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Insurance sector risk∗

Jan Frederik Slijkerman†

July 8, 2006

Abstract

We model and measure simultaneous large losses of the market
value of insurers to understand the impact of shocks on the insurance
sector. The downside risk of insurers is explicitly modelled by common
and idiosyncratic risk factors. Since reinsurance is important for the
capacity of insurers, we measure risk dependence among European
insurers and reinsurers. The results point to a relatively low insurance
sector wide risk. Dependence among insurers is higher than among
reinsurers.

1 Introduction

The financial stability of the global insurance sector was a major concern
for regulators following the losses of the September 2001 WTC collapse. At
the same time, the investment income arising out of the assets of insurers
declined, due to low interest rates and a declining stock market during the
recession at the time. In this research we study the downside risk dependence
of multiple insurers. We measure similarities in sector wide risk exposure
using daily stock price returns of European insurers and reinsurers.

We provide an explanation for a similar exposure to very large losses,
based on the idea that multiple insurers carry similar risks. Insurance com-
panies can e.g. be exposed to similar insurance risk on the liability side, due
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to reinsurance practices which spread the same risk across companies. This
common exposure can also arise because of an exposure to similar macroeco-
nomic variables, like interest rates or inflation on the asset side. We model
and estimate the effect of risk diversification on downside risk for individual
companies and for the sector as a whole.

Risk diversification may reduce the risk of individual insurance compa-
nies, but the risk profiles of multiple insurers becomes more similar due to
this diversification. Hence, systemic risk may increase due to risk sharing.
For the design of optimal regulation, it matters if regulators have to deal
with sector wide risk or firm specific risk. When firms are exposed to the
same risks, during a crisis all insurers realize losses on either their assets or
liabilities. The capacity of the insurance sector can therefore be at risk and
may need to be enhanced. Moreover there is an increasing interest in the
effects of a loss of insurance capacity on real economic activity. A better
understanding of sector wide downside risk can contribute to this impact
assessment.

Since insurers want to limit and diversify their risk exposure they protect
themselves by reinsurance contracts. Reinsurers provide insurers protection
against major losses and the bankruptcy of a reinsurer might expose insur-
ers to unforseen losses. Reinsurance can be provided by both reinsurance
companies, by other insurers and by the capital markets. It is the primary
responsibility of insurers to have a sound reinsurance risk management strat-
egy. Regulators are interested in the mutual relations between insurers and
reinsurers. The Financial Stability Forum (2002) e.g. is concerned about
the impact of the collapse of a major reinsurer on insurance companies. We
measure the degree of such dependence between insurers and reinsurers.

The banking sector is also exposed to problems within the insurance sec-
tor. Insurers may sell credit protection to banks, via credit default swaps.
In practice the reverse occured more frequently and contributed to the woes
of the insurance sector during the last recession, while the banking sector
was more or less unaffected. The dependence between banks and insurers is
investigated in detail in Slijkerman e.a. (2005). Systemic concerns for the
banking sector have a higher relevance than for the insurace sector. Bank
failures have a public externality because of the maintenance of the payment
system by banks. The specificity of the deposit contract also creates a (neg-
ative) public externality, due to the possibility of a drain of liquidity due to
a bank failure. The stability of the reinsurance sector is nevertheless of a
public concern, since the bankruptcy of a major reinsurer may reduce the
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capacity of the insurance sector and therefore have real consequences. Geluk
and De Vries (2005) analyze the asymptotic dependence among reinsurers.
This interdependency not withstanding, the insurance sector is less fragile
and does not have the same importance to the real economy as the banking
sector.

The OECD (2004) writes that the insurance sector has an important role
to play in the real economy. For a lot of economic activities insurance is
mandatory or necessary to contain the investment risk for economic activi-
ties. Airlines, for example, have to insure their airplanes and construction
companies want to insure their property. A possible shortage of the capacity
to provide insurance is therefore a concern of regulators. In this research we
do not explicitly quantify the impact of insufficient insurance cover on real
economic activity, but try to quantify the possibility of sector wide losses to
the insurance sector. The consequences of a loss in insurance cover is briefly
discussed in the following.

Before the collapse of HIH Insurance in March 2001, it was the second
biggest insurer in Australia. According to Buchanan et al.(2003), the col-
lapse of HIH made reinsurance premiums rise globally. Moreover, housing
construction in Australia was affected, since builders where deprived of in-
surance cover at HIH Insurance and had to find replacement coverage. (See
Vaughan, 2004) Approximately half of the doctors in Australia lost malprac-
tice insurance and thousands of small businesses lost liability coverage.

The WTC attack also caused problems with insurance cover for e.g. prop-
erty damage, aviation liability, business interruption and life liability. This
had the strongest impact on aviation and transport, but also on manufac-
turing, energy, real estate and construction. The OECD (2004) reports that
according to the Bond Market Association, 10 per cent of the commercial
mortgage-backed securities market has been suspended or cancelled due to
issues of terrorism insurance. These examples highlight the importance of
the insurance sector for the broader economy.

In this research we study the tail dependence between stock returns of
insurers and reinsurers and investigate the extent of sector wide downside
risk. We explicitly take into account that the distribution of stock prices for
insurers is fat tailed and model the relative importance of market risk. The
model helps to understand the impact of adverse shocks which negatively
affect multiple insurers. Finally we measure the breadth of downside risk in
the insurance sector and in the reinsurance sector. If the downside risk of a
loss in market value in the two sectors is the same, this points to similarities in
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the risks exposure, possibly resulting from similar assets or similar liabilities
holdings across insurance firms.

If sector risk is important, this shows as the high mutual dependence
between companies. During crisis, multiple insurers may realise losses on
their assets or liabilities. Losses in insurance capacity during crises can cause
insufficient supply of insurance cover. This lack of insurance capacity may
have an adverse impact on economic activity. It is therefore important that
new capital can easily enter the insurance sector. Capacity can, for example,
be enhanced by increasing the use of the capital markets as a source of
insurance cover, or through institutional arrangements in which governments
provide part of the insurance cover, when private insurance cover is not
available.

In the remainder of the paper we first describe the EU insurance sector.
Next, we give an intuitive explanation for the mutual dependence between
insurance companies and subsequently model this dependence explicitly. Fi-
nally, we estimate the degree of dependence between the different sectors and
draw conclusions from the empirical investigation.

2 EU insurance

The European insurance market is the second largest in the world, after
the US and accounts for 30% of world premium income. Moreover, the two
largest reinsurers (Swiss Re and Munich Re) are European based and we
therefore deem it interesting to take a European perspective. The market
share of the largest companies is increasing, as the result of consolidation.
The five largest insurers in EU countries hold on average close to 50% of life
insurance income and close to 40% of non-life insurance income, according
to the CEA (2004). Most insurance companies offer both life and non-life
products. In 1991 collected premiums for life and non-life were balanced,
but nowadays the life insurance sector is relatively larger. Most European
companies are mixed insurers and offer both life and non-life insurance. Some
companies like Aegon, ING, Zurich Financial Services and Prudential have a
sizeable US business, or have a large banking business, like ING and Allianz.
This fits in the trend of the emergence of insurance companies with a global
presence and insurers with multiple business lines, to make use of economies
of scale and scope. The insurance sector is growing due to new products and
demand for additional pension products. The expectation is that the life
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insurance market in most countries will grow, because most countries reform
their pension systems. Notably the UK and the Netherlands already have
large life insurance markets. It is also likely that there will be more cross
border business in the EU, due to the integration of the financial markets
because of the introduction of the euro and an increasing harmonization of
regulation.

Before September 11 insurance markets were characterized by low prices
for reinsurance and excess capacity. Investment income was driving the re-
sults of insurers. In 2001 the insurance sector was hit on both the asset
side, due to falling stock prices, and the liability side, due to the costs of
September 11. According to Swiss Re (2005) European insurers made larger
investments in equity than American insurers, but the investments in equity
by insurers were lower in 2004 than in 1999. This indicates that insurers
have become less willing to take investment risk on their balance sheets.

The importance of the capital markets for the provision of insurance is
growing. In some cases it may be difficult for firms to buy insurance cover,
since it is hard for insurers to estimate the expected losses. This may be
due to a lack of information on the number of accidents and the costs which
are incurred by the firms, but also to moral hazard, leading to higher claims
than expected. With the help of the capital markets large firms can self
insure their risks with the use of insurance captives. Firms pay premiums to
a seperate legal entity, owned by the firm (the captive), and create a financial
buffer for insurance losses. Capital markets or insurers may provide liquidity
if losses occur before the firms made sufficient savings.

Besides the capital market, governments can also help to alleviate the im-
pact of (natural) catastrophes. In a lot of countries governments recognized
the difficulties to obtain insurance cover for certain types of risks. They have
set up public private insurance schemes to insure e.g. natural catastrophes
and terrorism risk, as is described by the OECD (2004).

The EU insurance sector is regulated with seperate directives for life and
non-life insurance. The most important elements of this regulation are the
requirements on the technical provisions, investment rules, solvency require-
ments, accounting rules and criteria for home country control and the provi-
sion to provide cross border business. There is a proposal for new regulation
for the EU reinsurance sector. The Solvency II project aims to modernize
insurance regulation, taking into account actual risks of insurers in the cal-
culation of solvency requirements, similar to the revamp of the Basle accords
for banks. However, insurance sector regulation does not explicitly take into
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account the need for sufficient insurance capacity during crisis times. In the
following we explain why this capacity may be at risk.

3 Risk diversification and financial fragility

In this section we offer an explanation for downside risk dependence between
insurers and focus on a reduced form approach to determine this downside
risk. Following the Efficient Market Hypothesis, the stock price of insurers
should reflect the value of companies. Changes in stock prices are therefore
the result of changes in value of assets and liabilities. In a competitive
environment it stands to reason that firms with similar assets and liabilities,
make similar profits and show similar returns. At the level of our study, these
returns are random. Therefore, the degree of dependence one finds between
the different returns, depends on the specific nature of the shocks and the
economic structure of the assets and liabilities. A presumption of normality
gives e.g. quite a different result than the presumption that the returns of
assets and liabilities follow a Student-t distribution. But the specific network
structure of the insurance sector is also a contributing factor.

3.1 Explaining dependence

We first provide the intuition for the existence of dependence among insurers.
The mutual dependence among insurance companies originates from a similar
exposure to similar assets and to similar liabilities. Swiss Re (2003) gives an
description of the main assets of insurers. These include the following items:
shares, investments in bonds and investment funds, real estate and technical
reserves held by reinsurers. If companies have similar assets, they will have
a similar riks profile. If insurance companies invest e.g. in the same stocks
and bonds or (credit) derivates, they are exposed to the same shocks which
adversely affect the value of investments. However, little is known about
the exact assets insurers invest in. This may indicate a lack of transparency
in the European insurance sector. Since insurers started to act as sellers of
credit protection, this gained special attention of supervisors and the issue is
studied extensively by the Joint Forum (2005).

Insurers do not only invest in similar assets, but may also participate
in similar liabilites, insurance risk in particular. It is possible for insur-
ers to provide reinsurance and in this way participate (proportionally) in
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the insurance portfolio of other insurers. Another important development is
the securitisation of insurance risk (IAIS, 2003). Insurers can transfer their
insurance portfolio and expected premium income to a legal entity which
manages these liabilities. In this way other investors can participate in the
same insurance risks. Catastrophe bonds are an example of insurance risk
which is transfered to the capital market. Another possible source of risk
is the long term interest rate. A particular problem for life insurers is that
their profitability depends for an important part on the long term interest
rate developments. A decreasing long term interest rates poses problems for
the non-hedged liabilities. A low long term interest rate environment poses
problems for new production. When the level of the short term interest rate
is close to the long term interest rate, the benefits for customers of long term
insurance contracts over short term savings are limited. Since the interest
rate risk might be similar for all life insurers, we expect that life insurers are
affected by an interest rate move in a similar way. On the contrary, if we
find that there is a low dependence between insurers, this indicates that the
firms invest in different assets and liabilities.

Other risks which may be similar for insurers are the risk of changes in the
legal and regulatory environment and fraud. New jurisprudence can increase
the unexpected liabilities for insurers and new regulation may increase costs
on a sector wide basis.

By modelling the dependence among firms explicitly, we obtain new in-
sights on the degree of similarities in downside risk. Before we present the
model and the estimation results, we elaborate on the univariate firm risk.
The distributions of the stock price returns of individual insurers exhibit
fat-tails. Since we study the downside risk of insurers, we take this charac-
teristic explicitly into account when modelling and estimating dependence
among firms.

3.2 Heavy tails and dependence

It is a stylized fact that stock returns are heavy tailed, rather than exhibit-
ing an exponential type tail as under normality. This is e.g. extensively
documented by Janssen and De Vries (1991). Moreover there is considerable
evidence that the risk exposure of non-life insurers is even heavier tailed,
see e.g. Embrechts et al. (1997). We will first elaborate on the heavy tail
characteristics of the univariate return series. We do so since the theory for
univariate heavy tails is the basis for our multivariate modelling.
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Extreme Value Theory (EVT) studies the limit distribution of the maxima
or minima of return series. These limit distributions are informative about
the tail shape of the underlying distribution. With the help of this limit
distibution, one can study the frequency of extreme losses without imposing
a particular distribution a priori (like a Student-t or Pareto). Our approach
is therefore semi-parametric (as only the tail area of the distrubution is para-
metrized). For ease of presentation, we work with positive variables and take
the negative of the minima. We assume that Xi is an independent and identi-
cally distributed random variable with cumulative distribution function F (x).
This variable exhibits heavy tails if F (x) far into the tails has a first order
term identical to the Pareto distribution, i.e.

F (x) = 1− x−αL(x) as x→∞,

where L(x) is a slowly varying function such that

Lim
t−→∞

L(tx)

L(t)
= 1, x > 0.

It can be shown that the two previous conditions are equivalent to

Lim
t−→∞

1− F (tx)

1− F (t)
= x−α, α > 0, t > 0.

The coefficient α is known as the tail index and gives the number of bounded
moments of the distribution. When a distribution has finite endpoints or
exponentially decaying tails (like the normal and lognormal distributions), it
does not fit the property of regular variation and all moments are bounded.
Because of the Pareto characteristics of the tails of the empirical return
distribution, our theoretical model is based on the Pareto law. Before we
model dependence, we will first present the measure of dependence which we
will use.

3.3 A measure of dependence

The most frequently used measure of dependence is the correlation mea-
sure. However, regulators are interested in the likelihood of losses and the
correlation measure does not provide information on probabilities, without
knowledge of the marginal distributions. The correlation measure is only an
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intermediate step in the calculation of probabilities given a specific multivari-
ate distribution. If two variables e.g. follow a bivariate normal distribution,
their joint behavior can be characterized by using the correlation measure.
One disadvantage of the correlation measure is that there can be dependence
in the data, while the correlation is zero (see Slijkerman et al., 2005). Forbes
and Rigobon (2002) moreover, show that changes in the correlation measure
over time are difficult to interpret if the variance of variables is not con-
stant over time. The correlation measure is therefore not a very informative
variable itself.

We bypass the correlation measure and directly study a measure which
is based on the probability of multiple shocks to the financial system. Our
indicator is a conditional probability measure. Regulators and risk managers
are concerned with a simultaneous loss at multiple insurers, given the losses
at one insurer. More specifically, suppose a regulator wants to know the
probability that F1 > t, given that F2 > t and the probability that F2 > t
given that F1 > t, where F1 and F2 are the stochastic loss returns and t is
the common high loss level. Since we are interested in a crash of an insurer
given the crash of another insurer and vice versa, we will condition on either
event. Let κ denote the number of insurers which crash. We propose to use
the failure measure of Xin (1992) as the measure of systemic risk. In two
dimensions it reads

E[κ|κ ≥ 1] =
P (F1 > s) + P (F2 > s)

1− P (F1 ≤ s, F2 ≤ s)
. (1)

The failure measure is the conditional expectation of the number of insurance
companies that crash, given that there is at least one crash. Hartmann et.
al. (2004) give a further motivation for this measure. Note that

E[κ|κ ≥ 1]− 1 =
P (F1 > t, F2 > t)

1− P (F1 ≤ s, F2 ≤ s)
(2)

is the conditional probability that both firms fail, given that there is a failure
of at least one of the firms. We will use either interpretation, depending on
the context.

Unless one is willing to make further assumptions, as in the options based
distance to default literature, it is impossible to pin down the exact level at
which a firm fails, or at which supervisors consider the institution financially
unsound. For this reason we do take limits and consider

lim
t−→∞

E[κ|κ ≥ 1].
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Extreme value theory shows that even though the measure is evaluated in
the limit, it nevertheless provides a usefull benchmark for the dependency at
high but finite levels of t. We also like to note that the measure can be easily
adapted in case failure levels at the companies are different. In that case the
measure is evaluated along a non 45o line.

4 Modelling dependence

By making different assumptions regarding the distribution of the returns of
the firms, we can study how the conditional failure probability (1) changes
as a result of an increasing exposure of firms to common risks. We present
a model of tail dependence, assuming that the returns of insurers follow a
heavy tailed multivariate distribution. If the returns follow a process with
innovations which have a distribution with exponentially declining tails, large
shocks occur with very low frequency and a large loss of multiple insurers is
highly unlikely. However, if the stochastic process of losses is fat tailed, large
losses may occur more often and may be difficult to diversify away. De Vries
(2005) provides a detailed analysis of the differences between exponentially
distributed returns and returns which follow a fat tailed distribution.

We already provided potential explanations for simultaneous losses at
insurance companies. Because of a similar exposure to some risks, we suppose
that all insurers carry sector risk. We do not model the individual sources of
this risk explicitly, but investigate a reduced form model, which is basic to
many models in finance. The returns of individual firms are partly driven by
the stochastic variable A, which captures sector risks, both on the asset side
as well as on the liability side. Different factors contribute to this sector risk.
The variable A is the sum of possible common shocks, such as changes in
interest rates and the exchange rate and common insurance risk exposures.

The returns by firms are also driven by a specific firm factor Ii, which is
not related to the sector risk. Our model is therefore related to the factor
model of Ross (1976). We assume total firm risk to be the sum of industry
specific risk, A and firm specific risk, Ii. Firm specific risk arises out of losses
on assets and liabilities for firm i, which are not incurred by other firms in
the industry. For now, we assume that the downside risk of the common
stochastic variable A and firm specific variable Ii are independently Pareto
distributed with unitary scale

P (A > t) = P (Ii > t) = t−α, t ǫ [1,∞), (3)
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where t is the loss quantile of interest. In the following we first investigate
how the dependence between two firms changes if we change the relative
importance of the common component A. We thus analyze the effect of
an increase in the importance of common factors. Secondly, a model with
multiple firms is analyzed.

4.1 Downside risk and dependence

We start by calculating the downside risk of an individual insurer, which is
needed in the numerator of our risk measure (1). The returns of the insurance
companies follow the sum of the common factor A and the idiosyncratic factor
Ii in the following way

F1 = A+ I1 and F2 = A+ I2. (4)

The probability of a large loss for a combination of risk factors when these
exhibit a power like distribution, is given by Feller’s convolution theorem
(1971, VIII.8). This theorem holds that if two independent random variables
A and Ii satisfy (3), then for large t the convolution has probability

P (A+ Ii > t) = 2t−αL(t),

and where L(t) is slowly varying (i.e. lim
t−→∞

L(at)/L(t) = 1, for any a > 0).

The theorem implies that for large failure levels t, the convolution of A and Ii
can be approximated by the sum of the univariate distributions of A and Ii.
All that counts for the probability of the sum is the (univariate) probability
mass which is located along the two axes from the points onward where the
line A+ Ii = t cuts the axes. The probability that the convolution of A and
Ii is larger than t, for large t, is therefore

P (A+ Ii > t) = 2t−α + o(t−α). (5)

If the returns of a firm follow (5), the numerator in (1) is therefore approxi-
mately equal to 4t−α.

To obtain the denominator of (1), we have to determine the probability
that the firms do not all have a return smaller than t. The probability that
all firms have a return smaller than t is denoted by P (F1 ≤ t, F2 ≤ t). If
we examine the complement 1−P (F1 ≤ t, F2 ≤ t), this gives the probability
that at least one firm realizes a return exceeding t. Since the returns of firms
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follow the specification in (4), common or idiosyncratic shocks can cause
the returns of one of the firms or both firms to be large. Following the
convolution theorem, we can approximate the probability of a large loss by
the sum of the probabilities of a common shock or an idiosyncratic shock.
Since we have two firms, we can take the sum of the probability that A > t,
the probability that I1 > t and the probability that I2 > t (t being large).
For two firms which follow the specification in (4) this sum of probabilities
is equal to 3t−α + o(t−α), or

lim
t−→∞

1− P (F1 ≤ t, F2 ≤ t)

3t−α
= 1.

We can now make our measure of systemic risk (1) operational. The
conditional expectation of a crash of two firms, given that one firm crashes,
follows once we substitute the theoretical probabilities in the failure measure
(1). For large t,

E[κ|κ ≥ 1]
lim t→∞

= lim
t−→∞

P (F1 > t) + P (F2 > t)

1− P (F1 ≤ t, F2 ≤ t)
=
2t−α + 2t−α

3t−α
=
4

3
. (6)

As a point of reference, note that the value of the failure measure ranges
between 1 and 2. The measure equals 1 under complete independence while
it equals 2 in case of complete dependence. The measure therefore gives the
expected numer of firms that crash, conditional on at least one crash. In
a bivariate setting we can derive the probability of two crashes, given one
crash, by substracting 1 of the failure mesaure. Note that one firm crashes
for sure, since we condition on this.

The result 4/3 indicates that given a loss of one of the two firms, the
expected probability of two crashes is 33% (= 4/3 − 1). In this example
either one or two firms crash, but if one firm crashes, on average 1 out of 3
times both firms crash. We provide some other stylized examples, before we
turn to the estimation of (1).

4.2 Dependence and normality

In the previous section we investigated the tail dependence in case the the
common and idiosyncratic risk factors are fat tailed distributed. Under this
assumption we find a higher dependence than under the assumption of nor-
mally distributed risk factors. In a bivariate normal setting, there is no
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dependence between extreme losses of two insurers, even if the returns of the
two companies are correlated. This is interesting, since the assumption of
normality is frequently made. If A and Ii in (4) follow independent standard
normal distributions the failure measure will converge to 1, for large t

lim
t−→∞

E[κ|κ ≥ 1] = lim
t−→∞

P (Fi > t) + P (Fj > t)

1− P (Fi ≤ t, Fj ≤ t)
= 1.

The proof is similar to proposition 2 in De Vries (2005). A high correlation
between two return series is therefore not equivalent to high tail dependence.
Note that the correlation coefficient is often not an useful statistic for fi-
nancial data. The correlation measure is used as an intermediate step in
the calculation of a bivariate conditional probability. If two random vari-
ables follow a normal distribution it is sufficient to know the mean, variance
and correlation coefficient to characterize their joint behavior. However, the
measure is not appropriate to describe the joint behavior of two fat-tailed
distributed variables.

4.3 Downside risk and the two factor model

The dependence between firms is higher if the common return component
A is more important. To show this, suppose that the returns of individual
firms are driven by two different kinds of common factors A1 and A2. These
two different common risk factors can for example arise out of a similar
investment risk and similar insurance liabilities. The return specification for
the individual firms now reads F1 = A1 + A2 + I1. The univariate firm risk
Pr(F1 > t), for large t is equal to

Pr(F1 > t) = 3t−α + o(t−α), (7)

which is the sum of the probability of a loss of one of the three factors in the
firm specification, following the convolution theorem. We showed before how
we calculate the denominator of the failure measure, 1− P (F1 ≤ t, F2 ≤ t).
Since we have 4 elements in the specification of the returns of the individual
firms which can cause a loss (A1, A2, I1, I2), the sum of the probabilities that
one of these factors causes a loss will be equal to 4t−α + o(t−α). When we
substitute this and (7) in (1), the dependence measure reads for large t

lim
t−→∞

E[κ|κ ≥ 1] =
2(3t−α)

4t−α
=
6

4
. (8)

Thus the dependence increases if an extra common risk component is added.
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4.4 Downside risk: three firms in a single factor model

To understand the dependence among multiple firms, we give a theoretical
exposition of dependence in a setting with three firms. In a setting with more
than two firms (n > 2) the failure measure can range from 1 to n. When the
returns of a firm follow the specification in (4), the firm can crash due to a
market shock A or a firm specific shock Ii. The failure measure in a setting
with 3 firms then reads

lim
t−→∞

E[κ|κ ≥ 1] = lim
t−→∞

P (F1 > t) + P (F2 > t) + P (F3 > t)

1− P (F1 ≤ t, F2 ≤ t, F3 ≤ t)

=
3(2t−α)

4t−α
=
6

4
, (9)

which is in between 1 and 3. The value of the failure measure (9) equals the
value in a setting with two firms and three risk drivers as in equation (8).
However, since (9) is calculated for a setting with three firms, the measure
can be higher than two. This is not possible if there are only two firms. The
result of 6/4 in (9) is therefore relatively low, while it is relatively high in
(8).

4.5 Downside risk and the market model

So far we have relied on specific examples to show the extent of downside
risks among multiple firms, depending on the number of firms and the number
of market shocks. We now present a more general form of firm returns in
which we let the number of firms approach infinity. Similar to the market
model of Sharpe (1964), where the risk of a firm is determined by market risk
and idiosyncratic risk, a factor model is specified. The common risk factor
A is premultiplied by a constant β, which denotes the relation between the
returns of a firm and market risk. Downside risk of a firm is driven by the
common risk factor and idiosyncratic risk in the following way

Fj = βjA+ Ij , (10)

where β determines the relative impact of sector risk on the risk of a firm.
If β is low or close to zero, this indicates that the risk of a firm is not driven
by sector risk but by idiosyncratic risk factors. A high β, indicates that the
risk of firms is to a large extend driven by the common factor.
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We examine the probability that a firm faces a shock arising out of com-
mon risk factors. If the probability of a market shock follows a unit Pareto
distribution i.e. P (A > t) = t−α, where t ǫ [1,∞), the probability that an
individual firm is hit by a shock, for large t, is equivalent to

Pr(βjA > t) = Pr(A >
t

βj
) = βαj t

−α.

We assume that the probability of an idiosyncratic shock Ij follows a Pareto
distribution scaled with a factor ij,

P (Ij > t) = ijt
−α

Since the risk of a large loss for a single firm is the sum of the risk of a market
shock and the firm specific shock, following Feller’s convolution theorem, this
is equal to

Pr(Fj > t) = (ij + βαj )t
−α.

This is still pretty much like (5), except that we now have risk factors
with non unitary scales. We extend the analysis to n firms, where the returns
of each firm is driven by market risk and idiosyncratic risk. In this way the
limit behavior of the failure measure can be studied for a large number of
firms. We present a general form of the failure measure for multiple firms

lim
t−→∞

E[κ|κ ≥ 1] = lim
t−→∞

(P (F1 > t) + ...+ P (Fn > t))

1− P (F1 ≤ t, ...., Fn ≤ t)
. (11)

First, we evaluate (11) assuming a stylized form of the firm returns. We
assume β1 = β2 = ... = βn = 1 and i1 = i2 = ... = in = 1. In this case, the
failure measure converges to two, for a large number of firms and for large
shocks.

Proposition 1 Suppose the returns of the firms follow Fj = βjA+Ij, where
P (βjA > t) = P (Ij > t) = t−α, t ǫ [1,∞) and n→∞. If βj = 1 ∀ j, ij = 1
∀ j, then the failure measure (11) converges to 2, for t large.

Proof. To derive the numerator of the failure measure, the individual
firm risk can be premultiplied by the number of firms. The denominator can
be decomposed as the sum of the different factors which determine the returns
of the firms, according to Feller (1971). Examine 1− P (F1 ≤ t, ..., Fn ≤ t),
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which is the probability that at least one firm realizes a return larger than
t. The factors which can cause a loss at a firm are the idiosyncratic risk
factors and the common risk factor. The probability on at least one firm
with a large loss can be approximated by the sum of the probabilities of a
large idiosyncratic shock (which gives the probability that at least one firm
experiences such a shock), and the market shock. An individual firm faces
a large market shock with probability βαj t

−α and a large idiosyncratic shock
with probability ijt

−α. The probability of the market shock inducing one of
the firms to fail is equal to (max[β1, ..., βn])

α)t−α, since the market risk of the
firm with the highest β has the most effect on violation of Fi ≤ t, i = 1, .., n.
The probability that one of the firms is affected by an idiosyncratic shock is
equal to (i1 + ...+ in)t

−α. The denominator of (1) thus reads

1− P (F1 ≤ t, ...., Fn ≤ t) = ((i1 + ...+ in) + (max[β1, ..., βn])
α)t−α.

If we substitute these probabilities in the failure measure (1) we find that for
large t

lim
t−→∞

E[κ|κ ≥ 1] =
(i1 + ...+ in) + (β

α
1 + ...+ βαj )

(i1 + ...+ in) + max[β
α
1 , ..., β

α
n]
. (12)

Now use the assumption that βj = 1 ∀ j and ij = 1 ∀ j and let the number
of firms become unbounded to conclude the proof

lim
n−→∞

(
E[κ|κ ≥ t]
lim t→∞

)
= 1 + lim

n−→∞

βα1 + ...+ βαn −max[β
α
1 , ..., β

α
n]

(i1 + ...+ in) + max[β
α
1 , ..., β

α
n]

= 1 + lim
n−→∞

n− 1

n+ 1
= 2. (13)

We have thus proved that if one firm realizes a large loss, at most the
loss of one other firm is expected, even though the number of firms becomes
unbounded. The failure measure will only be equal to the number of firms
in the absence of idiosyncratic risk. If βj ∀ j is equal to 1 and there is no
idiosyncratic risk, i.e. ij = 0 ∀ j, the measure equals n. If the parameter ij
denoting the idiosyncratic risk of the firms is equal to a 1 for all firms and
there is no market risk, i.e. βj = 0, the measure converges to 1. A value
of 1 for the failure measure indicates that the returns of the insurers are
asymptotically independent. In these last, stylized examples there is either
no dependence or full dependence.
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The focus of this paper is the degree of sector risk in the insurance sector.
The dependence is determined by the relative impact of common and idio-
syncratic shocks. The previous assumption of βj and ij being equal to 1 is
very stylized. We therefore rewrite (12) for the average of the betas raised to

the power α,
_

βα = 1
n

∑n

j=1 β
α
j and average idiosyncratic risk,

_

i = 1
n

∑n

j=1 ij).
In the following proposition we investigate the degree of dependence after
rewriting (12) for average market risk and average idiosyncratic risk.

Proposition 2 Suppose the returns of the firms follow Fj = βjA+Ij, where
P (βjA > t) = βαj t

−α, P (Ij > t) = ijt
−α, t ǫ [1,∞) and n → ∞, then the

failure measure (11) converges to 1 +
_

βα
_

i
for t large , where

_

βα = 1
n

∑n

j=1 β
α
j

and
_

i = 1
n

∑n

j=1 ij (assuming the βj and ij are bounded).

Proof. Rewrite the failure measure (12) for the average common factor,

βj, and average idiosyncratic risk factor,
_

i . For a large number of firms and
for large shocks this reads

lim
n−→∞

(
E[κ|κ ≥ t]
lim t→∞

)
= lim

n−→∞

_

i +
_

βα
_

i +max[βα1 , ..., β
α
n]/n

= 1 +

_

βα
_

i
. (14)

The ratio of
_

βα/
_

i gives the relative importance of market risk and idio-
syncratic risk for the occurance of multiple large losses. If the average idio-
syncratic risk is relatively small, the dependence among firms will be high.
If the average beta is small, the failure measure will converge to a 1, which
implies asymptotic independence. If the failure measure returns a 1, the re-
turns of the firms are asymptotically independent. A value for the failure
measure around 2 (when estimated for a large number of firms) implies that
a firm is exposed to idiosyncratic shocks and common shock with roughly

the same probability, i.e. for large n and t, E[κ|κ ≥ t] = 1 +
_

βα/
_

i ≈ 2 and

therefore
_

βα =
_

i , following (14). If the returns of the firms are highly depen-

dent, the failure measure is larger than 2. This corresponds with a large
_

βα

and a comparatively small
_

i in (14). A value between 1 and 2 implies that
idiosyncratic shocks are more frequent than common shocks. A value larger
than 2 implies that common shocks are more frequent.

We show in the following section that the measure provides information
on the relative importance of common risk factors and idiosyncratic risk
factors for the riskiness of the sector.
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4.6 Model interpretation

Regulators of the insurance sector are concerned with the stability of the
financial sector. They are therefore interested in the degree of dependence
among insurers. If insurers carry the same risks, it is likely that multiple
insurers are affected by large losses and that losses in their market value are
dependent. We discuss how the model relates to high or low dependence
between the losses of the insurers.

If insurers hold different assets and liabilities, the dependence among
insurers will be low, since it is unlikely that multiple firms are hit by a loss
on shared liabilities or assets. In this case idiosyncratic risk is the most
important source of risk. If the idiosyncratic risk dominates over market
risk, the failure measure will be between 1 and 2.

Vice versa, if most of the assets and liabilities of insurers are the same,
the dependence among insurers is high. The exposure to market risk is high
and the common risk factor is the most important source of risk. The failure
measure will therefore be larger than 2, as was shown in (14). A high depen-
dence may be the result of risk diversification. Because of risk diversification,
insurers are exposed to the same risks. Implicitly, the failure measure gives
information on similarities in the risk exposure between insurers. This is
interesting, since the risk exposure can be regulated to reduce the industry
wide dependence.

If the estimation of the dependence indicates that the failure measure (11)
is smaller than two, this implies that idiosyncratic risk is the most important
source of risk. If the failure measure estimates indicate that dependence is
high, i.e. larger than two, market risk is the dominant risk factor. This
framework can therefore help to understand the impact of market risk on
the downside risk of multiple insurers. An improved understanding of the
impact of market risk can help to design appropriate regulatory policy, as is
argued in the following.

If regulators deem the dependence among insurers being to high, they may
consider to reduce the common exposures of insurers. The probability that an
individual firm faces a large loss may be increased by this policy. However,
losses will be more isolated to single firms and the probability of multiple
simultaneous losses of insurers is reduced. If an individual insurers goes
bankrupt, other insurers may remain solvent. They can take over the clients
of the bankrupt insurer, reducing the economic impact of a bankruptcy.

If there is a high sector risk, the capacity of the insurance sector during
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crises can be of a concern. In this case the capacity of the insurance sector
during crises needs to be augmented. There are two sources of insurance
cover outside the commercial insurance sector: the capital market and public
insurance pools.

The insurance against major catastrophe can e.g. be provided by insur-
ance pools in which the governments and the private sector participate. This
may be necessary if a full private solution is not achievable. The advantage
of such a pool is that it gives certainty on the level of insurance to residents
and firms. A government could also promise to help those hit by a disaster.
The advantage of a fund, however, is that the government receives insurance
fees and the costs are clear up-front. This way the impact on the government
budget of disasters is limited.

Another way to limit the impact of disasters is to make an extensive use
of the capital markets. An important element of insurance products is the
provision of liquidity. Liquidity can also be provided by capital markets.
Firms can create an internal insurance pool with the use of capital markets
and can in this way reduce their dependence on external insurance companies.
If there is a high degree of sector risk, i.e. the failure measure is larger than
two, regulators may encourage firms and governments to exploit the latter
options.

A low sector wide dependence corresponds to a high idiosyncratic risk
of insurers. A high idiosyncratic risk for insurers can be a reason to study
the prudential regulation at the firm level. Regulators may e.g. want to
reduce the risk of individual insurers, by encouraging them to diversify their
exposure, or by demanding a higher solvency at the firm level.

5 Measuring dependence

For our estimation approach we follow the approach of Hartmann et al.
(2005). The empirical return series for each firm i are denoted with Xit,
where the subscript t denotes the tth elementh of the sample of returns. We
take the negative of the empirical observations. Let Qi(t) represent the t-th
ascending order statistic of Xit, with t = 1, ..., T , such that Xi(1) > ... > Xi(T )

and p = t/T , where p is the probability corresponding to the empirical loss
quantile Qi(t). We are interested in the losses occuring with a small proba-
bility. This probability p corresponds to a high threshold Qivar (the Value at
Risk or stress test level) for each firm i, above which losses occur with the
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probability p. We derive the extreme loss quantile Qivar corresponding to the
probability p using the empirical distribution of the returns Xit. Since the
empirical distribution is firm specific, the stress test level Qivar corresponding
to the probability p differs for each firm

p = P {X1t > Q1var} = ... = P {Xit > Qivar} = ... = P {Xnt > Qnvar} .
(15)

We are interested in the expected number of firms that crash, conditional on
the crash of at least one firm,

E[κ|κ ≥ 1] =
np

1− P (X1 ≤ Q1var, ..., Xn ≤ Qnvar)
. (16)

If n = 2 this measure reduces to the bivariate measure in (1). The measure
gives us the expected number of institutions that crash (κ) given that at least
one institution crashes, i.e., has a return exceeding Qivar, where Qivar is the
quantile from the empirical distribution corresponding to the probability p
in (15). In the denominator of (16) we therefore have different thresholds
{Q1var, ..., Qnvar}. For estimation purposes it is convenient if we premultiply
the empirical returns with Q1var/Qivar,

p = P {Xi > Qi} = P

{
Q1

Qi

Xi >
Q1

Qi

Qi

}
= P {Q1iXi > Q1} , (17)

where Q1i = (Q1var/Qivar). This way we can rewrite the denominator of
(16) as 1 − P (Q1iX1 ≤ Q1var, ..., Q1nXn ≤ Q1var). This is equivalent to
P (max[Q1iX1, ..., Q1iXn] > Q1var). This probability corresponds to the
quantile Q1var of the empirical distribution function of the maxima, which
is equivalent to max[Q1iX1, ..., Q1nXn]. Since we evaluate the limit behavior
of (16), we take Q1var close to the boundary of the sample and use the 10th

largest order statistic of the return series Xi. As a result, the probability in
(15) corresponds to 10 divided by the sample size, N . In the Appendix we
indicate the robustness of the procedure, using a higher or lower number of
order statistics.

We consider the dependence among pairs of firms and the dependence
among 4 and 8 firms, i.e. n = 2, 4 and 8. In a bivariate setting we apply
a different estimation approach. The probability that two firms realize a
loss larger than 7.5% on a given day is estimated. The advantage of this
approach is that the estimates are straightforward to interpret, since the
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estimates return the probability that the second firm of a pair realizes a
loss larger than 7.5%, given that one firm realizes a loss of 7.5%. For the
multivariate estimates we have to scale the variables as in (17) to be able
to take the maximum in the denominator. See the Appendix for estimation
details for the bivariate estimation.

6 Empirical results

In this section the dependence among insurance firms is measured. We esti-
mate dependence between firms within the insurance sector and within the
reinsurance sector. As a benchmark, we estimate dependence between large
oil companies and the dependence between firms from entirely different sec-
tors. The motivation for these benchmarks is given in the following. We
present the estimated dependence among pairs of firms and the dependence
among multiple firms.

6.1 Empirical benchmark

A benchmark is needed to interpret the estimated degree of dependence be-
tween insurers. We need a benchmark for dependence among firms in a sector
with a high degree of dependence and a benchmark for the dependence among
firms which are unrelated. The value of oil firms depends heavily on the price
of oil. We therefore expect to find a high degree of dependence among oil
firms. This sector is therefore the benchmark for a sector with high depen-
dence. If dependence within the insurance sector is of the same magnitude,
it is plausible that the returns of insurers are driven by a common factor,
which is comparable to the price of oil in the oil sector.

We also estimate the dependence among firms from different sectors. This
gives the value for the failure measure in case the returns of the firms are not
driven by sector risks. This way we can compare the estimation results for the
insurance sector with estimation results for a sector with high dependence
and with results for firms from different sectors. The firms used for the
estimation of the dependence across the different sectors are given in Table
A.1 in the Appendix.

21



6.2 Independence

Suppose that the marginal returns of two insurers are independently distrib-
uted and rewrite the failure measure (1) under this assumption. Under the
assumption of independently distributed returns for the firms, the denomi-
nator of the failure measure is equal to 1 − (P (F1 ≤ t) ∗ P (F2 ≤ t)). The
failure measure for independently distributed returns then reads

E[κ|κ ≥ 1] =
P (F1 > t) + P (F2 > t)

1− (P (F1 ≤ t) ∗ P (F2 ≤ t))
. (18)

By estimating the univariate probabilities P (Fi > t), and calculating (18) as
if the returns are unrelated, we obtain yet another benchmark to judge the
amount of dependency. Note that

lim
n−→∞

=
P (F1 > t) + P (F2 > t)

1− (P (F1 ≤ t)P (F2 ≤ t))
= 1,

but at finite loss levels this measure is larger than 1 since 2(1−p)
1−p2

= 2(1−p)
(1−p)(1+p)

=
2
1+p

> 1.

Since we know the univariate probability of an extreme loss in (15) is
equal to the number of observation above the threshold Qi, divided by the
sample size N (10/2739), we can substitute for this in the failure measure

E[κ|κ ≥ 1] =
P (F1 > t) + P (F2 > t)

1− (P (F1 ≤ t) ∗ P (F2 ≤ t))
=

20/2739

1− ((2729/2739)2)
= 1.0018.

If the marginal returns of two insurers are independently distributed, the
conditional probability of a simultaneous crash is close to 0 (1.0018 − 1).
Hence the 0.0018 probability provides a lower bound benchmark.

6.3 Data

The dataset starts in January 1995 and ends in June 2005, because of data
availability. The sample size N of daily data is equal to 2739. In the EU
there are 4 reinsurers with stock price data available for the full sample. The
selected 8 insurers, independent firms and oil firms are given in Table A.1.
For the estimation of the dependence among 4 firms, only the first 4 firms in
Table A.1 are used.
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Insurers Reinsurers
Insurers 0.18 0.13

Reinsurers 0.13 0.12

Table 1: Average bivariate dependence (no scaling)

6.4 Dependence among pairs of firms

The failure measure in a bivariate setting provides the conditional probability
of a crash of two firms. We estimate the bivariate conditional probabilities
of all possible combinations of insurers, all combinations of reinsurers and
combinations of insurers and reinsurers. In Table 1 we report the averages
of the estimates, the pair wise estimates can be found in Table A.2 in the
Appendix. From Table 1 we see that the average probability that two insur-
ers realize an extreme loss, given the extreme loss of one of the two insurers
is on average 18%. The probability that two reinsurers realize a large loss,
given the large loss of one of the two reinsurers is equal to 12%. The depen-
dence among insurers is thus higher than the dependence among reinsurers.
The dependence among insurers and reinsurers is 13% and lower than the
dependence among insurers. All values are much larger than the benchmark
lower bound of 0.0018, indicating that there is considerable asymptotic de-
pendence. Since the value for the insurance companies is much larger, we
therefore conclude that the systemic risk in the insurance sector differs from
the systemic risk in the reinsurance sector.

Even though both sectors deal with insurance, the interdependencies are
higher in the insurance sector. This is somewhat surprising, given that the
reinsurers take on risk from the different insurers. These risks are concen-
trated at reinsurance companies. Apparently, the connectedness stems from
other sources of risk, such as investment risk, which may be more similar
among insurers.

For individual firms, the conditional probability of a loss, given the loss
of another firm, differs considerably from the sector averages. Since there
are 8 insurers and 4 reinsurers in the dataset, we can estimate the bivariate
conditional failure probability for each firm in combination with 11 other
firms. This bivariate dependence is estimated and the average probability of
a loss for a firm is reported in Table 2.

The interpretation of the bivariate probabilities is the probability that
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Firm mean prob. Firm mean prob.

ALLIANZ 0.17 MUNICH RE 0.16
ING 0.23 SWISS RE 0.13
GENERALI 0.08 HANNOVER RE 0.13
AXA 0.18 SCOR 0.10
AEGON 0.17
AVIVA 0.14
PRUDENTIAL 0.16
ZFS 0.14

Table 2: Bivariate dependence (no scaling)

Insurers Insurance/Reinsurance Firms

1.905 1.739 1.290

1 ≤ E[κ|κ ≥ 1] ≤ 8
Jan. 1995 - June 2005

Table 3: Dependence among 8 companies

one of the two firms crash, given that the other crashes. If e.g. an insurer or
reinsurer realizes a large loss, the probability that ING also realizes a loss is
on average 23%, which is the highest probability in the table. If an insurer
or reinsurer realizes a large loss, the probability that Generali also realizes a
loss is low, on average 8%. A possible explanation for this result is that ING
has more risk factors in common with other insurers than Generali. These
common risk factors can be related to e.g. country risk and the riskiness of
individual business lines.

6.5 Dependence among multiple firms

Our main research question concerns the sector wide dependence between
insurance and reinsurance companies. We therefore do not only estimate
the downside risk dependence among pairs of firms, but also among multiple
firms. First, we estimate the dependence among eight firms. However, there
are only four reinsurers and four oil firms in the dataset. Secondly, we there-
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fore estimate the dependence among four firms to obtain the dependence
among reinsurers and oil firms.

6.5.1 Dependence among eight firms

Recall that the failure measure returns the expected number of firms that
crash, given the crash of one firm and is not smaller than 1. If there are eight
firms, the failure measure can be at most equal to eight. The failure measure
is estimated among 8 insurers and 8 firms from different sectors. Moreover,
we are interested in the dependence between reinsurers. Since we have only 4
reinsurers, we estimate the dependence measure among a set of 4 reinsurers
and 4 insurers, together a set of 8 firms. The results are presented in Table
3.

The dependence among the eight insurance firms is higher (1.905) than
the dependence among the 8 firms from the different sectors (1.290). Depen-
dence among the set of 4 insurers and 4 reinsurers (1.739) is thus lower than
the dependence among insurers. This result supports the findings from the
bivariate estimates. However, we can now interpret these results with the
theoretical model which we developed in the previous section.

We use Proposition 2 to interpret the estimation results and argue that
the impact of market shocks is of the same magnitude as the impact of

idiosyncratic shocks. An estimate of 1.905 implies that the ratio of
_

βα/
_

i is
close to but smaller than 1. The estimate of 1.739 implies that the ratio of
_

βα/
_

i is smaller than 1. This indicates that the impact of idiosyncratic risk
in the reinsurance sector is larger than in the insurance sector.

The explanation for the larger impact of idiosyncratic risk in the rein-
surance sector is that the risk exposure of reinsurers is more heterogenous
than the risk exposure of insurers. Dependence can arise out of the same
investments or out of the same insurance risks. Possibly the insurance risks
of reinsurers differ to a larger extent than the insurance risks in the insurance
sector. Since we do not have information on the insurance portfolio of the
companies, it is difficult to validate this explanation. Another possible ex-
planation is that the investment risks in the insurance sector are more alike
than in the reinsurance sector. This may originate from the interest rate risk
of life insurance policies, which is a relatively large risk for direct insurance
companies. Another possibility is that the equity investments made by (life)
insurance companies may be larger than the equity investments made by
reinsurers. Losses on the stock market may therefore have a larger impact
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Insurers Reinsurers Oil Firms

1.481 1.333 1.538 1.053

1 ≤ E[κ|κ ≥ 1] ≤ 4
Jan. 1995 - June 2005

Table 4: Dependence among 4 companies

on insurers. If regulators deem the sector risk as high, these possible expla-
nations offer a starting point for regulators to reduce the dependence among
firms, by reducing the common risk exposures.

Dependence among firms from different sectors is lower than the depen-
dence in the insurance sector, since the estimated dependence among eight
firms is only 1.290. The idiosyncratic risk is the most important risk factor for

the firms from different sectors and is a factor 3.45 times bigger (
_

βα = 3.45
_

i ,

since
_

βα/
_

i = 0.29). The common factors
_

βα are clearly of importace for the
risks in the insurance sector.

6.5.2 Dependence among four firms

We also estimate the dependence among four firms. The estimates are given
in Table 4. The failure measure estimate for four insurers is 1.481. The
estimate of the dependence among four firms from different sectors is 1.053.
It is clear that dependence in the tails is much smaller for firms from differ-
ent sectors than among insurance companies. An extreme negative return
of one of the firms from unrelated sectors is almost unrelated to the losses
of the other firms. The downside risk dependence between four reinsurance
companies is 1.333. This is lower than the dependence among insurers. De-
pendence among the tail risk of large oil companies (1.538) is of the same
order as dependence in the insurance sector, and much higher than among
the independent firms. Sector risk in the insurance sector is therefore of the
same magnitude as sector risk in the oil sector.

The result of 1.481 implies that idiosyncratic risk is very relevant. For
large n and t, the failure measure is equal to 1 plus the ratio of the average
market risk and the average idiosyncratic risk for the insurers, i.e. E[κ|κ ≥

t] = 1 +
_

βα/
_

i = 1.481. Since the ratio is smaller than 2, idiosyncratic risk
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appears more important than market risk. Since the expected number of
firms from different sectors realizing a loss is equal to 1.053, which is close to
1, it is evident that there are hardly any common risk factors causing joint
losses.

The tail dependence among firms from different sectors is very low. Even
though the firms are from different sectors, they can be exposed to similar
risks. The stock market crash of September 11, 2001 had an impact on
all stock prices. Such broad macro shocks could have resulted in a higher
dependence in stock prices among firms from the different sector. The failure
estimator could have returned a higher value than the estimated 1.053.

In a way it is remarkable that the dependence among reinsurers is lower
than among insurance companies. Since reinsurers provide insurance against
major catastrophes, they can receive claims arising out of the same (natural)
catastrophe, such as hurricanes. However, it seems that these simultaneous
losses are smaller than we expected.

One can argue that the dependence within the oil sector should be rel-
atively high, since the results of oil companies are driven by changes in oil
price. The oil price has a major impact on profits and losses for companies
in the oil sector. Even though it is difficult to point at a single factor caus-
ing the dependence among insurers, such as the oil price for oil companies,
there should be a similar explanation for the dependence among insurers.
The estimates are larger than the estimates in the four firm setting. The
expected number of insurers that crash, given the crash of one insurers in-
creased from 1.481 to 1.905. However, the increase is limited, if we consider
that the maximum possible value for the failure measure doubled from 4 to
8.

7 Conclusion

There is an increasing interest in the impact of extreme losses of insurers for
the stability of the financial system. To this end the downside risk depen-
dence between the losses of insurance companies is investigated. We provide
an explanation for a similar exposure to losses, based on the idea that mul-
tiple insurers carry similar risks.

For the design of optimal regulation, it matters if regulators have to deal
with sector wide risk or firm specific risk. When firms are exposed to similar
risks, all insurers realize losses on either their assets or liabilities, during a
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crisis. We model and estimate the effect of risk diversification on downside
risk for the insurance sector.

The probability that multiple insurers realize a loss is relevant for our un-
derstanding of insurance sector risk. We specify a two factor model, where
the downside risk of a firm is determined by common risk factors and idiosyn-
cratic risk. The impact of market risk and idiosyncratic risk on the expected
number of firms that crash is investigated. We define a conditional failure
measure based on the expected number of firms that crash, conditional on a
large loss of one firm. We proof that the measure converges to the ratio of
idiosyncratic and common risk factors. This ratio is therefore an indicator
for the importance of sector risks.

Insurers limit and diversify their risk exposure by reinsurance contracts.
We investigate the dependence among reinsurers, to understand if risk in
the reinsurance sector is similar to insurance risks. When the dependence
between pairs of firms is investigated, we conclude that reinsurance sector
risk differs from insurance sector risk.

The conditional failure measure is also estimated to understand depen-
dence in the insurance sector. It is found that common risk factors are an
important source of risk in the insurance sector and to a smaller extent in
the reinsurance sector. Idiosyncratic risk is relatively important for the rein-
surance sector.

Dependence in the insurance sector is of the same order as in the oil sector.
This implies there is a similar factor driving the returns in the insurance
sector as in the oil sector. Tail dependence is relatively high in the insurance
sector, when compared to a portfolio of stocks from different sectors.
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INSURERS REINSURERS OIL FIRMS INDEPENDENT FIRMS

ALLIANZ MUNICH RE BP RD SHELL

ING SWISS RE TOTAL SAP

GENERALI HANNOVER RE RD SHELL L’OREAL

AXA SCOR REPSOL TELEFONICA

AEGON BMW

AVIVA NOKIA

PRUDENTIAL BASF

ZFS PHILIPS ELECTRONICS

Table A.1: Selected firms

A Data

The companies used for the estimation of dependence within the different
sectors and between pairs of insurers and reinsurers are given in Table A.1.

B Bivariate estimation

In this section we elaborate on the bivariate estimation technique employed in
the paper. We first rewrite the failure measure and turn it into an estimator.

From elementary probability theory we know that P (X1 ≤ t,X2 ≤ t) =
1−P (max[X1,X2] > t) and P (X1 > t)+P (X2 > t) = P (max[X1, X2] > t)+
P (min[X1, X2] > t). One can therefore rewrite the conditional expectation
as follows

E[κ|κ ≥ 1] =
P (X1 > t) + P (X2 > t)

1− P (X1 ≤ t,X2 ≤ t)
= 1 +

P (min[X1,X2] > t)

P (max[X1, X2] > t)
. (19)

The estimation of the probability of multiple crashes can thus be reduced
to the estimation of two univariate probabilities. This greatly facilitates the
empirical analysis, since one can proceed on basis of the previously described
univariate estimation methods for the minimum and maximum return series.
We use the notation Pmin for P (min[X1,X2] > t) and the corresponding no-
tation for the maximum. If the tail index α is identical for the minimum (αi)
and maximum (αa) series, we obtain the following non-parametric estimator

E[κ|κ ≥ 1] = 1 +
P̂min

P̂max
. (20)
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Mean
ALLIANZ 1.00 0.29 0.11 0.24 0.17 0.19 0.22 0.15 0.22 0.12 0.07 0.08 0.17
ING 0.29 1.00 0.06 0.26 0.38 0.26 0.29 0.16 0.32 0.11 0.19 0.16 0.23
GENERALI 0.11 0.06 1.00 0.14 0.03 0.05 0.05 0.06 0.05 0.13 0.12 0.05 0.08
AXA 0.24 0.26 0.14 1.00 0.31 0.09 0.19 0.21 0.16 0.14 0.14 0.10 0.18
AEGON 0.17 0.38 0.03 0.31 1.00 0.11 0.23 0.19 0.13 0.09 0.14 0.11 0.17
AVIVA 0.19 0.26 0.05 0.09 0.11 1.00 0.19 0.15 0.19 0.13 0.07 0.09 0.14
PRUDENTIAL 0.22 0.29 0.05 0.19 0.23 0.19 1.00 0.12 0.17 0.12 0.14 0.08 0.16
ZFS 0.15 0.16 0.06 0.21 0.19 0.15 0.12 1.00 0.07 0.26 0.07 0.10 0.14
MUNICHRE 0.22 0.32 0.05 0.16 0.13 0.19 0.17 0.07 1.00 0.12 0.19 0.15 0.16
SWISSRE 0.12 0.11 0.13 0.14 0.09 0.13 0.12 0.26 0.12 1.00 0.13 0.04 0.13
HANNOVERRE 0.07 0.19 0.12 0.14 0.14 0.07 0.14 0.07 0.19 0.13 1.00 0.12 0.13
SCOR 0.08 0.16 0.05 0.10 0.11 0.09 0.08 0.10 0.15 0.04 0.12 1.00 0.10

Table A.2: Bivariate conditional expectation t=0.075

In Slijkeman et al. (2005) we show that (20) can be calculated using a simple
counting procedure for the minima and maxima. We must take t large, since
we are interested in the limit behavior of (19). We take t equal to 7.5%,
since this corresponds to a value at the bound of the sample. The estimated
dependence among all possible combinations are given in Table A.2.

C Multivariate results for different quantiles

For the estimation of the dependence we have to determine a threshold Q1.
For the estimation of the dependence among 4 and 8 firms, the threshold
corresponding to the 10th largest order statistic of the univariate return series
Xi was taken. In this section we present the estimation results for a higher
and lower threshold, Q1. The returns corresponding to the 5th, 20th and 30th

order statistic are taken as a threshold. This threshold is subsequently taken
for the estimation of (16). The results for the dependence among 4 firms
are given in Table A.3, the results for the dependence among 8 firms are
given in Table A.4. When the dependence is estimated for a higher threshold
(i.e. larger losses), this dependence is a bit lower, but remains of the same
order. When the dependence for a lower threshold is evaluated, this no longer
corresponds to the dependence among extreme returns. The 30th largest
return in 10 years can hardly be considered as an extreme return. Even for
this lower threshold however, the conclusions on the relative importance of
sector risks for the different sectors do no change considerably. Thus our
procedure appears robust against the threshold selection.
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Order statistic of Q1 Insurers Reinsurers Oil Firms
5 1.538 1.333 1.333 1.053
10 1.481 1.333 1.538 1.053
20 1.600 1.379 1.600 1.159
30 1.690 1.412 1.500 1.212

1 ≤ E[κ|κ ≥ 1] ≤ 4
Jan. 1995 - June 2005

Table A.3: Dependence among 4 companies

Order statistic of Q1 Insurers Insurance/Reinsurance Firms
5 1.739 1.600 1.250
10 1.905 1.739 1.290
20 2.133 1.928 1.404
30 2.222 2.069 1.538

1 ≤ E[κ|κ ≥ 1] ≤ 8
Jan. 1995 - June 2005

Table A.4: Dependence among 8 companies
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