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Abstract 
 
Socio-economic interrelationships among regions can be measured in terms of economic flows, 
migration, or physical geographically-based measures, such as distance or length of shared areal unit 
boundaries. In general, proximity and openness tend to favour a similar economic performance among 
adjacent regions. Therefore, proper forecasting of socio-economic variables, such as employment, 
requires an understanding of spatial (or spatio-temporal) autocorrelation effects associated with a 
particular geographic configuration of a system of regions. Several spatial econometric techniques have 
been developed in recent years to identify spatial interaction effects within a parametric framework. 
Alternatively, newly devised spatial filtering techniques aim to achieve this end as well through the use 
of a semi-parametric approach. Experiments presented in this paper deal with the analysis of and 
accounting for spatial autocorrelation by means of spatial filtering techniques for data pertaining to 
regional unemployment in Germany. The available data set comprises information about the share of 
unemployed workers in 439 German districts (the NUTS-III regional aggregation level). Results based 
upon an eigenvector spatial filter model formulation (that is, the use of orthogonal map pattern 
components), constructed for the 439 German districts, are presented, with an emphasis on their 
consistency over several years. Insights obtained by applying spatial filtering to the database are also 
discussed. 
 
 



1. Introduction 
 
Spatial matters are of critical importance when considering socio-economic (and other) phenomena 
(see, for example, Bockstael 1996; Weinhold 2002), as well as because of their implications for 
policymaking (Lacombe 2004). To account for the presence of spatial structures that influence 
(positively or negatively) observable economic entities, such as unemployment or trade, calls for a 
rigorous and systematic assessment of their impact and extent. Spatial autocorrelation (SA) represents 
the correlation, computed among the values of a single georeferenced variable, that is attributable to the 
geographic proximity of the objects to which the values are attached. Introduction of the SA concept is, 
of course, a departure from the classical assumption of independence of observations constituting a 
single variable. SA also complements the concept of temporal autocorrelation, which has been 
extensively studied and dealt with in time-series econometrics. SA measures are used to quantify the 
nature and degree of the spatial correlation within a variable, or to test the assumption of independence 
or randomness. From a statistical analysis viewpoint, spatial correlation patterns are problematic, since 
they make standard statistics, such as correlation coefficients or ordinary least squares (OLS) estimates, 
potentially inappropriate. 

This paper aims to provide an assessment of how important spatial effects are in explaining 
unemployment levels in Germany, and, particularly, to show that these (or, more precisely, a subset of 
these) patterns are consistent over time. The definition of stable and recognizable spatial patterns 
enables one to observe systematic differences in regional unemployment. Such findings can have 
implications for policy evaluation and strategic planning. This paper presents analyses carried out by 
means of a semi-parametric ‘spatial filtering’ technique, described in Griffith (2003), which is based on 
the decomposition of geographic weights matrices. In our analysis, these matrices are defined for 439 
German districts, according to both topological and distance-based criteria – such as shared boundaries 
or centroid distance – and economic flows. In this regard, journey-to-work flows are employed as a 
proxy for economic linkages. 

Kosfeld and Dreger (2004) investigate spatial patterns of German regional labour markets, for the 
period 1992–2000. However, their approach involves computing spatial filters for each year within the 
framework of a spatial seemingly unrelated regression (SUR) model. Our approach differs from theirs 
in that we focus on the search for a set of spatial filters that are significant and consistent over time, and 
therefore can be employed for the entire time period considered (that is, 1996–2002). Also, we employ 
data at a finer level of disaggregation (439 districts versus 180 regions), which enables a more detailed 
analysis of the underlying spatial patterns. 
 
 
2. Spatial Filtering: An Overview 
 
2.1 Preface 
 
A wide array of methods, as well as several dedicated ‘spatial’ econometric procedures (see, for 
example, Anselin et al. 2004), for the statistical analysis of georeferenced data are available in the 
literature. These techniques are useful when analysing regional unemployment data, as in our case 
study, and, particularly, when the final aim is to develop forecasting models for some regional scale. 
Among conventional spatial econometric methods, spatial autoregression (see, among others, Anselin 
1988; Griffith 1988) is a powerful method commonly employed. Spatial autoregressive techniques take 
into account spatial effects by means of geographic weights matrices that provide measures of the 
spatial linkages (dependence) between values of georeferenced variables. Because of bias, statistical 
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efficiency concerns and the normality assumption, OLS should not be carried out with such data. 
Furthermore, maximum likelihood estimators of spatial regression models are based on restrictive 
assumptions. An alternative approach to spatial autoregression is the use of spatial filtering techniques, 
such as the ones described in Griffith (1981), Haining (1991), Getis and Griffith (2002), and 
Tiefelsdorf and Griffith (2006). The advantage of these filtering procedures is that the variables studied 
(which, initially, are spatially correlated) are split into spatial and non-spatial components, which can 
be employed in an OLS modelling framework. Filtering out spatially autocorrelated patterns also 
enables one to reduce the stochastic noise in the residuals of conventional statistical methods such as 
OLS. This conversion procedure requires the computation of ‘spatial filters.’ The approach developed 
by Griffith (1996; 2000) will be briefly described here. This approach is preferred in our case study to 
the one by Getis (1990; 1995), which requires variables with a natural origin. This constraint would not 
allow us to analyse patterns in employment growth rates, which will be studied in the future. 

The spatial filtering technique introduced by Griffith is based on the computational formula of 
Moran’s I (MI) statistic.1 This methodology exploits eigenvector decomposition techniques, which 
extract orthogonal and uncorrelated numerical components from a n x n matrix (Tiefelsdorf and Boots 
1995).2 These components can be seen as independent map patterns, and represent the latent SA of a 
georeferenced variable concerned, according to a given geographic weights matrix. They also can be 
interpreted as redundant information due to spatial interdependencies, in the framework of standard 
regression equations. 

Formally, these orthogonal components are the computed eigenvectors of the modified geographic 
weights matrix ),()( TT nn 11IC11I −−  where C is the given geographic weights matrix, I is an 
identity matrix of dimension n x n, and 1 is an n x 1 vector containing ones. The eigenvectors of the 
modified matrix are computed, in sequence, to maximize the sequential residual MI values. The first 
eigenvector, E1, is, therefore, the one whose numerical values generate the largest MI value among all 
eigenvectors of the modified matrix. Similarly, the second eigenvector, E2, is the set of numerical 
values that, again, maximize the MI value, while being uncorrelated with E1. The process continues 
until n eigenvectors have been computed. This is the complete set of all possible (mutually) orthogonal 
and uncorrelated map patterns (Getis and Griffith 2002), and, when employed as regressors, they may 
function as proxies for missing explanatory variables. 

A smaller set of ‘candidate’ eigenvectors then can be selected from the n eigenvectors, on the basis of 
their MI values, exceeding some prespecified threshold value. Since the eigenvectors are both 
orthogonal and uncorrelated, a stepwise linear regression can be used to achieve this end. In this 
framework, the advantage implied by the orthogonality of the eigenvectors is the absence of partial 
correlations and, therefore, of multicollinearity issues. Also, residuals obtained with stepwise 
regression constitute the spatially filtered component of the georeferenced variable examined. Each 

                                                 
1  Moran’s I coefficient is the most common, and oldest, indicator of SA. It is calculated as:  
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where: n is the number of cases; xi is the value of variable X at location i; and wi,j is the cell (i, j) of the geographic 
weights matrix W (see Section 2.1). Positive autocorrelation (I > 0) implies that geographical proximity tends to produce 
similar values of the variable examined. This is a phenomenon that is often observed in reality, especially in economics. 
Negative SA (I < 0) is a much rarer phenomenon. 

2  Griffith’s spatial filtering techniques are often compared to principal components analysis (CPA), in that both 
methodologies generate orthogonal and uncorrelated new ‘variables’ that can be employed in regression analyses. 
However, the components derived in PCA have an economic interpretation because eigenvectors are used to construct 
linear combinations of attribute variables, whereas spatial filters are linear combinations of the eigenvectors themselves, 
and as such should be regarded mostly as patterns of independent spatial dimensions. 
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eigenvector selected for inclusion is considered to be part of a ‘spatial filter’ for the dependent variable. 
The top two eigenvectors computed (E1 and E2) often identify map patterns along the cardinal points, 
that is, major North-South and East-West patterns. Eigenvectors with intermediate values of MI display 
regional map patterns, whereas eigenvectors with smaller values of MI display local map patterns. A 
linear combination of the above eigenvectors can be defined as the spatial filter for the variable 
examined. 

Also relevant to the use of the eigenvector decomposition process is the choice of the matrix to be 
used, particularly regarding: (a) the definition of proximity; (b) the variable chosen (if necessary) to 
indicate proximity; and (c) the coding scheme employed in the calculation of the matrix. While points 
(a) and (b) will be discussed later in the paper, the latter point will be just briefly addressed in the 
subsequent section. 
 
2.2 Coding of Geographic Weights Matrices 
 
The spatial filters presented in the previous section are computed on the basis of a modified geographic 
weights matrix. It is straightforward that the choice of the matrix to be used is critical in defining the 
set of spatial filters. Many coding techniques for geographic weights matrices can be found in the 
literature (Tiefelsdorf et al. 1999; Getis and Aldstadt 2004). The main factor that discriminates between 
the different schemes is the way in which each scheme treats the spatial links between georeferenced 
objects (like regions). 

Generally speaking, we can define a family of coding schemes based on the following expression 
(Tiefelsdorf and Griffith, 2006, with details in Chun et al. 2005): 
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where B is a binary geographic weights matrix, and Dq is a diagonal matrix that contains  
components ( ), belonging to vector 
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q dd ,...,1 ,1⋅= Bd  and representing the degree of ‘linkage’ of 

spatial object i. Different coding schemes are obtained by varying the q parameter. In particular, the 
following schemes can be obtained: 
 

- q = 0: C-coding (globally standardized). This scheme commonly is used in spatial statistics, and 
tends to emphasize spatial objects with a greater linkage degree. The C-coded matrix is 
symmetrical; 

- q = –0.5: S-coding (variance stabilized). This scheme tends to even the variation levels of 
weights assigned to spatial objects; and, 

- q = –1: W-coding (row-sum standardized). This scheme mostly is used in autoregressive 
response and simultaneous spatial autoregressive model specifications, and, contrary to the C-
coding scheme, tends to emphasize the weight of objects with small spatial linkages. 

 
Different spatial patterns may well result from the calculation of the eigenvectors of the above coded 

matrices. For instance, a W-coded matrix can be expected to show more ‘extreme’ values along the 
edges of a study area, while, consequently, a C-coded matrix is expected to present stronger patterns in 
the inner study area. Figure 1 presents an illustrative example, for the case of German unemployment, 
of the first two eigenvectors generated from the adjacency matrix coded in the different coding 
schemes. 
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FIGURE 1 HERE 
 

The choice of coding scheme, and therefore of the geographic weights matrix, not only determines 
the set of eigenvectors from which the spatial filters are selected, but also is a factor with a view to the 
utilization of its results in a spatial econometric or spatial statistics framework. In the empirical 
application presented in this paper, both W-coding and C-coding are employed (see Section 4). Results 
of a correlation analysis of the geographic weights matrices used also are presented, in order to 
compare the different approaches. 
 
 
3. The Data 
 
The above spatial filtering techniques will now empirically be illustrated. This paper presents results 
based on German unemployment data. The data set consists of cross-sectional data, collected by the 
(German) Federal Employment Services (Bundesanstalt für Arbeit, BA), on 439 German districts 
(‘Kreise’). The time period for which the data are available is from 1996 to 2002, while the level of 
aggregation of the data set is NUTS-3. In particular, the NUTS-3 aggregation level enables a more 
detailed examination of ‘local’ unemployment patterns. In fact, data at the NUTS-2 level would have 
only 41 regions (‘Regierungsbezirke’). Alternatively, an intermediate approach is proposed by Kosfeld 
and Dreger (2004), who carry out a spatial filtering analysis of German regional labour market data, 
using 180 previously defined regional labour market areas (Eckey 2001). The unemployment rates 
employed in our analysis are computed as a ratio between the number of unemployed individuals and 
the active workers population. 

A further spatial relationship matrix, German commuting flows, is employed in our analysis. The data 
consist of, for each couple (i, j) of NUTS-3 origin and destination, the number of employees that live in 
district i and work in district j. Therefore, we can treat these flows as home-to-work trips. The data 
used in this paper refer to the year 2002, and are employed in the computation of an ‘economic flows’ 
geographic weights matrix (see Section 4). Commuting data for one year only are employed in our case 
study, since varying commuting data would generate different geographic weights matrices, and, 
consequently, different sets of eigenvectors. Furthermore, one can assume some spatio-temporal 
persistence with respect of the local commuting patterns. The daily commuting flows between two 
districts is transformed to satisfy the statistical symmetry requirement of spatial link matrices. This 
transformation models the daily to-work and back-to-home flows. 
 
 
4. The Empirical Application: The Computation and Choice of Spatial Filters for German 

Unemployment 
 
4.1 Geographic Weights Matrices: The Different Approaches Used 
 
As previously mentioned, the spatial filtering methods employed in this case study are based on the 
decomposition of a geographic weights matrix. Therefore, it is important to carefully consider, in 
addition to matrix computation methods (see Section 2.2) the concept of proximity employed, and its 
consequences. 

In our case study, we present a set of different definitions of the geographic weights matrix: 
 

- economic flows: based on patterns of commuting flows; 
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- shared boundaries: based on geographical contiguity, which by definition is symmetric; 
- distance: based on symmetric distances separating district centroids. 

 
The three definitions highlighted here enable one to observe the influence of different operational 

definitions of proximity on the final results. First, commuting flows are employed as a proxy of the 
economic intertwining among districts. Second, shared boundaries utilize the topology of 
administrative boundaries in defining proximity. Third, distance-based matrices calculated using 
districts centroids define proximity in terms of geographical distance decay relationships. 

A total of five geographic weights matrices are employed in this paper. The matrices are computed as 
follows: 
 

a) A journey-to-work flows matrix is computed according to the q = –1 scaling scheme (W-coding); 
this matrix is based upon the location-to-location commuting data described in Section 3. 

b) Two matrices based upon shared boundaries, constructed by defining contiguity according to the 
so-called ‘rook’ rule, and then computed according to the C- and W-coding schemes; results 
from the application of a ‘queen’ contiguity rule are considered here, since the two specifications 
of adjacency differ only by 25 neighbour links. 

c) Two distance-based matrices derived from a spatial interaction model3; the variables used for the 
estimation of the model are district employment data (presented in Section 3), and the distance 
between the centroids of each district:  

a. First, the distance decay exponent of –2.7 is taken from the estimated spatial interaction 
model (SIM), and then converted to the W-coding scheme ; 

b. Second, this distance decay exponent is increased to –6.3 in order to obtain the same 
number of candidate eigenvectors as are obtained with the shared boundaries W-coding 
scheme. 

 
The following unconstrained gravity model is the spatial interaction model used to describe flows and 
estimate distance decay parameters: 
 

γα βκ ε ,ijd
ij i j ijF W J e−= +  (2)

where: 
Fij is the quantity of flows between areal units i and j; 
Wi is the number of works residing in origin areal unit i; 
Jj is the number of jobs located in destination j; 

 γand β α, κ,  are parameters; and 
εij  is a random error associated with flows between origin i and destination j. 

 
The estimated distance decay parameter, , was used to define the W-coding scheme. γ̂
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3  For details about the estimation of spatial interaction models, see, among others, Sen and Smith (1995), and Haynes and 

Fotheringham (1984). 
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Next,  was incrementally increased until the resulting (Wγ̂ T + W)/2 matrix yielded the same number 
of prominent eigenvectors as are obtained with (WT + W)/2 constructed as the row-standardized 
version of the topological-based binary 0/1 adjacency matrix C. Of note is that the eigenvectors for all 
W-coding schemes are extracted from (WT + W)/2 in order to convert the matrix from an asymmetric 
to a symmetric one. 
 
4.2 Computation and Selection of the Spatial Filters over Time 
 
The first step in the construction of a spatial filter to be applied to the variable of study is the 
computation of the eigenvectors of the geographic weights matrix, followed by the choice of a set of 
candidate eigenvectors from which selection is made. Eigenvectors are selected for inclusion on the 
basis of their MI values and their correlations with the georeferenced data on regional unemployment. 
A minimum MI/max(MI) value of 0.25 has been used in our case to identify the candidate set. The 
results of this process, carried out for the matrices presented in the preceding section, are presented in 
Table 1. 
 
Table 1 – Candidate eigenvectors selected and maximum MI values 
 
Geographic weights matrix # of candidate eigenvectors max(MI) 
Journey-to-work flows matrix 78 2.92 
Rook matrix (S-coding) 130 1.07 
Rook matrix (C-coding) 98 1.24 
Distance-based matrix (β = –2.7)  36 0.97 
Distance-based matrix (β = –6.3) 97 1.02 
 

Once the sets of ‘candidate’ eigenvectors have been selected, the statistical significance of each, as an 
explanatory variable for German regional unemployment has to be established. This process was 
carried out by means of a stepwise logistic regression analysis. The stopping condition employed is a 
10% level of significance for inclusion and retention. In addition to the stepwise regression analysis, a 
further manual backward elimination of regressors was carried out through the sequential estimation of 
a generalized linear model coupled with a binomial distribution. A marginal eigenvector was excluded 
as long as its χ2 value remained non-significant. 

The same process was repeated for all years of available data – from 1996 to 2002 – and for each 
geographic weights matrix. Consequently, seven sets of ‘significant’ eigenvectors (one set for each 
year) have been selected, for each of the employed spatial relationship matrices. These are the ‘spatial 
filters’ uncovered for each year and matrix. 

Next, for each matrix we pinpointed a subset of eigenvectors that is common to the years 1996 to 
2002. The results of the analyses described above are summarized in Table 2. Details about the 
eigenvectors selected in each context and year are shown in the Appendix (Table A). Of particular note, 
in Table A, is that the sum-of-squared prediction error (SSPE) divided by the mean squared error (MSE) 
in all cases is roughly 1 (that is, SSPE MSE ); in other words, a jackknife type of cross-validation 
assessment of the selected eigenvectors yields prediction error that is almost identical to the OLS error 
minimization results, validating the constructed spatial filters. 
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Table 2 – Amount of variance explained by the selected eigenvectors, and the number of common 
eigenvectors, 1996–2002 

 
Geographic 
weights 
matrix 

# of 
common 
eigenvecs 

Adj. 
pseudo 
R2 

1996 

Adj. 
pseudo 
R2 

1997 

Adj. 
pseudo 
R2 

1998 

Adj. 
pseudo 
R2 

1999 

Adj. 
pseudo 
R2 

2000 

Adj. 
pseudo 
R2 

2001 

Adj. 
pseudo 
R2 

2002 
Journey-to-
work flows 
matrix 

14 0.3004 0.2911 0.3305 0.3142 0.3379 0.3453 0.3285 

Rook matrix 
(S-coding) 

17 0.6477 0.6821 0.7293 0.7453 0.7945 0.8022 0.7909 

Rook matrix 
(C-coding) 

15 0.5929 0.6425 0.6846 0.7068 0.7483 0.7683 0.7549 

Distance-
based matrix 
(β = –2.7) 

6 0.6215 0.5968 0.6519 0.6930 0.7296 0.7448 0.7382 

Distance-
based matrix 
(β = –6.3) 

11 0.6233 0.6067 0.6501 0.6818 0.7247 0.7442 0.7331 

 
The results summarized in Table 2 show that we found sets of eigenvectors (spatial filters) that are 

significant, as explanatory variables of regional unemployment, over the entire time period considered. 
Of note here is that all contexts (i.e., economic flows, shared boundaries, and distance) enable us to 
define sets of common spatial filters. 

In terms of statistical relevance, the amount of variance explained by the spatial filtering regressors is 
fairly consistent over the years (reasonably, unemployment patterns do not change much from year to 
year), and at comparable levels, for all the geographic contexts (that is, shared boundaries and distance). 
The adjusted pseudo-R2 values found for these analyses are around 0.60–0.80, with the S-coded rook 
matrix approach being the most significant. The results obtained for the commuting flows matrix 
approach are not as encouraging. The amount of variance explained by the model, in this case, is only 
in the 0.29–0.35 range. 

A plot of the real and estimated unemployment values is shown in Figure 2. These plots refer to the 
rook adjacency matrix S-coding scheme and to the years 1996 and 2002, and show a fairly good fit, 
though a tendency toward underestimation can be observed, particularly for the year 2002, which 
exhibits more ‘extreme’ unemployment percentages. 
 
FIGURE 2 HERE 

 
As mentioned in Section 2, the constructed spatial filters can be interpreted not only as potential 

explanatory variables substituting for missing ones, but also as map patterns. A graphical visualization 
of the spatial filters uncovered by our analysis provides an example of the map features embedded in 
the eigenvectors’ values. Figure 3 shows the top four spatial filters with the largest MI values computed 
for the rook adjacency matrix S-coding scheme, and that are common to all the years examined. 
 
FIGURE 3 HERE 
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As noted previously, the first two eigenvectors for adjacency matrices usually show East-West and 
North-South patterns. Spatial filter (a) (E2) in Figure 3 seems, in fact, to be characterized by a North-
South pattern. When we observe the subsequent spatial filter components (b, c and d), the geographic 
patterns mapped relate to characteristics of smaller geographical scale, showing patterns that can be 
categorized first as ‘regional’, then as ‘local’. Athough they may contain some common map patterns 
(for example, North-South and East-West patterns), spatial filters computed with different geographic 
weights matrices will vary to some degree. Meanwhile, an assessment of the statistical significance of 
the spatial filters (shown in Table 2) enables us to assess the utility of the different proximity 
approaches employed. 

 
4.3 Concluding Remarks: The Results of Different Proximity Approaches 
 
The preceding section reveals that all of the definitions employed in this paper in order to 
operationalize proximity have been found to generate sets of eigenvectors (whose linear combinations 
are spatial filters) that are significantly correlated with the dependent variable, regional unemployment, 
and for all the years examined. Consequently, our focus is on similarities and differences in the 
statistical performance of the different definitions used. 

In order to understand the descriptive performance associated with different geographic weights 
matrices, we need to compare the matrices themselves. Therefore, a correlation analysis of the matrices 
employed in our paper has been carried out. Results of this analysis appear in Table 3 (for details on the 
computation of matrix correlation, see Oden 1984, and Tiefelsdorf 2000). 
 
Table 3 – Correlations of geographic weights matrices 
 
 Journey-to-

work flows 
matrix 

Rook matrix 
(S-coding) 

Rook matrix 
(C-coding) 

Distance- 
based matrix 
(β = –2.7) 

Distance- 
based  
matrix 
(β = –6.3) 

Journey-to-work 
flows matrix 

1.0000 0.5641 0.5102 0.4919 0.5949 

Rook matrix 
(S-coding) 

0.5641 1.0000 0.9152 0.6892 0.7923 

Rook matrix 
(C-coding) 

0.5102 0.9152 1.0000 0.6533 0.6879 

Distance- 
based matrix 
(β = –2.7) 

0.4919 0.6892 0.6533 1.0000 0.8775 

Distance- 
based matrix 
(β = –6.3) 

0.5949 0.7923 0.6879 0.8775 1.0000 

 
Several features of Table 3 are noteworthy. The most conspicuous result pertains to the correlations 

between the journey-to-work flows matrix and the remaining matrices (that is, shared boundaries and 
distance-based). The low correlation values found are plausible and, to a certain degree, to be expected. 
The flows matrix differs from the other matrices in that it is not based on topology, but is a proxy for 
economic links between the districts. These links are, in fact, not fully limited by geographic contiguity, 
embracing hierarchical components of the geographic landscape, as well. With regard to the remaining 
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matrices, they all seem to have fairly high correlations, which would be consistent with similarities in 
the statistical performance of their computed eigenvectors (see Table 2). 

Also of note is that: 
 

- matrices based on more similar definitions tend to be more strongly correlated with each other 
than with those based on less similar definitions; 

- the correlation between the two rook adjacency-based matrices is higher than between the two 
distance-based matrices, in spite of the different coding schemes employed; and, 

- both distance-based matrices, which have been constructed with the W-coding scheme, seem to 
be more strongly correlated with the S-coded than with the C-coded rook matrix. 

 
These findings call for a more in-depth analysis of the issues related to the choice of a coding scheme, 

particularly in view of the type of data patterns that a spatial analyst wants to emphasize. The 
discussion of such problems goes beyond the scope of this paper; an interesting treatment can be found 
in Tiefelsdorf et al. (1999). 
 
 
5. Conclusions 
 
In this paper we present an analysis of German regional unemployment by means of ‘spatial filtering’ 
techniques. The analysis enables us to uncover spatial structures underlying the georeferenced 
unemployment data by selecting sets of ‘spatial filters’ that significantly explain geographic variations 
in the data. In addition, we have observed subsets of spatial filters that (partially) define the spatial 
structures of the data over time. The spatial filters selected in this case are the ones that were common 
to the analyses carried out for each year in the 1996–2002 period. Several definitions have been 
employed, in order to operationalize spatial linkages according to geographic and non-geographic 
criteria. All of these definitions have yielded sets of time-stable spatial filters, though at different levels 
of statistical significance. 

Initial sets of eigenvectors have been selected on the basis of the SA they accounted for (that is, by 
decreasing MI values), only to be later reduced by means of stepwise regression followed by manual 
backward elimination. The final subsets of eigenvectors used to construct spatial filters render fairly 
satisfactory statistical descriptions. In the shared boundaries- and distance-based approaches, the spatial 
filters explain 60 to 80 per cent of the total variance when employed as the sole regressors of 
unemployment in a generalized linear regression model. But the ‘economic flows’ approach, based on a 
journey-to-work flows matrix, fail to produce the same encouraging results. This finding might be due 
to the artificial nature of the data used (logical connections between districts) and the lack of a more 
proper measure of regional economic linkages. 

A correlation analysis (see Section 4.3) of the geographic weights matrices employed in our analysis 
shows that matrices computed on the basis of the same proximity measure tend to be highly correlated, 
regardless of the coding scheme applied in their standardization. Also, the journey-to-work matrix 
seems to be much less correlated with the topological-based matrices. This result is consistent with the 
varying statistical performance of the spatial filters computed. 

If shown as graphical visualizations, the spatial filters found in our analyses provide hints on the 
geographical distribution of unemployment trends. Using Figure 3 as an example, map (a) can be 
interpreted as the visualization of a North-South divide, while map (b) seems to show lower Bavaria as 
opposed to the rest of the country. Both maps (c) and (d) suggest differences between East and West 
Germany. Additional eigenvectors (not shown here) show smaller scale patterns of regional/local 
spatial dependency structure. 
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The results obtained in this paper have illustrated the spatial structure underlying the georeferenced 
unemployment data. However, future research along these lines is needed. On the empirical side, a 
better proxy of spatial economic linkages should be employed, one that differs from commuting flows. 
Also, the analysis of unemployment levels has its counterpart in that of employment growth rates. 
Future investigations need to address this issue. On the methodological side, a comparison of the 
performance of the spatial autoregressive approach with other conventional spatial econometrics 
methods, as well as with non-linear approaches, such as neural networks, is desirable. Mixed neural 
networks/spatial filtering approaches also should be tested. From a policy perspective, examination of 
the spatially-filtered residuals resulting from the analysis should be carried out, in order to fully grasp 
the benefits of the methodology applied. 

Finally, the identification of sets of statistically significant and time-stable spatial filters also enables 
us to employ them in a dynamic setting. This task will be undertaken in detail in future research.  

 
5.1 A Preliminary Spatial Autoregressive Dynamic Model for German Unemployment 
 
Future research will deal with the utilization of the spatial filters computed for German regional 
unemployment in a dynamic framework. As a preliminary step, a generalized linear mixed model was 
estimated, for the case of the rook geographic weights matrix using the C-coding scheme. The 15 
common selected eigenvectors (see Section 4.2) were entered as regressors in a generalized linear 
model with a binomial distribution for the response variable (a graphical visualization of the linear 
combination of these eigenvectors appears in Figure 4), together with a normally distributed random 
effects intercept variable to handle the temporal correlation.  

Table 4 presents summary results regarding the spatial autocorrelation accounted for by this model. 
 
Table 4 – Spatial autocorrelation measures for German unemployment, based upon the rook (C-coding) 

geographic weights matrix 
 

Raw data Spatial filter residuals Variable 
Moran’s I zI Gearyratio Moran’s I Gearyratio 

1996 unemployment 0.6651 21.9 0.3213 0.2107 0.6161 
1997 unemployment 0.7320 24.1 0.3268 0.2004 0.6627 
1998 unemployment 0.7596 25.0 0.2869 0.1999 0.6389 
1999 unemployment 0.7854 25.8 0.2492 0.2057 0.6128 
2000 unemployment 0.8324 27.4 0.2222 0.2454 0.5862 
2001 unemployment 0.8537 28.1 0.2088 0.2653 0.5701 
2002 unemployment 0.8500 28.0 0.2140 0.2713 0.5632 
Spatial filter 1.1358 – 0.1459  
 
Note: zI denotes the z-score for Moran’s I. 

 
The statistical results presented in Table 4 show that the spatial filter (linear combination of the 

common set of eigenvectors employed) accounts for a large share of SA, though not all of it (a 
perfectly random map pattern, free of SA, has a Moran’s I of -0.0023 and a Geary ratio of 1). In terms 
of goodness-of-fit, the model has an adjusted-pseudo-R2 of 0.9425, and all of the eigenvectors 
employed are significant. Figure 5 provides plots of the observed and predicted unemployment values. 
The model is shown to fit the data fairly well. In particular, better fitting is found as information on the 
previous years is fed into the model (Figure 5b). 
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FIGURE 5 HERE 
 

Future research will start from this preliminary estimation in order to carry out more detailed 
experiments on the dynamics of unemployment patterns. The utilization, in the model, of additional 
explanatory variables should also be attempted. The joint employment of spatial filters and other 
explanatory variables involves further attention to spatial filtering. Eigenvectors that are significant 
both to the explained and an explanatory variable(s) imply filtering also of the latter. This issue will be 
addressed in the framework of the dynamic modelling. 
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Figure 1 – Eigenvector variation for different coding schemes, the case of German 

unemployment 
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a)

b)  
 
Figure 2 – Predicted and observed unemployment values: rook adjacency matrix           

(S-coding scheme), years 1996 (a) and 2002 (b): black crosses denote model-
predicted values, and red crosses denote cross-validation-predicted values. 
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a) b)

c) d)  
 
Figure 3 – Spatial filters computed for the rook matrix (S-coding): a) = E2; b) = E3; c) = 

E5; and d) = E6 (see Annex, Table A) 
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Figure 4 – Graphical visualization of the spatial filter obtained in the case of the rook 

geographic weights matrix (C-coding) 
 

a)  b)  
 
Figure 5 – Real and predicted unemployment values (generalized linear mixed model): 

rook matrix (C-coding), years 1996 (a) and 2002 (b) 
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