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Abstract

The Nash bargaining solution of a modi�ed bargaining problem in the contract space
yields the pair of stationary subgame perfect equilibrium proposals in the alternating
o¤ers model, also for positive time between proposals. As time vanishes, convergence
to the Nash bargaining solution is immediate by the Maximum Theorem. Numerical
implementation in standard optimization packages is straightforward.
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1 Introduction

This note provides a powerful framework for characterizing stationary subgame perfect equi-

librium (SSPE) proposals in alternating o¤ers directly in an �economic environment�, as

de�ned in Roemer (1988), that is attractive to both theoretical and applied economics. The

main result states that for all discount factors, the pair of SSPE proposals in the economic

environment corresponds to the asymmetric Nash bargaining solution of a modi�ed bargain-

ing problem in the economic environment, where the players�bargaining weights are related

to the players�discount factors as in Binmore et al. (1986). This program is convex and allows

to invoke the Maximum Theorem, see e.g. Varian (1992), which establishes existence of a

convex set of maximizers. The program is even strict convex for the interior of the parameter

space of time preferences and strictly quasi-concave utility functions and, then, the optimum

is unique. Moreover, the Maximum Theorem also implies upper semi-continuity of the pairs

of proposals in all parameters and, in particular, in �the time between bargaining rounds�,

which becomes continuity in case of a unique optimum. Therefore, the Maximum Theorem

immediately establishes the convergence in the economic environment to the asymmetric

Nash bargaining solution as the time between proposals vanishes. Finally, the single convex

program makes numerical implementation of SSPE proposals in the economic environment

relatively easy and allows for robust computational algorithms that are widely available in

many optimization packages, such as GAMS. This will enhance serious applications in the

future including applied general equilibrium (AGE) modeling as surveyed in e.g. Ginsburgh

and Keyzer (2002).

This note is organized as follows. In Section 2, we follow Roemer (1988) by taking

the economic environment as the main primitive, which �rmly roots our results within the

class of AGE models. In this section we also state the equivalence between pairs of SSPE

proposals and a single convex program for the utility representation, as recently shown in

Houba (2005). Our main results are derived in Section 3 and numerical implementation

discussed in Section 4.
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2 The model

Consider the extended version of the alternating o¤ers model with discounting in Rubinstein

(1982), where the economic environment in Roemer (1988) replaces the dollar.1 Formally,

the two players are indexed i = 1; 2. The economy has n � 2 commodities, a vector of initial

endowments !i 2 Rn+ for player i, total endowments ! = !1 + !2 > 0 and monotonic and

concave utility functions ui : Rn+ ! R. The subject of the negotiations is a feasible allocation

z = (z1; z2), z1; z2 2 Rn+ and z1 + z2 � !. We assume that the initial allocation is Pareto

ine¢ cient meaning the bargaining problem is essential.

The alternating o¤ers procedure is as follows: Bargaining rounds are indexed t 2 N. At

t odd, player 1 proposes the feasible allocation zt = (z1;t; z2;t) and, then, player 2 accepts

or rejects. Accept ends the negotiations. If rejected, then e�r2�, r2 � 0 and �time between

bargaining round�� � 0, is the probability of a next (even) round. At t even, the players�

roles are reversed and the probability of a next (odd) round is e�r1�, r1 � 0. Utilities

over outcomes in the procedure are expected utilities. The equilibrium concept is subgame

perfectness. Note that we allow for � = 0 and all (r1; r2) � [0;1)2, (r1; r2) 6= (0; 0).

Whenever it is convenient to write �i instead of e�ri� we do so.

Our analysis builds on a recent result in Houba (2005) for essential and convex bargaining

problems in utility representation. Economic environments induce such bargaining problems,

denoted as (S; d) with S 2 R2 the nonempty, compact and convex set of feasible utility pairs,

disagreement point d 2 S and there exists an s 2 S such that s > d, see e.g. Roemer (1988).

The set of individually rational utility pairs is given by SIR = fs 2 Sjs � dg and the curve

si = fi (sj), i; j = 1; 2, i 6= j, describes it Pareto frontier. The function fi is decreasing and

concave. Furthermore, f2 is the inverse function of f1.

For convex bargaining problems, the alternating o¤ers model in utility representation

yields a unique subgame perfect equilibrium in stationary strategies. Denote x 2 S, re-

1Alternatively, as in Nash (1950), we could have assumed (linear) expected utility functions on a sim-
plex representing probability distributions on a discrete outcome space or, extend the analysis to concave
nonexpected utility functions over this simplex, see e.g. Houba and Bolt (2002).
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spectively, y 2 S as arbitrary SSPE proposal for player 1 and 2, respectively. Such SSPE

proposals are Pareto e¢ cient and correspond to x = (x1; f2 (x1)) and y = (f1 (y2) ; y2).

Houba (2005) shows that (x1; y2) is the unique solution of

(x1; y2) = arg max
s1�d1;s2�d2

(s1 � d1)� (s2 � d2)1�� ; (1)

s.t. s1 � f1 ((1� �2) d2 + �2s2) ;

s2 � f2 ((1� �1) d1 + �1s1) ;

where � � � (r1; r2;�) = ln �2=(ln �1 + ln �2) = r2= (r1 + r2) 2 [0; 1] for all � 2 [0;1),

provided (r1; r2) 6= (0; 0). In the unique optimum both constraints are binding, which yields

the familiar �xed point problem as in e.g. Muthoo (1999) and Houba and Bolt (2002).

Moreover, by the Maximum Theorem, the unique (x1 (r1; r2;�) ; y2 (r1; r2;�)) of (1) is con-

tinuous in r1, r2 and �. In particular, as the time between bargaining rounds vanishes, the

limit (x1 (r1; r2; 0) ; y2 (r1; r2; 0)) exists and coincides with the Nash bargaining solution with

� = r2= (r1 + r2).

3 The convex program

In this section, we �rst transform program (1) directly in terms of a single convex program for

the economic environment and show the latter program corresponds to the SSPE in utility

representation. Furthermore, we establish limit results when the time between bargaining

rounds vanishes.

Stationary strategies in the economic environment prescribe the player-dependent allo-

cation x̂ = (x̂1; x̂2) and ŷ = (ŷ1; ŷ2) for player 1 and 2, respectively. Feasibility imposes

x̂1 + x̂2 � ! and ŷ1 + ŷ2 � !. The link with the utility representation goes through the

equalities xi = ui (x̂
i), yi = ui (ŷ

i) and di = ui (!
i), i = 1; 2. Furthermore, in any SSPE

player 1 accepts ŷ if and only if u1 (ŷ1) � (1� �1) d1 + �1u1 (x̂1), see e.g. Houba and Bolt

(2002). Similar, u2 (x̂2) � (1� �2) d2 + �2u2 (ŷ2). The (in)equality constraints pose some

minor problems with respect to the convexity of the program that can be circumvented by
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rewriting program (1) for the economic environment as

max
s1�d1;s2�d2;x̂i;ŷi2Rn+

(s1 � d1)� (s2 � d2)1�� ; (2)

s.t. s1 � u1
�
x̂1
�
;

s2 � u2
�
ŷ2
�
;

(1� �1) d1 + �1s1 � u1
�
ŷ1
�
;

(1� �2) d2 + �2s2 � u2
�
x̂2
�
;

x̂1 + x̂2 � !; (px)

ŷ1 + ŷ2 � !; (py)

where px and py denote the vector of shadow prices associated with the player-dependent

proposals. This program states the formula for the Nash bargaining solution in the modi�ed

economic environment for all parameter values. The assumptions made are su¢ cient to

ensure that program (2) is a convex program that meets Slater�s constraint quali�cation.

Excluding the trivial dictatorship weights corresponding to � (r1; r2;�) equal to 0 or 1, we

establish that in any optimum of program (2) all six constraints are binding and, therefore

such optimum coincides with the optimum of program (1).

Proposition 1 Let r1; r2 > 0. All constraints in program (2) are binding.

Proof.

In any optimum, Pareto e¢ ciency of x̂ and ŷ and monotonic utility functions imply binding

feasibility constraints in (2). Next, the other constraints in (2) impose

s1 � min
�
u1
�
x̂1
�
; ��11 u1

�
ŷ1
�
� ��11 (1� �1) d1

	
;

s2 � min
�
u2
�
ŷ2
�
; ��12 u2

�
x̂2
�
� ��12 (1� �2) d2

	
;

which are necessarily binding when � (r1; r2;�) 2 (0; 1). By symmetry of arguments, it

su¢ ces to investigate two cases.

1. u1 (x̂1) < ��11 u1 (ŷ
1) � ��11 (1� �1) d1 and u2 (ŷ2) < ��12 u2 (x̂

2) � ��12 (1� �2) d2. Then,
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slightly increasing x̂1 and ŷ2 at the expense of x̂2 and ŷ1, respectively, relaxes both constraints

and improves the objective. Hence, a contradiction. The argument can be accommodated if

one of the inequalities is an equality.

2. u1 (x̂1) < ��11 u1 (ŷ
1) � ��11 (1� �1) d1 and u2 (ŷ2) > ��12 u2 (x̂

2) � ��12 (1� �2) d2. Then,

substitution yields

(x1 � d1)� (y2 � d2)1�� =
�
u1
�
x̂1
�
� d1

�� �
��12

�
u1
�
x̂2
�
� d2

��1��
<

�
��11

�
u1
�
ŷ1
�
� d1

��� �
u2
�
ŷ2
�
� d2

�1��
;

because ��1 = �
1��
2 in e.g. Muthoo (1999) and Houba and Bolt (2002). So, the Pareto e¢ cient

allocation x̂ maximizes the Nash product over x̂1 + x̂2 � !, which implies that ŷ is infeasi-

ble. Hence, a contradiction. The argument can be accommodated if one of the inequalities

is an equality, provided � (r1; r2;�) 2 (0; 1) to preserve the inequality in the Nash product. �

Uniqueness of SSPE allocations can be easily extended, because positive bargaining

weights and strictly quasi-concave utility functions make program (2) strictly convex. This

extension generalizes the strict log-concavity required in Hoel (1986) for the �divide the dol-

lar�. Houba and Bolt (2002) provide nongeneric examples of multiplicity in the contract

space, but they conclude that the generic case is that each pair of SSPE utilities corre-

sponds to a unique pair of SSPE contracts in case of quasi-concave utility functions. These

arguments combined with the Maximum Theorem yield the following convergence result.2

Theorem 2 Let (r1; r2) 6= (0; 0) and ui quasi-concave. The set of maximizing allocations

fx̂ (r1; r2;�) ; ŷ (r1; r2;�)g in program (2) form a nonempty, compact, convex-valued and

upper semi-continuous correspondence in r1, r2 and � (including � = 0). Moreover, the

set fx̂ (r1; r2; 0) ; ŷ (r1; r2; 0)g exists and coincides with the set of Nash bargaining solutions

with weight �. If additionally, r1; r2 > 0 and ui strict quasi-concave, then the unique pair

x̂ (r1; r2;�) and ŷ (r1; r2;�) are continuous in r1, r2 and �.

2For completeness, upper semi-continuity in the parameters !1 and !2 also holds.
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4 Numerical implementation

This section contains a brief discussion on the numerical implementation of program (2).

The reformulation of program (1) into the convex program (2) enhances numerical imple-

mentation of the alternating o¤ers model in economic environments, because many optimiza-

tion packages, such as GAMS, are nowadays available that allow for robust computational

algorithms for convex programs. In AGE models, the Nash bargaining solution at � = 0

is already popular and it features x̂ = ŷ = z. It can be implemented by less variables and

constraints by solving

max
z1;z22Rn+

�
u1
�
z1
�
� d1

�� �
u2
�
z2
�
� d2

�1��
; s.t. z1 + z2 � !: (3)

So, the additional costs in terms of additional variables and constraints of solving SSPE

proposals in (2) instead of the Nash bargaining solution in (3) amounts to 2n + 2 variables

and n+ 4 constraints of which 4 nonlinear.

The optimum of program (2) can be decentralized through markets and price-taking

behavior on behalf of the two �consumers�. In that case, the shadow prices px and py are the

market clearing prices associated with allocations x̂ and ŷ, respectively. By the Maximum

Theorem, the shadow prices px and py are nonnegative and also form a nonempty, compact

convex-valued and upper semi-continuous correspondence in the parameters r1, r2, � �

0. By the Second Welfare Theorem, decentralization through markets requires (possibly

negative) lump-sum taxation of player 1 equal to T x = px (!1 � x̂1) in case the players

agree to implement x̂ and T y = py (!1 � ŷ1) for ŷ. Hence, program (2) facilitates studies

of the �rst-mover advantage in terms of market clearing prices and lump-sum taxation.

Decentralization is important in AGE modeling involving convex production technologies,

because the extended program (2) then admits smaller subprograms solving each producer�s

pro�t maximization problem.
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5 Concluding Remark

Quasi-concave utility functions are su¢ cient for the generic uniqueness of the optimum of

(2). Such utility functions impose the generalized class of strongly comprehensive bargaining

problems in utility representation (UR). Application of the method in Shaked and Sutton

(1984) for two-player strictly comprehensive bargaining problems in UR implies that unique-

ness in subgame perfect equilibrium strategies is equivalent to uniqueness in SSPE strategies.

For such bargaining problems, the results in Houba (2005) can be extended such that each

pair of SSPE proposals corresponds to one intersection point of the two constraints in (1)

and in each intersection point the Nash product is tangent to the Pareto frontier spanned

by these two constraints. Then, the maximum of program (1) corresponds to a pair of SSPE

strategies in UR that is axiomatized in Kaneko (1980), whereas the set of all intersection

point on the Pareto frontier of (1) is axiomatized as in Herrero (1989) and multiple inter-

section points may exists. These results for UR directly translate into local maxima and

minima in (2). For economic environments, generic uniqueness of the optimum of (2) is

therefore not su¢ cient to conclude overall uniqueness in SSPE strategies. What is needed is

the stronger uniqueness in tangency points. A simple numerical test consists of minimizing

the Nash product in (2) and reversing the inequality signs. If the minimization program

yields the same value for the objective as (2), then overall uniqueness is obtained.
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