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ABSTRACT 
Using an Euler discretisation to simulate a mean-reverting CEV process gives rise to the 
problem that while the process itself is guaranteed to be nonnegative, the discretisation is 
not. Although an exact and efficient simulation algorithm exists for this process, at 
present this is not the case for the CEV-SV stochastic volatility model, with the Heston 
model as a special case, where the variance is modelled as a mean-reverting CEV process. 
Consequently, when using an Euler discretisation, one must carefully think about how to 
fix negative variances. Our contribution is threefold. Firstly, we unify all Euler fixes into 
a single general framework. Secondly, we introduce the new full truncation scheme, 
tailored to minimise the positive bias found when pricing European options. Thirdly and 
finally, we numerically compare all Euler fixes to recent quasi-second order schemes of 
Kahl and Jäckel and Ninomiya and Victoir, as well as to the exact scheme of Broadie and 
Kaya. The choice of fix is found to be extremely important. The full truncation scheme 
outperforms all considered biased schemes in terms of bias and root-mean-squared error. 
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1. Introduction 
 
Within the area of mathematical finance, most models used for the pricing of derivatives start 

from a set of stochastic differential equations (SDEs) that describe the evolution of certain 
financial variables, such as the stock price, interest rate or volatility of an asset. For the valuation 
of exotic derivatives Monte Carlo simulation is often the method of choice, due to its ability to 
handle both early exercise and path dependent features with relative ease. In such cases it is 
important to know exactly how to simulate the evolution of the variables of interest. Obviously, if 
the SDEs can be solved such that the relevant variables can be expressed as a function of a finite 
set of state variables for which we know the joint distribution, the problem is reduced to sampling 
from this distribution. This is for example the case with the Black-Scholes model. 

Unfortunately not all models allow for such simple representations. For these models the 
conceptually straightforward Euler-Maruyama (Euler for short) discretisation can be used, see 
e.g. Kloeden and Platen [1999], Jäckel [2002] or Glasserman [2003]. The Euler scheme 
discretises the time interval of interest, such that the financial variables are simulated on this 
discrete time grid. Under certain conditions it can be proven that the Euler scheme converges to 
the true process as the time discretisation is made finer and finer. Nevertheless, the disadvantages 
of such a discretisation are clear. Firstly, the magnitude of the bias is unknown for a certain time 
discretisation, so that one will have to rerun the same simulation with a finer discretisation to 
check whether the result is sufficiently accurate. Secondly, the time grid required for a given 
accuracy may be much finer than is strictly necessary for the derivative under consideration – 
many trades only depend on the realisation of the processes at a small number of dates. Clearly, if 
exact and efficient simulation methods can be devised for a model, they should be preferred. 

In this paper we consider simulation schemes based on Euler discretisation for the class of 
models generally referred to as CEV-SV models, see e.g. Andersen and Brotherton-Ratcliffe 
[2005] and Andersen and Piterbarg [2007]. The asset price process (S) and the variance process 
(V) evolve according to the following SDEs, specified under the risk-neutral probability measure: 

 

( ) )t(dW)t(Vdt)t(V)t(dV

)t(dW)t(S)t(Vdt)t(S)t(dS

V

S

α

β

ω+θ−κ−=

λ+μ=
             (1) 

 
Here μ is the risk neutral drift of the asset price, κ ≥ 0 is the speed of mean-reversion of the 
variance, θ ≥ 0 is the long-term average variance, and ω ≥ 0 is the so-called volatility of variance 
or volatility of volatility. Finally, λ is a scaling constant and WS and WV are correlated Brownian 
motions, with instantaneous correlation coefficient ρ. 

To simplify the exposition, we will mainly concentrate on the special case α = ½ and β = 1, 
leading to the popular Heston [1993] model. The best performing simulation schemes will 
however also be tested in a more general example. The Heston model was heavily inspired by the 
interest rate model of Cox, Ingersoll and Ross [1985], who used the same mean-reverting square 
root process to model the spot interest rate. It is well known that, given an initial nonnegative 
value, a square root process cannot become negative, see e.g. Feller [1951], giving the process 
some intuitive appeal for the modelling of interest rates or variances. The Heston model is often 
used as an extension of the Black-Scholes model to incorporate stochastic volatility, and is often 
used for product classes such as equity and foreign exchange, although extensions to an interest 
rate context also exist, see e.g. Andersen and Andreasen [2002] and Andersen and Brotherton-
Ratcliffe [2005]. 
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Although pricing in the Cox-Ingersoll-Ross (CIR) and Heston models is a well-documented 
topic, most textbooks seem to avoid the issue of how to simulate these models. If we focus purely 
on the mean-reverting square-root component of (1), there is not a real problem, as Cox et al. 
[1985] found that the conditional distribution of V(t) given V(s) is noncentral chi-squared. Both 
Glasserman [2003] and Broadie and Kaya [2006] provide a detailed description of how to 
simulate from such a process. Combining this algorithm with recent advances on the simulation 
of gamma random variables by Marsaglia and Tsang [2000] will lead to a fast and efficient 
simulation of the mean-reverting square root process. 

Complications arise, however, when we superimpose a correlated asset price, as in (1). As 
there is no straightforward way to simulate a noncentral chi-squared increment together with a 
correlated normal increment for the asset price process, the next idea that springs to mind is an 
Euler discretisation. This involves two problems, the first of which is of a practical nature. 
Despite the domain of the square root process being the nonnegative real line, for any choice of 
the time grid the probability of the variance becoming negative at the next time step is strictly 
greater than zero. As we will see, this is much more of an issue in a stochastic volatility context 
than in the CIR interest rate model, due to the much higher values typically found for the 
volatility of variance ω. Practitioners have therefore often opted for a quick “fix” by either setting 
the process equal to zero whenever it attains a negative value, or by reflecting it in the origin, and 
continuing from there on. These fixes are often referred to as absorption or reflection, see e.g. 
Gatheral [2006]. Interestingly this problem also arises in a discrete time setting, a lead we follow 
up on in the final section. 

The second problem is of both a theoretical and practical nature. The usual theorems leading 
to strong or weak convergence in Kloeden and Platen [1999] require the drift and diffusion 
coefficients to satisfy a linear growth condition, as well as being globally Lipschitz. Since the 
square root is not globally Lipschitz, convergence of the Euler scheme is not guaranteed. 
Although the global Lipschitz condition on the diffusion coefficient can be relaxed to a local one, 
see Gyöngy [1998], the square root is not locally Lipschitz around zero. For this reason, various 
alternative methods have been used to prove convergence of particular discretisations for the 
square root process. We mention Deelstra and Delbaen [1998], Diop [2003], Bossy and Diop 
[2004], Alfonsi [2005], and Berkaoui, Bossy and Diop [2008], who deal with the square root 
process in isolation. 

It is only recently that papers dealing with the simulation of the Heston model in its full glory 
have started appearing. Andersen and Brotherton-Ratcliffe [2005] were among the first to suggest 
an approximation scheme for (1) which preserves the positivity of both S and V for general 
values of α and β. In Broadie and Kaya [2004,2006] an exact simulation algorithm has been 
devised for the Heston model. In numerical comparisons of their algorithm to an Euler 
discretisation with the absorption fix, they find that for the pricing of European options in the 
Heston model and variations thereof, the exact algorithm compares favourably in terms of root-
mean-squared (RMS) error. Their algorithm is however highly time-consuming, as we will see, 
and therefore certainly not recommendable for the pricing of strongly path dependent options that 
require the value of the asset price on a large number of time instants. Higham and Mao [2005] 
considered an Euler discretisation of the Heston model with a novel fix, for which they prove 
strong convergence. To the best of our knowledge they are the first to rigorously prove that using 
an Euler discretisation in the Heston model is theoretically correct, by proving that the sample 
averages of certain options converge to the true values. Unfortunately they do not provide 
numerical results on the convergence of their fix compared to other Euler fixes. The recent paper 
of Kahl and Jäckel [2006] considers a number of discretisation methods for a wide range of 
stochastic volatility models. For the Heston model they find that their IJK-IMM scheme, a quasi-
second order scheme tailored specifically toward stochastic volatility models, gives the best 
results. Their numerical results are however not comparable to those of Broadie and Kaya, as they 
use a strong convergence measure which cannot directly be related to an RMS error. Finally we 
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should mention the simulation schemes recently constructed by Andersen [2007]. As this paper 
compares to our full truncation scheme and as it postdates an initial version of our paper, we 
chose not to include these schemes in our comparison. The schemes, specifically tailored for the 
Heston model, seem to produce a smaller bias than any scheme considered in this paper, at the 
cost of a more complex implementation. 

The contribution of this article is threefold. Firstly, we unify all Euler discretisations 
corresponding to the different fixes for the problem of negative variance known thus far under a 
single framework. Secondly, we propose a new fix, called the full truncation scheme. Full 
truncation is a modification of the Euler scheme of Deelstra and Delbaen [1998], which we will 
refer to as the partial truncation method. The difference between both methods lies in the 
treatment of the drift. Whereas partial truncation only truncates terms involving the variance in 
the diffusion of the variance, full truncation also truncates within the drift. In both schemes 
however the variance process itself remains negative. Both schemes are extended to (1). 
Following the train of thought of Higham and Mao, we are able to prove strong convergence for 
both of these fixes. With this proof in hand the pricing of plain vanilla options and certain exotics 
via Monte Carlo is justified, as we can then appeal to the results of Higham and Mao. Thirdly and 
finally, we numerically compare all Euler fixes to the other schemes mentioned above in terms of 
the size of the bias, as well as RMS error given a certain computational budget. 

The article is structured as follows. Section 2 deals with the CEV-SV model and its properties. 
Section 3 considers simulation schemes for the Heston model. In section 4 we consider Euler 
schemes for the CEV-SV model and introduce the full truncation scheme, for which we prove 
strong convergence. Section 5 provides numerical results, whereas section 6 concludes. 

2. The CEV-SV model and its properties 
 
For reasons of clarity, we repeat equation (1) here, which specifies the dynamics of the asset 

price and variance process in the CEV-SV model under the risk neutral probability measure: 
 

( ) )t(dW)t(Vdt)t(V)t(dV

)t(dW)t(S)t(Vdt)t(S)t(dS

V

S

α

β

ω+θ−κ−=

λ+μ=
              (2) 

 
We restrict β to be lie in (0,1] and α to be positive. This model is analysed in great detail in 
Andersen and Piterbarg [2007]. Before turning to the issue of the simulation of (2) in general and 
the Heston model in particular, we briefly mention some well-known properties of the process 
V(t) and S(t) that we require in the remainder of this paper. The mean-reverting CEV process V(t) 
has the following properties: 
 
i) 0 is always an attainable boundary for 0 < α < ½;  
ii) 0 is an attainable boundary when α = ½ and κθ>ω 22 . The boundary is strongly reflecting; 
iii) 0 is unattainable for α > ½;  
iv) ∞ is an unattainable boundary. 
 
Via the Yamada condition it can be verified that the SDE for V(t) has a unique strong solution 
when α ≥ ½. For α < ½ we impose that the process for V(t) is reflected in the origin. All 
properties follow from the classical Feller boundary classification criteria (see e.g. Karlin and 
Taylor [1981]). Turning to the condition κθ>ω 22 , we mention that to calibrate the Heston 
model to the skew observed in equity or FX markets, one often requires large values for the 
volatility of variance ω, see e.g. the calibration results in Duffie, Pan and Singleton [2000] where 
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ω ≈ 60%. In the CIR model ω, then representing the volatility of interest rates, is markedly lower, 
see e.g. the calibration results in Brigo and Mercurio [2001, p. 115] where this parameter is 
around 5%. Moreover, the product κθ is usually of the same magnitude in both models if we use a 
deterministic shift extension to fit the initial term structure in the CIR model, so that it is safe to 
say that for typical parameter values the origin will be attainable within the Heston model, 
whereas in the CIR interest rate model it will not. Concerning ii) we mention that strongly 
reflecting here means that the time spent in the origin is zero - V(t) can touch zero, but will leave 
it immediately. The interested reader is referred to Revuz and Yor [1991] for more details. 

Turning to the asset price process in the CEV-SV model, Andersen and Piterbarg [2007] prove 
that the process S can reach 0 with a positive probability. To ensure that the SDE in (2) has a 
unique solution, they impose the natural boundary condition that: 

 
v) S(t) has an absorbing barrier at 0. 
 
We do the same here, and mention that v) seems to be consistent with the asymptotic expansion 
derived for the SABR model in Hagan, Kumar, Lesniewski and Woodward [2002]. The SABR 
model is a special case of an CEV-SV model with θ = 0, κ = -ω2/4 and α = 1. 

The following section specifically considers the simulation of the Heston model as this model 
is of great practical importance. 

3. Simulation schemes for the Heston model 
 
We now turn to the simulation of (2) when α = ½ and β = 1, i.e. the Heston model. Obviously 

there are myriads of schemes one could use to simulate the Heston model. Though we by no 
means aim to be complete, we outline some schemes here that yield promising results or are 
frequently cited. We postpone the treatment of Euler schemes to the next section. Firstly, we 
demonstrate why in the case of the Heston model it is not wise to change coordinates to the 
volatility, i.e. the square root of V. Secondly, we briefly discuss the exact simulation method of 
Broadie and Kaya [2006]. Finally, we take a look at alternative discretisations, in particular the 
quasi-second order schemes of Ninomiya and Victoir [2004] and Kahl and Jäckel [2006]. 

Apart from the schemes considered in this section, lately a number of papers have appeared in 
which splitting schemes are considered for mean-reverting CEV processes, see e.g. Moro [2004] 
and Dornic, Chaté and Muñoz [2005] and Moro and Schurz [2007]. The schemes in these papers 
heavily rely on an exact solution being known for a subsystem of the original SDE. Whilst this is 
certainly the case for univariate mean-reverting CEV processes, it does not seem likely that such 
a splitting can be found for the full-blown CEV-SV model. For this reason we do not further 
consider these schemes here, though the topic does warrant further study. 
 
3.1. Changing coordinates 

 
For reasons of increased speed of convergence it is often preferable to transform an SDE in 

such a way that it obtains a constant volatility term, see e.g. Jäckel [2002, section 4.2.3]. If we do 
this for the process V(t) in (2) with α = ½, we can achieve this by considering volatility itself: 

 

)t(dWdt)t(V
)t(V2

)t(Vd V2
1

2
1

2
2
1

ω+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
κ−

ω−κθ
=             (3) 
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Although this transformation is seemingly correct, we are only allowed to apply Itō’s lemma if 
the square root is twice differentiable on the domain of V(t). However, since the origin is 
attainable for κθ>ω 22 , and the square root is not differentiable in zero, the process obtained by 
incorrectly applying Itō’s lemma is structurally different, as is also mentioned in Jäckel [2004]. 
Even when the origin is inaccessible, the numerical behaviour of the transformed equation is 
rather unstable. Unless κθ=ω 22 , when V(t) is sufficiently small, the drift term in (3) will blow 
up, temporarily assigning a much too high volatility to the stock price, in turn greatly distorting 
the sample average of the Monte Carlo simulation. Luckily, anyone trying to implement (3) will 
pick up this feature rather quickly, as will be illustrated in the numerical results in section 4. We 
mention that similar issues arise with other coordinate transformations, such as switching to the 
logarithm of V(t). 

 
3.2. Exact simulation of the Heston model 
 

As mentioned, Broadie and Kaya [2004,2006] have recently derived a method to simulate 
without bias from the Heston stochastic volatility model in (2). Although we refer to their papers 
for the exact details, we outline their algorithm here to motivate why it is highly time-consuming. 
First of all a large part of their algorithm relies on the result that for s ≤ t, V(t) conditional upon 
V(s) is, up to a constant scaling factor, noncentral chi-squared: 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−ω

κ
χ

κ
−ω

−κ−

−κ−

ν

−κ−

)e1(
)s(Ve4

4
)e1(~)t(V )st(2

)st(
2

)st(2

                     (4) 

 
where )(2 ξχν  is a noncentral chi-squared random variable with ν degrees of freedom and non-

centrality parameter ξ. The degrees of freedom are equal to 24 −κθω=ν . Glasserman [2003] as 
well as Broadie and Kaya show how to simulate from a noncentral chi-squared distribution. 
Combining this with recent advances by Marsaglia and Tsang [2000] on the simulation of gamma 
random variables (the chi-squared distribution is a special case of the gamma distribution), leads 
to a fast and efficient simulation of V(t) conditional upon V(s). 

Secondly, let us define ∫=
t

s
du)u(V)t,s(V  and ∫=

t

s aa )u(dW)u(V)t,s(V  for a = S,V. 

First of all Broadie and Kaya recognized that integrating the equation for the variance yields: 
 

)t,s(V)st()t,s(V)s(V)t(V Vω+−κθ+κ−=              (5) 
 
so that we can calculate VV(s,t) if we know V(s), V(t) and V(s,t). Knowing all these terms, and 
solving for ln S(t) conditional upon ln S(s) yields the final step: 
 

( ))t,s(V)1(),t,s(V)t,s(V)st()s(SlnN~)t(Sln 2
V2

1 ρ−ρ+−−μ+           (6) 
 

where N indicates the normal distribution. The algorithm can thus be summarised by: 
 

1. Simulate V(t), conditional upon V(s) from (4) 
2. Simulate V(s,t) conditional upon V(t) and V(s) 
3. Calculate VV(s,t) from (5) 
4. Simulate S(t) given V(s,t), VV(s,t) and S(s), by means of (6) 

Algorithm 1: Exact simulation of the Heston model by Broadie and Kaya 
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The crucial and time-consuming step is the one we skipped over for a reason – step 2. Broadie 
and Kaya show how to derive the characteristic function of V(s,t) conditional upon V(t) and V(s). 
This step utilises the transform method, so that one has to numerically invert the cumulative 
distribution function, itself found by the numerical Fourier inversion of the characteristic 
function. Since the characteristic function non-trivially depends on the two realisations V(s) and 
V(t) via e.g. modified Bessel functions of the first kind, it is not trivial to cache a major part of 
the calculations. Hence we must repeat this step at each path and date that is relevant for the 
derivative at hand. It suffices to say that this makes step 2 very time-consuming and unsuitable 
for highly path-dependent exotics.  
 
3.3. Quasi-second order schemes 
 

In Glasserman [2003, pp. 356-358], a quasi-second order4 Taylor scheme is considered. Its 
convergence is found to be rather erratic, which is one of the reasons why Broadie and Kaya 
[2006] chose not to compare their exact scheme to second order Taylor schemes. A closer look at 
Glasserman’s scheme shows the probable cause of this erratic convergence – the discretisation 
contains terms which are very similar to the drift term in (3), and can therefore become quite 
large when V(t) is small. Since then, two papers have applied second order schemes to either the 
mean-reverting square root process or the Heston model in its full-fledged form, namely Alfonsi 
[2005] and Kahl and Jäckel [2006]. We start with the latter. After comparing a variety of 
schemes, Kahl and Jäckel conclude that at least for the Heston model applying the implicit 
Milstein method5  (IMM) to the variance, combined with their bespoke IJK scheme for the 
logarithm of the stock price, yields the best results as measured by a strong convergence measure. 
Their results indicate that their scheme by far outperforms the Euler schemes with the absorption 
fix. The IMM method discretises the variance as follows: 

 

( ) ( )t)t(W)t(W)t(VV)tt(Vt)t(V)tt(V 2
V

2
4
1

V ΔΔΔΔΔΔ −⋅ω+⋅ω+−+κ−=+       (7) 
 

The IMM method actually preserves positivity for the mean-reverting square root process, 
provided κθ<ω 42 , see Kahl [2004]. Unfortunately, this condition is not frequently satisfied in 
an implied calibration of the Heston model. For values outside this range, a fix is again required. 
The best scheme for the logarithm of the stock price is their IJK scheme: 
 

( )
( ) ( ) ( )t)t(W)t(W)t(W)tt(V)t(V

)t(W)t(V)tt(V)t(Vtt)t(Sln)tt(Sln
2

V4
1

VS2
1

V4
1

ΔΔΔΔΔ

ΔΔΔΔΔ

−ωρ+ρ−⋅+++

⋅ρ+++−μ+=+
      (8) 

 
which is specifically tailored to stochastic volatility models, where typically ρ is highly negative. 
For more details on both discretisations, we refer the interested reader to Kahl [2004] and Kahl 
and Jäckel [2006]. In the remainder we will refer to (7)-(8) as the IJK-IMM scheme. 

Alfonsi [2005] deals with the mean-reverting square root process in isolation, and develops an 
implicit scheme that also preserves positivity by considering the transformed equation (3). The 
range of parameters for which the scheme works is again κθ<ω 42 . He also considers Taylor 
expansions of this implicit scheme, the best of which (his E(0) scheme) is equivalent to (7) to first 
order in Δt. We therefore purely focus on Kahl and Jäckel’s scheme in our numerical results. As 
                                                           
4  By quasi-second order we mean schemes that do not simulate the double Wiener integral. 
5  Though they consider the balanced Milstein method (BMM), for the square root process their control 

functions (see their figure 6) coincide with the implicit Milstein method. From now on we will therefore 
refer to their scheme as the IJK-IMM scheme. 
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an interesting sidenote, the E(0) scheme coincides exactly with a special case of the variance 
equation in the Heston and Nandi [2000, Appendix B] model, which they show converges to the 
mean-reverting square-root process as the time step tends to zero.  

Finally, we consider a second-order scheme proposed in Ninomiya and Victoir [2004] for 
SDEs whose drift and diffusion coefficients are smooth functions with bounded derivatives of 
any order. Though the scheme converges weakly with order 2, it does not seem applicable to the 
Heston model – the first derivative of the square root function is already not bounded. The 
example the authors consider however is based in the Heston model, and does, for their choice of 
parameters, seem to have a second order convergence. Nevertheless, as the technical conditions 
on the drift and diffusion coefficients are not satisfied, we will refer to the scheme as a quasi-
second order scheme.  

Let us first describe their scheme for a fully general SDE in Stratonovich form: 
 

( ) ( )∑ =
+=

d

1i ii0 )t(dW)t(dt)t()t(d oYgYgY                      (9) 
 

where Y ∈ n and nn
i :  →g  for i = 1, ... d are smooth functions whose derivatives of any 

order are bounded. Starting from y(t), a discretisation of Y(t), the value at the next time step is: 
 

( )t)tt( 2
1

1d ΔΔ +=+ yy               (10) 
 
which is found by solving the following d+2 ordinary differential equations (ODEs): 
 

⎪⎩

⎪
⎨
⎧

=Λ

−=Λ
=

−+ 1)t( if

1)t( if

dt
d

i1d

ii

g

gy
 subject to ( )t)t(Z)0( 1i1ii Δ−−= yy           (11) 

 
for i = 0, ..., d+1. With the exception of tZ 2

1
0 Δ= , all Zi(t)’s for i = 1, ..., d are i.i.d. standard 

normal random variables. Further, Λ(t) is an independent Bernoulli random variable of parameter 
1/2, and the initial condition of the last ODE is y0(0) = y(t). Finally, gd+1 = g0. If available, closed-
form solutions to the ODE should be preferred, otherwise one can turn to approximations.  

Ninomiya and Victoir’s example dealt with the Heston model for ρ = 0 and considered the 
system ( )T)t(V),t(S)t( =Y . We consider their scheme for ( )T)t(V),t(X)t( =Y , where X(t) is 
ln S(t), for general values of ρ. The Stratonovich SDE for this system is: 

 

( ) )t(dW)t(V)1()t(dW)t(Vdt))t(V()t(Vd
)t(dW)t(Vdt))t(V()t(Xd

2
2

1
2

4
1

14
1

2
1

oo

o

ρ−ω+ωρ+ω−θ−κ−=

+ωρ−−μ=
 (12) 

 
Before stating the NV scheme, we first need to deal with one problematic ODE. 
 
Lemma 1: 
The solution to the ODE )t(v)t(v α=′ , with v(0) ≥ 0 a known constant, is: 

 
2

2
1 )0,)0(vtmax())0(v,,t(f)t(v +α=α=                                                (13) 

 
if we make the choice that v(t) immediately leaves the origin when v(0) = 0 and α, t ≥ 0. 
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Proof: 
Let us assume that t ≥ 0 as by symmetry the solution for t < 0 is the same as that for v(-t) from the 
above ODE with -α. The general solution is: 
 

2
2
1

2
1 )Ct()t(v +α=               (14) 

 

with C an arbitrary constant. In order to satisfy the initial condition, C has to equal )0(v2± . It 
is clear that v(t) must be monotonically decreasing when α < 0, and increasing when α > 0. As 

C)0(v 2
1 α=′ , C must be positive and thus )0(v2C = . The solution for α < 0 needs to be 

adapted slightly. The time at which v reaches zero follows as the solution to v(t*) = 0 in (14): 
 

α−= )0(v2*t                (15) 
 
Hereafter, v(t) must be absorbed in zero, as v(t) must remain nonnegative and its derivative 
cannot be positive. The only problematic case is when α > 0 and v(0) = 0. As the square root is 
not Lipschitz in 0, it follows that the solution to the ODE with v(0) = 0 is not guaranteed to be 
unique. Indeed, both v(t) = 0 and 22

4
1 t)t(v α=  are valid solutions, and can be combined to 

create an infinite number of solutions. As the origin is strongly reflecting for the square root 
process, we choose the latter to remain as close to the SDE as possible. This leads to (13). � 
 
We remark that the ODE in lemma 1 is incorrectly solved in Ninomiya and Victoir’s paper. We 
expect this to be less important in their example, as ω is there 10%. With the aid of lemma 1, the 
solutions to the ODEs in (11) now follow as: 

 

))0(v,1,t(f)t(v)0(x)t(x

))0(v,,t(f)t(v)0(v)t(v)0(x)t(x

))(e1()0(ve)t(v)t,0(vt)()0(x)t(x

2
2

222

11
11

11

4
t

0
t

002
1

4
1

00
2

ρ−ω==

ωρ=
ωρ
−

+=

−θ−+=−ωρ−μ+= κ
ωκ−κ−

         (16) 

 
where f is the solution in (13), and: 
 

( ) t)()0(v)e1(du)u(v)t,0(v 404
t1

t

0 00
22

κ
ω

κ
ωκ−

κ −θ++θ−−== ∫          (17) 

 
We trust the reader can grasp how the scheme works. As in the schemes of Kahl and Jäckel and 
Alfonsi, the condition ω2 < 4κθ ensures the variance remains positive, as otherwise v0(t) becomes 
negative for )v(tlnt *

v44
41

2

2
≡−>

κ−ω−κθ
ω−κθ

κ . When ω2 > 4κθ we fix this by using v0(τ) instead of 

v0(t), and v0(0,τ) in x0(t) instead of v0(0,t), where τ = min(t*(v0(0)), t).  
As a final remark, it should be clear that not absorbing v in zero is the right choice. If we 

would absorb, consider the situation where ω2 < 4κθ and v(0) = 0. Then v(t) = 0, and: 
 

( )T)(exp)0(S)T(Slim 4
1

0t
ωρ−μ=

→Δ
            (18)  

 
which clearly is undesirable. As we will see the forward asset price is still far from the correct 
one, even if we impose that v(t) leaves zero immediately. For this reason we omit numerical 
results for those configurations where ω2 < 4κθ  is violated. 
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4. Euler schemes for the CEV-SV model 
 

Given that the exact simulation method of Broadie and Kaya can be rather time-consuming, as 
well as the fact that no exact scheme is likely to be devised for the non-affine CEV-SV model, a 
simple Euler discretisation is certainly not without merit. Even if in future a more efficient exact 
simulation method for the Heston model would be developed, Euler and higher-order 
discretisations will remain useful for strongly path-dependent options and stochastic volatility 
extensions of the LIBOR market model, see e.g. Andersen and Andreasen [2002] and Andersen 
and Brotherton-Ratcliffe [2005], as it is unlikely that the complicated drift terms in such models 
will allow for exact simulation methods to be devised.  

In Section 4.1 we firstly unify all presently known Euler discretisations for the CEV-SV 
model into one framework. Section 4.2 compares all schemes and makes a case for a new scheme 
– the full truncation scheme. In Section 4.3 we prove strong convergence of this scheme. Finally, 
Section 4.4 takes a look at the Euler scheme of Andersen and Brotherton-Ratcliffe [2005], which 
preserves positivity of the variance process in an alternative way. 

 
4.1. Euler discretisations - unification 
 

Turning to Euler discretisations, a naïve Euler discretisation for V in (1) would read: 
 

( ) )t(W)t(Vt)t(Vt1)tt(V VΔΔΔΔ ⋅ω+κθ+κ−=+ α                                   (19) 
 

with ΔWV(t) = WV(t+Δt) – WV(t). When V(t) > 0, the probability of V(t+Δt) going negative is: 
 

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
κθ−κ−−

=<+
Δ

ΔΔ
Δ

α t)t(V
t)t(Vt1N0)tt(V                        (20) 

 
where N is the standard normal cumulative distribution function. Although the probability decays 
as a function of the time step Δt, it will be strictly positive for any choice hereof. Furthermore, 
since ω typically is much higher in a stochastic volatility setting than in an interest rate setting, 
the problem will be much more pronounced for the Heston model. Without care, the scheme for 
V will not be defined, so we will have to decide what to do in case V turns negative. Practitioners 
have often opted for a quick “fix” by either setting the process equal to zero whenever it attains a 
negative value, or by reflecting it in the origin, and continuing from there on. These fixes are 
often referred to as absorption and reflection respectively, see e.g. Gatheral [2006]. We note that 
this terminology is somewhat at odds with the terminology used to classify the boundary 
behaviour of stochastic processes, see Karlin and Taylor [1981]. In that respect the absorption fix 
is much more similar to reflection in the origin for a continuous stochastic process, whereas 
absorption as a boundary classification means that the process stays in the absorbed state for the 
rest of time. Deelstra and Delbaen [1998] and Higham and Mao [2005] have considered other 
approaches for fixing the variance when it becomes negative. These are discussed below. 

All of these Euler schemes can be unified in a single general framework: 
 

( ) ( )( ) ( )
( ))tt(V~f)tt(V

)t(W)t(V~fV)t(V~ft)t(V~f)tt(V~

3

V321

ΔΔ

ΔΔΔ

+=+

⋅⋅ω+−⋅κ−=+
α

                    (21) 
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where )0(V)0(V~ =  and the functions fi, i = 1 through 3 have to satisfy: 
 
• x)x(fi =  for x ≥ 0 and i = 1, 2, 3; 
• 0)x(fi ≥  for x ∈  and i = 1, 3. 
 
The second condition is a strict requirement for any scheme: we have to fix the volatility term 
when the variance becomes negative. The first condition seems quite a natural thing to ask from a 
simulation scheme: if the volatility is not negative, the “fixing” functions f1 through f3 should 
collapse to the identity function in order not to distort the results. In the remainder we use the 
identity function x, the absolute value function |x| and x+ = max(x,0) as fixing functions. 
Obviously only the last two are suitable choices for f3. The schemes considered thus far in the 
literature, as well as our new scheme that is introduced below, are summarised in Table 1. 
 

Scheme Paper f1(x) f2(x) f3(x) 
Absorption Unknown x+ x+ x+ 

Reflection Diop [2003], Bossy and Diop [2004], 
Berkaoui et al. [2008] |x| |x| |x| 

Higham and Mao Higham and Mao [2005] x x |x| 
Partial truncation Deelstra and Delbaen [1998] x x x+ 

Full truncation Lord, Koekkoek and Van Dijk [2007] x x+ x+ 

Table 1: Overview of Euler schemes known in the literature 

 
While the mentioned papers, apart from Higham and Mao, have dealt with the mean-reverting 

CEV process in isolation, we also have the asset price S to simulate. For the asset price we switch 
to logarithms, as in Andersen and Brotherton-Ratcliffe [2005]. This guarantees non-negativity: 

 
( ) )t(W)t(V)t(St)t(V)t(S)t(Sln)tt(Sln S

1)1(22
2
1 ΔΔΔ ⋅λ+λ−μ+=+ −β−β                 (22) 

 
and automatically ensures that the first moment of the asset is matched exactly. In an 
implementation of (22) one would use the Cholesky decomposition to arrive at 

)t(1)t(W)t(W Z2
VS ΔΔΔ ρ−+ρ= , with Z(t) independent of WV(t). Note that special care has to 

be taken when S(t) drops to zero, due to property v).  
 

4.2. Euler discretisations – a comparison and a new scheme 
 

One thing to keep in mind when fixing negative variances is the behaviour of the true process. 
At the beginning of this section we mentioned that the origin is strongly reflecting if it is 
attainable, in the sense that when the variance touches zero, it leaves again immediately. If we 
think of both the reflection and the absorption fixes in a discretisation context, the absorption fix 
seems to capture this behaviour as closely as possible. To analyse the behaviour of all fixes, it is 
worthwhile to consider the case where an Euler discretisation causes the variance to go negative, 
say 0)t(V~ <δ−= , whereas the true process would stay positive and close to zero, V(t) = ε ≥ 0. In 
Table 2 we have depicted the new starting point ( ))t(V~f1 , the effective variance6 ( ))t(V~f 3  and the 
drift for all fixes as well for the true process.  

                                                           
6  By effective variance we mean the instantaneous variance of the stock price. 
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Scheme New starting point Effective variance Drift 
True process ε ε κ(θ - ε) 
Absorption 0 0 κθ 
Reflection δ δ κ(θ - δ) 
Higham and Mao -δ δ κ(θ + δ) 
Partial truncation -δ 0 κ(θ + δ) 
Full truncation -δ 0 κθ 

Table 2: Analysis of the dynamics when V(t) = ε ≥ 0, but the Euler discretisation equals -δ < 0 
 

A priori we expect that the effect of a misspecified effective variance will be the largest, as 
this directly affects the stock price on which the options we are pricing depend. From Table 2 it 
seems that reflection has the closest resemblance to the true scheme. However, if δ > ε, which 
often is the case, it can be expected that the misspecified variance will cause a larger positive bias 
than absorption. It is worthwhile to note that in the context of the Heston model it has been 
numerically demonstrated by Broadie and Kaya [2006] that the absorption fix induces a positive 
bias in the price of a plain vanilla European call. The Higham and Mao fix tries to lower the bias 
in the reflection scheme by letting the auxiliary process )t(V~  remain negative. This however has 
an undesirable side-effect when at the same time reflecting the variance in the origin to obtain the 
effective volatility. If )t(V~  drops even further, the effective variance ( ))t(V~f3  will be much too 
high, in turn causing larger than intended moves in the stock price. 

Both the schemes by Deelstra and Delbaen and ourselves can be interpreted as corrections to 
the absorption scheme. As in the Higham and Mao scheme, both schemes aim to achieve this by 
allowing the auxiliary process to attain negative values. Contrary to the Higham and Mao scheme, 
the side-effect of leaving the auxiliary variance negative is not present here, as the effective 
variance is set equal to zero. We dub the scheme by Deelstra and Delbaen the partial truncation 
scheme, as only terms involving V in the diffusion of V are truncated at zero. Note that 
Glasserman [2003, eq. (3.66)] also uses this scheme for the CIR process. As will be demonstrated 
in the numerical results, partial truncation still causes a positive bias. With a view to lowering the 
bias, we introduce a new Euler scheme, called full truncation, where the drift of V is truncated as 
well. By doing this the auxiliary process remains negative for longer periods of time, effectively 
lowering the volatility of the stock, which helps in reducing the bias. 

Though this argumentation is heuristic and hard to prove rigorously, the first moment of all 
“fixed” Euler schemes matches the pattern we described above. 

 
Lemma 2: 
When Δt < 1/κ the first moments of )t(V~  in the various “fixed” Euler schemes in Table 1 satisfy 
the following ordering: 
 

Reflection > Absorption > Higham-Mao = Partial truncation > Full truncation 
 

Proof: 
We consider a finite time horizon [0,T], discretised on a uniform grid tn = nΔt, n = 1, …, T/Δt. Let 
us denote all discretisations as: 
 

( ) nVn3n2n11n W)v~(f)v~(ft)v~(fv~ ΔΔ α
+ ω+θ−κ−=                        (23) 
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with nv~  indicating the value of the discretisation at tn and ΔWVn = WV(tn+1) – WV(tn). Let us 
define the first moment as ]v~[x nn = , where the expectation is taken at time 0. The first 
moment of the Higham-Mao scheme can be shown to satisfy the difference equation 

θκ+κ−= ΔΔ+ tx)t1(x n1n , which by noting that x0 = v0 can be solved as: 
 

θ+θ−κ−= Δ )v()t1(x 0
n

n              (24) 
 
The result holds regardless of the chosen function f3, and therefore also holds for the partial 
truncation scheme. This is an accurate approximation of the first moment of the continuous 
process V(t), as it is a well-known result that θ+θ−−= κ− ))0(V)(e1()]t(V[ t . Since we 
initially have x0 = v0 for all schemes, the remaining results can be found by noting that: 
 

++ ⋅κ−≥⋅κ−≥⋅κ−≥⋅κ− ΔΔΔΔ nnnnn v~tvv~)t1(v~)t1(|v~|)t1(                       (25) 
 

which are the drift terms of, from left to right, the reflection, absorption, Higham-Mao, partial and 
full truncation schemes. As xn+1 is exactly the expectation of these terms, the statement follows by 
induction, starting with n = 0. In the second step (n = 1) the inequality already becomes strict, as 
in each of the schemes v1 can become negative. � 

 
Certainly the first moment is not all that matters, but the above lemma does demonstrate that both 
the Higham-Mao and truncation fixes adjust respectively the reflection and absorption fixes such 
that the first moment is lowered. Both the partial truncation and the Higham-Mao scheme already 
obtain an accurate approximation of the true first moment. By truncating the drift, full truncation 
pulls the first moment down even further, with a view to adjust any remaining bias of the partial 
truncation scheme. 
 
4.3. Strong convergence of the full truncation scheme 
 

As it is our final goal to price derivatives in the Heston model, we have to be absolutely sure 
that the sample averages of the realised payoffs converge to the option prices as the time step 
used in the discretisation tends to zero. For European options weak convergence is typically 
enough to prove this result for Euler discretisations, see e.g. Kloeden and Platen [1999], although 
for more complex path-dependent derivatives strong convergence may be required. As mentioned 
earlier though, the non-Lipschitzian dynamics of the CEV-SV model preclude us from invoking 
the usual theorems on weak and strong convergence of Euler discretisations. Focusing on mean-
reverting CEV processes, many authors have proven convergence of their particular 
discretisation. Recently, Diop [2003] and Bossy and Diop [2004] have proven that an Euler 
discretisation with the reflection fix converges weakly for a variety of mean-reverting CEV 
processes. For the special case of the mean-reverting square root process, weak convergence of 
order 1 in the time step is proven, provided that κθ<ω 2

12 . This certainly ensures that the origin is 
not attainable. As the proof may carry over to the general case, we mention that the order of 
convergence derived is ( )1,min 2−κθω . Diop proves strong convergence in the Lp (p ≥ 2) sense of 
order ½ under a very restrictive condition, which is relaxed somewhat in Berkaoui et al. [2008]. 
For p = 2 the condition becomes: 
 

{ }22
2
1 26,14max ωκω+ω≥κθ                         (26) 
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One can easily check that, unfortunately, this condition is hardly ever satisfied for any practical 
values of the parameters. Both Higham and Mao and Deelstra and Delbaen prove strong 
convergence for their discretisation, without any restrictions on the parameters. As for the 
absorption scheme, to the best of our knowledge there is no paper dealing with the convergence 
properties of the absorption fix, although its use in practice is widespread, see e.g. Broadie and 
Kaya [2004,2006] and Gatheral [2006]. 

For the mean-reverting CEV process in isolation, following Deelstra and Delbaen and Higham 
and Mao, we use Yamada’s [1978] method to find the order of strong convergence. In the proof 
we restrict α to lie in the interval [½, 1]. This seems to be the case for most practical applications 
so that the restriction is not that severe. The big picture of our proof is identical to that of Higham 
and Mao, but the truncated drift complicates the proofs considerably. The full proof is given in 
the Appendix, here we merely report the main findings. 

First let us introduce some notation. The discretisation has already been introduced in equation 
(23) of lemma 2. For the full truncation scheme we have f1(x) = x and f2(x) = f3(x) = x+. To 
distinguish between the discretisation of the variance and the true process, we will denote the 
discretisation with lowercase letters and the true process with uppercase letters. Following 
Higham and Mao [2005] we also require the continuous-time approximation of (23): 
 

( ))t(W)t(Wv~)v~)(tt(v~)t(v~ nVVnnnn −⋅ω+θ−−κ−≡ ++          (27) 
 
The convergence of the full truncation scheme is proven in the following theorem. 
 
Theorem – Strong convergence of v(t) in the L1 sense 
The full truncation scheme converges strongly in the L1 sense, i.e. for sufficiently small values of 
the time step Δt we have: 
 

[ ] 0)t(v)t(Vsuplim
]T,0[t0t

=−
∈→Δ

                          (28) 

 
Proof: See the appendix. � 
 
Although the above theorem is only proven for the full truncation scheme, it also holds for the 
partial truncation scheme, albeit with a slightly easier proof. As the proof of strong convergence 
for the full CEV-SV process and the proof of convergence for plain-vanilla and barrier option 
prices are quite similar to those provided by Higham and Mao, we omit them here. 
 
4.4. Euler schemes with moment matching 
 

Before comparing all schemes to each other, we finally mention a moment-matching Euler 
scheme suggested by Andersen and Brotherton-Ratcliffe [2005]. In their discretisation, the 
variance V is locally lognormal, where the parameters are determined such that the first two 
moments of the discretisation coincide with the theoretical moments: 

 

( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

θ−+

−κω
+⋅Δ=Γ
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−
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          (29) 
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The advantage of this scheme is that no “fixes” have to be used to prevent the variance from 
becoming negative. As mentioned earlier, Andersen [2007] constructs more discretisations for the 
Heston model along the lines of (29), taking the shape of the Heston density function into 
account.  We only compare to (29) and show that it is already much more effective than many of 
the Euler fixes mentioned in Section 4.1. 

5. Numerical results 
 
The previous section established the strong convergence of the full truncation scheme. Though 

it is certainly useful to theoretically establish the convergence of a scheme, at the end of the day 
we should be interested in what practitioners really care about: the size of the mispricing given a 
certain computational budget. It is our goal in this section to compare all mentioned schemes to 
each other. In our comparisons we take into account both the bias and RMS error, as well as the 
computation time required. To be clear, if α is the true price of a European call, and α̂  is its 
Monte Carlo estimator, the bias of the estimator equals α−α]ˆ[  , the variance of the estimator is 

)ˆ(Var α , and finally the root-mean-squared error (RMS error or RMSE) is defined as 
(bias2+variance)1/2. This fills an important gap in the literature as far as the Euler fixes are 
concerned, as we do not know of a numerical study that compares the various fixes to one 
another. In the context of the Heston model, Broadie and Kaya only consider the absorption 
scheme, and estimate its order of weak convergence to be about ½. Alfonsi [2005] compares both 
reflection and partial truncation to his scheme, but only for the mean-reverting square root 
process in isolation. 

 
Example κ ω ρ θ V(0) α 
SV-I 2 1 -0.3 0.09 0.09 0.5 
SV-II 0.5 1 -0.9 0.04 0.04 0.5 
SV-III 0.5 1 0 0.04 0.04 0.5 
SVJ 3.99 0.27 -0.79 0.014 0.008836 0.5 
CEV-SV 1 1.4 0 1 1 0.75 

Table 3: Parameter configurations of the examples used 
 

The parameter configurations we consider for the variance process are given in Table 3. We 
first focus on the Heston (SV) model, and next consider the Bates (SVJ) model. The latter is an 
extension of the Heston model to include jumps in the asset price. Clearly all results readily carry 
over to further extensions of the Heston model, such as the models by Duffie, Pan and Singleton 
[2000] and Matytsin [1999], both of which add jumps to the stochastic variance process. The final 
subsection considers a non-Heston CEV-SV model. 
 
5.1. Results for the Heston model 

 
In this subsection we investigate the performance of the various simulation schemes for the 

Heston model. As Heston [1993] solved the characteristic function of the logarithm of the stock 
price, European plain vanilla options can be valued efficiently using the Fourier inversion 
approach of Carr and Madan [1999]. For very recent developments with regard to the evaluation 
of the multi-valued complex logarithm in the Heston model we refer the interested reader to Lord 
and Kahl [2007a]. Among other things, this paper proves how to keep the characteristic function 
in both the Heston model and Broadie and Kaya’s exact simulation algorithm continuous for all 
possible inputs. Finally, for a very efficient Fourier inversion technique which works for virtually 
all strike prices and maturities we point the reader to Lord and Kahl [2007b]. 
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For the Heston model we consider three parameter configurations, which can be found in 
Table 3. In all three examples κθ>>ω 22 , implying that the origin of the mean-reverting square 
root process is attainable. An example where the origin is not attainable is deferred to section 5.2. 
For the quasi-second order scheme of Kahl and Jäckel this means we have to use a fix. We opted 
for the absorption fix, which they also use in their examples. The probability of a particular 
discretisation yielding a negative value for V(t) is magnified via the large value of ω, cf. equation 
(20), so that the way in which each discretisation treats the boundary condition will be put to the 
test. The first example stems from Broadie and Kaya [2006], and is the harder of the two 
examples they consider. Conveniently, using the example of Broadie and Kaya allows us to 
compare all biased schemes to their exact scheme. The second example stems from Andersen 
[2007], where it is used to represent the market for long-dated FX options. The lower level of 
mean-reversion should make the example more challenging than the first. The third example 
finally is used to price a double-no-touch option. The correlation of example SV-II is changed to 
zero here, as this allows us to use reference values from the literature. 

As Broadie and Kaya report computation times for both the Euler scheme with absorption and 
their exact scheme, we scaled our computation times to match their results. Their results were 
generated on a desktop PC with an AMD Athlon 1.66 GhZ processor, 624 Mb RAM, using 
Microsoft Visual C++ 6.0 in a Windows XP environment. Relative to the Euler schemes from 
section 4.2, the IJK-IMM scheme, the Andersen and Brotherton-Ratcliffe (ABR) scheme and the 
Ninomiya and Victoir (NV) scheme take respectively 14%, 16% and 25% longer to value a 
European option. One final word should be mentioned on the implementation of the biased 
simulation schemes. Clearly, the efficiency of the simulations could be improved greatly by using 
the conditional Monte Carlo techniques of Willard [1997]. As Broadie and Kaya point out, this 
only affects the standard error and the computation time, not the size of the bias, which arises 
mainly due to the integration of the variance process. We therefore chose to keep the 
implementation as straightforward as possible. 

Starting with the first example, Table 4 reports the biases of all biased schemes for an at-the-
money (ATM) call. To obtain accurate estimates of the bias we used 10 million simulation paths. 
If a bias is not significantly different from zero at the 95% confidence level, it is marked bold. 
The first thing to notice is the enormous difference in the magnitude of the bias, demonstrating 
the need for an appropriate fix. To relate the size of the bias to implied volatilities, we can glance 
at Figure 1. Even with twenty time steps per year the bias of the full truncation scheme is only 7 
basispoints (bp) for the ATM call, i.e. the option has an implied volatility of 28.69% instead of 
28.62%. This is already accurate enough for practical purposes. In contrast, the bias for the 
absorption scheme is 3.02%, and 6.28% for the reflection scheme. The ABR scheme seems to 
yield the best results for the ATM case, though Figure 1 demonstrates that considered over all 
strikes the bias of the full truncation scheme is much lower and more stable. 

For the order of weak convergence, it is worthwhile to note that under suitable regularity 
conditions, see e.g. Theorem 14.5.2. of Kloeden and Platen [1999], the Euler scheme converges 
weakly with order 1 in the time step. Though the SDE for the mean-reverting square root process 
does not satisfy these conditions, and it is quite hard to properly estimate the weak order7 of 
convergence with only 10 million paths, both truncation schemes seem to regain this weak order. 
In contrast, absorption and reflection have a weak order of convergence slightly under ½. 

For the quasi-second-order IJK-IMM scheme we note the convergence is somewhat erratic, 
similar to the aforementioned findings of Glasserman [2003, pp. 356-358]. The bias seems to 
increase when increasing the number of time steps per year from 40 to 80. In contrast, the 
absolute value of the bias decreases uniformly for all Euler schemes, neglecting those cases 
where the bias is statistically indistinguishable from zero. 
 
                                                           
7 The order of weak convergence was estimated here by regressing ln(|bias|) on a constant plus ln(Δt). 
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Figure 1: Bias as a function of the strike and the time step in example SV-I 

 

 

 

 

 

 

 
 
 
 

Figure 2: Convergence of the RMS error in the Heston model for an ATM call 
Left panel: SV-I example, Right panel: SV-II example 

 
 

Steps/yr. A R HM PT FT ABR IJK-IMM 
20 2.114 4.385 2.732 0.424 0.052 0.004 -0.223 
40 1.602 3.207 1.680 0.197 0.031 -0.001 -0.016 
80 1.225 2.388 1.046 0.096 0.027 0.015 0.094 

160 0.906 1.759 0.615 0.020 -0.008 -0.014 0.098 
O(Δt 

p) 0.41 0.44 0.71 1.42 0.82 -0.94 0.10 

Table 4: Bias when pricing an ATM call in example SV-I 
Asset price process: S(0) = 100, μ = r = 0.05, λ = 1, β = 1 
Deal specification: European call option, Maturity 5 yrs. True option price: 34.9998. 

 
 

Full truncation ABR Exact scheme Paths Steps/yr. Bias RMSE CPU Bias RMSE CPU RMSE CPU 
10,000 20 0.052 0.585 0.2 0.004 0.590 0.3 0.613 3.8 
40,000 40 0.031 0.292 1.9 -0.001 0.293 2.2 0.290 15.3 

160,000 80 0.027 0.147 15.4 0.015 0.146 17.8 0.146 61.3 
640,000 160 -0.008 0.073 122.6 -0.014 0.074 142.1 0.073 244.5 

O(Δt 
p) 0.95 1.00  -0.94 1.00  1.02  

Table 5: Bias, RMS error and CPU time (in sec.) in the example SV-I for an ATM call 
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Finally, let us examine the RMS error and computation time. These are reported in Table 5 for 
full truncation, ABR and the exact scheme. In the left panel of Figure 2 the RMSE is plotted as a 
function of the time step for all schemes. The choice of the number of paths is an important issue 
here. Duffie and Glynn [1995] have proven that if the weak order of convergence is p, one should 
increase the number of paths proportional to (Δt)-p. When p = 1, this means that if the time step is 
halved, we should quadruple the number of paths. Obviously, a priori we often do not have an 
exact value for p, nor do we know the optimal constant of proportionality. We refer the interested 
reader to the discussion in Broadie and Kaya for the rationale behind the choice of the number of 
paths in this example. The convergence of the exact scheme is clearly the best. The method 
produces no bias and hence has O(N-1/2) convergence8, N being the number of paths. For a 
scheme that converges weakly with order p, Duffie and Glynn have proven that for the optimal 
allocation the RMSE has O(N-p/(2p+1)) convergence. Indeed, all biased schemes show a lower 
rate of convergence than the exact scheme. However, due to the fact that the full truncation 
scheme already produces virtually no bias with only twenty time steps per year, the RMSEs of 
both schemes are roughly the same. 

For the SV-II example we only report the bias in Table 6 as results from the exact scheme are 
not available to us for this parameter configuration. Again, the truncation schemes outperform the 
simple Euler schemes by far. Though the ABR scheme initially has a lower bias, it converges 
 

Steps/yr. A R HM PT FT ABR IJK-IMM 
1 18.962 48.472 32.332 12.219 6.371 5.438 57.924 
2 17.959 43.321 32.433 8.503 3.710 4.136 38.866 
4 16.720 37.842 24.983 5.682 2.041 2.863 29.176 
8 15.481 33.161 22.163 3.596 1.055 1.801 23.683 

16 14.321 29.200 17.508 2.148 0.525 1.016 20.218 
32 13.305 25.987 13.988 1.205 0.259 0.523 17.859 

O(Δt 
p) 0.10 0.18 0.25 0.67 0.93 0.68 0.33 

Table 6: Bias when pricing an ATM call in example SV-II 
Asset price process: S(0) = 100, μ = r = 0, λ = 1, β = 1 
Deal specification: European call option, Maturity 10 yrs. True option price: 13.0847. 

 
Figure 3: Bias as a function of the strike and the time step in example SV-II 

                                                           
8 The discussion here clearly only holds true when using pseudo random numbers, as we do in this paper. In 

a Quasi-Monte Carlo setting the convergence would be O((ln N)2/N). 
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considerably slower than the full truncation scheme. Considered over all strikes the full truncation 
again generates the least bias, making it the clear winner. Interestingly, the IJK-IMM scheme 
performs much worse than in the SV-I example – the bias is too large for any practical 
application. As mentioned in Section 3.3 we do not consider the NV scheme for the parameter 
configurations where κθ>ω 22 , as even the forward is already far from correct. This is 
particularly evident in this example. If we take e.g. 32 steps per year, the forward price of the 
asset in the NV scheme equals roughly 179. Considering the fact that the reflection scheme, 
which at 32 steps per year has the highest bias of the schemes considered, produces a forward 
price of 101 (the correct answer is 100), it should be clear that the NV scheme is unsuitable when 
the origin of the square root process is attainable. 

So far we have only considered the bias present in European option prices, which reflects the 
terminal distribution of the underlying asset. As a measure of how well these schemes 
approximate the joint distribution of the asset at various times, we will investigate the bias in 
double-no-touch prices, which are path-dependent options. A double-no-touch option pays 1 unit 
of currency if the spot price never hits one of the two barriers. Such options are not uncommon in 
FX option markets. One reason why we consider them here is that Faulhaber [2002] has shown 

9 
how to modify Lipton’s [2001] eigenfunction expansion approach in order to price double-no-
touch options when ρ = 0 and the underlying has no drift. This conveniently allows us to generate 
a reference value with which the simulated values can be compared. Note that both barriers are 
continuously monitored. 

 
Steps/yr. A R HM PT FT ABR IJK-IMM 

250 -0.190 -0.372 -0.358 0.020 0.022 0.017 -0.235 
500 -0.182 -0.346 -0.329 0.016 0.017 0.015 -0.228 

1000 -0.174 -0.321 -0.301 0.012 0.013 0.012 -0.218 
2000 -0.165 -0.298 -0.275 0.009 0.010 0.009 -0.207 

Table 7: Bias when pricing a double-no-touch option in example SV-III 
Asset price process: S(0) = 100, μ = r = 0, λ = 1, β = 1 
Deal specification: 1 yr. double-no-touch option, barriers at 90 and 110. True price: 0.5011. 

 
In Table 7 the bias of the various schemes is reported. The number of time steps per year 

coincides with the number of monitoring dates used in the simulation. Though both truncation 
schemes and the ABR scheme do quite a good job, all other schemes produce a completely wrong 
price, even for an option with a maturity of 1 year. The need for a scheme which correctly treats 
the boundary behaviour of the variance process is apparent. 

 
5.2. Results for the Bates model 
 

In the Bates (SVJ) model [1996], the Heston model is extended with lognormal jumps for the 
stock price process, where the jumps arrive via a Poisson process: 

 

( ) )t(dW)t(Vdt)t(V)t(dV

)t(dN)t(SJ)t(dW)t(S)t(Vdt)t(S)()t(dS

V

)t(NSJ

ω+θ−κ−=

+λ+μξ−μ=
                     (30) 

 
where N is a Poisson process with intensity ξ, independent of the Brownian motions. The random 
variable Ji denotes the ith relative jump size and is lognormally distributed, ln Ji ~ N(μJ, σJ

2). If the 

                                                           
9 The author has provided an implementation at http://www.oliverfaulhaber.de.  
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ith jump occurs at time t, the stock price right after the jump equals S(t+) = (1+Ji) S(t-). To ensure 
no arbitrage, Jμ  in (30) has to be the expected relative jump size: 
 

)exp(]J[1 2
J2

1
JiJ σ+μ==μ+               (31) 

 
The Bates model is often used in an equity or FX context, where the jumps mainly serve to fit the 
model to the short term skew. Since the jump process is specified independently from the 
remainder of the model, the same simulation procedure as for the Heston model can be used. If a 
time step of length T is made till the next relevant date, we draw a random Poisson variable with 
mean ξT, representing the number of jumps. Subsequently the jump sizes are drawn from the 
lognormal distribution, and the stock price is adjusted accordingly. In this way the addition of 
jumps does not add to the discretisation error. 

The SVJ example stems from Duffie, Pan and Singleton [2000], where parameters resulted 
from a calibration to S&P500 index options. Broadie and Kaya [2006] also use this example, 
which again allows us to compare the various biased simulation schemes to their exact scheme. 
We note that the example under consideration satisfies κθ<<ω 22 , which firstly means that the 
origin of the square root process is not attainable. Secondly, the low level of ω implies that the 
probability of any discretisation yielding a negative value for V is significantly smaller than in the 
Heston example. Hence we may expect that the biases are lower than in the previous example. 

 

 
 

Figure 4: Convergence of the RMS error in the SVJ example for an ATM call 
 

 
Thirdly and finally, this combination of parameters is such that the quasi-second order schemes 
preserve positivity. Contrary to the previous examples this means that the IJK-IMM scheme does 
not require additional assumptions about the treatment of V at the boundary. Furthermore, the NV 
scheme should converge. 

The bias and RMSE of all schemes, now also including the Euler scheme where we 
transformed coordinates of the variance as in (3), are reported in Table 8 and Figure 4 
respectively. The number of paths used for the tests in Table 8 are 10000, 40000, 160000 and 
640000 respectively. The overall picture is the same as before – the full truncation scheme yields 
the lowest bias, followed by the ABR scheme and the partial truncation scheme. As the level of 
bias is so low here, given a fixed computational budget the full truncation scheme by far 
outperforms the exact scheme. Turning to the transformed scheme, we see its bias is huge 
compared to the other schemes. Its standard deviation is also much larger, due to the fact that the 
drift in (3) blows up when V becomes small. Finally, though the quasi-second order schemes 
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Steps/yr. A R HM PT FT ABR IJK-IMM NV Trans 
2 0.836 2.489 5.774 2.790 0.106 -0.146 0.887 2.081 9.043 
4 0.400 0.900 0.898 0.399 0.016 -0.096 0.423 0.733 6.844 
8 0.179 0.396 0.239 0.083 -0.013 -0.070 0.186 0.237 3.725 

16 0.083 0.175 0.065 0.019 -0.005 -0.037 0.088 0.078 2.518 
O(Δt 

p) 1.12 1.27 2.13 2.38 1.36 0.64 1.12 1.58 0.64 

Table 8: Bias when pricing an ATM call in the SVJ example 
Asset price process: S(0) = 100, μ = r = 0.0319, λ = 1, β = 1 
Jump process: ξ = 0.11,      = -0.12, σJ = 0.15  
Deal specification: European call option, Maturity 5 yrs. True option price: 20.1642. 

 
automatically preserve positivity for this parameter configuration, they are outperformed in terms 
of bias and order of weak convergence by the full truncation scheme. 

 
5.3. Results for a non-Heston CEV-SV model 
 

To conclude our extensive numerical analysis, we consider a non-Heston example. The CEV-
SV example from Table 3 stems from Andersen and Brotherton-Ratcliffe [2005, Appendix A], 
where their moment-matching Euler scheme is benchmarked to a solution found by solving the 
corresponding partial differential equation via finite differences. Note that α = 0.75, so the origin 
of the variance process is certainly not attainable. 

 

 
Steps/yr. A R HM PT FT ABR 

1 5.462 13.007 13.007 5.462 1.278 0.460 
2 3.097 6.637 4.887 1.821 0.405 0.273 
4 1.381 2.824 1.424 0.513 0.092 0.141 
8 0.421 0.844 0.249 0.088 0.012 0.073 

16 0.062 0.132 0.010 -0.002 -0.009 0.033 
32 -0.028 -0.023 -0.033 -0.033 -0.033 -0.011 

O(Δt 
p) 1.62 1.84 2.07 1.94 1.30 1.07 

Table 9: Bias when pricing an ATM call in the CEV-SV example 
Asset price process: S(0) = 100, μ = 0, λ = 0.04899, β = 0.5, discount factor: 2687.74 
Deal specification: European call option, Maturity 10 yrs. True option price: 39.22. 

 
Table 9 reports the biases of all Euler schemes. Though the schemes in Kahl and Jäckel [2006] 

and Ninomiya and Victoir [2004] can be used for the more general CEV-SV process, we chose to 
focus on the Euler schemes as many of them outperformed the quasi-second order schemes in the 
previous tests. Once again we conclude that all Euler schemes arrive at the correct answer sooner 
or later, though the truncation and ABR schemes require much less time steps to do so. 

6. Conclusions and further research 
 

In this paper we have considered the simulation of the CEV-SV stochastic volatility model 
and varieties thereof, focusing largely on the Heston model. In the CEV-SV model, the stochastic 
variance is modelled as a mean-reverting CEV process. When discretising this process we run 
into the problem that although the process itself is guaranteed to be nonnegative, any Euler 
discretisation has a nonzero probability of becoming negative in the next time step, regardless of 
the size of the time step. Hence, we have to “fix” these negative variances. 

Jμ
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Our contribution is threefold. Firstly, we unify all “fixes” appearing in the literature in a single 
general framework. Secondly, by analysing the rationale behind the known fixes, we are led up to 
propose a new scheme, the full truncation scheme, designed specifically to minimise the positive 
bias one finds when pricing European options using the traditional fixes. Strong convergence is 
proven for this scheme.  

Thirdly and finally, we numerically compare the various Euler schemes to each other, as well 
as to the quasi-second order schemes by Kahl and Jäckel [2006] and Ninomiya and Victoir 
[2004], and finally the exact scheme of Broadie and Kaya [2006]. All three of these papers 
compare their schemes to the Euler scheme with an absorption fix and find their scheme to be 
superior. Our numerical results demonstrate that using the correct fix at the boundary is extremely 
important, and significantly impacts the magnitude of the bias. In our examples, we find the full 
truncation scheme produces the smallest bias, closely followed by the moment-matching Euler 
scheme of Andersen and Brotherton-Ratcliffe [2005] and the partial truncation scheme. The order 
of weak convergence of the full truncation scheme appears to be close to 1 in the time step, 
bringing back the order of weak convergence convergence to the theoretical level for an Euler 
discretisation of an SDE with Lipschitzian dynamics. The performance of the quasi-second order 
schemes is found to be somewhat disappointing. In particular, we demonstrated the NV scheme is 
unsuitable for parameter configurations where κθ<ω 22 , often not the case in practice. 

When the volatility of volatility is not too high, the full truncation scheme has relatively small 
levels of bias and is able to generate a smaller RMS error given a certain computational budget 
than any other biased or exact scheme considered here. This holds true for both European and 
path-dependent options. Since an initial version of this paper, Andersen [2007] has specifically 
designed simulation schemes for the Heston model which mimic its distribution quite closely. 
These schemes have negligible bias, at the cost of a more complex implementation. On the other 
hand the full truncation scheme, or indeed that of Andersen and Brotherton-Ratcliffe, is very easy 
to implement and appears to work fine for a wide variety of processes.  

As a final note, we return to the lead mentioned in the introduction, namely that the issues 
considered here in a continuous time setting can also arise in a discrete time setting. Examples of 
models where such problems can arise are the model of Heston and Nandi [2000] and the Box-
Cox model of Christoffersen and Jacobs [2004]. Let us be more specific and look at the first-
order version of the Heston and Nandi model. Here the log-stock price is modelled as: 

 

( )2)t(h)t(z)t(h~)tt(h

)t(z)t(h)t(hr)tt(Sln)t(Sln

γ−α+β+ω=+

+λ++−=

Δ

Δ
           (32) 

 
where z(t) is a standard normal random variable and h(t) is the conditional variance of the         
log-return between t-Δt and t. In this setup h(t) is known at time t-Δt. Note that all the model 
parameters will depend on the chosen time step Δt. The process remains stationary with finite first 
two moments if β + αγ2 < 1. Without further restrictions on the parameters, h(t+Δt) can become 
negative. In their estimates however ω, β and α are positive and significant at the 95% confidence 
level, so that there does not seem to be a problem. Turning to their appendix B however, where 
they prove convergence of (32) to the Heston model with ρ = -1 as the time step tends to zero, we 
see that in their proof they choose10 22

4
1 )t)((~ Δω−κθ=ω , β = 0 and 22

4
1 )t(Δω=α . Positivity of 

the conditional variance h(t+Δt) can thus only be guaranteed provided that 2
4
1 ω≥κθ . This is the 

same condition under which the schemes of Alfonsi [2005] and Kahl and Jäckel [2006] preserve 
positivity, and not surprisingly so as we already remarked the equivalence of these three schemes 

                                                           
10 It seems to us that there are different ways to prove this; the conclusion here will however be the same. 
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to first order in Δt in section 3.3. Looking in closer detail at their estimation procedure, we see 
that they only included options with an absolute moneyness less than or equal to ten percent, i.e. 
at or around at-the-money options. In the Heston model κθ can certainly be smaller than 2

4
1 ω  

when the skew is quite pronounced. This would not be noticed if only options with strikes at or 
around the at-the-money level would be included in the calibration procedure. Concluding, it may 
be necessary to introduce restrictions on the parameters in a discrete time setting in order to 
ensure that the conditional variance process remains positive. 
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Appendix – Proof of strong convergence 
 

In this appendix we prove strong convergence of the full truncation scheme applied to the 
mean-reverting CEV process with ½ ≤ α ≤ 1. We use the same style of proof as Deelstra and 
Delbaen [1998], and Higham and Mao [2005]. As the proof of convergence for the full CEV-SV 
process follows along the same lines, we only focus on the strong L1 convergence for the 
stochastic variance here. Though lemmas 2 and 3 also hold when 0 < α < ½, the proof used for 
the main theorem no longer seems applicable. Nevertheless, all practical applications seem to use 
α ≥ ½, so that this is no restriction. 

For ease of exposure the discretisation over a finite time horizon [0,T] is performed on a 
uniform grid tn = nΔt, n = 1, …, T/Δt. The discretisation of the auxiliary process at tn is given by: 

 

nVnnn1n Wv~)v~(tv~v~ ΔΔ α++
+ ω+θ−κ−=           (A.1) 

 
where ΔWVn = WV(tn+1) – WV(tn). The effective variance is += nn v~v . To distinguish between the 
discretisation of the variance and the true process, we will denote the discretisation with small 
letters and the true process with capital letters. Following Higham and Mao [2005] we will 
consider the continuous-time approximation of (A.1): 
 

( ))t(W)t(Wv~)v~)(tt(v~)t(v~ nVVnnnn −⋅ω+θ−−κ−≡ α++                     (A.2) 
 
or, in integral notation: 
 

∫∫ α+
τ

+
τ ω+θ−κ−=
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0
)u(dW)u(v~du))u(v~()0(v~)t(v~                     (A.3) 

 
where 0v)0(v~ = , ))t((v~)0(v~ τ=τ  and τ(t) equals t n if t n ≤ t ≤ t n+1. Obviously )t(v~τ  coincides 
with )t(v~  at the gridpoints of the discretisation. 

One of the elements required in proving strong convergence of the full truncation scheme, are 
bounds on the first and second moments of the effective variance vn. In the remainder we denote 
the first and second moments by ]v~[x nn ≡  and ]v~[y 2

nn ≡  respectively. In the main text lemma 
2 already supplied the following inequality: 
 

θ+θ−κ−≤= Δ )v()t1(]v~[x 0
n

nn            (A.4) 
 
As we do not require sharp bounds, we will use the following corollary which follows directly. 
 
Corollary 1: 
For Δt < 2/κ the first moment of nv~  in the full truncation scheme is bounded from above by: 
 

x0n U|v|x ≡θ+θ−≤                         (A.5) 
 
Proof:  
Follows immediately from lemma 2. � 
 

Secondly, we will find an upper bound on the second moment of nv~ . 
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Lemma 3 – Bounding the second moment of the full truncation scheme 
For any n = 0, …, N where NΔt = T, and Δt < 2/κ, the second moment of nv~  in the full truncation 
scheme is bounded by: 
 

( ) )t(Ut)t(tU2
1
1vy y

22
x

N
2
0

N
n ΔΔΔΔ ≡ω+κθ+κθ⋅

−γ
−γ

+γ≤                      (A.6) 

 
where { }t2)t1(,1max 22 ΔΔ αω+κ−≡γ . Furthermore, ∞<Δ

→Δ
)t(Ulim y0t

. 

 
Proof: 
Clearly, y0 = v0

2 so that the assertion is true for n = 0. Suppose the lemma now holds true for 
some n. Using (A.1) we can then write: 
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To bound this expression, we note that, apart from the first constant, the right-hand side can be 
written as the expectation of the following function: 
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Since 2
n

2
n v~21v~ α+≤α+  as long as α ≤ 1, (A.8) can be bounded from above by: 
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where γ is as defined above. Returning to (A.7) we then have: 
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Repeated use of (A.10) and our corollary immediately yields (A.6). Finally, it follows that: 
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so that the second moment of the discretisation does not blow up in finite time. � 
 
Before addressing the strong L1 error we need a bound on the L2 difference between the two 
continuous-time approximations vτ(t) and v(t). The proof entirely depends on lemmas 2 and 3. 
 
Lemma 4 – The L2 difference between vτ(t) and v(t) 
For Δt < 2/κ we have: 
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Proof: 

First of all note that ( )[ ] ( )[ ]22 )t(v~)t(v~)t(v)t(v ττ −≤−  . For t ∈ [t n,t n+1) we have: 
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The first term can be bounded from above by: 
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so that (A.14) becomes: 
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The supremum on [0,T] is then bounded from above by (A.12), which completes the proof. � 
 
Clearly Ucont(Δt) is of O(Δt), so that the difference between the discrete-time approximation and 
its continuous extension vanishes when the time step tends to zero. We are now ready to prove 
strong convergence in the L1 sense. 
 
Theorem – Strong convergence of v(t) in the L1 sense 
The full truncation scheme converges strongly in the L1 sense: 
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Proof: 
First note that [ ] [ ])t(v~)t(V)t(v)t(V −≤−  , so that it is sufficient to show (A.16) for the 
latter expression. We will bound it from above in a function of the time step, so that we can prove 
that this L1 norm tends to zero as the time step tends to zero. As in Yamada [1978], this is 
achieved by bounding ( )[ ])t(v~)t(Vk −φ  for a series of C2(,) functions φk which tend to the 
absolute function. Here we use the same notation as in Higham and Mao [2005]. First of all let   
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Consider ( ))t(v~)t(Vk −φ . Using Itō’s lemma and taking expectations yields: 
 

( )[ ] )t(I)t(M)t(v~)t(V 2
2
1

k ω+κ−=−φ            (A.18) 
 
where we defined: 
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Note that for ½ ≤ α ≤ 1 we can bound: 
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and furthermore we have ( ) )u(v~)u(v~uv~)u(V)u(v~)u(V ττ −+−≤− . Using the property 

of the second derivative of φ in (A.17) it follows that, with 12~ −α=α : 
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where we used [ ] ]X[|X| 2 ≤  for any random variable X and lemma 4. Turning to M(t), we 
use the property of the first derivative of φ from (A.17) to obtain: 
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Combining the bounds on I(t) and M(t) in (A.18) with the third property in (A.17) yields: 
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where we also bounded t from above by T. This gives an upper bound of the same form as in 
Higham and Mao, and allows us to apply Gronwall’s inequality: 
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Since (A.24) holds for any value of k and 0)t,t(Ulim k,I0t
=Δ

→Δ
 due to (A.11) and (A.12), it  
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  as in corollary 3.1 of Higham and Mao. This 

immediately implies (A.16). The order of convergence unfortunately does not follow from this 
proof, as ∞=Δ

∞→
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