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ABSTRACT

The spatial activity patterns of firms in a mukigional system are closely connected
with the structure and evolution of regional labouarkets. Based on an extensive data set
(cross-section) on commuting flows in Germany, thaper aims to identify the relationship
between entrepreneurial activity and spatial laboarkets, by employing in particular the
concept of ‘entrepreneurial city’. A network contieity model is adopted to assess
connectivity patterns, using the power-law and ewgmbial law as a statistical test framework,
in order to detect the presence of economic agtivitbs that may resemble the concept of

entrepreneurial cities. Various results are presk@ind interpreted in the final part of the

paper.
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1. Scoping the Scene

The emergence of regional (or urban) growth anceldgwnent is critically dependent
on prominent explanatory factors related to innmvatind entrepreneurship. It is nowadays
widely assumed that innovative activity of entremners forms the key for understanding
spatial dynamics. Studies on entrepreneurship gawed much popularity in recent years, as
the “entrepreneurial hero” is recognized as the &etpr in an industrial system. In an ICT
society, the radius of innovative firms may extehd global level, so that spatial (regional,
urban) networks become the playground for many modatrepreneurs. Consequently, the
geography of innovation does not only have a ld@alension, but, through the existence of
networks, also has a wide geographical coverags. difservation is also clearly reflected in
the new economic geography as well as in the giesiof the learning economy. Spatial
dynamics, modern network configurations and inn@eaéntrepreneurial activity are clearly
interrelated phenomena that form the foundationscohomic growth and development, both
nationally and regionally.

Successful entrepreneurship is reflected in abeeeage economic growth. Strong
economic growth is a key ingredient for nationadl aegional welfare. In fact, high economic
growth and the ensuing high rates of job creatiom astrumental for sustaining low
unemployment rates. Economic growth is not, howeeemnerging in a wonderland of no
geographical dimensions, but is clearly mapped iouta space-time framework. The
geographical development of business activity @n@gional labour markets are two closely
intertwined phenomena.

Several empirical illustrations may clarify the abopremise. For example, strong
economic growth in the US has often been attributetechnological progress in the ICT
industries which has lowered the price of ICT calpithus favouring investment and capital
accumulation in ICT-user industries (Jorgenson Sih 2000; Jorgensaet al. 2003).

In the economics literature, technological innowatis often claimed to be a critical
success factor for economic growth, but it is by means a sufficient factor. Besides
technological progress in the ICT industries, inremnts in human and physical capital —
supported by pro-competitive macroeconomic policieshave also been proven to be
important sources of growth (OECD 2003). In fatthas been found that the entry of
innovative firms is a particularly important soukfeproductivity growth (OECD 2003).

Growth is partly the result of efficiency increasgsncumbent firms in a competitive
economy, and partly the result of new entrantslehging the established firms. The entry of
new firms, known as ‘start-ups’, is intimately lgdk to innovative entrepreneurial activity.
The link between entry rates and economic growtksisally very robust, and it can be found

at various levels of analysis (firm, region, andior@. At the firm level, young firms, small
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firms and new firms — the result of entrepreneuaativity — positively affect economic
growth, since they all have higher growth ratemtbéd firms, large firms and incumbent
firms, respectively; however, young firms are ldd®ly to survive than large firms
(Audretsch 1995; Caves 1998; Sutton 1997).

Moreover, high entry rates of new firms have a fpesimpact on economic growth at
the regional level, albeit with a considerable tilag (Audretsch and Fritsch 2002; van Stel
and Diephuis 2004). Interestingly, among Germaroreg the link between entrepreneurial
activity and regional economic growth emerged ahlying the 1990s, as a consequence of
the surge in international outsourcing of large r@am manufacturing firms, spurred by
globalization (Audretsch and Fritsch 2003).

Finally, entry rates of new and innovative firmshe consequence of entrepreneurial
activity — are also found to have a positive impantaggregate economic growth and a
negative impact on unemployment (Audretsch and ikh2©01; Carree and Thurik 2002;
OECD 2003; van Stel and Diephuis 2004). The engrsguir turns out to be a central actor in
economic growth strategies.

Because new entrepreneurial activity (start-ups) anonomic growth are firmly
interlocked, we observe in the US a renewed interethe role of the entrepreneur and in
policy measures designed to stimulate entreprehguf®eynolds 1999). This issue is an
important one, because, in fact, the presence wbua types of externalities implies that
economic systems as such would rarely produce piiimal level of entrepreneurial activity.
However, the selection of a correct mix of policiean effectively foster entrepreneurial
activity. Policy intervention is fraught with dangethe selection of a poor policy mix can
seriously curb the degree of entrepreneurial dagt{idavidsson and Henrekson 2002).

The justification for (careful) policy interventiamsults from the presence of market
failures in four distinct areas: a) network extditiess; b) knowledge externalities; c) failure
externalities; and d) learning externalities (Audcd 2004). All four externalities are
conducive to spatial agglomeration:

a) the first externality refers to the proximity of raplementary firms or
individuals;

b) the second externality refers to knowledge spililsysince firms benefit from
the proximity of similar firms from which they cadearn;

c) the third externality refers to the economic vatweated for third parties by
new firms going out of business. ldeas and projpatsued by non-successful
firms are often subsequently incorporated in thedpcts and projects of

successful firms;



d) the fourth externality refers to demonstration andtation, as potential
entrepreneurs observe the activity — and the mesuwim entrepreneurial
activity — and this may spur them into action, tlyemerating new waves of
innovating firms.

In other words, the entrepreneur is the key agdmi vealizes knowledge spillovers
from the source to final users (consumers, investpand export goods), and to others who
may use them as intermediate products (AudretsdiTaaorik 2001).

The relationship between growth and space dessomg more attention. Space — or
distance — can act as an impediment to growthmay also function as a factor accelerating
economic development. Spatial concentration of eooa activity has often been observed in
the empirical literature as the result of econonuéslensity or agglomeration advantages
(Glaeser 1998). In this process, cities act aslysatafor entrepreneurial activity, because
entrepreneurial activity does not take place inaauum. In fact, besides the proximity of
other fellow entrepreneurs, entrepreneurs in thenkedge economy need a large array of
complementary services such as: financial serviedsghly educated workforce, sources of
knowledge (universities and research centers)stiogservices, etc. There is an avalanche of
recent studies that confirm the above premises.

This space-time growth process is particularly emtdin Germany where cities (and
the surrounding districts) compete actively withecemother for new business by using a
portfolio of policy measures to create a businessflly environment (Panebianco 2005).
The special focus on Germany is — apart from itsospolitical dynamics - warranted by its
pro-active policy making at both regional and ditjstrict) level (Panebiancet al. 2005).
Our study aims to identify the central role of magmployment centers in Germany.

We will consider German cities (as major citiesaitebour market district) as central
nodes in a socio-economic network. The agglomaratixternalities then work towards the
formation of hubs, which may be called ‘prefereintiades’. New entrepreneurs benefit by
locating near hubs (attraction nodes) because thes¢he places where new opportunities
emerge. In addition, from the hubs outwards, intiomamay quickly reach dispersed and
remote cities. This connectivity feature of citytwerks can be interpreted as a ‘scale-free
network’ (Gorman 2005; and see Section 3).

The process of agglomeration through the econowfictensity is further reinforced
by the fact that many German firms, especially smuadl medium enterprises (as a result of
new entrepreneurial activity) arose out of regiareworks where local banks, state and city
governments played an important role (Kogut andRéfa2001).

We may therefore, argue that, if cities and ditgriact as hubs for entrepreneurial

activity (because of the range of opportunitiesytbéer), they should attract considerable
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labour inputs from outside, and possibly from qégeaway. Against this backdrop, the aim
of this paper is to explore the presence of hubthenGerman system of regional market
centers, by investigating the connectivity struetaf the network itself.

The structure of the present paper is as followstién 2 introduces the characteristics
of network connectivity models. Next, Section 3genets the results of the empirical analysis,

while Section 4 concludes the paper with intergieta and reflections on future research.

2. Network Models and Connectivity: A Brief Review

In recent years, great interest has arisen in rtkerdisciplinary study of complex
networks, and in particular in the relevance of ititerconnectivity structures. The strength
of (dynamic) interactions and the form of the cartivity systems seem to be critical to
identify the network properties and related compmlgramics (Reggiani and Nijkamp 2004).

In this framework, the concept of Scale-Free (SFyvorks — originally introduced by
(Barabasi and Albert 1999) — has gained a gredtodesdtention, essentially for its interesting
characteristic of exhibiting power-law distribut®nin the connectivity structures of a
network. SF models have been embraced as genezicuniversal models of network
topologies, and thus been suggested as representatidels of complex systems, ranging
from the social sciences to molecular biology,®the internet (Aldersoat al. 2004). Clear
real-world examples of SF models have also beeweprdo exist in spatial-economic
systems, such as in the telecommunication, trahsput peer-to-peer networks (Gorman
2005, Gormaret al. 2005, Schintlest al. 2005).

The most prominent feature of SF networks — beyexiubiting a power-law rank-
size distribution — is the presence of highly carted nodes (hubs), as outlined by (Barabasi
and Oltvai (2004, p.104): Networks that are characterized by a power-law degree
distribution are highly non-uniform, most of the nodes have only a few links. A few nodes with
a very large number of links, which are often called hubs, hold these nodes together.
Networks with a power degree distribution are called scale-free, a name that is rooted in
statistical physics literature. It indicates the absence of a typical node in the network (one that
could be used to characterize the rest of the nodes). This is in strong contrast to random
networks, for which the degree of all nodes is in the vicinity of the average degree, which
could be considered as typical.”

This last sentence by Barabasi and Oltvai summtize critical difference between
SF and another common network model, i.e. the Rantietwork (RN). RN model —
originally introduced by Erdos and Rényi (1959)ensists of nodes with randomly placed

connections. In such a network, a plot of the iistion of node linkages follows a Poisson
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distribution (bell-shaped curve), which shows tiraist nodes have approximately the same
number of links (i.e. the network average degr&e)<The tail of the degree distribution
decreases exponentially, which shows that noddssthaificantly deviate from the average
<k> are very rare. Currently, there is a great déadiscussion on the precise definitions,
rigorous proof of properties, and ubiquity of SEwarks (Alderson et al. 2004). We will not
engage here in such a debate, but rather start drdrauristic perspective by addressing a
practical approach, i.e. the exploration of thestgb connectivity structure of the commuting
network in Germany. From this perspective, we eimine the possibility of a power-law
degree distribution vs. an exponential-law disttidou

The exponential distribution is a rather simplection which has often emerged in the
spatial economics literature. In the context ofwoek analysis, the exponential distribution
may be considered to belong to the class of RN iBpdmce it suggests — with respect to the
power-law distribution — that a multiplicity of ned with a few links does not exist: in other
words, the network is rather homogeneous and doeprasent a ‘hub’ structure. This latter
structure might then show a spatially-equilibrajgattern with an exponential deterrence
function. In other words, in the context of commgtiit means an underrepresentation of
commuters on long distances, and hence we mighectme ‘slow diffusion dynamics’ in
the peripheries for entrepreneurial start-ups. I@nather hand, the power-law might show the
existence of hubs, i.e. the relative irrelevanceisfance, and thus ‘fast diffusion dynamics’,
in the entrepreneurship process.

On the basis of the previous considerations, inrnaet section we will present the
results of our empirical analysis devoted to thplemation the connectivity structure of the

commuting network in Germany.

3. Empirical Analysis

In this exploratory analysis we investigate whethie real (commuting) network
formed by the nodal structure of German labour mtadistricts can be identified as an SF
model. The nodes of the network under analysisteeet39 economic districts in Germany
(Figure 1). The links between the nodes are thenwating flows between any two districts —
the data refer to the year 200Zhe number of commuters on a given link will reganet the
strength of the link. Hence, a link of strengthahigcecting two districts implies that only one

commuter travelled between the two districts dutheyyear 2002.

! There is substantial commuting within districtovever, because the distribution of the distanaeeited by
commuters is not available, we have limited thdymisto commuting flows between districts.
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FIGURE 1 ABOUT HERE

Commuting flows are an interesting variable fomaak analysis, because they can be
regarded as a synthetic measure of the overall tdveconomic exchange between regions.
The data under analysis show a spatial interactiodel structure; i.e. a negative relationship
between the number of commuters and the distaagelked (see also Gorman et al. 2005). In
particular, on short links we find many commutere (strength of the link is highest on short
links) while on long-distance links there are feamunuters (long links are usually weak,
because few commuters are prepared to travel vexy distances). On the longest distance,
only one or only a few commuters are found.

It may be argued that a very low level of commutflays, i.e. weak links, is not
interesting from an economic point of view. Howe&nce they are important for the test of
SF theory, we decided to retain all links, evenwieakest ones, i.e. those characterized by the
strength of just one commuter. In fact, individualay travel very long distances during a
part of the year, while relocating their househ®dnetheless, we will check the robustness
of our results vis-a-vis the exclusion of weak $ink

We have ranked the German labour market distoigtthe number of incoming links
(commuting flows; each incoming commuter flow regaets a link with another district, i.e.
the district where the flow of commuters origindteEhe highest rank is assigned to the
district (positione@as £ with the highest number of links.

The question whether a real-world network is a Sfwork boils down to the
assessment of whether the relationship betweetogfagithm of the number of links and the
rank of the district follows a power-law distriboti rather than an exponential one (see Figure
2).

FIGURE 2 ABOUT HERE

To this end, we have run the following two regi@ssnalyses:
In(N,)=a+ AR +¢ (1)

and
IN(N,) =3 +yIn(R)+u, )

where N is the of number of commuting flows with destioati district i, R is the
corresponding district rank, B, 6 andy are parameters to be estimated, arahd y are two

i.i.d. normally-distributed error components. Egoat (1) derives from an exponential

22 Ties are broken randomly.



relationship between N and R(=e"e”R¢" ), while equation (2) implies that the relationship

between R and N can be described by a power-MvwE’R"e" ).

The results of the estimation of these two modedspaesented in the upper panel of
Table 1.

TABLE 1 ABOUT HERE

The comparison of the’R obtained from the two models shows that the esqpiie
model performs better than the power-law model tfie sense that the exponential
specification fits the data better than the poveev-Epecification). However, this conclusion
could be misleading. Because the power-law spatific does not nest the exponential
specification as a special case (afk versa), the analysis of the FReriterion alone is not
sufficient to warrant the rejection the power-lapesification in favour of the exponential
specification (andice versa).?

The choice between non-nested competing modeldedarther highlighted by two
statistical tests: the J test and an encompassgsig@avidson and MacKinnon 2004). These
tests are presented in the lower panel in Tabléhg. tests themselves are described in the
statistical Annex A of the present paper.

The J test shows that neither model specificatatrsfactorily fits the data. In fact,
both model specifications are rejected. Thus, alghothe exponential model fits the data
better than the power-law model, the exponentiadlehcs still mis-specified. This inference
is also supported by the results of the Kolmogdsowrnov test. The Kolmogorov-Smirnov
test verifies (and in this case rejects) the egubaktween distributions; here we test whether
the distribution of In(N) can be considered equathte distribution of the predicted values
obtained from the exponential model (Infl}) and to the distribution of the predicted values
obtained from the power-law specification (Infi\)Despite the higherRit is quite difficult
to argue that the relationship between the numbknks and the district rank is captured by
the exponential specification (as opposed to tivegpdaw specification).

One could argue that weak links (links carryingt jafew commuters over the year)
may actually not be important from an economic paifi view (because the impact of
measurement errors could be severe). To this erdhave checked the robustness of our

results against measurement errors in the flonoofmuters by excluding the weakest links.

® The comparison between thésRean clarify the selection of competing nested efgut it cannot be used to
make an inference about the functional form ofuheerlying true model (unless thé R equal to 1). In fact,
the R is an indication of the significance of the partene and the overall goodness of fit. To inveségie
level of agreement between the functional form ehoand the data, a specification test, such aR#msey’'s
RESET test, ought to be used.



In other words, we have re-run the analysis comsigeonly those links carrying more than
10, 100, 1000, 5000, 10000, and 15000 commutersy ¢, respectivel‘)‘/.The results are

presented in Table 2.
TABLE 2 ABOUT HERE

The first important result is that as, the numbielinks included decreases (and the
minimum strength of the link increases), the peni@ance of the power-law model — at least in
terms of B — appears to improve, in particular when only lihks with more than 10000
commuters per year are included in the analysisvever, despite the increases in tie tRe
power-law model is not able to describe the datgpgnly. The only exception to this remark
arises when the analysis considers links with ntbeen 5000 commuters per year; in this
case, the power-law model appears to be superitret@xponential specification, and only
the Kolmogorov-Smirnov test does not acknowledge shperiority.

The superiority of the power-law model with respeecthe exponential specification is
not robust, however: as the number of commutersypar increases, the superiority of the
power-law model vanishes and both model speciticatare rejected.

All in all, our results suggest that both the exgaial and the power-law model
specifications are not able to capture all salieatures in the data.

Next, an inspection of the distribution of the logmber of links against the district
rank shown in Figure 2 suggests that both modetiBpations could be improved by the
addition of a quadratic termConsequently, we have re-run the whole analysisgua
quadratic specificatidn

In(N)=a+BR + B8R +¢ 3)

and
IN(N;) =3+ y,In(R) + y,[IN(R)]* +V; . (4)

The results are presented in Table 3.

TABLE 3 ABOUT HERE

* As the required minimum strength of the link irases, a few districts (nodes) drop out from thepsam

® A regression line through the distribution woulkrestimate the log number of links for low andthiglues
of a city rank, and it would underestimate the hagnber of links for intermediate values of a cayk.

® The choice for the quadratic specification hasnbgeided by the estimation of a Box-Cox transfoiorat

(district rank)? -1

A
In our casej =1.87, which is statistically different from Outhimplying that the logarithmic transformation is
to be rejected. A value @fclose to 2 suggests a quadratic specification gvew

. If X =0, then the logarithmic transformation of theresgor district rank should be used.
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The quadratic specification significantly improvée fit of the model as shown by the
comparison of the & in Tables 1 and 3. This procedure is correct, imedoth quadratic
models in Table 3 nest the linear models in Table &pecial cases (when the coefficient of
the quadratic term is zerd).

The comparison of the’Rin the upper panel in Table 3 suggests thatxpereential
specification fits the data better than the poveev-Epecification. This inference is supported
by the additional tests presented. The (quadratippnential specification clears two out of
three specification tests (the J test and the Kgbmov-Smirnov test). The exponential
specification fails to clear the encompassing test,so does the power-law specification (the
test rejects both the exponential and the power-lgpecifications). The power-law
specification is soundly rejected. On the contratyg F statistic corresponding to the
exponential specification is low, significantly féifent from zero but low.

Table 4 shows that this result is again not veryusbho the exclusion of the weakest
links. As the required minimum strength of the limicreases, the exponential specification

ceases to be the preferred model specification.
TABLE 4 ABOUT HERE

All in all, neither the exponential nor the powam specification can be regarded as
superior. Moreover, in the absence of strong priagainst the inclusion of all links
(regardless of the strength of the link) and usinguadratic functional form, the (quadratic)
exponential specification should be preferred fquadratic) power-law specification.

The poor performance of both model specificationy & ascribed to the inability of
the models to capture the sharp drop in the logh=urof links when the district rank is above
403. Consequently, we reconsidered the performasfcall four model specifications
(exponential and power-law, linear and quadrati¢djemw districts ranked above 403 are

excluded from the analysis. The results of thislfaxaeriment are shown in Table 5.

TABLE 5 ABOUT HERE

"1t is well known that the significance of the quatit term in the log-log model shown in equatidh \ill be
found significant even if Zipf's law were to holBy the same token, we are also aware that the U9 to
estimate the parameters characterizing the powemrédationship between node rank and the correspgnd
number of links (Zipf's law) introduces an upwaiiddin the estimated value pin equation (2). We show the
results anyway, by way of illustration of the wargiof the encompassing tests. On the one handsgessment
of the validity of Zipf's law is a matter of estitii@n rather than testing (almost any specificatiaisp the true
one, will be rejected if the data points are sigfitly numerous); on the other hand, the decisietwben
competing specifications must be guided by tests.
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Although the observations in the right tails hawet lpeen included in the analysis, the
linear exponential specification is by no meansesigp to the power-law specification. In
addition, the comparison of the?R shows that both guadratic specifications perform
significantly better than the corresponding linepecifications. Furthermore, among the

quadratic specifications, the specification tesiigigest that the (quadratic) exponential
specification (N, = "e”’ﬁeﬂﬁzeﬁ) appears to be superior to the (quadratic powej-la

specification (N. = e’R"%e”"R)"¢"),

On the whole, our results suggest that commutiog/glform a rather homogeneous
and spatially-equilibrated network. In other wordbe network does not seem to be
dominated by a few hubs (districts) with many link&is network feature could be due to a
rather balanced regional development.

Finally, acaveat is in order. There are many reasons why the comgutetwork
may fail to show up as a SF. First, the links coned might, in fact, be poor representations
of network connectivity. If commuting flows are naliable indicators of overall economic
flows, then we may fail to detect important hubgerethough the German spatial-economic
system might be dominated by hubs (which we wereafne to detect). In this context,
freight/trade flows, financial flows, and ICT flowsight be more useful indicators to detect
hubs in spatial entrepreneurial activities.

Second, the concept of hubs may refer to firmserathan to districts. In this case,
start-ups may benefit from setting up businesdiogiahips in the area concerned with well-
established key firms, that are very well conneetédd the rest of the economy (i.e. a nested

hierarchical hub structure).

4. Conclusions

In the present analysis we have addressed theiguedtether a real spatial netwerk
such as the one constituted by German labour mdikeicts as nodes and commuting flows
as links— can be identified as SF (scale-free). SF netwarksdominated by a few important
nodes (hubs) that could function as incubatorsefdrepreneurial activity. In addition, given
the property that SF networks are ultra-small (Reuwand Shiomo 2003), innovation
diffusion by entrepreneurship may reach remote sadey rapidly, while hubs may also be
able to attract workers from a considerable ditario a SF network, the relationship
between the logarithm of the number of links anel thnk of the districts (in terms of the
number of links) is best described by a power-lapectfication. Vice versa, in a

homogeneous spatial structure where flows decay diitance, the relationship between the
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logarithm of the number of links vs. the rank oé tiistricts (in terms of the number of links)
is better identified by an exponential distributi@vhere the tail approaches to zero).

Given the economic relevance of flows related toglalistances, we analysed the
whole network, also including links with very feworamuters. Our results indicate that,
because the power-law specification is hardly ewgerior to the exponential distribution, the
German commuter network cannot be considered aeédWwork. The lack of particularly
important hubs may be due to the relatively homeges distribution of highly industrialized
districts.

It goes without saying that the selection of thef@red specification depends on the
network characteristics, which are in turn deteedimy the criteria used to select the links
forming the network. Finally, our analysis also malklear that the?Rlone is not a sufficient
criterion to discriminate between competing modeécifications, in particular when the
competing hypotheses are non-nested.

The analysis could be extended in many directions.example, the analysis of the
outgoing commuting flows could help unravel the releteristics of (technological)
innovation diffusion processes. This interestinglagation is not pursued here and is left for
future research.

Future research efforts may also be direetexh the one hand to the exploration of
changes in the connectivity structure of commufiogvs over time, by analyzing different
time periods; on the other hand, they may alsoesddthe investigation of German networks
that are more directly related to entrepreneursbgtures, such as ICT, telecommunication

and/or freight/trade networks.
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ANNEX A: Testing Non-nested Hypotheses

The comparison between’®Rcan guide the researcher through the choice betwe
competing nested models but it cannot be usedsesaghe validity of competing functional
form. An example can clarify this point.

Assume the data are generated by a quadratic datrafing processy(=6x’ +¢).

Assume further that we may choose to compare thlewimg two models: model A:
y, =a+¢ , and model By, =a + Bx +¢, . Clearly, Rs>R%4. However, it would be incorrect

to conclude that the data-generating process éafinSimilarly, the Rcriterion cannot be
used to choose between non-nested hypotheses.

In traditional testing, the ¢can be expressed as a particular case of the georeral
H; (the alternative hypothesis); in this sense thesHhested in the HWhen hypotheses are
non-nested the {JHand H are on equal footing. The small sample and thenpsytic
proprieties of the tests described here have redeavthorough treatment in (Davidson and
MacKinnon 2004, Greene 2003, Mizon and Richard 1986

There are two possible approaches to test non-nbgpEheses: a) the comprehensive
approach (the J-test), and b) the encompassin@agiprWe begin with the former.

a) The J-Test
Suppose we have to decide between two rival models:

H,: y, =B'X +V, (A1)
and

H,: y,=y'Z+u, (A2)

wheref (p x 1) andy (g x 1) are vectors of parameters to be estimatdgd,x n) and Z (q x n)
matrices of exogenous variables, and u and v are @wor terms that follow the usual
assumptions.

We notice that the variables included in Z and ¥t be different and it should not
be the case that X (Z) could be obtained as a apeaise of Z (X), i.e. setting some
parameters to zero.

The J-test prescribes the following steps:
. . . . X = ﬁ'x
1. estimate equation (A1) and obtain the predictedesy ;

&L — O
2. estimate equation (A2) and obtain the predictedegy =V 'Z;

=['X +0y +V.

3. estimate Vi i; if 8=0, the model in equation (Al) cannot be

rejected; if6+ 0, then the model in equation (Al) can be reje¢ted Z variables
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still incorporate some features that help improvetlee performance of model
(A));

4. estimate Vi =X+ iy +ui; if 7=0, the model in equation (A2) cannot be
rejected; ifr# 0, then the model in equation (A2) can be rejeted X variables
incorporate some features that help improve ompérormance of model (A2)).

In other words, the J-test boils down to a t-testlee additional variable represented

by the predicted values of the rival model. Theneates ofé andn and their associated

standard errors are reported in Tables 1 - 5.

b) The Encompassing Test

Suppose that, again, we have to decide betweetwth@aforementioned models. The
encompassing test prescribes that the variables/taed into three groups: the matrix W that
contains the common regressors (i.e. regressotbéang to both Z and X); the matrix' Z
that includes all exogenous variables presentemthatrix Z but not in the matrix X; finally,
the matrix X that includes all the regressors present in thiixng but not in the matrix Z.

Then the rival models can be combined into a supmtain(a model that encompasses
both sub-models as special cases):

Y =a'W+B' X" +y'Z" +u, (A3)
wherea, f andy are vectors of parameters to be estimated, ascdauandom disturbance that
follows the usual assumptions.

The encompassing test prescribes thatsHejected ify=0, and H is rejected if3=0.
These restrictions can be tested by means of F-t®staetimes Zor X" are vectors (nx1),
i.e. they just include one variable. In this cdse E-test can be approximated by the squared
value of the t-test obtained during the estimatibaquation (A3). The values of the F-test (or
the t-test when needed) and their relative p-valoestandard errors in the case of a t-test)

are reported in Tables 1 - 5.

Both the J-test and the encompassing test havepfsgible outcomes:

1. Reject H and do not reject H

2. Do not reject Ho and reject;H

3. Reject B and reject ht

4. Do not reject Hand do not reject H

In the first two cases, one of the two models amglsas the preferred model. In the
third case, neither model is correctly specifiedtHe fourth case, both models are correctly

specified.
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Figure 1: The regional distribution of the 439 districts ief@any

(Legend: 1. Central cities in regions with urbaglagerations; 2. Highly urbanized districts in g with
urban agglomerations; 3. Urbanized districts inioeg with urban agglomerations; 4. Rural districts
regions with urban agglomerations; 5. Central siiie regions with tendencies towards agglomeratéon;
Highly urbanized districts in regions with tendesgitowards agglomeration; 7. Rural districts iniorg
with tendencies towards agglomeration; 8. Urbanidéldricts in regions with rural features; 9. Rural
districts in regions with rural features.)
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Table 1. Regression analyses, linear model specificationsquation (1) and equation (2).
The whole commuting network in Germany (standardrerin brackets and p-values
in parenthesis. The test is significant at the S##fidence level when the ratio of the
coefficient to the standard error is larger tha®6land when the p-value is smaller

than 0.05).
Exponential Power-Law
Constant 6.211 6.976
[0.001] [0.050]
Ln District Rank -0.254
[0.010]
District Rank -0.002
[0.000]
R? 0.941 0.616
number of cases 439 439
Specification Tests
J-Test
Ho H, T-Test Statistic Result
Power-Law Specification Exponential Specification 1.268 Reject Hy
[0.020]
Exponential Specification Power-Law Specification -0.377 Reject Hy
[0.025]
Encompassing Test
Ho H, T-Test Statistic Result
The Data Generating The Data-Generating
Process Follows Process Follows -0.003 Reject Hy
Power-Law Exponential Specification [0.000]
The Data-Generating The Data-Generating 0.096 Reject Hy
Process Follows Process Follows [0.006]
Exponential Specification Power-Law
Kolmogorov - Smirnov Test
Ho H, KS-Test Statistic Result
Cumulative Cumulative
Distribution of In(N) Distribution of In(N)
= # 0.239 Reject Hy
Cumulative Cumulative (0.000)
Distribution of In(N)” Distribution of In(N)”
Ho Hi
Cumulative Cumulative
Distribution of In(N) Distribution of In(N)
= # 0.119 Reject Hy
Cumulative Cumulative (0.004)

Distribution of In(N)*

Distribution of In(N)®*
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Table 2: Robustness of the two linear models to differsgtivork structures (standard errors in bracketspamalues in parenthesis. The test is significanbhe
5% confidence level when the ratio of the coeffiti® the standard error is larger than 1.96 aneinithe p-value is smaller than 0.05).

Minimum strength of the Link: 10 100 1000
Regression R? R? R?
Exponential 0.816 0.969 0.894
Power-Law 0.969 0.815 0.851
Number of Cases 439 439 439

Specification Tests
J-Test

Ho

Power-Law Specification

Exponential Specification

Encompassing Test
Ho

The Data-Generating
Process Follows
Power-Law

The Data-Generating
Process Follows
Exponential Specification

Kolmogorov - Smirnov Test
Ho

Cumulative Distribution

of In(N) =

Cumulative Distrbution

of In(N)”

Ho

Cumulative Distribution
of In(N) =

Cumulative Distribution
of In(N)**

H,
Exponential Specification

Power-Law Specification

Hi

The Data-Generating
Process Follows
Exponential Specification

The Data-Generating
Process Follows
Power-Law

H;

Cumulative Distribution
of In(N) #

Cumulative Distribution
of In(N)”

H;

Cumulative Distribution
of In(N) #

Cumulative Distribution
of In(N)*

T-Test Statistic
0.186

[0.017]

0.851

[0.016]

T-Test Statistic

-0.529
[0.010]

-0.0008
[0.0001]

KS-Test Statistic

0.118
(0.000)

0.143
(0.000)

Result
Reject Hy
Reject Hy

Result

Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

T-Test Statistic
0.186

[0.017]

0.851

[0.016]

T-Test Statistic

-0.529
[0.009]

-0.0008
[0.0001]

KS-Test Statistic

0.118
(0.000)

0.143
(0.000)

Result
Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

T-Test Statistic
0.625

[0.028]

0.437

[0.029]

T-Test Statistic

-0.255
[0.017]

-0.003
[0.000]

KS-Test Statistic

0.223
(0.000)

0.155
(0.004)

Result
Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy
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Table 2: Continued

Minimum Strength of the Link: 5000 10000 15000
Regression R? R? R®
Exponential 0.695 0.432 0.273
Power-Law 0.909 0.814 0.694
Number of Cases 439 418 377

Specification Tests
J-Test

Ho

Power-Law Specification

Exponential Specification

Encompassing Test
Ho

The Data-Generating
Process Follows
Power-Law

The Data-Generating
Process Follows
Exponential Specification

Kolmogorov - Smirnov Test

Ho

Cumulative Distribution
of In(N) =

Cumulative Distribution
of In(N)”

Ho

Cumulative Distribution
of In(N) =

Cumulative Distrbution
of In(N)*

Hy
Exponential Specification

Power-Law Specification

Hi

The Data-Generating
Process Follows
Exponential Specification

The Data-Generating
Process Follows
Power-Law

H;

Cumulative Distribution
of In(N) #

Cumulative Distribution
of In(N)”

H,

Cumulative Distribution
of In(N) #

Cumulative Distribution
of In(N)*

T-Test Statistic
-0.020

[0.036]

1.015

[0.032]

T-Test Statistic

0.0001
[0.0001]

-0.563
[0.018]

KS-Test Statistic

0.369
(0.000)

0.362
(0.000)

Result
Do Not
Reject Hy
Reject Hy

Result

Do Not
Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

T-Test Statistic
-0.906

[0.051]

1.580

[0.037]

T-Test Statistic

0.002
[0.000]

-0.567
[0.013]

KS-Test Statistic

0.404
(0.000)

0.500
(0.000)

Result
Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

T-Test Statistic
-1.779

[0.069]

1.982

[0.043]

T-Test Statistic

-0.003
[0.000]

-0.521
[0.011]

KS-Test Statistic

0.453
(0.000)

0.567
(0.000)

Result
Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy
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Table 3: Regression analyses, quadratic model specificatiorequation (3) and equation (4). The whole
commuting network in Germany (standard errors sckets and p-values in parenthesis. The test is
significant at the 5% confidence level when theoraf the coefficient to the standard error is &rg
than 1.96 and when the p-value is smaller than)0.05

Exponential Power-Law
Constant 6.062 5.368
[0.006] [0.066]
Ln District Rank 0.584
[0.031]
(Ln District Rank)? -0.099
[0.004]
District Rank -0.0004
[0.0001]
District Rank®  -0.00001
[0.0000001]
R? 0.985 0.858
Number of Cases 439 439
Specification Tests
J-Test
Ho Hy T-Test Statistic Result
Power-Law Specification Exponential Specification 1.006 Reject Hy

Exponential Specification

Encompassing Test
Ho

The Data-Generating
Process Follows
Power-Law

The Data-Generating
Process Follows
Exponential Specification

Kolmogorov - Smirnov Test

Ho
Cumulative
Distribution of In(N)

Cumulative
Distribution of In(N)"

Ho
Cumulative
Distribution of In(N)

Cumulative
Distribution of In(N)*

Power-Law Specification

Hi

The Data-Generating
Process Follows
Exponential Specification

The Data-Generating
Process Follows
Power-Law

Hy

Cumulative
Distribution of In(N)
#

Cumulative

Distribution of In(N)

H;

Cumulative
Distribution of In(N)
#

Cumulative

Distribution of In(N)*

[0.016]
-0.010
[0.032]
F-Test Statistic

2308.499
(0.000)

48.741

(0.000)

KS-Test Statistic

0.132
(0.001)

0.068
(0.257)

Do Not Reject Hqg

Result

Reject Hy

Reject Hy

Result

Reject Hy

Do Not Reject Hg
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Table 4: Robustness of the two quadratic models to diffenetwork structures (standard errors in braclatsp-values in parenthesis. The test is signifiean
the 5% confidence level when the ratio of the dogit to the standard error is larger than 1.96when the p-value is smaller than 0.05).

|Minimum Strength of the Link: 10 100 1000
Regression R? R? R?
Exponential 0.989 0.816 0.896
Power-Law 0.985 0.957 0.920
Number of Cases 439 439 439

Specification Tests

of In(N)*

of In(N)*

J-Test

Ho Hi T-Test Statistic  Result T-Test Statistic  Result T-Test Statistic  Result

Power-Law Specification Exponential Specification 1.391 Reject Hg -2.418 Reject Hyg 2.345 Reject Hy
[0.098] [0.200] [0.121]

Exponential Specification Power-Law Specification -0.763 Reject Hy 1.851 Reject Hy -7.542 Reject Hy
[0.155] [0.087] [0.545]

Encompassing Test

Ho Hi F-Test Statistic  Result F-Test Statistic  Result F-Test Statistic  Result

The Data-Generating The Data-Generating

Process Follows Process Follows 199.88 Reject Hg 145.44 Reject Hyg 377.380 Reject Hy

Power-Law Exponential Specification (0.000) (0.000) (0.000)

The Data-Generating The Data-Generating 1308.56 Reject Hy 1674.66 Reject Hy 196.470 Reject Hy

Process Follows Process Follows (0.000) (0.000) (0.000)

Exponential Specification Power-Law

Kolmogorov - Smirnov Test

Ho Hi KS-Test Statistic Result KS-Test Statistic Result KS-Test Statistic Result
Cumulative Distribution Cumulative Distribution

of In(N) = of In(N) # 0.062 Do Not 0.123 Reject Hy 0.203 Reject Hy
Cumulative Distribution Cumulative Distribution (0.377) Reject Hy (0.003) (0.000)

of In(N)” of In(N)”

Ho H;

Cumulative Distribution Cumulative Distribution

of In(N) = of In(N) # 0.052 Do Not 0.134 Reject Hy 0.180 Reject Hy
Cumulative Distrbution Cumulative Distribution (0.583) Reject Hg (0.001) (0.000)
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Table 4: Continued

Minimum Strength of the Link: 5000 10000 15000
Regression R? R? R?
Exponential 0.912 0.861 0.866
Power-Law 0.928 0.903 0.847
Number of Cases 439 418 377

Specification Tests

J-Test
Ho
Power-Law Specification

Exponential Specification

Encompassing Test
Ho

The Data-Generating
Process Follows
Power-Law

The Data-Generating
Process Follows
Exponential Specification

Hy
Exponential Specification

Power-Law Specification

Hy

The Data-Generating
Process Follows
Exponential Specification

The Data-Generating
Process Follows
Power-Law

Kolmogorov - Smirnov Test

Ho

Cumulative Distribution
of In(N) =

Cumulative Distribution
of In(N)”

Ho

Cumulative Distribution
of In(N) =

Cumulative Distrbution
of In(N)*

H,

Cumulative Distribution
of In(N) #

Cumulative Distribution
of In(N)”

H;

Cumulative Distribution
of In(N) #

Cumulative Distribution
of In(N)**

T-Test Statistic
1.208

[0.119]

-0.361

[0.166]

F-Test Statistic

102.981
(0.000)

710.874
(0.000)

KS-Test Statistic

0.353
(0.000)

0.355
(0.000)

Result
Reject Hy

Reject Hy

Result

Reject Hy

Reject Hy

Result

Reject Hyp

Reject Hy

T-Test Statistic
0.826

[0.059]

0.245

[0.067]

F-Test Statistic

197.903
(0.000)

1043.513
(0.000)

KS-Test Statistic

0.426
(0.000)

0.421
(0.000)

Result
Reject Hg

Reject Hy

Result

Reject H

Reject Hy

Result

Reject Hg

Reject Hg

T-Test Statistic
0.480

[0.053]

0.625

[0.051]

F-Test Statistic

82.313
(0.000)

1049.271
(0.000)

KS-Test Statistic

0.528
(0.000)

0.496
(0.000)

Result
Reject Hyg

Reject Hy

Result

Reject Hy

Reject Hy

Result

Reject Hyg

Reject Hyg
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Table 5: Robustness of all four model specifications tifedent network structures — district rank < 40¢a(slard errors in brackets and p-values in pareighe
The test is significant at the 5% confidence lavieén the ratio of the coefficient to the standardreis larger than 1.96 and when the p-value ialkEm

than 0.05).
Regressions Linear: Exponential Power-Law |Quadratic: Exponential Power-Law
Constant 6.176 6.811 6.086 5.547
[0.004] [0.039] [0.001] [0.046]
Ln District Rank -0.214 0.459
[0.008] [0.022]
(Ln District Rank)? -0.081
[0.003]
District Rank -0.002 -0.001
[0.000] [0.000]
District Rank® -0.000003
[0.000000]
R? 0.974 0.661 0.999 0.902
Number of Cases 403 403 403 403
Specification Tests
J-Test
Ho H, T-Test Statistic  Result T-Test Statistic Result
Power-Law Specification Exponential Specification 1.217 Reject Hy 0.996 Reject Hy
[0.012] [0.005]
Exponential Specification Power-Law Specification -0.299 Reject Hy -0.013 Do Not
[0.014] [0.010] Reject Hy
Encompassing Test
Ho H, T-Test Statistic  Result F-Test Statistic Result
The Data-Generating Process The Data-Generating Process -0.003 Reject Hy 21788.391 Reject Hyg
Follows Power-Law Follows Exponential [0.000] (0.000)
The Data-Generating Process The Data-Generating Process 0.064 Reject Hy 64.111 Reject Hy
Follows Exponential Follows Power-Law [0.003] (0.000)
Kolmogorov - Smirnov Test
Ho Hy [ks-Test Statistic Result KS-Test Statistic Result
Cumulative Distribution of In(N) = Cumulative Distribution of In(N) # 0.241 Reject Hy 0.141 Do Not
Cumulative Distribution of In(N)” Cumulative Distribution of In(N)” (0.000) (0.001) Reject Hy
Cumulative Distribution of In(N) = Cumulative Distribution of In(N) # 0.104 Reject Hy 0.030 Reject Hy
Cumulative Distribution of In(N)** Cumulative Distribution of In(N)®* (0.025) (0.994)




