the whole sample (from 1948 − 2005) and sample ACF for the second half (from

1982 − 2005) of the series. First row: non–periodic SARIMA model, Second row: periodic SARIMA model, Third row: non–periodic UC model,

Fourth row: periodic UC model.
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have an increase in the loglikelihood of 72, from 1116 to 1188, by introducing twelve extra cycle

variance moderation parameters. This increase is highly significant. However, comparing the

periodic and nonperiodic SARIMA model on the basis of AIC and BIC, the nonperiodic model

is preferred. Between the periodic models themselves, the periodic UC model outperforms the

periodic SARIMA based on loglikelihood, AIC, BIC and serial correlation tests for the forecast

errors.

Figure 9 presents graphical diagnostics for the whole sample and for the second part of the

sample. For forecasting we are primarily interested in the adequacy of the model in the second

part of the sample. The diagnostics are now satisfactory. Some serial correlation in the residuals

remains, but the cyclical nature of the ACF for the periodic UC forecast errors has disappeared

after 1982, see the last row and last column of Figure 9.

Figure 10 shows the changes in the cyclical variances. The most remarkable changes occur in

the last three months of the year which were the most volatile months before 1982, turning into

relatively tranquil months in the second part of the sample.
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Figure 10: Periodic parameter estimates ± 2 standard errors for the periodic UC models without

and with variance moderation. Top: ρ̂s for model without (left) and with (right) variance

moderation. Middle: σ̂κ,s for model without variance moderation. Bottom: σ̂κ,s for first and

second part of the sample in model with variance moderation. See also Figure 7.
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4.5 Forecasting weights and forecasting performance

In the previous subsections we have shown the effects of periodicity on the time series decom-

position of US unemployment. This subsection concerns the effect on forecasting. In order to

interpret the relative forecasting performance of different models, it is useful to compute the

forecasting functions implied by the different specifications. In particular, it is important to see

how the weights of past observations in the forecast functions differ from month to month.

Periodic observation weights for h–step ahead forecasting are defined similarly as for non–

periodic models, see Harvey & Koopman (2000), only now different weights apply for different

months of the year. Consider the optimal linear one–step ahead forecasting function for the

actual series

ŷt|t−1 = E[yt|y1, . . . , yt−1] = w1,s,tyt−1 +w2,s,tyt−2 + . . .+ wt−1,s,t. (40)

In this notation we have made explicit that the forecasting function with s = 1 applies when yt

falls in month 1, the forecasting function with s = 2 applies when yt falls in month 2, etc. The

weights wi,s,t are simply the coefficients of these forecasting functions.

The forecasting weights sum to unity in all models that we discuss in this paper:
∑t−1

i=1 wi,s,t = 1.

The forecast weight functions of non-periodic models are very similar across different months

that are close to each other, especially towards the end of the sample. For periodic models the

weight functions are similar for observations exactly one year apart, but the weight functions

can be quite different for different months in the same year. The forecasting weights are easy

to compute for linear models in state space form. We use the efficient algorithms derived by

Koopman & Harvey (2003). Similar weight functions can be defined for filtered or smoothed

trend, cycle and seasonal components of yt, but we do not present them in this paper to save

space.

Figure 11 shows the weighting patterns for one–step ahead prediction of the observation y2005.s

for the months March, June, September and December 2005, s = 3, 6, 9, 12. We plot wi,s,t

against −i, −i = −49, . . . ,−1, for s = 3, 6, 9, 12. The plots present the wi in reverse order as

the weight with the smallest index i correspond to the most recent observation. As expected,

the plots show that the prediction of month t depends heavily on the observation of month t− 1

which is depicted as the last bar of each weight function. Scanning the graph from right to

left, we see that the last bar is preceded by small negative weights for the months t − 2 until

t − 11. The second large and positive bar presents the weight of month t − 12 from the year

before, as is common in seasonal time series models. The first large negative weight occurs for

t− 13, which is common for seasonal time series models with trends as it reflects the difference
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operator. A yearly pattern then repeats itself and damps out. These weight patterns clearly

indicate the relevance of the periodic analysis for forecasting, as they are quite distinct for the

different months of the year.
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Figure 11: Observation weights of yt−i,−i = −50 . . . ,−1 for one–step ahead prediction of the

observation (yt) for the months March, June, September and December 2005.

Figure 12 shows the 1 to 8–month ahead forecasts for 2006.1 − 2006.8 together with their 67%

confidence interval for all models of Table 2 and compares them with actual values. The forecasts

are quite satisfactory. The top row presents the forecasts of the non–periodic models and the

bottom row depicts the forecasts of the periodic models. The left column is for the SARIMA

models and the right column is for the UC models. In general, the standard errors of the periodic

models are smaller than the non–periodic ones and therefore the forecasts of the periodic models

are more accurate than those of non–periodic ones.

Comparing the two periodic models, the forecasts look similar for the first five months which

are somewhat higher than the realised values. The forecast of the periodic UC model is almost

perfect for June 2006 but becomes less accurate in July and August. The reverse holds for the

forecasts of the periodic SARIMA model which are higher than the realised unemployment in

June but quite precise in July and August. In sum, both periodic models produce realistic out-

of-sample point- and interval forecasts without significant differences between the two models.
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Figure 12: Forecasted series with standard errors over year 2005 using non–periodic (top panel)

and periodic (bottom panel) models.

5 Summary and Conclusion

The primary aim of the paper was to develop appropriate methods and algorithms for estima-

tion, decomposition, diagnostic checking and forecasting. We succeed to present a comprehen-

sive analysis of univariate periodic unobserved component modelling where we distinguish four

stochastic components: a (smooth) stochastic trend, a seasonal, a cycle and an irregular. In

addressing to the discussion about identification problem, we find that our periodic unobserved

component models are identified for S > 2, where S is the number of observations per year. For

S = 2, a parameter restriction on the seasonal component is needed. We also have derived two

equivalent state space forms for the periodic unobserved components model, a univariate time–

varying and a multivariate constant–parameter formulation. Both can be used for estimation,

decomposition and forecasting.

Estimation of the unknown parameters is feasible despite the possibly large number of parame-

ters. Estimates are obtained by the exact maximum likelihood method with diffuse initialisa-

tion of the nonstationary components in the model. We develop a related new exact estimation

method for periodic SARIMA models, which does not require a priori differencing of the data.

In our application to monthly postwar US unemployment, we discover periodicity in all pa-
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rameters, especially in the cyclical component. Periodic models fit the data better than the

non–periodic ones in terms of loglikelihood and out–of–sample forecasts. As the variances of

cyclical unemployment decreased markedly in the second part of our sample we successfully

incorporate a variance moderation into our model. Both the level and the periodic pattern of

the cyclical variance changed over time. Our trend estimate of US unemployment shows a clear

periodic pattern with the largest conditional variance in October of each year. The observa-

tion weights for forecasting also show some marked differences in the forecasting functions for

different months in the same year.

The model can be extended in several ways. In shorter samples, placing extra restrictions on

the intra–year pattern of the periodic coefficients may be needed, as is common in geophysical

applications of periodic models. Another extension is allowing for more than one independent

trend component to bridge the gap with independent periodic models which specify independent

trends for different months of the year. In that case non–trivial identification problems for

seasonal adjustment arise, see the discussion in § 1. Extensions of the statistical analysis are

also possible within our framework. Following Busetti & Harvey (2003), stationarity tests for

the periodic components in the model can be developed.

Different nonlinear model extensions can be considered, but they require the use of nonlinear

or non–Gaussian state space formulations that increase the computational complexity. Further

research is planned in this direction. Finally, the periodic approach can be extended to multivari-

ate UC time series models. For US unemployment, an extension with monetary variables leads

to models of economic interest. However, it is an empirical question whether such extensions

will result in better decompositions or more accurate forecasts.

Appendices

A Moments and identification local linear trend model for S = 2

In this appendix we extend the analysis of § 3.3, allowing for a stochastic slope βt. We consider a

univariate periodic local linear trend (PLLT) model for half-yearly data with periodic variances

for the disturbances of the trend, slope, seasonal and irregular components

yt = µt + γt + εt, εt ∼ NID(0, σ2
ε,s),

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η,s),

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ,s),

γt+1 = −γt + ωt, ωt ∼ NID(0, σ2
ω,s),

(41)

for t = 1, S + 1, 2S + 1, . . . , where s = 1, . . . , S and S = 2. As before, a high σ2
ε,1 is associated

with a high variance for yt in period 1, but high values in σ2
η,1, σ

2
ζ,1 and σ2

ω,1 are associated with
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a high variance in the next period.

The stationary form of the periodic local linear trend model is given by

∆∆2yt = ηt−1 − ηt−3 + ζt−2 + ζt−3 + ωt−1 − 2ωt−2 + ωt−3 + εt − εt−1 − εt−2 + εt−3, (42)

∆∆2yt+1 = ηt − ηt−2 + ζt−1 + ζt−2 + ωt − 2ωt−1 + ωt−2 + εt+1 − εt − εt−1 + εt−2, (43)

for t = 1, S + 1, 2S + 1, . . . , where ∆∆Syt = (1 − L)(1 − LS)yt. The autocovariance function of

the above model for t = 1, S + 1, 2S + 1, . . . has a VMA(2) structure,

Γ0 = E
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







∆∆2yt−2

∆∆2yt−1





′

 =





γ11,1 γ12,1

γ21,1 γ22,1





Γ2 = E









∆∆2yt

∆∆2yt+1









∆∆2yt−4

∆∆2yt−3





′

 =





0 γ12,2

0 0





Γj = E









∆∆2yt

∆∆2yt+1









∆∆2yt−2j

∆2yt+1−2j





′

 = 0 for j ≥ 3,

where

γ11,0 = 2σ2
η,2 +

∑2
i=1 σ

2
ζ,i + 4σ2

ω,1 + 2σ2
ω,2 + 2

∑2
i=1 σ

2
ε,i

γ12,0 = σ2
ζ,1 − 2

∑2
i=1 σ

2
ω,i − 2σ2

ε,1 + σ2
ε,2

γ21,0 = γ12,0

γ22,0 = 2σ2
η,1 +

∑2
i=1 σ

2
ζ,i + 2σ2

ω,1 + 4σ2
ω,2 + 2

∑2
i=1 σ

2
ε,i

γ11,1 = −σ2
η,2 + σ2

ω,2 −
∑2

i=1 σ
2
ε,i

γ12,1 = σ2
ζ,2 − 2

∑2
i=1 σ

2
ω,i + σ2

ε,1 − 2σ2
ε,2

γ21,1 = σ2
ε,1

γ22,1 = −σ2
η,1 + σ2

ω,1 −
∑2

i=1 σ
2
ε,i

γ12,2 = σ2
ε,2,

from which we obtain 8 linear equations with 8 unknown parameters. The above equations

can be rewritten in a matrix equation form, Aϕ = Γ, where the matrix A represents the linear

equations, ϕ contains the vector of unknown parameters and Γ consists of different elements of

Γ0,Γ1 and Γ2. The rank of matrix A is 7, one less than the number of unknowns, which means

that one restriction is needed to identify the model. Natural restrictions have the following

forms:

σ2
η,1 = σ2

η,2 = σ2
η or σ2

ω,1 = σ2
ω,2 = σ2

ω or σ2
ω,2 = σ2

η,1 − σ2
η,2 + σ2

ω,1.

The loglikelihood of the estimated model is exactly the same for each of these three restrictions.
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B Moments and identification basic structural model for S = 3

This appendix extends the analysis of § 3.3 to S = 3. The stationary form of the periodic BSM

model in equation (6) for t = 1, S + 1, 2S + 1, . . . with S = 3 is given by

∆3yt = ηt−3 + ηt−2 + ηt−1 − ωt−2 + ωt−1 + εt − εt−3, (44)

∆3yt+1 = ηt−2 + ηt−1 + ηt − ωt−1 + ωt + εt+1 − εt−2, (45)

∆3yt+2 = ηt−1 + ηt + ηt+1 − ωt + ωt+1 + εt+2 − εt−1, (46)

The autocovariance function for t = 1, S + 1, 2S + 1, . . . is given by

Γ0 = E





















∆3yt

∆3yt+1

∆3yt+2





















∆3yt

∆3yt+1

∆3yt+2











′









=











∑3
i=1 σ

2
η,i + σ2

ω,2 + σ2
ω,3 + 2σ2

ε,1 σ2
η,2 + σ2

η,3 − σ2
ω,3 σ2

η,3

σ2
η,2 + σ2

η,3 − σ2
ω,3

∑3
i=1 σ

2
η,i + σ2

ω,1 + σ2
ω,3 + 2σ2

ε,2 σ2
η,1 + σ2

η,3 − σ2
ω,1

σ2
η,3 σ2

η,1 + σ2
η,3 − σ2

ω,1

∑3
i=1 σ

2
η,i + σ2

ω,1 + σ2
ω,2 + 2σ2

ε,3











Γ1 = E





















∆3yt

∆3yt+1

∆3yt+2





















∆3yt−3

∆3yt−2

∆3yt−1











′









=











−σ2
ε,1 σ2

η,1 σ2
η,1 + σ2

η,2 − σ2
ω,2

0 −σ2
ε,2 σ2

η,2

0 0 −σ2
ε,3











Γj = E





















∆3yt

∆3yt+1

∆3yt+2





















∆3yt−3j

∆3yt+1−3j

∆3yt+2−3j











′









= 0 for j ≥ 2.

Identifiability can be shown by solving the following system of equations


































































1 1 1 0 1 1 2 0 0

1 1 1 1 0 1 0 2 0

1 1 1 1 1 0 0 0 2

1 0 1 −1 0 0 0 0 0

1 1 0 0 −1 0 0 0 0

0 1 1 0 0 −1 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1



















































































































σ2
η,1

σ2
η,2

σ2
η,3

σ2
ω,1

σ2
ω,2

σ2
ω,3

σ2
ε,1

σ2
ε,2

σ2
ε,3

















































=



































































Γ0(1, 1)

Γ0(2, 2)

Γ0(3, 3)

Γ0(3, 2)

Γ1(1, 3)

Γ0(2, 1)

Γ1(1, 2)

Γ1(2, 3)

Γ0(3, 1)

Γ1(1, 1)

Γ1(2, 2)

Γ1(3, 3)



































































,
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where the vector on the right hand side consists of the different nonzero elements of Γ0 and Γ1.

The matrix on the left hand side has a full column rank resulting in identifiability. The system

is easily solved for σ2
ε,s, σ

2
ω,s and σ2

η,s, respectively.

C Sample periodic correlations

Sample periodic correlations have been defined by, i.a., McLeod (1994). In this appendix we

discuss the definition and computation that we use in § 4.1. We compute the sample periodic

correlation as follows. First, we consider the separate series in {y∗t∗} where

{y∗t∗} =
(

y1,t∗ y2,t∗ · · · yS,t∗
)′

(47)

and standardise the series ys,t∗ separately by subtracting the periodic means and by dividing by

the periodic standard deviations to get {ỹt∗}, where

{ỹt∗} =
(

ỹ1,t∗ ỹ2,t∗ · · · ỹS,t∗
)′

(48)

for s = 1, . . . , S, t∗ = 1, 2, . . . , where t∗ is the index in years. If we associate ỹ1,t∗ with ỹt (series

ỹ at time t), y2,t∗ with ỹt+1 (series ỹ at time t+ 1), . . . , and yS,t∗ with ỹt+S−1 (series ỹ at time

t+ S − 1), we can also view the standardised series as

{ỹt∗} =
(

ỹt ỹt+1 · · · ỹt+S−1

)′
, for t = 1, S + 1, 2S + 1, . . . . (49)

Next, consider all the covariances between the standardised subseries, {ỹt∗}, and their lags

{ỹt∗−j}, where

{ỹt∗−j} =
(

ỹ1,t∗−j ỹ2,t∗−j · · · ỹS,t∗−j

)′

=
(

ỹt−jS ỹt+1−jS · · · ỹt+S−1−jS

)′
, for t = 1, S + 1, 2S + 1, . . . .

For S = 2 the periodic correlations γi,s, i = 1, 2, . . ., s = 1, . . . , S, are selected from the multi-

variate correlation matrices of ỹt∗ as follows:

E









ỹ1,t∗

ỹ2,t∗









ỹ1,t∗

ỹ2,t∗





′

 =





1 γ1,−1

γ2,1 1





E









ỹ1,t∗

ỹ2,t∗









ỹ1,t∗−j

ỹ2,t∗−j





′

 =





γ1,2j γ1,2j+1

γ2,2j+1 γ2,2j



 , j = 1, 2, . . . .

The sample correlations ci,s, i = 1, 2, . . . , (n − 1)S, s = 1, . . . , S are the sample versions of the

population correlations γi,s defined above, without degrees of freedom corrections. For S > 2

the computation is analogous. In § 4.1, where S = 12, we report the ci,s, i = 1, . . . , 120 and

s = 3, 6, 9, 12.
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D Periodic SARIMA model in state space representation

In this appendix we discuss the state space representation of the periodic SARIMA model of § 4.2.

The seasonally differenced y†t = ∆Syt series follows a simplified periodic SARMA(2, 0, 1)(0, 0, 1)S

process with a time-varying-mean, which we write as

y†t = βt + φ1,t(y
†
t−1 − βt) + φ2,t(y

†
t−2 − βt) + εt + θ1,tεt−1 + Θ1,tεt−S , (50)

with εt ∼ N(0, σ2
ε,t), where βt, φ1,t, φ2,t, θ1,t, Θ1,t and σ2

ε,t are coefficients that vary determin-

istically across the S different periods of the year. To keep the model as simple as possible,

yet adequate enough for log US unemployment, the term θ1,tΘ1,tεt−(S+1) is omitted. In order

to make the likelihood for the periodic SARIMA model (50) comparable with the periodic UC

model we rewrite the model in terms of the levels, yt, as

yt = βt + yt−S + y‡t (51)

where y‡t = y†t −βt = ∆Syt−βt = yt−yt−S−βt for t = 1, 2, . . .. This is also an appropriate form

to obtain the out-of-sample forecasts for yt and their corresponding standard errors without

additional algebra. The elements of the state space form (16)–(17) are given as follows. The

state vector αt is defined as

αt = (βt . . . βt+S−1 yt−1 . . . yt−S y
‡
t φ2y

‡
t−1 + θ1,tεt + Θ1,tεt−S+1 Θ1,tεt−S+2 . . .Θ1,tεt)

′,

with corresponding disturbance vector given by

Htǫt =
(

01×2S εt+1 θ1,tεt+1 01×(S−2) Θ1,tεt+1

)′
.

The transition matrix Tt is therefore (3S + 1) × (3S + 1) and Tt and Zt are given by

Tt =











Ta 0S×(2S+1)

Tb Tc

0(S+1)×S Td











, Zt =
(

1 01×3S

) [

Tb Tc

]

, (52)

Ta =





0 IS−1

1 01×(S−1)



 , Tc =





01×(S−1) 1 1 01×S

IS−1 0(S−1)×1 0(S−1)×1 0(S−1)×S



 ,

Tb =





1 01×(S−1)

0(S−1)×1 0(S−1)×(S−1)



 , Td =

















02×S

φ1,t

φ2,t

I2 02×S−2

0(S−2)×S 0(S−2)×1 0(S−2)×2 I(S−2)

01×S 0 01×2 01×(S−2)

















.
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where 0r×c denotes a zero matrix with r rows and c columns and where Ir denotes an identity

matrix of dimension r. Ht is defined as

Ht =
(

01×2S σε θ1,tσε 01×(S−2) Θ1,tσε

)′
, (53)

whereas Gt = 0.

Finally, a = E(α1) = 0(3S+1)×1 and the variance matrix of the initial state is given by

P0 =





κI2S 02S×(S+1)

0(S+1)×2S P∗



 , (54)

where the initial variance matrices of the growth rates βt and the levels yt are diffuse: κ→ ∞. It

remains to define the variance matrix of the stationary elements of the state, P∗, where Var(y‡1)

is the nontrivial term. A simple analytical solution for the unconditional variance of y‡t like

we obtained in § 3.4 for the periodic stochastic cycle model in not available. Fortunately, P∗

is easily constructed by an extra pre-run of the Kalman filter following the ideas of Jimenez

et al. (1989). Alternative solutions for P ∗ from the literature on periodic ARMA models, see

e.g. Lund & Basawa (2000), are numerically unattractive in our case of a large S, because of

the high dimension of the state.
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