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Abstract

We extend the Hidden Markov Model for defaults of Crowder, Davis, and

Giampieri (2005) to include covariates. The covariates enhance the prediction

of transition probabilities from high to low default regimes. To estimate the

model, we extend the EM estimating equations to account for the time varying

nature of the conditional likelihoods due to sample attrition and extension.

Using empirical U.S. default data, we find that GDP growth, the term struc-

ture of interest rates and stock market returns impact the state transition

probabilities. The impact, however, is not uniform across industries. We only

find a weak correspondence between industry credit cycle dynamics and gen-

eral business cycles.
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1 Introduction

Dependence of defaults within a given portfolio is an important issue in credit risk

management. Proper modeling requires capturing the timing, as well as the total

number of defaults. In recent years both the academic and the industrial research

community have put forward dynamic models of default rates for at least three

reasons. First, rating transition probabilities in general, and default probabilities in

particular, vary over time and tend to co-move with general economic conditions.

As a result, capital buffers required to cope with credit losses need to vary as well.

Second, increased liquidity in financial markets for credit-related products has led

to a shift in management paradigm: from counter-party credit risk assessment to

dynamic, active management of credit portfolios. Third, the New Capital Accord

of the Basel Committee on Banking Supervision (2005) allows banks to perform a

larger part of risk management tasks using internal models. Here dynamic models

for default probabilities can provide more efficient use of capital over stages of the

business cycle.

Figure 1 shows the number of defaults among U.S. industrials recorded quarterly

between 1981 and 2005. A visual inspection of the graph suggests, that the defaults

are not independent over time – high and low default quarters appear to be clustered.

<INSERT FIGURE 1 HERE>

In this paper we capture these dynamics through a hidden Markov model (HMM),

with the regime-switching probabilities depending on observed macro variables. In

the credit risk context latent state models, such as the HMM in this paper, have

an advantage over those based solely on observables. Often there is little or no

theory as to which factors would be optimal as proxies for systematic credit risk.

This problem is avoided in the HMM setting. The (hidden) states of the Markov

chain in this paper correspond to the state of the credit market. We distinguish

between normal and risky (“excited”) credit market conditions. In risky credit
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market states, default probabilities increase. The transitions between the states are

governed by probabilities that depend on selected macroeconomic variables. This is

in line with the empirical evidence of Bangia et al. (2002), who show that defaults

– and downgrades in general – are more likely during recessions than expansions.

In line with most credit risk portfolio models in the literature, the model we pro-

pose can be thought of as conditionally stationary, in the sense that non-stationarity

in the general economic condition is captured by the conditioning macro variables.

Conditional on the realization of the latent Markov process, credit exposures within

the portfolio default independently. This results in a binomial distribution, with

parameters depending on the risk state and the number of credits surviving up to

time t.

We address a number of issues arising in the portfolio credit risk context. First,

we investigate how much information on credit markets is contained in macro vari-

ables like GDP, interest rates and financial markets returns. Intuitively, in an ex-

panding economy we should observe a decrease in default risk. We verify this by

estimating the model in two versions. One model has a a simple latent risk state as

in Crowder et al. (2005). The other model has an observable part (macro factors)

and a hidden part (interpreted as condition of the credit market). In addition we

analyze whether the industry sector influences the impact of economic conditions

on default risk. The current approach with a latent component is less prone to the

choice of incorrect macro proxies, as signaled in Lucas and Klaasen (2006). Because

the credit state is a latent component, we can still have a systematic credit risk fac-

tor at the portfolio level even though all macro variables are incorrect. The model

will then collapse to the basic HMM of Crowder et al. (2005).

Based on the HMM for defaults, we can construct an early warning mechanism

for high default probability regimes. The importance of such regimes for setting

capital buffers was clearly illustrated in Bangia et al. (2002) in a switching model.

We confront our predictions with the NBER classification of business cycle states.
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In this way we can analyze the dependence between the business cycle (behavior of

the general economic variables) and the credit cycle (fluctuations of the recovered

hidden credit risk state process), both in particular sectors and the economy as a

whole. We find only mild correspondence between the two, indicating that credit

and business cycles can have their own separate dynamics. Our current model

classifies credit market conditions into a finite number of different levels for default

intensities. This makes the model easy to estimate using standard methods like the

EM algorithm. Our approach complements related papers that either use observed

rather than hidden regimes, such as Bangia et al. (2002) and Nickell, Perraudin,

and Varotto (2000), or a continuous number of states for economy-wide default

intensities, see Koopman et al. (2005) and Duffie et al. (2006).

The paper is organized as follows. Section 2 describes the basic setup along with

the proposed extensions and the statistical methods employed. The details of the

calculations are deferred to the appendix. Empirical results are described in section

3. Section 4 concludes and suggests directions for future research.

2 Model formulation

2.1 Theoretical setup

At time t = 1, . . . , T,, we consider a portfolio of Nt units. Each unit can be thought of

as a defaultable counterparty. We are interested in modeling the number of defaults

over time. Underlying the default dynamics is a latent, discrete process Wt capturing

current credit market conditions. In the basic version of the model, Wt is modeled as

a time-homogeneous Markov chain taking values in the set {1, . . . , s}. State values 1

and s correspond to the lowest and highest default regimes, respectively. Conditional

on the hidden process Wt the units behave independently. Hence, the total number

of defaults Dt at time t has a binomial distribution. For the number of defaults this

means that Dt|(Wt = i) ∼ Bin(Nt, αi), where αi denotes the default probability in
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state i.

The hidden Markov chain Wt is characterized by its transition matrix Qt together

with the distribution of the initial state Pr(W1 = i) = πi. As motivated in the

introduction, we model the matrix Qt as a function of observed covariates Xt, where

Xt may contain macroeconomic variables such as growth or interest rates. This

extends the framework of Crowder et al. (2005) that uses constant Qt ≡ Q. It

also departs from the setup of Bangia et al. (2002) or Nickell et al. (2000), where

the latent Wt is replaced directly by an observed variable. We choose the standard

(multinomial) logistic link function between Xt and the entries of Qt,

qij,t = Pr(Wt+1 = j|Wt = i, Xt) =
exp(Φ′

ijXt + ηij)
∑s

j=1
exp(Φ′

ijXt + ηij)
, (1)

Other link functions, such a probit are of course also possible. For identification, we

have to restrict one of the Φijs and ηijs per row i, for example Φii ≡ 0 and ηii ≡ 0.

If Φij ≡ 0 for all i and j, then a multistate version of the model of Crowder et al.

(2005) is recovered.

The number of units Nt at time t is affected by the number of defaults over the

previous period, given by Dt−1. In addition, Nt may also increase because units

enter the sample (births), or decrease because units leave the sample for reasons

other than default. Obvious examples of the latter in our current context are firms

that merged or were acquired. In this paper we follow the common approach in

the literature and treat births and withdrawals as exogenous, see, e.g., Bangia et al.

(2002) and Nickell et al. (2000). Alternatively, births and deaths could be modeled

in a similar way to Dt. See Duffie et al. (2006) for an analogue in the setting of

intensity models.
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2.2 Estimation

We gather all the model parameters into a single vector θ. In order to estimate

θ, we use the Expectation-Maximization (EM) algorithm. Details are provided in

the appendix. The main idea is the following. We can easily write down the joint

log-likelihood ln pθ(D, W |X) of the observed default sequence Dt and the associated

hidden state evolution Wt conditioned on the sample path of the macro process Xt.

As we can only observe Dt, Nt, and Xt, we have to integrate out Wt. We perform

the integration using an initial estimate θ̃ of θ. A new estimate of the parameter

vector is given by

θ∗ = argmax
θ

Eθ̃

[

T
∑

t=1

ln pθ(Dt, Wt|Nt, Wt−1, Xt−1)

]

. (2)

The integration can be done analytically. In the next step we update θ̃ to the value

θ∗ and again compute a new estimate using (2). This iterative procedure is repeated

until convergence. Usually this type of estimation problem in the Markov switch-

ing models class is solved using the Baum-Welch algorithm, see Rabiner (1989).

The algorithm is not directly applicable in our current setting. The distribution

of the output Dt changes over time due to fluctuations in the number of survivors

Nt, whereas the BW method makes extensive use of the time-invariance property.

Therefore, we propose a modification of the algorithm taking into account this vari-

ation, as well as the presence of covariates. The general approach is similar. We

proceed by defining forward and backward variables as in Rabiner (1989). The re-

sulting update formulas for parameter estimates are, however, different from the

standard case.

We obtain standard errors of the parameter estimates by using the block bootstrap.

We split the original series into blocks, with block lengths generated from a geometric

distribution. The blocks are then concatenated, until a new series of length T is

formed. We create M new replicate series in this way, sample standard deviation

6



of the estimates over the M replications serve as standard errors. For details of the

implementation procedure, see Politis and Romano (1994).

2.3 Recovered latent state distribution

Given the probabilistic structure of our model, we can analyze the evolution of

the latent state process Wt. We use the recursive algorithm provided by Hamilton

(1994). The method uses three different conditional distributions of Wt (based on

varying information sets). Define the information set as

Ft = {Xt, Xt−1, . . . , Dt, Dt−1, . . . , Nt, Nt−1, . . .}

and let

ξt|τ =













Pr(Wt = 1|Fτ)

. . .

Pr(Wt = s|Fτ )













=













ξt|τ (1)

. . .

ξt|τ(s)













. (3)

By substituting τ = t − 1, τ = t, and τ = T we obtain predicted, filtered, and

smoothed estimates of the distribution of the latent state Wt, respectively. Details

of the recursive procedure to compute ξt|τ in each of these cases are provided in the

appendix.

2.4 Forecasting

Using the notation in (3) we can construct a one-step prediction for the default

process

Pr(DT+1 = k|FT , NT+1) =

s
∑

i=1

Pr(DT+1 = k|WT+1 = i, NT+1,FT ) · Pr(WT+1 = i|FT )

=
s
∑

i=1

dbin(k; NT+1, αi) · ξT+1|T (i), (4)
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where k ∈ {0, 1, . . . , NT+1}, dbin(k; N, p) denotes the binomial probability of k suc-

cesses when drawing N trials with success probability p. As NT+1 is the number of

units at the start of the (T +1)th period, it is known at time T . Note that to obtain

more-than-one-step-ahead forecasts, an auxiliary model is needed for the processes

Nt and Xt. For Nt, an obvious choice is to abstract from the birth and withdrawal

processes and update NT+1 by the predicted default distribution of DT+1 only, i.e.

Pr(DT+2 = k|FT , XT+1, NT+1) =

=

s
∑

i=1

s
∑

j=1

NT+1
∑

l=0

Pr(DT+2 = k|XT+1, NT+2 = NT+1 − l, WT+2 = j,FT )

· Pr(DT+1 = l|WT+1 = i,FT , NT+1) · qijt · ξT+1|T (i) (5)

To integrate out the Xt process (in this case XT+1), a time series model for Xt is

needed. Obvious choices include simple univariate time series models as in Duffie

et al. (2006) or multivariate models such as vector autoregressive (VAR) models,

see Kavvathas (2001) . Note that the forecast performance in that case becomes

contingent on the quality of both the time series model for Dt and that for Xt.

3 Empirical results

3.1 Data description

In this section we apply the previous methodology to a two-state HMM. We distin-

guish a high and a low default regime. The data for our case study comes from the

CreditPro 7.0. database of Standard & Poor’s. The time series of interest consist

of registered defaults in the U.S. economy between January 1981 and July 2005,

sampled quarterly. The sample period encompasses both expansions and contrac-

tions. This is important, as part of our interest concerns the difference of conditional

default probabilities between economic regimes.
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For the sake of comparison, we group the observations into four industry blocks.

We distinguish industrials (automotive / metal / capital goods, energy and natu-

ral resources, forest and building products / homebuilders, health care / chemicals,

utility), services (consumer / service sector, leisure time / media, transportation),

financials (financial institutions, insurance, real estate), and high-tech (high tech-

nology / computers / office equipment, telecommunication). The classification in

parentheses follows the original industry classification provided in the database. The

number of observations in each industry can be found in Table 1. A graph of the

time series is presented in Figure 2.

<INSERT TABLE 1 HERE>

<INSERT FIGURE 2 HERE>

In line with previous empirical work in this area, we define the number of expo-

sures Nt for each sector as the number of active companies on January 1 of year t

minus the number of withdrawals over the subsequent year. A withdrawal is defined

as the event of a company leaving the database for other reasons than default. If

a company first withdraws and later defaults, this is recorded in the database. In

such cases, we skip the withdrawal event and only account for the default event. In

this way, we mitigate any biases due to strategic default behavior.

From earlier studies on the impact of macroeconomic variables on aggregate

default rates see Couderc and Renault (2004), we take four candidate macro time

series. We consider the real GDP growth rate over the past year, the slope of the

term structure (measured by the difference between the 5 year and 3 month treasury

yields), and the S&P 500 stock index returns over the past year. All series were

sampled quarterly to match the quarterly default sample. We also experimented

with a realized volatility variable based on daily S&P 500 index returns. This

variable, however, was insignificant in all of our estimation results. We therefore

exclude it from the remainder of the discussion.
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3.2 Parameter estimates

First, we estimate the baseline, time homogeneous HMM model of Crowder et al.

(2005) for our data set. The results are given in the top panel of Table 2. The

estimation results for the total default series clearly indicate that there are two

default regimes. The default probability in the low regime (0.19%) is only one third

of its counterpart in the high default regime (0.61%). The standard errors indicate

that the difference is statistically significant. The probability of remaining in the low

default regime is high, 92.88%. This implies an expected duration of high default

regimes of about 13 quarters. The high default regime has a lower probability of

remaining in this regime (85.30%), and a correspondingly lower expected duration

of about 6 quarters. The results are robust over industries. The most persistent

estimate is for the low default regime for the services industry. The estimate implies

an expected regime duration of somewhat more than 8 years. In all cases, there is

an apparent asymmetry between low default regimes and shorter-lived high default

regimes. This corresponds with results for similar models estimated for business

cycles, see Hamilton (1994). The expected durations in our data set for default

regimes, however, are much lower than those found for business cycles. The most

interesting jump in the default probability αi is for the high-tech industry. The high

regime αi is almost eightfold the size of its low default regime counterpart. This is

mainly due to the crash of the technology bubble in the early 2000s.

<INSERT TABLE 2 HERE>

We now consider the model with covariates. The estimation results are presented

in the lower panel of Table 2. Again, we notice the existence of two significantly

different default regimes. The regime default probabilities αi are very stable with

respect to the results for the time homogeneous model. For the total default series,

GDP growth and stock returns are significant for the low default regime probability.

Both variables have the expected sign: high growth and high stock returns cause the
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low default regime to persist longer. The converse effect is seen for the high default

regimes. High growth rates cause the high default regime to become less persistent.

The stock return is not significant for the high default regime transition probability.

When we consider the results for the individual industries, we see a similar pat-

tern. Except for the high-tech sector, GDP growth has a significant effect on low

default regime persistence. The magnitude of the coefficient is largest for the finan-

cial industry. For the high default regime, we again see that GDP growth decreases

regime persistence. The effect is only significant, however, for the industrials and

high-tech sectors.

The stock returns and interest rate spread variables reveal a more mixed pattern.

When significant, they have the correct sign: positive for low and negative for high

default regime persistence. The difference in significance of the different variables

for the various industries might be attributable to differences in leads and lags of the

industry default cycle with the general business cycle, see also Figure 2. For example,

GDP growth typically coincides with the business cycle, whereas the interest rate

spread typically leads. Such timing differences may prove an important element in

portfolio credit risk modeling.

A final result emerging from the bottom panel in Table 2 is that it is more

difficult to predict the high than the low default regime. The number of significant

covariates is much smaller for q22,t (high default persistence) than for q11,t (low

default persistence).

3.3 Default state estimates

We continue our discussion of the results by presenting the estimates of the pre-

dicted and smoothed default regime probabilities ξt|τ (2). The results are presented

in Figures 3 and 4.

<INSERT FIGURE 3 HERE>
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We immediately see in Figure 3 that the introduction of covariates makes the

predicted probabilities of the next regime more extreme. For the model without

covariates, the probability of the next quarter being a high default regime varies

between 85.30% and 7.12% (=100 - 92.88). This immediately follows from the

estimation results in Table 2. If the smoothed probability of the high default regime

is 100%, we obtain the maximum predicted probability. The converse holds if this

smoothed probability is 0%. By contrast, if we add covariates, also the value of Xt

becomes relevant for the predicted regime probability. As an example, consider the

total series and the GDP variable. Even if the smoothed probability of the current

state being in the high default regime is very high (low), an extremely high (low)

GDP growth rate may cause the predicted probability of a subsequent high default

regime to be much lower (higher). As high growth is correlated with low default

regimes according to Table 2, we see the general effect that high regime probabilities

from the time homogeneous model are driven even further towards 100% because of

the Xts additional impact, e.g., GDP growth rates being typically low at that time.

When we move on to the smoothed default probabilities in Figure 4, the dif-

ferences between the model with and without covariates are quite small. The main

differences are the high (low) regime in the mid 1980s for the basic (extended) model,

and the low (high) regime in 1999 for the basic (extended model). The sample ap-

pears too short to obtain definite statements on whether one model outperforms the

other. This is also supported by the industry wise comparison of predicted proba-

bilities in Figure 5. Now the differences between the basic and extended model are

more pronounced. For some years and industries, the extended model gives a clearer

and more timely signal.

<INSERT FIGURE 4 HERE>

<INSERT FIGURE 5 HERE>

One of the interesting things about Figure 5 is the difference in timing and
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duration of high default regimes between industries. Differences are so large in

several cases that one can clearly question the validity of pooling across industries

to get a better grasp of systematic portfolio credit risk factors as is done in much

empirical work.

Finally, we check the regime classifications from our model with the NBER busi-

ness cycle classifications to see whether high default regimes coincide with business

cycle recessions. This is done in Figures 7 and 6. We consider the smoothed prob-

abilities. Figure 7 shows that for the total default series, the high smoothed prob-

abilities generally contain the NBER classified recession. The high default regimes

are, however, much more prolonged.

<INSERT FIGURE 7 HERE>

<INSERT FIGURE 6 HERE>

If we disaggregate these results by industry in Figure 6, we again see a more

diverse picture emerging. The recession in the early 1980s only has some correspon-

dence to the high default regime for financials during that period. The recession,

however, starts and ends earlier than the high default regime. For the recession

in the early 1990s, we see more likeness across industries. In all industries we see

high default regimes surrounding these years. Again, the financials are somewhat

departing in that the high default regime is much longer than the recession and

starts much earlier, and ends much later. At the opposite side of the spectrum,

the high-tech companies show an increased probability of a high default regime in

the years directly adjacent to the recession, while the recession itself is classified as

low default. For the recession in the early 2000s, all industries have a high default

regime. That for the financials is very short lived, while those for the high-tech and

industrials are longest. In short, there appears to be some correspondence with busi-

ness cycle classifications and high default regimes, but again the pattern is mixed.
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In terms of durations, starting and ending dates, and consistency across industries,

there appears no clear match between business cycle and credit cycle dynamics.

This is in line with findings by Koopman et al. (2006) and Duffie et al. (2006) using

different modeling approaches, and may have important implications for credit risk

management.

4 Conclusions

In this paper we developed a Hidden Markov Model (HMM) to model and predict

corporate default frequencies. This model contributes to the literature in that it is

relatively easy to estimate using the EM extension to Rabiner (1989) as proposed

in this paper. Moreover, it allows for differences between credit and business cycles

by making the state of the credit cycle (high or low) a latent process.

The model enables us to address a number of relevant issues. First, we find

asymmetry in the credit cycle dynamics. Both in the basic (without covariates) and

extended versions of the model, the persistence of the good and bad credit states

differs significantly. Moreover, macro variables affect the persistence of a low default

regime much more than that of a high default regime. Due to an improvement in

explanatory power, we also see that sharper predictions are obtained for one-quarter-

ahead predicted default rates based on observable macro variables.

Second, we present empirical evidence of differences in exposure to systematic

risk across economic sectors. In particular, we found that the systematic credit risk

factor varies considerably across industries. This cautions the use of pooling across

industries in single factor portfolio credit risk models.

Finally, we can draw conclusions about the interdependence between credit and

business cycles. Our findings suggest, that the two are correlated, but the correlation

is far from perfect. This implies, that credit portfolio models that only condition

on business cycle proxies may miss out on a significant part of systematic portfolio
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credit risk.
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Appendix

EM algorithm

As usual, we start with writing the down the likelihood of an observed sequence of defaults

D = {D1, . . . ,DT } along with an associated hidden state sequence W = {W1, . . . ,WT }

and macro process X = {X1, . . . ,XT }. Define W̃it as an indicator variable taking the

value 1 if Wt = i and 0 otherwise. Sticking to the notation of Section 2.1, we have the

log-likelihood

ln pθ(D,W |X) =
s
∑

i=1

W̃it ln πi +
T
∑

t=2

s
∑

i=1

s
∑

j=1

W̃i,t−1W̃j,t ln qij,t−1 (A1)

+

T
∑

t=1

[

ln

(

Nt

Dt

)

+

s
∑

i=1

W̃it [Dj ln αi + (Nj − Dj) ln(1 − α + i)]

]

.

Assume that we have obtained some initial estimate θ0 of the model’s parameters. Given

θ0, we can compute so called forward and backward variables, which simplify the compu-

tations and clarify the notation (see Rabiner (1989)). In our case, define

• the probability of a particular number of defaults, given a state of the Markov Chain

and the model parameters,

bj(dt) = P (Dt = dt|Wt = j,X) =

(

Nt

dt

)

αdt

j (1 − αj)
Nt−dt ;

• the probability of the partial observation sequence d1, . . . , dt and state i at time t,
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given the model parameters θ,

ᾱj(1) = πjbj(d1) , j = 1, . . . , s ,

ᾱj(t) =

[

s
∑

i=1

ᾱi(t − 1)qij,t

]

bj(dt) , j = 1, . . . , s t = 2, . . . , T ;

• the probablity of a partial observation sequence from t + 1 to the end, given state i

at time t and the model parameters,

β̄j(T ) = 1 j = 1, . . . , s ,

β̄j(t) =

s
∑

i=1

qij,tbi(dt+1)β̄t+1(i) , t = T − 1, . . . , 1 ;

• the probability of being in state i at time t, given the observed sequence and model

parameters,

γj(t) =
ᾱj(t)β̄j(t)

∑s
i=1 ᾱi(t)β̄i(t)

, j = 1, . . . , s t = 1, . . . , T ;

• the probability of the Markov chain being in state i at time t and state j at t + 1,

given the model parameters and the observation sequence,

ξt(i, j) =
ᾱt(i)qij,tbj(dt+1)β̄t+1(j)

∑s
i=1

∑s
j=1

ᾱi(t)qij,tbj(dt+1)β̄j(t + 1)
, i, j = 1, . . . , s t = 1, . . . , T − 1 .

Let S denote the space of all possible sample paths of the latent process. The E-step

of the algorithm requires computing the expectation

Eθ0
[ln pθ(D,W )|D,X] =

∑

w∈S

ln pθ(D,w|X)pθ0
(D,w|D,X) .

For a fixed sequence of states (sample path) w, we have

pθ(D,w|X) = πw0

T
∏

t=2

qwt−1wt,tbwt
(dt) ,
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such that

Eθ0
[ln pθ(D,W )|D,X] =

∑

w∈S

(ln πw0
)pθ0

(D,w|D,X) (A2)

+
∑

w∈S

(

T
∑

t=2

ln p(wt−1|wt)

)

pθ0
(D,w|D,X) +

∑

w∈S

(

T
∑

t=2

ln bwt
(dt)

)

pθ0
(D,w|D,X) .

Our objective is to maximize (A2) with respect to θ. Since the parameters appear in

groups, we can seek the maximum of each of the three sums in the above display separately.

We start with decomposing the component related to π:

f(π) =
∑

w∈S

lnπw0
pθ0

(D,w) =

s
∑

i=1

ln πiPθ0
(w0 = i,D,X) .

A maximal value of f under the constraint
∑s

i=1
πi = 1 is obtained for π = γi(1).

The second component of the likelihood contains the time-dependent probabilities

Qt,ij. Those are described by the coefficients Φij and ηij . As the maximum likelihood

estimators do not have a closed form expression, we resort to numerical maximization for

this part of the likelihood.

Finally, the updates for αi’s can be obtained by finding the optimal argument values

for the function

h(α1, . . . , αs) =
∑

w∈S

(

T
∑

t=2

ln bwt
(dt)

)

pθ0
(D,w) =

s
∑

i=1

T
∑

t=2

(ln bi(dt))Pθ0
(wt = i,D,X) .

The optimal arguments result in update formulas

α∗
i =

∑T
t=2

dtγi(t)
∑T

t=2 Ntγi(t)
.
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Hamilton algorithm

Define iteratively for t = 1, . . . , T vectors of prediction probabilities

ξt|t−1 =













Pθ(Wt = 1|Ft−1)

. . .

Pθ(Wt = s|Ft−1)













,where ξ1|0 =













π1

. . .

πs













.

For t = 1, . . . , T it holds that

ξt+1|t =
Q′

t(ξt|t−1 ◦ ηt)

1‘(ξt|t−1 ◦ ηt)
,with ηt =













Pθ(Dt = dt|Wt = 1,Ft−1)

. . .

Pθ(Dt = dt|Wt = s,Ft−1)













,

with 1 denoting a vector of ones, and ◦ denoting an element-by-element multiplication.

As a by-product we obtain filtered probabilities, representing the distribution of the latent

process at time t based on the information available at that time,

ξt|t =
ξt|t−1 ◦ ηt

1′(ξt|t−1 ◦ ηt)
.

Furthermore, we can compute smoothed probabilities, useful for reproducing the evolution

of the hidden state process,

ξt|T =













Pθ(Wt = 1|FT )

. . .

Pθ(Wt = s|FT )













,

with ξT |T obviously equal to the most recent filtered probability. The probabilities ξt|T

are obtained through a backward recursion

ξt|T = ξt|t ◦
{

Qt

(

ξt+1|T + ξt+1|t

)}

, t = T − 1, . . . , 1 , (A3)

where + denotes element-by-element division.
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Table 1: Registered defaults within U.S. economy – sector split according to the
CreditPro 7.0 database classification of economy branches

Economy sector Defaults

Consumer / service sector 290
Aerospace / automotive / capital goods / metal 209
Leisure Time / Media 139
Telecommunications 85
Energy and natural resources 77
Health care / chemicals 76
Transportation 62
Forest and building products / homebuilders 59
Financial Institutions 54
High technology / computers / office equipment 50
Utility 30
Insurance 25
Real Estate 8
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Table 2: Estimation results

The table contains the estimation results for the HMM model with (bottom panel) an without (top panel) covariates. The regimes i correspond to the low
(1) and high (2) default regime. Columns with parameter values are labeled accordingly. We consider the complete sample of defaults (Total) as well as
defaults distinguished across industries (Industrials, Services, Financials, High-tech). The model for transition probabilities is given by

qijt = Pr(Wt+1 = j|Wt = i, Xt) = exp(Φ′

ijXt + ηij)
/

s
∑

j=1

exp(Φ′

ijXt + ηij),

for i, j = 1, 2, where we set Φ12 = Φ21 = 0 and η12 = η21 = 0 for identification. Xt contains GDP growth rates (with coefficients ΦGDP
11 and ΦGDP

22 ), the
term structure of interest rate (defined as the 5 year minus the 3 month rate, with coefficients ΦSPRD

ii ), and the return on the S&P500 index (ΦSP500
ii ). The

default probability in a specific regime is given by αi. Both qii and αi are measured in percentages. Standard errors obtained from the block-bootstrap
with replications are in parentheses.

Total Industrials Services Financials High-tech
low high low high low high low high low high

default default default default default default default default default default

Time homogeneous model

qii 92.88 85.30 92.49 87.25 97.00 90.36 93.78 83.93 96.63 86.06
(2.35) (5.04) (3.43) (15.19) (3.53) (5.91) (11.92) (8.63) (2.77) (19.98)

αi 0.19 0.61 0.15 0.60 0.36 1.12 0.04 0.43 0.18 1.41
(0.02) (0.05) (0.01) (0.03) (0.03) (0.09) (0.02) (0.05) (0.02) (0.10)

Model with covariates

ΦGDP
ii 4.65 -1.96 1.54 -1.50 1.93 -1.19 7.02 -4.56 2.16 -5.18

(0.71) (0.68) (0.11) (0.17) (0.86) (2.46) (1.05) (1.98) (1.30) (1.94)
ΦSPRD

ii 1.38 -1.20 3.98 0.78 1.47 3.84 -2.07 2.27 1.31 -5.77
(2.27) (0.78) (6.12) (1.00) (0.37) (6.10) (3.37) (6.08) (0.62) (2.64)

ΦSP500
ii 1.19 0.46 -0.58 0.24 -0.21 -0.78 1.59 0.31 -3.26 0.80

(0.43) (0.46) (0.70) (1.13) (0.79) (0.79) (1.11) (1.66) (2.10) (1.46)
αi 0.17 0.57 0.18 0.69 0.39 1.18 0.05 0.45 0.18 1.31

(0.02) (0.04) (0.04) (0.08) (0.03) (0.06) (0.02) (0.03) (0.03) (0.15)
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Figure 1: Default rate in the U.S. economy over the sample period
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Figure 2: Default rates in the U.S. industry over the sample period – sector split
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Figure 3: Predicted probability of crisis: basic and extended model vs realized
default rate on the entire sample
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Figure 4: Smoothed probability of crisis: basic and extended model vs realized
default rate on the entire sample
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Figure 5: Predicted probability of crisis: basic and extended model vs realized
default rate; top to bottom: industry, services, finance and high-tech
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Figure 7: Realized default rate (dashed line) and smoothed crisis probability (solid
line) for the entire sample vs NBER recession periods
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