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Abstract

In this paper we present two general results on the existence of a discrete zero point of a

function from the n-dimensional integer lattice Zn to the n-dimensional Euclidean space

IRn. Under two different boundary conditions, we give a constructive proof using a combi-

natorial argument based on a simplicial algorithm with vector labeling and lexicographic

linear programming pivot steps. We also adapt the algorithm to prove the existence of a

solution to the discrete complementarity problem.
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1 Introduction

We consider the problem of finding a point x∗ ∈ Zn such that

f(x∗) = 0n

where 0n is the n-vector of zeroes, Zn is the integer lattice of the n-dimensional Euclidean

space IRn, and f is a function from Zn to IRn. Such an integral point x∗ is called a discrete

zero point of f . Recently, the existence problem of an integral solution has been investigated

in several papers. These papers were all inspired by the discrete fixed point statement

given in Iimura [10]. The existence theorems in Iimura, Murota and Tamura [11] and

Danilov and Koshevoy [4] concern functions that exhibit the so-called direction-preserving

property, which can be seen as the counterpart of the continuity property for functions

defined on the Euclidean space IRn. The existence results in Yang [33] and [34] hold for the

class of so-called locally gross direction-preserving mappings, which is substantially more

general and richer than the class of Iimura’s direction-preserving mappings and which

contains the results in [4] and [11] as special cases. Besides establishing these more general

existence results, Yang also initiated in [33] the study of discrete nonlinear complementarity

problems and provided several general theorems for the existence of solutions for this class

of problems. All this literature, however, is not concerned with the problem of finding an

integral solution. In fact, all these existence proofs are nonconstructive.

To provide constructive proofs based on a combinatorial argument we apply the

technique of the so-called simplicial algorithms originally designed to find approximate

zero or fixed points of continuous functions or upper semi-continuous mappings. The

first of such algorithm was developed by Scarf [26] and subsequent algorithms proposed

by Eaves [6], Eaves and Saigal [7], Merrill [22], van der Laan and Talman [16] among

others, substantially improved Scarf’s original one in term of efficieny and applicability.

For comprehensive treatments on such algorithms we refer to Allgower and Georg [1],

Todd [27] and Yang [32]. In van der Laan, Talman and Yang [19], [20], the so-called 2n-

ray integer labeling simplicial algorithm independently introduced by van der Laan and

Talman [17] and Reiser [25], has been modified to find an integral solution of functions

satisfying the direction-preserving property and to find an integral solution for direction-

preserving discrete nonlinear complementarity problems, respectively.

The aim of this paper is to provide a combinatorial algorithm for finding an integral

solution of functions satisfying the more general locally gross direction-preserving property.

This algorithm is again a modification of the 2n-ray simplicial algorithm, introduced in [17]

and [25]. However, in this case we cannot rely on integer labeling anymore, instead we have

to apply the more subtle concept of vector labeling. The modified algorithm makes use of

a triangulation of IRn, being a family of integral simplices, constructed in such a way that
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the set of vertices of the simplices of the triangulation is equal to Zn and the mesh size of

each simplex in the triangulation is equal to one according to the maximum norm. Starting

with some integral point in Zn, the algorithm leaves the starting point along one out of

2n directions and then generates a sequence of adjacent simplices of varying dimension

by making lexicographic linear programming pivot steps in a system of linear equations.

For the existence of a zero point of a function on the n-dimensional Euclidean space IRn

some kind of boundary condition is needed in order to restrict the feasible domain of the

function to a convex and compact set in IRn. Similarly, we also need boundary conditions

for the discrete case. We provide two different boundary conditions, both guaranteeing

that the algorithm terminates within a finite number of steps with a simplex having one

of its vertices as an integral solution to the zero point problem. In addition, we adapt the

algorithm to prove the existence of a solution to the discrete nonlinear complementarity

problem. Whereas all the previous works on the computation of fixed or zero points of a

continuous function find only an approximate solution, when applied to the current discrete

case, the 2n-ray algorithm finds an exact solution.

This paper is organized as follows. In Section 2 we introduce the concept of triangu-

lation and locally gross direction preservation and we describe the algorithm. In Sections

3 and 4 we state two boundary conditions guaranteeing an integral solution of the discrete

zero-point problem and provide constructive proofs based on the combinatorial argument

that the algorithm will find a solution within a finite number of steps. In Section 5 we

apply the algorithm to find an integral solution to the discrete complementarity problem.

2 Triangulation and algorithm

For a given positive integer n, let N denote the set {1, 2, . . . , n}. For i ∈ N , e(i) denotes

the ith unit vector of IRn. Given a set D ⊂ IRn, Co(D) and Bd(D) denote the convex hull

of D and the (relative) boundary of D, respectively. For any x and y in IRn, we say y is

lexicographically greater than x, and denote it by y � x, if the first nonzero component of

y − x is positive.

Two integral points x and y in Zn are said to be cell-connected if maxh∈N |xh−yh| ≤

1, i.e., their distance is less than or equal to one according to the maximum norm. In other

words, two integral points x and y are cell-connected if and only if there exists q ∈ Zn such

that both x and y belong to the hyper cube [0, 1]n + {q}.

For an integer t, 0 ≤ t ≤ n, the t-dimensional convex hull of t+1 affinely independent

points x1, . . . , xt+1 in IRn is called a t-simplex or simply a simplex and will be denoted by

< x1, . . . , xt+1 >. The extreme points x1, . . . , xt+1 of a t-simplex σ =< x1, . . . , xt+1 > are

called the vertices of σ. The convex hull of any subset of k + 1 vertices of a t-simplex σ,
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0 ≤ k ≤ t, is called a face or k-face of σ. A k-face of a t-simplex σ is called a facet of σ if

k = t− 1, i.e., if the number of vertices is just one less than the number of vertices of the

simplex. A simplex is said to be integral if all of its vertices are integral vectors and are

cell-connected. Any two vertices x and y of an integral simplex are said to be simplicially

connected.

Given an m-dimensional convex set D, a collection T of m-dimensional simplices is

a triangulation or simplicial subdivision of the set D, if (i) D is the union of all simplices

in T , (ii) the intersection of any two simplices of T is either empty or a common face of

both, and (iii) any neighborhood of any point in D only meets a finite number of simplices

of T . A triangulation is called integral if all its simplices are integral simplices.

Now we introduce the class of locally gross direction preserving functions on which

the existence theorems of this paper are based. Locally gross direction preservation replaces

continuity of a function defined on IRn. Let a · b denote the inner product of two vectors a

and b in IRn.

Definition 2.1

(i) A function f : Zn → IRn is locally gross direction preserving if for any cell-connected

points x and y in Zn it holds that

f(x) · f(y) ≥ 0.

(ii) A function f : Zn → IRn is simplicially local gross direction preserving with respect to

some given integral triangulation T of IRn, if for any vertices x and y of every simplex of

T it holds that

f(x) · f(y) ≥ 0.

The locally gross preserving property was originally introduced in Yang [34] and

prevents the function from changing too drastically in direction within one cell. The sim-

plicially local gross preserving condition is weaker and only requires that the function does

not change too drastically in direction within any integral simplex of the given triangula-

tion. Since any two vertices of a simplex of an integral triangulation are cell-connected we

have the property that every locally gross direction preserving function is also simplicially

local gross direction preserving with respect to any integral triangulation.

To compute a discrete zero point of a (simplicially) local gross direction preserving

function, we adapt the 2n-ray vector labeling algorithm introduced in van der Laan and

Talman [17], see also Reiser [25] for integer labeling, to the current discrete setting. This

algorithm was originally proposed to obtain an approximate fixed point of a continuous

function.
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Let f be a function being simplicially local gross direction preserving with respect to

some given integral triangulation T . Recall that if f is locally gross direction preserving,

then we can take any integral triangulation T . Let v be an arbitrarily chosen integral

vector in Zn. The point v will be the starting point of the algorithm. For a nonzero sign

vector s ∈ {−1, 0,+1}n, the subset A(s) of IRn is defined by

A(s) = {x ∈ IRn | x = v +
∑

h∈N

αhshe(h), αh ≥ 0, h ∈ N}.

Clearly, the set A(s) is a t-dimensional subset of IRn, where t is the number of nonzero

components of the sign vector s, i.e., t = |{i | si 
= 0}|. Since T is an integral triangulation

of IRn, it triangulates every set A(s) into t-dimensional integral simplices. For some s with t

nonzero components, denote {h1, · · · , hn−t} = {h | sh = 0} and let σ =< x1, · · · , xt+1 > be

a t-simplex of the triangulation in A(s). Following Todd [29], who improved the original

system of equations used by van der Laan and Talman [17], we say that σ is almost s-

complete if there is an (n+ 2)× (n+ 1) matrix W satisfying
[

1 · · · 1 0 · · · 0 1

f(x1) · · · f(xt+1) e(h1) · · · e(hn−t) −s

]

W = I (2.1)

and having rows w1, · · · , wn+2 such that wh � 0 for 1 ≤ h ≤ t + 1, wn+2 � wi and

wn+2 � −wi for t + 1 < i ≤ n + 1, and wn+2 � 0. Here I denotes the identity matrix of

rank n+1. If wn+21 = 0, then we say that the simplex σ is complete. Further, let τ be a facet

of σ, and, without loss of generality, index the vertices of σ such that τ =< x1, · · · , xt >.

We say that τ is s-complete if there is an (n+ 1)× (n+ 1) matrix W satisfying
[

1 · · · 1 0 · · · 0 1

f(x1) · · · f(xt) e(h1) · · · e(hn−t) −s

]

W = I (2.2)

and having rows w1, · · · , wn+1 such that wh � 0 for 1 ≤ h ≤ t, wn+1 � wi and wn+1 � −wi

for t+ 1 ≤ i ≤ n, and wn+1 � 0. If wn+11 = 0, then we say that τ is complete.

The lemma below says that the 0-dimensional simplex v is an s-complete facet for

a uniquely determined sign vector containing one nonzero element. Let α = maxh |fh(v)|.

Now we define the sign vector s0 as follows. If fh(v) = −α for some h, then we take

s0k = −1 where k is the smallest index h such that fh(v) = −α, and s
0
j = 0 for j 
= k. For

example, if f(v) = 0n, then s0 = (−1, 0, · · · , 0). In case fh(v) > −α for all h, then we take

s0k = 1 where k is the largest index h such that fh(v) = α, and s
0
j = 0 for j 
= k. Let σ0 be

the unique 1-dimensional simplex in A(s0) containing < v > as a facet.

Lemma 2.2 The simplex < v > is an s0-complete facet of σ0.
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Proof. Consider the system
[

1 0 · · · 0 0 · · · 0 1

f(v) e(1) · · · e(k − 1) e(k + 1) · · · e(n) −s0ke(k)

]

V = I.

By the structure of the first left-hand matrix it follows that its inverse V exists and that

its rows v1, . . . , vn+1 are given by

v1 = (1, 0, · · · , 0),

vh = (fk−1(v), 0, · · · , 0,−1, 0, · · · , 0), h = 2, . . . , k,

with −1 being the hth component,

vh = (fk−1(v), 0, · · · , 0,−1, 0, · · · , 0), h = k + 1, . . . , n,

with −1 being the (h+ 1)th component and

vn+1 = (s0kfk(v), 0, · · · , 0,−s
0
k, 0, · · · , 0)

with −s0k being the (k+1)th component. Clearly, v
1 is lexicographically positive. Moreover,

vn+1 is lexicographically positive, because we have either s0kfk(v) > 0 or s0kfk(v) = 0 and

−s0k > 0. For j = 2, · · · , k, we have vn+1 � vj , because s0kfk(v) ≥ fj−1(v), and we also have

vn+1 � −vj, because fj−1(v) > −s
0
kfk(v). For j = k+1, · · · , n, we have vn+1 � vj , because

either s0kfk(v) > fj(v) or s
0
kfk(v) = fj(v) and s

0
k = −1, and we also have vn+1 � −vj ,

because either s0kfk(v) > −fj(v) or s
0
kfk(v) = −fj(v) and s

0
k = −1. Hence, V satisfies all

the requirements of the matrix W in system (2.2) and thus < v > is an s0-complete facet

of σ0. �

We are now able to describe the algorithm for finding an integral solution to the

function f . When for some nonzero sign vector s a t-simplex σ =< x1, · · · , xt+1 > in A(s)

is almost s-complete, the system (2.1) has two “basic solutions”. At each of these solutions

exactly one condition on the rows of the solution W is binding. If wh � 0 is binding for

some h, 1 ≤ h ≤ t + 1, then the facet τ of σ opposite the vertex xh is s-complete, then,

if not complete, τ is either (i) the 0-dimensional simplex < v > or (ii) a facet of precisely

one other almost s-complete t-simplex σ′ of the triangulation in A(s) or (iii) lies on the

boundary of A(s) and is an almost s′-complete (t − 1)-simplex in A(s′) for some unique

nonzero sign vector s′ with t − 1 nonzero elements differing from s in only one element.

If wn+2 � 0 is binding, then wn+21 = 0 and σ must be complete. Further, if wn+2 � wi

(wn+2 � −wi) for some t + 1 < i ≤ n + 1 and, if not complete, σ is an s′-complete facet

of precisely one almost s′-complete (t+1)-simplex in A(s′) for some nonzero sign vector s′

differing from s in only the ith element, namely s′i = +1 (−1).
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Since < v > is s0-complete, σ0 is an almost s0-complete 1-dimensional simplex in

A(s0). Starting with σ0 the 2n-ray algorithm generates a sequence of adjacent almost

s-complete simplices in A(s) with s-complete common facets for varying sign vectors s.

Moving from one s-complete facet to the next s′-complete facet corresponds to making a

lexicographic linear programming pivot step from one of the two basic solutions of sys-

tem (2.1) to the other one. The algorithm stops as soon as it finds a complete simplex.

We will show that in that case one of its vertices is a discrete zero point of the function f .

Lemma 2.3 Suppose that f is simplicially local gross direction preserving with respect to

T . Then any complete simplex contains a discrete zero point of the function f .

Proof. Let x1, · · ·, xk+1 be the vertices of a complete simplex σ in A(s) and let t be the

number of nonzeros in s. Notice that k = t − 1 or k = t depending on whether σ is a t-

simplex in A(s) or a facet of a t-simplex in A(s). From the system (2.1) it follows that there

exists λ1 ≥ 0, · · ·, λk+1 ≥ 0 with sum equal to one such that
∑k+1

j=1 λjf(x
j) = 0n. Let j∗

be such that λj∗ > 0. Then by premultiplying f(xj
∗

) on both sides of
∑k+1

j=1 λjf(x
j) = 0n,

we obtain

λ1f(x
1) · f(xj

∗

) + · · ·+ λj∗f(x
j∗) · f(xj

∗

) + · · ·+ λk+1f(x
k+1) · f(xj

∗

) = 0.

Since f is simplicially local gross direction preserving, it is easy to see that every term in

the above expression is nonnegative. Therefore every term is equal to zero. In particular,

f(xj
∗

) = 0n, and so xj
∗

is a discrete zero point of the function f . �

In the next two sections we propose two different boundary conditions guaranteeing

that the algorithm terminates within a finite number of steps.

3 Convergence Condition I

For x ∈ Zn, let N(x) denote the set of integer points being cell-connected to x. Our first

condition under which a discrete zero point will be found by the algorithm is given in the

following assumption.

Assumption 3.1 Given a function f : Zn → IRn, there exist vectors m, M ∈ Zn, with

mh < Mh− 1 for every h ∈ N , such that for every integral vector x on the boundary of the

set Cn = {z ∈ IRn | m ≤ z ≤M} the following conditions hold:

(i) If xi = mi then fi(y) ≥ 0 for all y ∈ N(x)∩Cn satisfying yi = mi or there exists j ∈ N

such that fj(y) < fi(y) for all y ∈ N(x) ∩ C
n satisfying yi = mi.

(ii) If xi = Mi then fi(y) ≤ 0 for all y ∈ N(x) ∩ Cn satisfying yi = Mi or there exists

j ∈ N such that fj(y) > fi(y) for all y ∈ N(x) ∩ C
n satisfying yi =Mi.
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The condition means that there exist lower and upper bounds, such that when x is an inte-

gral vector on the ith lower (upper) bound, then either fi(y) is nonnegative (nonpositive)

for any integral vector y on the same lower (upper) bound being cell-connected to x or,

for some j 
= i, fi(y) is larger (smaller) than fj(y) for any integral vector y on the same

lower (upper) bound being cell-connected to x. We show that under this condition any

simplicially local gross direction preserving function has a discrete zero point within the

bounded set induced by the lower and upper bounds.

Theorem 3.2 Let f : Zn → IRn be a simplicially local gross direction preserving func-

tion with respect to some integral triangulation T . When f satisfies Assumption 3.1, then

f has a discrete zero point in the set Cn.

Proof. Take any integral vector in the interior of the set Cn as the starting point v of

the algorithm. By definition of integral triangulation, T triangulates the set Cn and also

the set A(s) ∩ Cn for any sign vector s into integral simplices.

For some nonzero sign vector s, let τ be an s-complete facet in A(s) with vertices

x1, · · · , xt, where t is the number of nonzeros in s. We first show that τ is complete if it

is on the boundary of Cn. From system (2.1) it follows that there exist λ1 ≥ 0, · · · , λt ≥ 0

with sum equal to one, β ≥ 0, and −β ≤ µi ≤ β for si = 0, such that f̄i(z) = β if

si = 1, f̄i(z) = −β if si = −1, and f̄i(z) = µi if si = 0, where z =
∑t

i=1 λix
i and

f̄(z) =
∑t

i=1 λif(x
i), i.e., f̄ is the piecewise linear extension of f with respect to T . Since

τ lies on the boundary of Cn, there exists an index h such that either xjh = mh for all j or

xjh = Mh for all j. In case xjh = mh for all j, we have sh = −1 and therefore f̄h(z) = −β.

Furthermore, by Assumption 3.1, we have (i) fh(x
j) ≥ 0 for all j or (ii) there exists k

such that fk(x
j) < fh(x

j) for all j. In case (ii) we have fk(x
j) < fh(x

j) for all j. Hence

f̄k(z) < f̄h(z). On the other hand, f̄k(z) ≥ −β = f̄h(z), yielding a contradiction, i.e. this

case cannot occur. In case (i) we obtain f̄h(z) ≥ 0. On the other hand f̄h(z) = −β ≤ 0.

Therefore f̄h(z) = 0 and also β = 0. Since wn+11 = β we obtain that τ is complete.

Similarly, we can show that the same results hold for the case of xjh =Mh for all j.

Now, consider the algorithm as described at the end of the previous section. Due

to the lexicographic pivoting rule, the algorithm will never visit any simplex more than

once. So, because the number of simplices in Cn is finite, the algorithm finds within a

finite number of steps either a complete simplex σ or, for some s, it reaches an s-complete

facet τ on the boundary of Cn. As shown above, also such a facet τ is complete. Hence,

the algorithm finds a complete simplex in Cn within a finite number of steps. Since f is

simplicially local gross direction preserving, Lemma 2.3 guarantees that at least one of the

vertices of this complete simplex is a discrete zero point of the function f . �
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Above we have provided a constructive proof of Theorem 3.2 based on the combi-

natorial argument that the algorithm ends within a finite number of steps with a simplex

having one of its vertices as integral solution to f . Observe that the theorem implies the

following corollary.

Corollary 3.3 Let f : Zn → IRn be a simplicially local gross direction preserving func-

tion. Suppose that there exist vectors m, M ∈ Zn, with mh < Mh−1 for every h ∈ N , such

that for every integral vector x on the boundary of the set Cn = {z ∈ IRn | m ≤ z ≤ M},

xi = mi implies fi(x) ≥ 0 and xi =Mi implies fi(x) ≤ 0. Then f has a discrete zero point

in Cn.

4 Convergence Condition II

Now we present a second condition under which a discrete zero point is shown to exist.

Assumption 4.1 Given a function f : Zn → IRn, there exists a vector u ∈ Zn with

uh ≥ 1 for all h ∈ N , such that f(x) · f(−y) ≤ 0 for any cell-connected integral points x

and y lying on a same proper face of the set Un = {z ∈ IRn | −u ≤ z ≤ u}.

This boundary condition is very natural and can be viewed as a discrete analogue

of a weak version of the Borsuk-Ulam antipodal condition for a continuous function saying

that f(x) · f(−x) ≤ 0 when x is on the boundary of Un. It has been shown that under

the latter condition a continuous function has a zero point; see for instance van der Laan

[15] and Yang [32]. Todd and Wright [30] used a modification of the 2n-ray algorithm to

give a constructive proof of the Borsuk-Ulam theorem and Freund and Todd [9] used the

modified algorithm to give a constructive proof for a combinatorial lemma due to Tucker

[31]. The following theorem was originally given in Yang [34].

Theorem 4.2 Let f : Zn → IRn be a locally gross direction preserving function satisfy-

ing Assumption 4.1. Then f has a discrete zero point in Un.

In contrast to the nonconstructive proof in [34], below we give a constructive proof

based on the combinatorial argument that the modified 2n-ray algorithm finds an integral

solution within a finite number of steps. The proof is based on a lemma on the extension

V n of the set Un given by

V n = {x ∈ IRn | −(ui + 1) ≤ xi ≤ ui + 1, ∀i ∈ N}.

Let the projection function p : V n → Un be defined by

ph(x) = max{−uh,min{uh, xh}}, for all h ∈ N.
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Clearly, p(x) = x if x ∈ Un. Moreover, p(x) ∈ Un ∩ Zn if x ∈ V n ∩ Zn. We now define the

function g : V n∩Zn → IRn by setting g(x) = f(x) for x ∈ Un and g(x) = f(p(x))−f(−p(x))

for x ∈ V n \ Un. Then, it is easy to show that g(x) = −g(−x) for any x ∈ Zn ∩ Bd(V n).

We now have the following lemma.

Lemma 4.3 Let f : Zn → IRn be a locally gross direction preserving function satisfying

Assumption 4.1. Then g is locally gross direction preserving on Zn ∩ V n.

Proof. Clearly, g is locally gross direction preserving for any cell-connected points in Un.

It remains to consider the following two cases.

First, let x, y ∈ Zn be two cell-connected points on the boundary of V n. Then p(x)

and p(y) are cell-connected and lie on a same proper face of Un, so that

g(x) · g(y) = (f(p(x))− f(−p(x))) · (f(p(y))− f(−p(y)))

= f(p(x)) · f(p(y))− f(p(x)) · f(−p(y))− f(−p(x)) · f(p(y))

+ f(−p(x)) · f(−p(y)) ≥ 0,

where the inequality follows from both the locally gross direction preservation of f and the

boundary condition.

Second, let x, y ∈ Zn be two cell-connected points with x on the boundary of Un

and y on the boundary of V n. Then x and p(y) are two cell-connected points and lie on a

same proper face of Un, so that

g(x) · g(y) = f(x) · (f(p(y))− f(−p(y)))

= f(x) · f(p(y))− f(x) · f(−p(y)) ≥ 0,

where the inequality again follows from both the locally gross direction preservation of f

and the boundary condition. �

We are now ready to prove Theorem 4.2 by using a symmetric integral triangulation

of IRn in the sense that if σ is a simplex of the triangulation, then −σ is also a simplex

of the triangulation. For instance, the K ′-triangulation of IRn introduced in Todd [28] is a

symmetric integral triangulation.

Proof of Theorem 4.2. To prove the theorem, let the set V n and the function g be

defined as above. Take the origin 0n of IRn as the starting point v of the algorithm as

described in Section 2 and take a symmetric integral triangulation T of V n.

Starting with the origin, the algorithm generates a sequence of adjacent almost s-

complete simplices with s-complete common facets in A(s)∩ V n for varying sign vectors s

with the following modification. If τ is an s-complete facet lying in A(s) on the boundary of

V n, then the antipodal facet −τ is a (−s)-complete facet in A(−s) on the boundary of V n,
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since g(x) = −g(−x) for any x ∈ Zn∩Bd(V n). The algorithm continues in A(−s)∩V n with

the unique almost (−s)-complete simplex in this set containing −τ as facet. The algorithm

therefore always stays in V n and due to the lexicographic pivoting rule will never visit any

simplex in V n more than once. Since the number of simplices in V n is finite, within a finite

number of steps the algorithm terminates with a complete simplex σ∗ in V n. Since g is

locally gross direction preserving and thus also simplicially local gross direction preserving

on V n, by the Lemmas 2.3 and 4.3 it follows that σ∗ has a vertex z being a discrete zero

point of g. It remains to prove that p(z) ∈ Un is a discrete zero point of f . If z is not

on the boundary of V n, then z = p(z) is an integral vector in Un and f(z) = g(z). Since

g(z) = 0n, this implies that z is a discrete zero point of f . Suppose z is on the boundary

of V n. Since g(z) = 0n, this implies

0 = f(p(z)) · g(z) = f(p(z)) · (f(p(z))− f(−p(z)))

= f(p(z)) · f(p(z))− f(p(z)) · f(−p(z)),

and therefore

0 ≤ f(p(z)) · f(p(z)) = f(p(z)) · f(−p(z)) ≤ 0,

where the last inequality follows from the boundary condition on f . Hence, f(p(z)) ·

f(p(z)) = 0 and therefore p(z) is a discrete zero point of f in Un. �

5 Integral Solution of Complementarity Problems

The complementarity problem is to find a point x∗ ∈ IRn such that

x∗ ≥ 0n, f(x∗) ≥ 0n, and x∗ · f(x∗) = 0,

where f is a given function from IRn into itself. Specifically, if f is affine, the problem

is called the linear complementarity problem. In general, for an arbitrary function f , the

problem is called the nonlinear complementarity problem. If the solution of the complemen-

tarity problem is required to be integral or if the function f is defined only on the integer

lattice Zn of IRn, then we call the problem the discrete complementarity problem, denoted

by DCP(f). There is by now a voluminous literature on the complementarity problem, see

Lemke [21], Cottle [2], Eaves [5], Karamardian [12], Moré [23], [24], Kojima [13], van der

Laan and Talman [18] among others. For comprehensive surveys on the subject, see for

example Kojima et al. [14], Cottle et al. [3], Facchinei and Pang [8].

In this section we give a sufficient condition under which DCP(f) has a solution.

For any x, y ∈ IRn, let I(x) = {i | xi > 0} and let I(x, y) = I(x) ∪ I(y).
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Definition 5.1 A function f : Zn → IRn is simplicially local gross direction preserving

on Zn+ with respect to some integral triangulation T of IRn, if for any two vertices x and y

of any simplex of T in IRn+ it holds that

fi(x)fi(y) ≥ 0, for i /∈ I(x, y),

and

∑

h∈I(x,y)

fh(x)fh(y) ≥ 0.

Theorem 5.2 Let f : Zn → IRn be a simplicially local gross direction preserving func-

tion on Zn+. When there exists a vector M ∈ Zn++ such that for any x ∈ Zn+, xi = Mi

implies fi(x) ≥ 0, then DCP(f) has a solution.

To prove the theorem we adapt the algorithm described in Section 2 to the current problem

by making several modifications. First, the origin 0n of the set IRn is chosen to be the

starting point v of the algorithm. Since 0n lies on the boundary of IRn+, the sets A(s) and

s-completeness are only defined for nonnegative sign vectors s. Notice that for such sign

vector s it holds that A(s) = {x ∈ IRn+ | xi = 0 whenever si = 0}.

Next, we adapt the concepts of an almost s-complete simplex and an s-complete

facet. For some nonnegative (nonzero) sign vector s with t positive components, denote

{h1, . . . , hn−t} = {h | sh = 0} and let σ =< x1, · · · , xt+1 > be a t-simplex of the triangula-

tion in A(s). Then σ is almost s-complete if there is an (n+ 2)× (n+ 1) matrix W being

a solution to system
[

1 · · · 1 0 · · · 0 1

f(x1) · · · f(xt+1) −e(h1) · · · −e(hn−t) s

]

W = I (5.3)

and having rows w1, · · · , wn+2 such that wh � 0 for 1 ≤ h ≤ t + 1, wn+2 � −wi for

t+ 1 < i ≤ n+ 1 and wn+2 � 0. If wn+21 = 0, then we say that the simplex σ is complete.

A facet τ of σ, without loss of generality given by τ =< x1, · · · , xt >, is s-complete if there

is an (n+ 1)× (n+ 1) matrix W being a solution to system
[

1 · · · 1 0 · · · 0 1

f(x1) · · · f(xt) −e(h1) · · · −e(hn−t) s

]

W = I (5.4)

and having rows w1, · · · , wn+1 such that wh � 0 for 1 ≤ h ≤ t, wn+1 � −wi for t+1 ≤ i ≤ n

and wn+1 � 0. If wn+11 = 0, then we say that τ is complete.

With respect to the starting point 0n, let α = minh fh(0
n). If α ≥ 0 then 0n solves

DCP(f) and the algorithm terminates. Suppose the origin does not solve DCP(f), i.e.

α < 0, then let s0 be the sign vector with s0k = 1, where k is the smallest index h such
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that fh(0
n) = α, and s0j = 0 for j 
= k. Similarly as in Section 2, it can be shown that the

simplex < 0n > is an s0-complete facet of the unique 1-dimensional simplex σ0 in A(s0)

having < 0n > as one of its facets. Furthermore σ0 is almost s0-complete.

We now apply the algorithm as described in Section 2. Let Cn = {x ∈ IRn+ |

x ≤ M} and let T be the integral triangulation of IRn with respect to the function f .

This triangulation subdivides IRn+ and the set A(s) for every nonnegative sign vector s

into t-dimensional integral simplices. Starting with σ0, the algorithm generates a unique

sequence of adjacent almost s-complete simplices in A(s) with s-complete common facets,

for varying nonnegative sign vectors s. The algorithm stops when an s-complete facet on

the upper boundary of Cn is generated or when a complete simplex in A(s) is found. The

next lemma says that in the first case the facet must be complete.

Lemma 5.3 For some nonnegative sign vector s, let τ be an s-complete facet of an almost

s-complete simplex in A(s)∩Cn, lying on the upper boundary of Cn. Then τ is a complete

facet.

Proof. Let τ =< x1, · · · , xt >, where t is the number of positive components of s. From

system (5.4) it follows that there exist λ1 ≥ 0, · · · , λt ≥ 0 with sum equal to one, β ≥ 0,

and µi ≥ −β for si = 0, such that f̄i(z) = −β when si = 1 and f̄i(z) = µi when si = 0,

where z =
∑t

i=1 λix
i and f̄ is the piecewise linear extension of f on IRn. Since τ lies on the

upper boundary of Cn, there exists an index h such that xjh = Mh for all j. But then we

must have sh = 1 and therefore f̄h(z) = −β ≤ 0. On the other hand, by assumption on f ,

it holds that fh(x
j) ≥ 0 for all j. Hence, we obtain f̄h(z) =

∑t

j=1 λjfh(x
j) ≥ 0. Therefore

wn+11 = β = 0, i.e. τ is complete. �

The lemma implies that if the origin does not solve the problem, the algorithm only

stops with a complete simplex or facet. The next lemma says that at least one of the

vertices of any complete simplex or facet solves the discrete complementarity problem.

Lemma 5.4 For some nonnegative sign vector s, let σ be a complete simplex or facet in

A(s). Then σ contains a vertex being a solution to DCP(f).

Proof. Let σ =< x1, · · · , xh+1 > be a complete h-simplex in A(s), where h = t or t + 1

and t is the number of positive components of s. From (5.4) in case h = t or (5.3) in case

h = t+1 it follows that there exist λ1 ≥ 0, · · · , λh+1 ≥ 0 with sum equal to one and µi ≥ 0

for si = 0 such that f̄i(z) = 0 if si = 1, and f̄i(z) = µi if si = 0, where z =
∑h+1

i=1 λix
i.

Since z ∈ A(s), we also have zi = 0 if si = 0 and zi ≥ 0 if si = 1. So, f̄i(z) ≥ 0 if

zi = 0 and f̄i(z) = 0 if zi > 0, i.e., z solves the nonlinear complementarity problem with

respect to f̄ . Now, let ρ =< y1, . . . , yk > be the unique (k−1)-face of σ containing z in its
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relative interior. Hence, there exist unique positive numbers λ1, . . . , λk summing up to 1

such that z =
∑k

j=1 λjy
j and f̄(z) =

∑k

j=1 λjf(y
j). Take any j∗ between 1 and k. Suppose

first that zi = 0 and f̄i(z) > 0 for some i. Clearly, yji = 0 for all j = 1, . . . , k. Since

f̄i(z) =
∑k

j=1 λjfi(y
j) there exists h such that fi(y

h) > 0. Since yh and yj
∗

are simplicially

connected and yhi = yj
∗

i = 0, we have that fi(y
h)fi(y

j∗) ≥ 0, and therefore yj
∗

i = 0 and

fi(y
j∗) ≥ 0. Suppose next that zi = 0 and f̄i(z) = 0 for some i. Again, yji = 0 for all

j = 1, . . . , k. Since f̄i(z) =
∑k

j=1 λjfi(y
j) and f̄i(z) = 0, we obtain

∑k

j=1 λjfi(y
j) = 0 and

therefore
∑k

j=1 λjfi(y
j)fi(y

j∗) = 0. Since for all j it holds that yj and yj
∗

are simplicially

connected and yji = y
j∗

i = 0, we have fi(y
j)fi(y

j∗) ≥ 0, and so each term in the summation

must be zero. In particular, it holds that λj∗f
2
i (y

j∗) = 0. Since λj∗ > 0, this implies

fi(y
j∗) = 0.

Thus far we have shown that whenever zi = 0 both fi(y
j∗) ≥ 0 and yj

∗

i = 0 must

hold. It remains to show that for zi > 0 it holds that yj
∗

i ≥ 0 and fi(y
j∗) = 0, and hence that

yj
∗

is a solution to DCP(f). Clearly, yj
∗

i ≥ 0 if zi > 0. Moreover, f̄i(z) =
∑k

j=1 λjfi(y
j) = 0

whenever zi > 0. Therefore,

∑

h∈I(z)

k∑

j=1

λjfh(y
j)fh(y

j∗) = 0

and so

k∑

j=1

(λj
∑

h∈I(z)

fh(y
j)fh(y

j∗)) = 0.

Since I(z) contains the set I(yj , yj
∗

) and yj and yj
∗

are simplicially connected for all j, by

hypothesis we have that each of the k terms between brackets is nonnegative and therefore

must be zero. Hence,

λj∗
∑

h∈I(z)

f 2h(y
j∗) = 0.

Since λj∗ > 0, we obtain fh(y
j∗) = 0 for all h ∈ I(z). Therefore fi(y

j∗) = 0 and yj
∗

i ≥ 0 if

zi > 0, which completes the proof. �

Theorem 5.2 now follows from the two lemmas stated above by a combinatorial

argument.

Proof of Theorem 5.2. For varying nonnegative sign vectors s, the algorithm generates

a sequence of almost s-complete simplices in A(s) with s-complete common facets. The

algorithm cannot leave Cn, because according to Lemma 5.3 it stops with a complete facet

when it generates an s-complete facet on the upper bound of Cn. Due to the lexicographic
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pivoting rule, the algorithm will never visit any simplex more than once. Since the number

of simplices in Cn is finite, the algorithm therefore must terminate within a finite number

of steps with a complete simplex or facet in Cn. According to Lemma 5.4 one of its vertices

is a solution to DCP(f). �
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[23] Moré, J.J., 1974a. Coercivity conditions in nonlinear complementarity problem. SIAM

Review 17, 1-16.
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