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Abstract

A symmetric network consists of a set of positions and a set of bilateral links

between these positions. Examples of such networks are exchange networks, com-

munication networks, disease transmission networks, control networks etc. For

every symmetric network we define a cooperative transferable utility game that

measures the “power” of each coalition of positions in the network. Applying the

Shapley value to this game yields a network power measure, the β-measure, which

reflects the power of the individual positions in the network.

Applying this power distribution method iteratively yields a limit distribution,

which turns out to equal the well-known degree measure. We compare the β-

measure and degree measure by providing characterizations, which differ only in

the normalization that is used.
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1 Introduction

An undirected graph, which consists of a set of positions and a set of links between

pairs of positions, can represent various types of networks. Examples of such symmetric

networks, in which the roles of the two positions on each link are symmetric, are exchange

networks, communication networks, disease transmission networks and control networks.

On the other hand, in asymmetric networks the positions on a link have different roles.

One can think of buyer-seller networks or firm structures. The purpose of this paper is

to measure “power” or “control” of positions in symmetric networks.

For every symmetric network we define a cooperative transferable utility game

that measures the power of coalitions of positions. Applying the Shapley value (Shapley

(1953)) to this network power game yields the β-measure, which is discussed in van

den Brink and Gilles (2000) and van den Brink and Borm (2002) for asymmetric net-

works. The idea behind the β-measure is that each position in a network has an initial

weight equal to 1, and measuring power is seen as fairly redistributing this weight to

all its neighbours. This measure fits well with power dependence theory as developed by

Emerson (1962) since the power value of a position decreases when its neighbours have

more other neighbours.

Instead of taking initial weights equal to 1, it seems natural to take weights that

already reflect some power of the positions. In this way one obtains weighted β-measures.

Similar as done in Borm, van den Brink and Slikker (2002) for asymmetric networks, we

consider a sequence of weighted β-measures. Starting with the (unweighted) β-measure,

we compute in each step a new weighted β-measure, taking the outcome of the previous

step as input weights. We show that this sequence has a limit, which equals the well-

known degree measure for symmetric networks. This degree measure assigns to every

position just its number of direct neighbours.

At first sight the degree measure only seems to take the direct relations of

a position into account in determining its power value, whereas the β-measure takes

account of (some) indirect relations. Therefore, the degree measure is usually considered

to be a local power measure. However, since the degree measure is the limit of the

sequence of weighted β-measures, it can be seen as a global measure within the context

of power dependence theory.

Besides characterizing the degree measure as the limit of the weighted β-measures,

we provide axiomatic characterizations of the β-measure and degree measure. These

characterizations, which form the main results of this paper, are based on local graph-
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manipulating properties and differ only in the normalization that is used.

The paper is organized as follows. In Section 2 we briefly discuss some graph and game

theoretic preliminaries. In Section 3 we introduce network power games and introduce

the β-measure for symmetric networks. We also discuss the sequence of weighted β-

measures and show that its limit equals the degree measure. The characterizations of

the β-measure and degree measure are provided in Section 4.

2 Preliminaries

In this section we discuss some graph and game theoretic preliminaries. A symmetric

network or undirected graph is a pair (N,G) where N is a finite set of positions or

nodes, and G ⊆ {{i, j}|i, j ∈ N, i 	= j} is a set of symmetric edges or links between

these positions. So, we assume the networks to be irreflexive, i.e., (i, i) /∈ G for all

i ∈ N . The collection of all (irreflexive) networks is denoted by G. We often refer to

these just as graphs.

For every graph (N,G) ∈ G and set of positions T ⊆ N , the induced subgraph

(T,G(T )) is given by G(T ) = {{i, j} ∈ G | {i, j} ⊆ T}. A network (N,G) is connected

if for every pair of positions i, j ∈ N there exists a sequence of positions h1, ..., hp such

that h1 = i, hp = j, and {hk, hk+1} ∈ G for all k ∈ {1, ..., p − 1}. A set of positions

T ⊆ N is a component in (N,G) ∈ G if it is a maximally connected subset of N in

(N,G), i.e., if the graph (T,G(T )) is connected and for every i ∈ N \ T the graph

(T ∪ {i}, G(T ∪ {i})) is not connected. If {i, j} ∈ G, then positions i and j are called

neighbours and are incident with the edge {i, j}. By R(N,G)(i) we denote the set of all

neighbours of position i ∈ N in network (N,G) by

R(N,G)(i) = {j ∈ N | {i, j} ∈ G}.

For a set of positions S ⊆ N we denote R(N,G)(S) =
⋃
i∈S R(N,G)(i). If R(N,G)(i) = ∅,

then position i is called an isolated position. Position i ∈ N is called a pending position

if |R(N,G)(i)| = 1. We denote the set of isolated positions in network (N,G) by I(N,G)

and the set of pending positions by P (N,G).

Finally, a network power measure for symmetric networks is a mapping p that

assigns to every network (N,G) ∈ G an |N |-dimensional vector p(N,G) ∈ RN . We refer

to this vector as a network power distribution for (N,G). A well-known network power

measure is the degree measure, which assigns to every position in a network the number
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of its neighbours. The degree measure thus is the power measure d given by

di(N,G) = |R(N,G)(i)| for all i ∈ N.

A (finite) cooperative game with transferable utility (or simply TU-game) is a pair (N, v)

with finite set N of players and characteristic function v : 2N → R satisfying v(∅) = 0.

A (single valued) solution for TU-games is a function f that assigns to every TU-

game (N, v) an |N |-dimensional vector f(N, v) ∈ RN , representing a distribution of

payoffs to the players. A well-known solution is the Shapley value (Shapley (1953)),

which equally distributes the dividends ∆v(S) (see Harsanyi (1959)) over all players in

coalition S ⊆ N,S 	= ∅:

Shi(N, v) =
∑

{S⊆N |i∈S}

∆v(S)

|S|
for all i ∈ N, (1)

where ∆v(S) = v(S) if |S| = 1, and recursively ∆v(S) = v(S) −
∑

{T�S|T �=∅}∆v(T )

for all S ⊆ N, |S| ≥ 2. For every T ⊆ N, T 	= ∅, the unanimity game uT is given

by uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise. Every characteristic function

v : 2N → R can be written as a linear combination of unanimity games in a unique way

by v =
∑

{T⊆N |T �=∅}∆v(T )uT .

3 Network power games and measures

In order to measure power or control in networks, we assign to every network (N,G) ∈ G

a cooperative game with transferable utility (N, v), whose set of players N corresponds

to the set of positions in the network. In cooperative game theoretic tradition we take a

conservative approach to measuring power of coalitions by assigning to every coalition

of positions S ⊆ N the number of neighbours of S that have no neighbours outside S.

The network power game (N, vG) corresponding to (N,G) ∈ G thus is given by

vG(S) = |{j ∈ R(N,G)(S)|R(N,G)(j) ⊆ S}| for all S ⊆ N.

Note that vG(N) = |N\I(N,G)| for all (N,G) ∈ G. The dividends of vG are given by

∆vG(S) = |{j ∈ N |R(N,G)(j) = S}| for all S ⊆ N,S 	= ∅. (2)

Hence, this game can be decomposed as vG =
∑

i∈R(N,G)(N)
uR(N,G)(i). So, every network

power game is totally positive meaning that it can be expressed as a nonnegative sum

of unanimity games. As a corollary, a network power game is convex meaning that

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N .
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The Shapley value of a network power game can be seen as a network power

distribution of the underlying network. The corresponding power measure is called the

β-measure:

β(N,G) = Sh(N, vG) for all (N,G) ∈ G.

Proposition 3.1 For every (N,G) ∈ G we have

βi(N,G) =
∑

j∈R(N,G)(i)

1

|R(N,G)(j)|
for all i ∈ N.

Proof: Using (2), we obtain

βi(N,G) = Shi(N, vG) =
∑

{S⊆N |i∈S}

∆vG(S)

|S|
=

∑

{S⊆N |i∈S}

|{j ∈ N |R(N,G)(j) = S}|

|S|

=
∑

{S⊆N |i∈S}

∑

{j∈N |R(N,G)(j)=S}

1

|R(N,G)(j)|
=

∑

j∈R(N,G)(i)

1

|R(N,G)(j)|
.

The idea behind the β-measure is that every position in a network has an initial weight

equal to 1, and each of its neighbours receives an equal share of this weight. Instead of

taking initial weights equal to 1, it seems natural to take weights that already reflect

the power of the positions. If we take the β-measure as initial weights, we obtain the

second order measure β2. Of course, this second order measure can be used as new input

weights, and so on, yielding higher order measures. Starting with

β0i (N,G) = 1 for all i ∈ N,

we recursively define the measures

βti(N,G) =
∑

j∈R(N,G)(i)

βt−1j (N,G)

|R(N,G)(j)|
for all i ∈ N, t ∈ {1, 2, . . .}. (3)

In particular, β1(N,G) = β(N,G). This sequence of measures has a limit, which is

a stationary power distribution. A power distribution p ∈ RN is a stationary power

distribution of (3) if redistributing these weights according to (3) yields the same weights:

pi(N,G) =
∑

j∈R(N,G)(i)

pj(N,G)

|R(N,G)(j)|
for all i ∈ N. (4)

Borm, van den Brink and Slikker (2002) define a sequence similar to (3) for “directed” or

“asymmetric” networks (N,D) with D ⊆ N ×N , and show that it has a limit, which is
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also a stationary distribution. Defining for every undirected network (N,G) ∈ G the cor-

responding directed network (N,D(G)) with D(G) = {(i, j) ∈ N ×N | {i, j} ∈ G}, the

existence of a stationary distribution of (3) can be shown in a similar way as their result.

Moreover, since for every (N,G) ∈ G and i ∈ N we have that
∑

j∈R(N,G)(i)
dj(N,G)

|R(N,G)(j)|
=

∑
j∈R(N,G)(i)

|R(N,G)(j)|

|R(N,G)(j)|
= |R(N,G)(i)| = di(N,G), the degree measure yields a stationary

power distribution of (3). In case the network (N,G) is connected, the corresponding

directed network (N,D(G)) is strongly connected1, and it follows from standard re-

sults on such networks (see, e.g., Berger (1993)) that (3) has a unique stationary power

distribution2.

Proposition 3.2 For every (N,G) ∈ G the sequence defined by (3) has a limit, which

is equal to the degree measure of (N,G). This limit is a stationary power distribution of

(N,G). Moreover, if the network (N,G) is connected, then this is the unique stationary

power distribution.

4 Characterizations

In this section we provide characterizations of the β-measure and the degree measure.

The first property is a normalization determining the total value of “power” to be

distributed. Since we want to measure how well positions in a network are connected

with other positions, we normalize power such that the total weight that is distributed

over the positions in a network is equal to the number of non-isolated positions. Since

this boils down to efficiency of a solution for the corresponding network power game, we

refer to this property as efficiency.

Efficiency: For every (N,G) ∈ G it holds that
∑

i∈N pi(N,G) = |N \ I(N,G)|.

The second property is anonymity, which says that two similar positions in a network

have the same power value. For a network (N,G) ∈ G and permutation π : N → N , we

define the permuted network (N, πG) ∈ G by {π(i), π(j)} ∈ πG if and only if {i, j} ∈ G.

Anonymity: For every (N,G) ∈ G and permutation π : N → N it holds that

pi(N,G) = pπ(i)(N, πG) for all i ∈ N .

1A directed graph (N,D) is strongly connected if for each pair of positions i, j ∈ N , i 	= j there is a

sequence of nodes i1, . . . , ip such that i1 = i, ip = j and (ik, ik+1) ∈ D for all k ∈ {1, . . . , p− 1}.
2If the network is not connected then it can be shown that in every stationary power distribution the

power in every component is distributed proportional to the degrees of the nodes in that component.
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The third property is a boundary condition, which states that the power value of a

position never exceeds the number of its neighbours, and is at least equal to the number

of its neighbours that have no other neighbours.

Reasonability: For every (N,G) ∈ G and i ∈ N it holds that |{j ∈ R(N,G)(i)|R(N,G)(j) =

{i}}| ≤ pi(N,G) ≤ |R(N,G)(i)|.

The next three properties express that power is determined locally in the network. The

first of these states that the power value of a position does not change if we delete or

add relations between positions that do not contain either this position itself or any of

its direct neighbours.

Non-neighbourhood independence: Let (N,G), (N,G′) ∈ G and i ∈ N be such

that R(N,G)(j) = R(N,G′)(j) for all j ∈ {i} ∪R(N,G)(i). Then pi(N,G) = pi(N,G
′).

The fifth property states that cutting an edge into two pieces and putting two new

positions at the two endings does not change the power of the positions that are not

incident with the edge that is cut.

Edge cutting independence: Let (N,G) and (N ′, G′) be such that N ′ = N ∪ {r, s}

with r, s /∈ N , and G′ = (G \ {h, j}) ∪ {{h, r}, {j, s}} for {h, j} ∈ G. Then pi(N,G) =

pi(N
′, G′) for all i ∈ N \ {h, j}.

Finally, the sixth property states that adding a new position to an existing position

changes the power value of each neighbour of the existing position by the same amount.

Pending node addition: Let (N,G) and (N ′, G′) be such that N ′ = N ∪ {g}

with g /∈ N , and G′ = G ∪ {h, g} for some h ∈ N . Then pi(N,G) − pi(N ′, G′) =

pj(N,G)− pj(N ′, G′) for all i, j ∈ R(N,G)(h).

It is readily verified that the β-measure satisfies the six properties introduced above. To

prove uniqueness, we start by showing that the first three properties uniquely determine

the β-measure for star networks. We call a network (N,G) ∈ G a star network if there

exists an h ∈ N with h ∈ {i, j} for all {i, j} ∈ G. We call h a central position in this

star. (Note that in our context a star is not necessarily connected, but there is at most

one component that does not consist of one isolated position.)

Lemma 4.1 If a power measure p on G satisfies efficiency, anonymity and reasonability,

and (N,G) ∈ G is a star, then p(N,G) = β(N,G).
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Proof: Let (N,G) ∈ G be a star with central position h. Reasonability implies that

pi(N,G) = 0 for all i ∈ I(N,G) = N \ ({h}∪R(N,G)(h)), and ph(N,G) = |R(N,G)(h)|. It

then follows from efficiency that
∑

j∈R(N,G)(h)
pj(N,G) = |R(N,G)(h)|+1−|R(N,G)(h)| = 1.

Anonymity then yields pj(N,G) =
1

|R(N,G)(h)|
for all j ∈ R(N,G)(h). Hence, p(N,G) =

β(N,G).

Adding non-neighbourhood independence to these properties uniquely determines the

values for isolated and pending positions in any network.

Lemma 4.2 If a power measure p on G satisfies efficiency, anonymity, reasonability

and non-neighbourhood independence, then pi(N,G) = βi(N,G) for all (N,G) ∈ G and

all i ∈ I(N,G) ∪ P (N,G).

Proof: Let (N,G) ∈ G and let i ∈ N . Define Gi to be the induced subgraph on all

positions at distance at most 2 to i:

Gi = {{h, j} ∈ G | h ∈ R(N,G)(i)}. (5)

If i ∈ P (N,G) ∪ I(N,G), then (N,Gi) is a star network and pi(N,Gi) = βi(N,Gi)

by Lemma 4.1. It then follows from non-neighbourhood independence that pi(N,G) =

pi(N,Gi) = βi(N,Gi) = βi(N,G).

Next we show uniqueness for networks that can be seen as “stars” with two central

positions. We call a network (N,G) ∈ G a double-centered star if there exists an edge

{h, i} ∈ G such that {h, i} ∩ {g, j} 	= ∅ for all {g, j} ∈ G and R(N,G)(h)∩R(N,G)(i) = ∅.

We call h and i the central positions in this double-centered star. Note that a star is a

double-centered star in which (at least) one of the central positions is pending.

Lemma 4.3 If a power measure p on G satisfies efficiency, anonymity, reasonability,

non-neighbourhood independence and pending node addition, and (N,G) ∈ G is a double-

centered star, then p(N,G) = β(N,G).

Proof: Let (N,G) ∈ G be a double-centered star with central positions h and i. If (N,G)

is a star network, then the result follows from Lemma 4.1. Suppose (N,G) is not a star

network. By Lemma 4.2, pj(N,G) = βj(N,G) for all j ∈ I(N,G)∪P (N,G) = N \{h, i}.

Suppose without loss of generality that |R(N,G)(i)| ≥ |R(N,G)(h)|. Define (N ′, G′) such

that N ′ ⊇ N , |N ′ \ N | = |R(N,G)(i)| − |R(N,G)(h)| and G
′ = G ∪ {{h, j}|j ∈ N ′ \ N}.
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Lemma 4.2 implies that pj(N
′, G′) = βj(N

′, G′) for all j ∈ N ′ \ {h, i}. Anonymity

implies that ph(N
′, G′) = pi(N

′, G′), and thus with efficiency we have that pi(N
′, G′) =

1
2

(
vG

′

(N ′)−
∑

j∈N ′\{h,i} βj(N
′, G′)

)
= βi(N

′, G′).

Next, pending node addition implies that pi(N
′, G′)− pi(N,G) = pj(N ′, G′)− pj(N,G)

for all j ∈ R(N,G)(h) \ {i}. (Note that such a j exists because (N,G) is not a star

by assumption.) Since pi(N
′, G′), pj(N

′, G′) and pj(N,G) are uniquely determined as

the β outcome, pi(N,G) is uniquely determined as the β outcome βi(N,G). With

efficiency then also ph(N,G) is uniquely determined as the β outcome βh(N,G), and

thus p(N,G) = β(N,G).

The next step is to show uniqueness for acyclic networks. A sequence of positions

i1, . . . , ip with i1 = ip, ik 	= iℓ for all k, ℓ ∈ {1, . . . , p − 1}, and {ik, ik+1} ∈ G for all

k ∈ {1, . . . , p − 1}, is called a cycle in (N,G). A network that contains no cycles is

called an acyclic network. Note that a double-centered star is acyclic.

Lemma 4.4 If a power measure p on G satisfies efficiency, anonymity, reasonability,

non-neighbourhood independence and pending node addition, and (N,G) ∈ G is acyclic,

then p(N,G) = β(N,G).

Proof: Let (N,G) ∈ G be acyclic. If (N,G) is a double-centered star network then the

result follows from Lemma 4.3. Suppose (N,G) is not a double-centered star network.

By Lemma 4.2, pi(N,G) = βi(N,G) for all i ∈ I(N,G) ∪ P (N,G).

Let i, j ∈ N \ (I(N,G) ∪ P (N,G)) and define Gi as in (5). Similarly, de-

fine the network (Gi)j = {{h, g} ∈ Gi | h ∈ R(N,Gi)(j)} obtained as in (5) but

for network Gi and position j. Then (Gi)j is a double-centered star, and hence,

pj(N, (Gi)j) = βj(N, (Gi)j) by Lemma 4.3. Non-neighbourhood independence then

implies that pj(N,Gi) = pj(N, (Gi)j) = βj(N, (Gi)j) = βj(N,Gi).

Since for all h ∈ I(N,G) ∪ P (N,G) we have h ∈ I(N,Gi) ∪ P (N,Gi), it follows

from Lemma 4.2 that for all such h, ph(N,Gi) = βh(N,Gi). With efficiency we then

conclude that pi(N,Gi) = v(N)−
∑

j∈N\{i} βj(N,Gi) = βi(N,Gi).

Finally, non-neighbourhood independence implies that pi(N,G) = pi(N,Gi) =

βi(N,Gi) = βi(N,G) and hence, p(N,G) = β(N,G).

Finally, by adding edge cutting independence we can state our characterization of the

β-measure.
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Theorem 4.5 A power measure p on G is equal to the β-measure if and only if it satis-

fies efficiency, anonymity, reasonability, non-neighbourhood independence, edge cutting

independence and pending node addition.

Proof: It is readily verified that the β-measure satisfies the six properties. Now, suppose

that the power measure p on G satisfies the properties, and let (N,G) ∈ G. Let i ∈ N

and again define Gi as in (5).

If Gi is acyclic then pi(N,Gi) = βi(N,Gi) by Lemma 4.4, and from non-

neighbourhood independence we conclude that pi(N,G) = βi(N,G). Otherwise, (N,Gi)

has at least one cycle, and each cycle has at least one edge {h, j} not containing i. Delete

such an edge, add two positions r, s /∈ N and add the edges {h, r} and {j, s} (i.e., con-

sider the network (N ∪ {r, s}, (G \ {{h, j}}) ∪ {{h, r}, {j, s}}). Repeat this procedure

until all cycles have been cut.

Clearly, this procedure ends in a finite number of steps with the resulting network

(N ′, G′) being acyclic. Then pi(N
′, G′) = βi(N

′, G′) by Lemma 4.4. Edge cutting

independence implies that pi(N,Gi) = pi(N
′, G′) = βi(N

′, G′) = βi(N,Gi). With non-

neighbourhood independence it then follows that pi(N,G) = pi(N,Gi) = βi(N,Gi) =

βi(N,G) and hence, p(N,G) = β(N,G).

The degree measure satisfies all properties stated in Theorem 4.5 except efficiency. In-

stead, it satisfies an alternative normalization, which distributes twice the number of

edges in a network.

Degree efficiency: For every (N,G) ∈ G it holds that
∑

i∈N pi(N,G) = 2|G|.

Note that the specific normalization is not essential for proving uniqueness in the proofs

of Theorem 4.5 and the preceding lemmas. So, replacing efficiency by degree efficiency

also yields uniqueness. Since all other properties of Theorem 4.5 are also satisfied by

the degree measure, this yields a characterization of the degree measure.

Theorem 4.6 A power measure p on G is equal to the degree measure if and only if

it satisfies degree efficiency, anonymity, reasonability, non-neighbourhood independence,

edge cutting independence and pending node addition.

5 Concluding remarks

We showed that the degree measure is the limit of a recursive procedure which starts

with the β-measure, and in each step gives as output a new weighted β-measure, taking
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as input weights the weighted β-measure obtained in the previous step. Although the

degree measure usually is considered to be a local measure, we thus have shown that

it can be seen as a global measure within the context of power dependence theory (see

Emerson (1962)). The degree measure also is a stationary power distribution in the

sense that it satisfies (4).

On the other hand, Hendrickx, Borm, van den Brink and Owen (2005) take

an alternative iterative approach. Instead of using weighted β-measures, they consider

weighted Shapley values of the corresponding network power game. For various types of

networks, they compute and interpret a Proper Shapley value as introduced by Vorob’ev

and Liapunov (1998), which assigns to every network power game a particular weighted

Shapley value such that these values are equal to the chosen weights. This yields a

power measure π satisfying

πi(N,G) =
∑

j∈R(N,G)(i)

πi(N,G)∑
h∈R(N,G)(j)

πh(N,G)
for all i ∈ N. (6)

In defining the conservative network power game we followed the game theoretic tradi-

tion to assign to every coalition the minimal power they can guarantee themselves. By

definition, the dual game (N, v∗) of a TU-game (N, v) is given by v∗(S) = v(N)−v(N\S).

It is easily verified that the dual game of the conservative network power game corre-

sponding to (N,G) ∈ G assigns to every coalition of positions S ⊆ N the total number of

neighbours of S, and thus takes an optimistic approach to network power measurement.

Since the Shapley value of a TU-game coincides with the Shapley value of its dual game,

the β-measure also is equal to the Shapley value of this dual (optimistic) network power

game3. Moreover, linearity of the Shapley value implies that the β-measure equals the

Shapley value of every convex combination of the conservative- and optimistic network

power game.

Finally, we remark that the β-measure can be trivially extended to symmetric networks

in which loops are allowed. On this class of graphs, the β-measure is characterized

by the six properties of Theorem 4.5 and a property which states that the power of a

position does not change if an adjacent loop is cut and replaced with a link to a copy

of the original network.

3Since v∗G({i}) = |R(N,G)(i)| = di(N,G), the optimistic network power game generalizes the degree

measure. So, the Shapley value of the game that assigns to every coalition of positions its degree is

equal to the β-measure.
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