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Abstract

Many economic organizations have some relational structure, meaning that
economic agents do not only differ with respect to certain individual characteris-
tics such as wealth and preferences, but also belong to some relational structure
in which they usually take different positions. Two examples of such structures
are communication networks and hierarchies. In the literature the distinction
between these two types of relational structures is not always clear. In models
of restricted cooperation this distinction should be defined by properties of the
set of feasible coalitions. We characterize the feasible sets in communication
networks and compare them with feasible sets arising from hierarchies.
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1 Introduction

Many economic organizations have some relational structure, meaning that economic

agents do not only differ with respect to certain individual characteristics such as wealth

and preferences, but also belong to some relational structure in which they usually take

different positions. Two examples of such structures are communication networks and

hierarchies. There is an extensive literature on communication networks, both from

a cooperative and a non-cooperative point of view. However, studying hierarchical

organizations is not yet well developed in economic theory, although some features

of hierarchical organizations are studied, for example in principal-agent models and

optimal control models. In cooperative game theory, attempts to study hierarchical

organizations are made in the field of restricted cooperation. However, there is still a lot

of confusion. For example, the question what is the difference between communication

networks and hierarchies is not always clear. In the field of restricted cooperation

the difference should be defined by properties of the sets of feasible coalitions. In

this paper we characterize the feasible sets arising from communication networks and

compare them with feasible sets arising from hierarchies.

Although there are different approaches to communication in the economic liter-

ature, there seems to be more consensus with respect to the definition and implications

of communication than with respect to hierarchy. It seems that models of communi-

cation are based on the concept of ‘connectedness’. Although hierarhical relations are

usually between different types of agents (or agents having different roles), and thus

are asymmetric relations, communication relations might be symmetric (and between
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similar type of agents) or asymmetric. An example of asymmetric communication re-

lations is given by Dewatripont and Tirole (2005) who consider communication as a

‘transfer of knowledge’ between a sender and a receiver. They formulate a principal-

agent model to communication as a moral hazard problem between this sender and

receiver. Dessein (2002) extends the model of Crawford and Sobel (1982) and studies

a principal-agent model of an organization where the principal can make a trade-off

between delegation (implying a loss of control) and communication (implying a loss of

information).

On the other hand, Bala and Goyal (2000) consider communication relations

between similar agents and a communication link between two agents means that these

two agents share their information with one another (the two-sided case) or the agent

who builds the relation gets access to the information of the other (the one-sided case).

In their model of network formation agents can unilateral decide to build or delete

communication links. In the network formation model of Jackson and Wolinksy (1996)

agents can unilateral decide to delete links, but for building links mutual agreement is

needed. Their model applies the static model of restricted cooperation in cooperative

games of Myerson (1977) where communication means that connectedness determines

the possibilities of cooperation.

Although these are different models of communication, their seems to be some

consensus in the sense that for each form of communication the underlying idea is

connectedness: agents must be connected in order to share information or to be able

to cooperate. There seems to be less consensus about the meaning of hierarchy in

economic and political organizations. In the literature on hierarchies it is even not

clear whether hierarchy implies authority or not, as expressed by Hart and Moore

(2005). One of the first formal models of a hierarchical production organization is

presented by Williamson (1967) where the depth of a hierarchical firm structure with

constant span of control determines the total number of productive employees in a firm

and thus the total profit that can be made. The hierarchical monitoring behind this

model is specified in more detailed by, e.g. Calvo and Wellisz (1978, 1979). Other

models use optimal control techniques to determine optimal hierarchies as information

processing organizations, see e.g. Keren and Levhari (1979, 1983) and Radner (1992).

But even when agreeing on whether a hierarchy is about authority or not, the

implications of authority differ across different models. Although there is a large liter-

ature on communication and hierarchies, few attempts are made to build a consistent
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theory on organizations comparing both types of relational structures. An attempt is

made by Bolton and Dewatripont (1994) who describe a model where efficient (i.e. cost

minimizing) information processing in a communication network implies some hierar-

chical structure in the sense that efficient networks take a pyramidal form. A similar

result is obtained by Chwe (2000) who studies directed communication networks and

shows that the minimal sufficient networks for coordination can be seen as hierarchies.

Another attempt is made in Demange (2004) in the field of restricted coop-

eration, but as we claim later this is not really about hierarchies but only about

communication. In the underlying paper we present results in this field comparing

communication with hierarchies. First we compare the model of restricted communi-

cation as developed by Myerson (1977) with the model of games with a hierarchical

permission structure where hierarchical permission (or approval) relations determine

cooperation restrictions. Then we show that the model of restricted communication

has strong similarities with relational structures that can be represented by antima-

troids (which generalize games with a hierarchical permission structure). We give full

characterizations of communication feasible sets that differ from antimatroids only with

respect to a union property and an accessibility property. To show that antimatroids

are more general than games with a permission structure we also discuss ordered par-

tition voting as an example of another hierarchical structure that can be represented

as an antimatroid. Finally, we make some concluding remarks.

2 Communication and hierarchies in cooperative

games

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game, being

a pair (N, v), where N ⊆ IN is a finite set of players and v: 2N → IR is a characteristic

function on N satisfying v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of

coalition S, meaning that the members of coalition S can obtain a total payoff of v(S)

by agreeing to cooperate.

Main question in cooperative games is to determine the distribution of payoffs

over individual players. A payoff vector x ∈ IRn of an n-player TU-game (N, v) is

an n-dimensional vector giving a payoff xi ∈ IR to any player i ∈ N . A solution for
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TU-games is a mapping f that assigns to every game (N, v) a set of payoff vectors

f(N, v) ⊆ IRn. A famous and widely applied solution is the Core which assigns to

every game the set of efficient and coalitionally stable payoff vectors, i.e. Core(N, v) =

{x ∈ IRn |
∑
i∈N xi = v(N) and

∑
i∈S xi ≥ v(S) for all S ⊂ N}.

2.1 Communication

In a TU-game any subset S ⊆ N is assumed to be able to form a coalition and earn

the worth v(S). However, models have been developed in which there are restictions

on the feasibility of coalitions. One of the most well-known restrictions on coalition

formation are communication restrictions meaning that a coalition S is feasible if and

only if the players in S are connected within a given communication network on the

set of players. In Myerson (1977) this communication network is represented as an

undirected graph on the set of players.

An undirected graph is a pair (N,G) where N is the set of nodes and G ⊆

{{i, j}|i, j ∈ N, i �= j} is a collection of subsets of N such that each element of G

contains precisely two elements of N . The elements of G represent bilateral communi-

cation links and are refered to as edges or links. Since the nodes in a graph represent

the positions of players in a communication network we refer to the nodes as players.

A sequence of k different players (i1, . . . , ik) is a path in (N,G) if {ih, ih+1} ∈ G for

h = 1, . . . , k − 1. Two distinct players i and j, i �= j, are connected in graph (N,G)

if and only if there is a path (i1, . . . , ik) with i1 = i and ik = j. A coalition S ⊆ N is

connected in graph (N,G) if every pair of players in S is connected by a path that only

contains players from S, i.e. for every i, j ∈ S, i �= j, there is a path (i1, . . . , ik) such

that i1 = i, ik = j and {i1, . . . , ik} ⊆ S. A maximally connected subset of coalition S

in (N,G) is called a component of S in that graph, i.e. T ⊆ S is a component of S in

(N,G) if and only if T is connected in (N,G(S)) and for every h ∈ S \ T the coalition

T ∪{h} is not connected in (N,G(S)), where G(S) = {{i, j} ∈ G|{i, j} ⊆ S} is the set

of links between players in S. A sequence of players (i1, . . . , ik, i1) is a cycle in (N,G)

if (i1, . . . , ik) is a path in (N,G), and {ik, i1} ∈ G. A graph (N,G) is cycle-free when it

does not contain any cycle. A player i ∈ N is called a pending player if it is connected

to exactly one other player, i.e. if |{g ∈ G | i ∈ g}| = 1. Note that a cycle-free

communication graph has at least two pending players. A graph that is connected and

cycle-free is called a tree .

4



A triple (N, v,G) with (N, v) a TU-game and (N,G) an undirected graph on N is

called a communication situation. In the communication situation (N, v,G) players

can cooperate if and only if they are able to communicate with each other, i.e. a

coalition S is feasible if and only if it is connected in (N,G). In other words, the

set of feasible coalitions in a communication situation (N, v,G) is the set of coalitions

FG ⊆ 2
N given by

FG = {S ⊆ N | S is connected in (N,G)}.

We refer to this set as the communication feasible set of communication graph (N,G).

Myerson (1977) introduces the restricted game of a communication situation (N, v,G)

as the TU-game (N, vG) in which every feasible coaliton S can earn its worth v(S).

Whenever S is not feasible it can earn the sum of the worths of its components in

(N,G). Denoting the components of S ⊆ N in (N,G) by CG(S), the restricted game

(N, vG) corresponding to communication situation (N, v,G) thus is given by vG(S) =
∑
T∈CG(S) v(T ) for all S ⊆ N . As a solution Myerson (1977) proposes to take for

every communication situation the Shapley value (Shapley (1953)) of the corresponding

restricted game, a solution that is later named the Myerson value for communication

situations. Alternatively, Le Breton, Owen and Weber (1992) and Demange (1994,

2004) consider the Core of the restricted game for the special class of communication

situations where the game is superadditive and the communication graph is cycle-free,

respectively, a tree.

2.2 Hierarchies

The concept of restricted communication as reviewed in the previous subsection is

widely accepted in the literature. So, the ability to communicate is considered to

be fully determined by the connectedness of the players in the communication graph.

But what do we mean when we speak about a hierarchy? Although, as mentioned

in the introduction, in the literature various attempts to capture the idea of a hier-

archy are made, the concept of hierarchy does not seem to be so clearly understood

as communication. In the field of restricted cooperation a model that tries to answer

this question is that of a (cooperative) game with a permission structure. In a game

with a permission structure it is assumed that players who participate in a cooperative

TU-game are part of a hierarchical organization in which there are players that need

permission from certain other players before they are allowed to cooperate. For a finite
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set of players N such a hierarchical organization is represented by a directed graph

(N,D) with D ⊆ N × N , referred to as a permission structure on N . The directed

links (i, j) ∈ D are called arcs. The players in FD(i) := {j ∈ N | (i, j) ∈ D} are

called the followers of player i, while the players in PD(i) := {j ∈ N | (j, i) ∈ D}

are called the predecessors of i. (Note that j ∈ FD(i) if and only if i ∈ PD(j).) A

sequence of different players (i1, . . . , ik) is a directed path between players i and j,

i �= j, in a permission structure (N,D) if i1 = i, ik = j and (ih, ih+1) ∈ D for all

1 ≤ h ≤ k − 1. Here we only consider acyclic permission structures, i.e. we assume

that there exists no directed path (i1, . . . , ik) with (ik, i1) ∈ D. Note that in an acyclic

permission structure D there always exists at least one player with no predecessors,

i.e. TOP (D) := {i ∈ N | PD(i) = ∅} �= ∅. We refer to these players as the top-players

in the permission structure.

Two approaches to games with a permission structure are considered. In the

conjunctive approach as developed in Gilles, Owen and van den Brink (1992) and van

den Brink and Gilles (1996), it is assumed that each player needs permission from all

its predecessors before it is allowed to cooperate. This implies that a coalition S ⊆ N

is feasible if and only if for every player in the coalition it holds that all its predecessors

belong to the coalition. The set of feasible coalitions in this approach thus is given by

ΦcD := {S ⊆ N | PD(i) ⊂ S for all i ∈ S} ,

which we refer to as the conjunctive feasible set of D.

Alternatively, in the disjunctive approach as developed in Gilles and Owen

(1994) and van den Brink (1997), it is assumed that each player (except the top-

players) needs permission from at least one of its predecessors before it is allowed to

cooperate with other players. Consequently, a coalition is feasible if and only if every

player in the coalition (except the top-players) has at least one predecessor who also

belongs to the coalition. Thus, the feasible coalitions are the ones in the set

ΦdD := {S ⊆ N | PD(i) ∩ S �= ∅ for all i ∈ S \ TOP (D)} ,

which we refer to as the disjunctive feasible set of D.

An approach using restricted games similar to the approach described in the

previous subsection for communication situations assigns to every coalition in a game

with a permission structure the worth of its largest feasible subset2.

2These largest feasible subsets are well defined by the sets Φc
D

and Φd
D

being closed under union.
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Example 2.1 For the permission structure (N,D) given by N = {1, 2, 3, 4} and

D = {(1, 2), (1, 3), (2, 4), (3, 4)} we have ΦcD = {{1}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}}

and ΦdD = Φ
c
D ∪ {{1, 2, 4}, {1, 3, 4}}. �

Why do these models capture the idea of a hierarchy? Since we are in the field of

restricted cooperation, the answer must be found in the properties of the feasible set.

Algaba, Bilbao, van den Brink and Jiménez-Losada (2004) show that the conjunctive

and disjunctive feasible sets are antimatroids being sets of feasible coalitions satisfying

the following properties (see, Dilworth (1940) and Edelman and Jamison (1985)). A set

of feasible coalitions F ⊆ 2N satisfies accessibility if every nonempty feasible coalition

has at least one player that can leave the coalition leaving behind a feasible subcoalition,

i.e. S ∈ F , S �= ∅, implies that there exists an i ∈ S such that S \ {i} ∈ F . A set

of feasible coalitions F ⊆ 2N satisfies closedness under union if the union of any two

feasible coalitions is also feasible, i.e. S, T ∈ F implies that S ∪ T ∈ F . Together with

the empty set being feasible these two properties define an antimatroid. Additionally

we require the feasible set F ⊆ 2N to be normal meaning that every player belongs

to at least one feasible coalition, i.e. for every i ∈ N there exists an S ∈ F such that

i ∈ S.

Definition 2.2 A set of feasible coalitions F ⊆ 2N is a normal antimatroid if it

contains the empty set and satisfies normality, accessibility and closedness under union.

A player i ∈ S is called an endpoint of S ∈ F if S \ {i} ∈ F . Note that by accessibility

every feasible coalition in an antimatroid has at least one endpoint. Clearly, antima-

troids have some hierarchical flavour. Besides the example of permission structures

mentioned above, another example is given by ordered partition voting introduced in

Section 4. But do they fully capture the idea of a hierarchy? This question is still

unanswered. But let us for the moment compare antimatroids with communication

feasible sets.

3 A comparison between hierarchies and commu-

nication

Looking at the properties of normal antimatroids, it can easily be verified that commu-

nication feasible sets contain the empty set and satisfy normality and accessibility. In
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fact, they satisfy the stronger 2-accessibility meaning that every feasible coalition with

two or more players has at least two players that can leave the coalition leaving behind

a feasible coalition, i.e. S ∈ F with |S| ≥ 2, implies that there exist i, j ∈ S, i �= j,

such that S \{i}, S \{j} ∈ F . Communication feasible sets are not closed under union.

However, Algaba, Bilbao, Borm and López (2001) show that they satisfy the weaker

property of union stability meaning that the union of two feasible coalitions having

a nonempty intersection is also feasible, i.e. S, T ∈ F with S ∩ T �= ∅ implies that

S ∪ T ∈ F . It turns out that weakening closedness under union to union stability, and

strengthening accessibility to 2-accessibility characterizes the communication feasible

sets.

Theorem 3.1 Let F ⊆ 2N be a set of feasible coalitions. Then F is the communication

feasible set of some communication graph if and only if F contains the empty set and

satisfies normality, 2-accessibility and union stability.

Proof. A communication feasible set containing the empty set and satisfying normality

and union stability follows from Algaba, Bilbao, Borm and López (2001). To show that

it satisfies 2-accessibility, let S ⊆ N be connected in communication graph (N,G) with

|S| ≥ 2. If (N,G(S)) contains a cycle, say (i1, . . . , ik), k ≥ 3, then for each pair

of consecutive players (ih, ih+1), h ≤ k − 1, in this cycle it holds that S \ {ih, ih+1}

is connected in (N,G), and thus ih and ih+1 are both endpoints of S. Otherwise, if

(N,G(S)) is cycle-free then there are at least two pending players in (N,G(S)), say i1

and i2. But then S \ {i1, i2} is connected in (N,G) (or the empty set if |S| = 2), and

thus i1 and i2 are both endpoints of S.

To show that every feasible set satisfying the properties mentioned in the theorem

implies that it must be the communication feasible set of some communication graph,

suppose that F ⊆ 2N satisfies these properties. We must prove that there is a com-

munication graph (N,G) such that F is the set of connected coalitions in (N,G), i.e.

F = FG. Take GF = {S ∈ F | |S| = 2}. By F containing the empty set and satisfying

normality it is sufficient to show that for every S ⊆ N with |S| ≥ 2, it holds that

S ∈ F if and only if S is connected in (N,GF).

(i) Take S ∈ F . We prove that S is connected in (N,GF) by induction on |S|. If

|S| = 2 then S is connected in (N,GF) by definition of GF . Proceeding by induction,

suppose that S ′ ∈ F is connected in (N,GF) whenever |S ′| < |S|. By 2-accessibility
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there exist i, j ∈ S such that S \ {i}, S \ {j} ∈ F . The induction hypothesis implies

that S \ {i} and S \ {j} are both connected in (N,GF). But then there exists an

h ∈ S \ {i, j} such that there is a path from i to h and from j to h using only players

from S. This implies that there is a path from i to j in S, and thus S is connected in

(N,GF).

(ii) Take S ⊆ N connected in (N,GF). We must prove that S ∈ F . If |S| = 2

then S ∈ F by definition of GF . If |S| > 2 then S is the union of all links in S, i.e.

S =
⋃
{{i, j} ∈ GF | {i, j} ⊂ S}. Since all these links {i, j} belong to F by definition

of GF , and S is connected, union stability implies that S ∈ F . �

Obviously, closedness under union implies union stability, and 2-accessibility implies

accessibility. Thus, comparing Theorem 3.1 with Definition 2.2, the difference between

antimatroids and communication feasible sets is that antimatroids satisfy the stronger

union property, while communication feasible sets satisfy the stronger accessibility

property. Note that, given accessibility and closedness under union, normality implies

that N ∈ F as is the case for antimatroids (and thus for conjunctive and disjunctive

feasible sets). Given 2-accessibility and union stability, normality implies that {i} ∈ F

for all i ∈ N as is the case for communication feasible sets.

As mentioned in the introduction, Demange (2004) claims that hierarchies can

lead to group stability in case the game is superadditive3. To verify if that paper is

really about hierarchies we now can verify the properties of the feasible set. In Demange

(2004) the players belong to a hierarchy which can be represented by a directed graph

with a tree structure. In terms of acyclic permission structures this means that there

is a unique top-player i0 ∈ N and all other players have exactly one predecessor,

i.e. |TOP (D)| = 1 and |PD(i)| = 1 for all i ∈ N \ TOP (D). Consequently, for every

i ∈ N \{i0} there is a directed path from i0 to i. (Note that in this case the conjunctive

and disjunctive feasible sets are the same.) In Demange (2004) the feasible sets (or

teams) are those coalitions S such that for every pair of players i, j ∈ S either there

is a directed path from i to j, or there is a directed path from j to i, or there is

another player h ∈ S \ {i, j} such that there is a directed path from h to i and from

h to j. In fact, as also mentioned by Demange (2004), the feasible sets are exactly

the communication feasible sets in the underlying undirected communication graph

(N,G) with G = {{i, j} ⊆ N | i �= j and {(i, j), (j, i)} ∩ D �= ∅}. Note that this

3A TU-game (N, v) is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N with S ∩ T = ∅.
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communication graph is a tree.

We end this section by characterizing the feasible sets that can be commu-

nication feasible sets as appearing in Demange (2004), i.e. that can arise from com-

munication graphs with a tree structure. In order to do that we generalize paths in

communication structures. Let F ⊆ 2N . A coalition S ∈ F is a 2-path in F if it has

exactly two endpoints. The 2-path S ∈ F is called a {i, j}-path in F if it has i and

j as endpoints. Now, a set of feasible coalitions F ⊆ 2N satisfies the 2-path property

if for every i, j ∈ N , i �= j, there is at most one {i, j}-path. Finally, we say that a set

of feasible coalitions F ⊆ 2N is connected if for every i, j ∈ N there is an S ∈ F with

{i, j} ⊆ S.

Theorem 3.2 Let F ⊆ 2N be a set of feasible coalitions. Then

(i) F is the communication feasible set of some cycle-free communication graph if and

only if F contains the empty set and satisfies normality, 2-accessibility, union stability

and the 2-path property.

(ii) F is the communication feasible set of some communication tree if and only if

F contains the empty set and satisfies normality, 2-accessibility, union stability, the

2-path property and is connected.

Proof. (i) Let (N,G) be a cycle-free communication graph. FG containing the empty

set and satisfying normality, 2-accessibility and union stability follows from Theorem

3.1. FG satisfying the 2-path property follows since the unique {i, j}-path in FG,

i, j ∈ N , is the path (i1, . . . , ik) in (N,G) with i1 = i and ik = j.

To prove the ‘if’ part, suppose that F ⊆ 2N satisfies the properties mentioned in

statement (i) of the theorem. We already showed in Theorem 3.1 that F is the set

of communication feasible coalitions corresponding to a communication graph (N,G).

Suppose that (N,G) has a cycle. Then there exists a sequence of different players

(i1, i2, ..., ik) ∈ N such that {ik, i1} ∈ G. Take any l ∈ {2, ..., k}. Then {i1, ..., il}

and {il, ..., ik, i1} both are {i1, il}-paths in F , yielding a contradiction with the 2-path

property.

(ii) Let (N,G) be a communication tree. FG containing the empty set and satisfying

normality, 2-accessibility, union stability and the 2-path property follows from state-

ment (i) of the theorem. FG satisfying connectedness follows since N ∈ FG if G is a

tree.
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To prove the ‘if’ part, suppose that F ⊆ 2N satisfies the properties mentioned in

statement (ii) of the theorem. Above we already showed that F is the set of commu-

nication feasible coalitions corresponding to a cycle-free communication graph (N,G).

Suppose that (N,G) is not connected. Then there are at least two components T 1, T 2

in (N,G). Take i ∈ T 1 and j ∈ T 2. Since every S ⊆ N with {i, j} ⊆ S is not feasible,

the communication feasible set FG is not connected, yielding a contradiction. �

It can be verified that the feasible sets in Demange (2004) satisfy the properties of

Theorem 3.2.(ii), and thus we conclude that paper is about communication and not

about hierarchies.

4 Another hierarchical structure: ordered partition

voting

We claimed that antimatroids express hierarchical structures and we discussed per-

mission structures as examples. Question is if antimatroids are really more general

than permission structures. Put differently, are there antimatroids that cannot be

the conjunctive or disjunctive feasible set of some acyclic permission structure. The

answer is yes. An example is ordered partition voting which describes a situation in

which there is an ordered partition of the player set N , such that different levels of

approval are distinguished. To activate players in a particular level, a qualified major-

ity approval in every higher level is necessary. Formally, an ordered partition voting

situation is a triple (N,P, q) where P = (P1, ..., Pm) is an ordered partition of the

player set N (i.e. Pk ∩ Pl = ∅ for all k, l ∈ {1, . . . ,m}, k �= l, and
⋃m
k=1 Pk = N),

and for each ‘level’ Pk, k ∈ {1, ...,m − 1}, in the partition there is a quota qk ∈ IN.

Now, a coalition S is feasible if and only if for all elements of the partition P , except

the lowest level that is represented in S, at least the quota is present. For S ⊆ 2N let

l(S) = max{l ∈ {1, ...,m}|S ∩ Pl �= ∅} be the lowest level present in S. Given ordered

partition voting situation (N,P, q) with P = (P1, ..., Pm) and q = (q1, . . . , qm−1), the

set of feasible coalitions F(P,q) is defined as

F(P,q) = {S ⊆ N | for all k ∈ {0, 1, ..., l(S)− 1} it holds that |S ∩ Pk| ≥ qk},

where P0 = ∅ and q0 = 0.
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Theorem 4.1 Let (N,P, q) be an ordered partition voting situation. Then F(P,q) is a

normal antimatroid on N .

Proof. Clearly, the empty set belongs to F(P,q). Normality of F(P,q) follows since N is

feasible. Accessibility of F(P,q) follows since S ∈ F(P,q) and i ∈ S ∩ Pl(S) implies that

S \ {i} ∈ F(P,q). To show that F(P,q) is closed under union take S, T ∈ F(P,q). Then

l(S ∪ T ) = max{l(S), l(T )}, and |(S ∪ T ) ∩ Pl(S∪T )| = |(S ∩ Pl(S∪T )) ∪ (T ∩ Pl(S∪T ))| ≥

ql(S∪T ) since max{|(S ∩ Pl(S∪T ))|, |(T ∩ Pl(S∪T ))|} ≥ ql(S∪T ). �

Besides showing that for every permission structure (N,D) it holds that ΦcD and Φ
d
D

are normal antimatroids, Algaba, Bilbao, van den Brink and Jiménez Losada (2004)

also characterize those antimatroids that can be the conjunctive or disjunctive feasible

set of some acyclic permission structure. They use the following notions for a feasible

set F ⊆ 2N which generalize the concept of a directed path in a permission structure.

A coalition S ∈ F is a path in F if it has a unique endpoint. (Recall from Section

2 that a feasible coalition with exactly two endpoints was called a 2-path.) The path

S ∈ F is called a i-path in F if it has i ∈ S as its unique endpoint. The conjunctive

feasible set of any acyclic permission structure is a normal antimatroid such that every

player i ∈ N has a unique i-path in F .4 Clearly, this property is not satisfied by all

disjunctive feasible sets as can be seen from Example 2.1 where {1, 2, 4} and {1, 3, 4}

are both 4-paths in ΦdD. Further Algaba, Bilbao, van den Brink and Jiménez Losada

(2004) show that the disjunctive feasible set of any acyclic permission structure is a

normal antimatroid such that deleting the unique endpoint of any path leaves behind a

feasible coalition that is again a path. This property is not satisfied by all conjunctive

feasible sets as can be seen from Example 2.1 where {1, 2, 3, 4} is the unique 4-path

in ΦcD, but {1, 2, 3} is not a path. The antimatroids F(P,q) that are obtained from

ordered partition voting situations need not satisfy these additional path properties,

and thus cannot be the conjunctive or disjunctive feasible set of some acyclic permission

structure.

Example 4.2 Consider N = {1, 2, 3, 4, 5}, P = (P1, P2) with P1 = {1, 2, 3} and P2 =

{4, 5}, and q1 = 2. The set of feasible coalitions F(P,q) consists of all subsets of {1, 2, 3},

4In fact, this additional property characterizes those normal antimatroids that can be the con-
junctive feasible set of some acyclic permission structure. Such antimatroids are also known as poset
antimatroids. Alternatively they are characterized as those normal antimatroids that are closed under
intersection.
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the coalitions in the set {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}} and all

coalitions with at least four players. Then {1, 2, 4}, {1, 3, 4}, {2, 3, 4} ∈ F(P,q) are 4-

paths, so F(P,q) cannot be the conjunctive feasible set of some acyclic permission struc-

ture. Consider the 4-path S = {1, 2, 4}. Since S \ {4} = {1, 2} is not a path, F(P,q)

cannot be the disjunctive feasible set of some acyclic permission structure. �

5 Concluding remarks

In this paper we characterized the communication feasible sets that can be the set

of connected coalitions in a communication network and compared these properties

to those of an antimatroid which expresses a hierarchical structure. We showed that

these sets differ with respect to the accessibility and union property they satisfiy, where

communication feasible sets satisfy the stronger accessibility property, while hierarchies

(i.e. antimatroids) satisfy the stronger union property.

These characterizations imply that Demange (2004) makes a conceptual mis-

take by claiming that hierarchies can lead to group stability, whereas it is shown that

restricted communication yields stability in case the game is superadditive and the

communication graph has a tree structure. As also follows from Section 4 of Demange

(2004), this result should be restated in the sense that the hierarchical outcomes5 that

are defined in that paper are extreme points of the Core of the restricted game (N, vG).

As a consequence we conclude that the results in Demange (2004) are about commu-

nication networks and not about hierarchies. Nonemptyness of the core under these

circumstances has already been shown in Le Breton, Owen and Weber (1992) and

Demange (1994). Demange (2004) already mentions that the Core of the restricted

game can have extreme points that are not hierarchical outcomes. This leads to other

interesting questions such as what properties has the set valued solution that assigns to

every superadditive game with a communication tree (or more general cycle-free graph)

the convex hull of the hierarchical outcomes. Clearly, by Demange (2004)’s results this

is a nonempty subset of the core of the restricted game (N, vG).

Under weaker conditions on the communication graph but stronger conditions

on the game, van den Nouweland and Borm (1991) also show nonemptyness of the

Core of the restricted game. In particular, they show that the restricted game is

5We refer to Demange (2004) for the definition of hierarchical outcome.
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convex6 whenever the original game is convex and the communication graph is cycle-

complete7. Since every convex game has a nonempty Core, this implies that the Core

of the restricted game (N, vG) is nonempty under these conditions.

Results on games with a permission structure and solutions can be found in the

above mentioned literature. In particular, van den Brink and Gilles (1996) and van den

Brink (1997) give axiomatic characterizations of permission values being solutions of

games with a permission structure that are obtained by applying the Shapley value to

certain restricted games, in a similar way as done in Myerson (1977) for communication

situations. The distinction between conjunctive and disjunctive permission structures

is closely related to the concepts of hierarchies and polyarchies in the sense of Sah and

Stiglitz (1986) who consider a collective decision maker that has to choose whether to

accept or reject a project proposal. In a hierarchy a project proposal is accepted if

and only if all individuals accept. As an alternative to a hierarchy, they also consider

a polyarchy in which a project proposal is accepted if and only if at least one individ-

ual accepts. In this sense a polyarchy as a collective decision making organization is

closely related to the disjunctive approach, while a hierarchy is closely related to the

conjunctive approach.

In the particular case of firm hierarchies games with a permission structure have

the same basic assumption as formulated by Rajan and Zingales (1998, 2001) who put

the control of access to a productive asset as a central issue in firm hierarchies. This

in cotrast to models of incomplete contracts which tries to explain the distribution of

residual rights concerning the control over non-contractable assets taking the ownership

of assets as a central feature (see, e.g., Grossman and Hart (1986), Hart and Moore

(1990, 1999), and Maskin and Tirole (1999)).

In Hart and Moore (2005) a hierarchy determines decision-making authority

with respect to different assets in the sense that the higher an agent is in the chain of

command of a certain asset, the more easy it can decide on the use of this asset. Their

assumption that ‘Access to assets is determined by a hierarchical structure. That

is, each asset ak has a chain of command, a list Lk, that ranks agents by seniority

over that asset’ differs from ‘permission’ in the sense that in our framework a senior

coordinator exercises authority when a junior coordinator must ask its approval. Junior

6A TU-game (N, v) is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N .
7A communication graph is cycle-complete if, whenever there is a cycle, the subgraph restricted

to the players in that cycle is complete, i.e. if there is a cycle (i1, . . . , ik, i1) then {{i, j} | {i, j} ⊆
{i1, . . . , ik}} ⊆ G.
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coordinators obtain access to the asset when they have approval from their senior

superiors (in the conjunctive or disjunctive sense). In Hart and Moore (2005) a junior

coordinator gets access only if its more senior coordinators do not exercise authority

over the asset.

We do not claim that we developed a full theory of restricted cooperation,

including communication and hierarchy, in this paper. However, we started with com-

paring these two organizational structures which belong to the most encountered in

economic and political organizations. We agree with Chwe (2000) that although ‘col-

lective action depends on both social structure and individual incentives, these integral

aspects have been formalized separately, in the fields of social network theory and game

theory’. Whereas Chwe (2000) considers these integral aspects together in a noncoop-

erative model, in this paper we took a step to consider communication and hierarchy

together in a cooperative approach. This is necessary to put various models on rela-

tional structures in economic and political organizations into perspective and to build

a consistent organization theory. Game theory provides useful tools for this purpose.
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