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Abstract

We study auctions in which the number of potential bidders is large,
such as in Internet auctions. With numerous bidders, the expected
revenue and the optimal bid function in a �rst price auction result in
complicated expressions, except for a few simple distribution function
for the bidders�valuations. We show that these expressions can be well
approximated using extreme value theory without assuming a particu-
lar distribution function. The theory is applied to data from Internet
auctions.
Key words: Auctions; Numerous bidders; Extreme values; Internet

auctions
JEL classi�cation: D44

�The views expressed are those of the authors and do not necessarily represent those of
LCH.Clearnet. Corresponding author: S. Caserta, Faculty of Economics, H14-01, Erasmus
University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, the Netherlands. Tel. +31
(0)10 4081286. E-mail caserta@few.eur.nl

1



1 Introduction

Auctions have historically been seen as (games of) strategic interactions
between a few agents. Recently auctions on the Internet have become a
very popular way to sell to the widest audiences the most disparate objects
ranging from collection items to airplane tickets. The Internet has made
widespread auction participation feasible due to low participation costs as
the physical presence of attendees is not needed. As a consequence, the
number of auction participants, both in terms of sellers and buyers, has
risen. E-bay, the leading on-line marketplace for the sale of goods such
as collectibles, computers and autos has as of today more than a hundred
million registered users around the world1.

Auctions with numerous bidders have not received much attention, nei-
ther theoretically nor empirically. The main reason for this negligence is
that the computational complexity for many of the interesting expressions
quickly becomes prohibitive as the number of bidders increases. For ex-
ample, calculating the expected revenue as the expectation of the second
highest order statistics of valuations is computationally di¢ cult except for
a few simple distributions of valuations. This is so because the cumula-
tive distribution function of the second highest valuation depends on the
distribution of valuations F (x) and the number of bidders n, through the
term Fn(x). An analytic expression for the latter is usually cumbersome
to obtain already for small values of n. The same applies to an explicit
derivation of the equilibrium bid function b(x) in a �rst-price auction. For
n large McAfee and McMillan (1987a), pp. 710, noted that: �Finding the
Nash-equilibrium bid in the �rst-price or Dutch auction is a nontrivial com-
putational problem�. The limiting case with an in�nite number of bidders
has been discussed in Holt (1979) and Harris and Raviv (1981). In these
papers it was shown that inde�nitely increasing the number of bidders, in-
creases the seller�s revenue, and in the limit the seller just fetches a price
equal to the highest possible valuation.

In this paper we extend the theory of the standard auctions under the
Independent Private Values Paradigm (IPVP) to the case when there is a
large but nevertheless �nite number of bidders. As we show, the theory of
extremes can be used to derive approximate expressions for the expected
revenue and the equilibrium bid function in a �rst-price auction when there
are numerous bidders, without requiring that the distribution of valuations
F (x) is known in detail. This sounds like magic, but drawing the analogy

1Company Overview <http://www.ebay.com>.
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between the limit laws from extreme value theory and the central limit
law for averages is insightful. The central limit law states that normed
averages from an unknown distribution are well approximated by the normal
distribution if the sample becomes large. Similarly, albeit less well known,
in large samples the limit laws from extreme value theory provide good
approximations to the distributions of appropriately normed higher order
statistics, such as the maximum and the second highest order statistics.

Of course there are many auctions for which the assumption of a large
bidder audience is not appropriate, but the recent phenomenon of Internet
auctions is a case that �ts our framework quite well. Apart from the theo-
retical extension to the numerous bidder case, we also provide the necessary
estimators to be able to apply the theory to real data.

The objective in most studies is to test the validity of the IPVP. In our
application, we take the IPVP for granted and ask which price level one can
expect to prevail in a repetition of a similar auction. For practical users
we believe this application is the more interesting usage of auction theory.
Surprisingly little attention has been given to this problem. This is perhaps
due to the fact that standard statistical approaches can not be used to an-
alyze the statistical properties of the extreme order statistics. We develop
the necessary estimators to address this question by extending statistical
extreme value theory. The methodology we use introduces a di¤erent ap-
proach to the literature in empirical auctions as we do not pool data from
di¤erent auctions, nor do we assume a speci�c functional form for the distri-
bution of valuations. The few papers that deal with empirical auction data
tend to assume a speci�c distribution function for the valuations and pool
data from di¤erent auctions of comparable items; see La¤ont et al. (1995),
Paarsch (1992), Donald and Paarsch (1993). An exception to the parametric
approach is Guerre et al. (2000), which uses kernel estimators to estimate
the distribution of observed bids (still employing cross-sectional data), and
Haile and Tamer (2003). But this approach is not informative regarding
the distribution of the highest bids and the expected revenue, on which we
focus.

The paper is structured as follows. In the next section we develop the
extension to the theory of the standard auctions with risk neutral bidders
within the IPVP for the case where the number of bidders is large. By means
of extreme value theory we obtain expressions for the expected revenue and
the equilibrium bid in a �rst-price auction, which are not sensitive to the
exact distribution of valuations F (x).

In the third section we confront the theory with data from Internet auc-
tions. We use bids from second-price auctions, so that we can identify bids

3



with valuations. We �rst show graphically that the largest bids �t the limit
distribution suggested by extreme value theory quite well. Subsequently,
we estimate the expected revenue and the largest valuation with the help
of appropriate estimators. As the focus of this paper is not the statistical
properties of the estimators, we relegate the derivation of these estimators
to an appendix. The �nal section concludes.

2 Auctions with Many Bidders

In this section we extend the theory for the standard auctions to the case
when there is a large but �nite number of bidders. First we derive approxi-
mations to the expected highest valuation and the expected revenue for the
four standard auctions2. Then we look at the optimal bid function for �rst
price auctions.

Consider the IPVP according to which each bidder knows the value of
the object to herself, while this valuation is not known to the other bidders
and the auctioneer (which we always identify with the seller). All bidders
and the auctioneer are assumed to be risk neutral. All bidders�valuations
are independent draws from the same probability distribution function F (x),
which is known to the bidders. And last, each bidder knows the number of
her competitors. This last assumption might not be realistic for auctions
with large audiences. Nevertheless, the arguments used to prove the Revenue
Equivalence Theorem (RET) are independent of whether each bidder knows
the number of competitors before she bids; see Klemperer (1999), pp. 240.
This fact is important, since it allows us to use the conclusion of the RET
when we consider Internet auctions. In Internet auctions a bidder is typically
not informed about the exact number of potential bidders, but can safely
assume that there are many of them. Also the other assumptions of the
IPVP limit the applicability of the theory. The private values assumption
is, however, a reasonable assumption for auctions of consumer goods that are
bought by individuals for their private use. This was already pointed out by
Milgrom and Weber (1982), pp. 1093. In the applications we have restricted
ourselves to these type of goods. The Internet auctions are moreover mostly
second price auctions, hence the bidders�optimal strategy is dominant so
that the assumption of risk neutrality is not restrictive.

Consider a sample of n independent and identically distributed random

2By the RET, all the standard auctions yield an expected revenue to the auctioneer
equal to the expected value of the second highest valuation; see e.g. McAfee and McMillan
(1987a).
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variables fX1; :::; Xng with distribution function F (x) representing the bid-
ders�valuations in a particular auction. The descending order statistics of
this sample are

Mn = maxfX1; :::; Xng = X(1) � X(2) � ::: � X(n);

where the appropriate rank is indicated between the bracketed subscript.
Under the IPVP and if the auction awards the item to the highest bid-
der, auction theory shows that the expected selling price is E[X(2)]. Under
very mild regularity conditions extreme value theory provides approximate
expressions for the distributions of Mn and X(2); see Caserta (2002) for a
complete list of references. These can then be used to derive approximate
expressions for the expectations E[Mn] and E[X(2)] as we show below.

2.1 Expected highest valuation: E[Mn]

Under the assumption that valuations are independent and identically dis-
tributed, the distribution of the maximum Mn is Fn(x). When we drive n
to in�nity, this distribution becomes degenerate because

lim
n!1

PfM(n) � xg = lim
n!1

Fn(x) =

�
1 if x = z
0 if x < z

(1)

where z is the upper endpoint of the distribution F (x). In similarity with
the central limit law, the question extreme value theory answers is for which
linear rescaling of x the distribution PfM(n) � xg converges to a non-
trivial limit distribution, and how this limit distribution looks like. The
appropriate limit laws are found by the Extreme Value Theorem (EVT).
Below we report the EVT for distributions with bounded support (z <1),
because in the auction literature it is often assumed that the support of
F (x) has a �nite upper endpoint z. This assumption is harmless when we
consider non-durable consumption goods. In other cases, such as valuable
arts, there might not be a well de�ned upper endpoint because the valuation
of such items depends on the future value of the object itself. The EVT can
also be stated for distributions with unbounded support (z = 1). For the
general statement of the EVT and its proof, see Embrechts et al. (1997),
Resnick (1987) and de Haan (1970).

Theorem 1 (EVT) For a cumulative distribution function F (x) such that
z <1, if there exist norming constants sn > 0 and un 2 R such that

lim
n�!1

Pfsn(Mn � un) � xg = lim
n�!1

Fn(s�1n x+ un) = G(x); (2)
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where the convergence is in distribution to a non degenerate G(x), then only
two possibilities (up to location and scale parameters) arise for G(x):

G(x) = 	�(x) �
�
expf�(�x)�g x � 0
1 x > 0

� > 0; (3)

or

G(x) = �(x) � expf�e�xg x 2 R: (4)

The distributions 	�(x) and �(x) are respectively the Weibull and Gum-
bel extreme value distributions. The EVT says that under certain conditions
regardless the speci�c form of F (x), the scaled maximum admits a limit dis-
tribution as the number of bidders tends to in�nity. It follows that in �nite
but large samples the maximum Mn is approximately Weibull 	�(x), or it
is approximately Gumbel �(x) distributed. Then we say that F (x) is in the
(maximum) domain of attraction of an extreme value distribution, and we
indicate3 it by F 2 MDA(�) or F 2 MDA(	�) with tail index �.

For reasons that will become clear in the estimation procedure4 and to
keep notation easy, from now on we concentrate on the Weibull limit law (3),
that is the case F 2 MDA(	�). For the case of F 2 MDA(�) see Caserta
(2002). For a speci�c distribution F 2 MDA(	�), the theoretical values for
the norming constants in (2) are given by

un = z, sn =
1

un � F (1� 1=n)
(5)

where F (p) is the generalized inverse function, i.e. F (p) � inffx :
F (x) � pg, for 0 < p < 1 and F (1) � z. The intuition for the norm-
ing constants in (5) is that we need to use the upper endpoint and the
di¤erence between this and the realized maximum in order to avoid a trivial
limit law as in (1).

The idea is to compute the expected maximum valuation and the ex-
pected revenue to the auctioneer by using the result in the EVT. This is
not directly possible, however, since the EVT result only establishes conver-
gence in distribution. Under a mild extra condition we can guarantee that

3An example of F 2MDA(	�) is given by the uniform distribution, while the normal
distribution is in the domain of attraction of the Gumbel.

4The functional form of the tail of F (x) determines which of the two limit laws is
appropriate. There are su¢ cient conditions, such as the Von Mises tail conditions, for
the distribution to be in the domain of attraction of a particular limit law; see Embrechts
et al. (1997) and Resnick (1987). Also, there are simple statistical devices such as the
QQ-plot, which we discuss in Section 3, to determine which case is relevant in practice.
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convergence in moments is achieved. In particular, we have to control the
behavior of the left tail of F (x) in order to prevent an improbable large event
from disrupting moment convergence (given that the EVT only refers to the
right tail). The following theorem is adapted to the case we are interested
in, and we refer the reader to Resnick (1987) for its general statement and
proof.

Theorem 2 Suppose F (x) 2 MDA(	�), and F (x) has �nite upper endpoint
z. If for some m 2 N+ Z z

�1
jxjm F (dx) <1 (6)

then, for un and sn as in (2), we have5

lim
n!1

E[(sn(Mn � un))m] =
Z 0

�1
jxjm	�(dx) = (�1)m�(1 +m=�): (7)

Condition (6) holds for distributions with a �nite lower endpoint, such as
the uniform. Since prices and valuations of auctioned objects can not have
negative values, we can safely assume that (6) is satis�ed by the distribution
of valuations. Subsequently, the result in (3) can be used to calculate E[Mn].

Corollary 3 Under the condition of Theorem 2, if the number of bidders n
is large then

E[Mn] �
��(1 + ��1)

sn
+ un (8)

= f1� �(1 + ��1)gz + �(1 + ��1)F (1� 1=n):

Proof. Use (7) and take m = 1. This gives the �rst line in (8). Subse-
quently substitute (5) for the norming constants.

The corollary gives a formula for �nding the expected maximum valu-
ation for a sample of n valuations. Recall, for example, that in theory a
sample of valuations is provided by the bid book of a second-price auction.
Hence, the formula can be directly used for those auctions.

5The Gamma function is �(�) =
R1
0
x��1e�xdx , for � > 0.
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2.2 Expected revenue: E[X2]

A result similar to the above can be obtained for the expected revenue.
Consider a second price sealed bid auction. As Vickrey argued the optimal
strategy in this auction is to bid one�s valuation: it neither pays to overbid
or to shade one�s bid. Given the second price nature the expected revenue
is

E[X(2)] =

Z z

0
xdH(x): (9)

The law H(x) is given by

H(x) = nFn�1(x)[1� F (x)] + Fn(x) (10)

= nFn�1(x)� (n� 1)Fn(x):

As pointed out in the introduction, even when F (x) is known, the compu-
tation of H(x) is already cumbersome for moderate values of n, except for
some speci�c distributions. In addition, the auctioneer does not know F (x).
The auctioneer has to infer the distribution from data, and assuming an a
priori functional form for F (x) appears restrictive. On both accounts the
seller would be helped if E[X(2)] could be found without going through the
cumbersome process of having to estimate F (x) and computing H(x).

Consider again the case of an in�nitely large set of bidders. The e¤ect
on the seller�s revenue of increasing the number of bidders at in�nitum was
�rst analyzed by Holt (1979) and Harris and Raviv (1981). They consider
the limiting case of an in�nite number of participants. In this case it is
quite intuitive that the seller receives a price equal to the highest possible
valuation. This happens because also the second highest valuation converges
to the upper endpoint of the distribution of valuations

lim
n!1

PfX(2) � xg = lim
n!1

fnFn�1(x)[1� F (x)] + Fn(x)g = (11)

=

�
1 if x = z
0 if x < z

a:s:;

because when x < z we know that F (x) < 1 and therefore both Fn(x) and
nFn�1(x) converge to zero for n tending to in�nity. Consequently, the e¤ect
of an unlimited increase in the number of bidders is to increase the revenue
to the seller as the sales price tends to z.

Hence, when the number of bidders is large one might either directly
compute the seller�s expected revenue or approximate it by the upper end-
point of the distribution of valuations. Both suggestions are, however, of
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little practical use. Direct computation is extremely di¢ cult to work with,
unless a particularly easy distribution function of valuations applies (that
is why the auction literature in most cases considers the uniform distrib-
ution). And the approximation by the upper endpoint results in a large
approximation error.

Nevertheless, if the distribution of valuation is such that the EVT holds,
then a non-trivial limit exists also for X(2). This is given by

lim
n�!1

Pfsn(X(2) � un) � xg = [1 + (�x)�] exp(�(�x)�)

� 	�;2(x) x � 0; � > 0 (12)

for sn > 0, un 2 R as in the EVT6.
In order to measure the expected revenue to the auctioneer, we prove

that a result similar to Theorem 2 holds for the second highest order statistic
as well. Theorem 4 below is the main technical result of this paper. The
general proof of the theorem can be obtained from the authors, while below
we give details for the simple case of positive random variables, such as
bidders�valuations.

Theorem 4 Under the condition of Theorem 2 and for positive random
variables, we have

lim
n!1

E[(sn(X(2) � un))] =
Z 0

�1
jxj d	(2)� (x) = (�1)�(2 + ��1): (13)

Proof. The �rst equality intuitively follows upon realizing that the vari-
able sn(X(2) � un) is always lower than the upper endpoint z. As a conse-
quence, by the Dominated Convergence Theorem the limit and expectation
operators can be interchanged and the �rst equality in (13) is established.
The second equality follows by using the density of 	�;2(x).

Corollary 5 Under the condition of Theorem 2, if the number of bidders n
is large then

E[X(2)] �
��(2 + ��1)

sn
+ un (14)

= f1� �(2 + ��1)gz + �(2 + ��1)F (1� 1=n):
6When the original distribution is not in the domain of attraction of the Weibull, the

limit in (12) is incorrect. For the general theorem concerning the limit of the second
highest order statistic and its proof see Leadbetter et al. (1983).
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Proof. As valuations are positive random variables, for n large one can
use the approximation derived by (13), and subsequently substitute (5) for
the norming constants.

Formula (14) is an essential contribution of the paper, and its usage is
twofold. First, in those cases in which F (x) is known but di¢ cult to work
with, the computation of the expected revenue E[X(2)] is simpli�ed by the
use of (14), when the number of bidders is large, compared to the necessity
of calculating the expectation of a random variable with distribution as in
(10). The examples below will further demonstrate this usefulness. Second,
when we deal with empirical problems and we can not assume a speci�c
functional form for F (x), formula (14) is the only possibility we have to
estimate the expected revenue.

2.3 Equilibrium bid function

The other theoretical contribution for the case of large bidder audiences we
make concerns the approximation of the equilibrium bid function in �rst
price auctions. Under the IPVP auction theory shows, see McAfee and
McMillan (1987a), that in a �rst-price sealed-bid auction the symmetric
Nash equilibrium bidding strategy as a function of the valuation x is

b(x) =

R x
0 ydF

n�1(y)

Fn�1(x)
= E[X(2)jMn = x]: (15)

The optimal equilibrium strategy is to bid the conditional expected second
highest valuation, given that the bidder�s valuation is the highest valuation.
In forming her bid, each bidder makes the harmless assumption of having
the highest valuation and determines how much she can shade down her
bid towards the bidder with the second highest valuation and still win the
auction7. Extreme value theory provides also an approximation to the bid
function (15).

Proposition 6 If F (x) 2 MDA(	�(x)) with bounded support [0; z], then
the equilibrium bid function (15) can be approximated by

b(x) � x� exp(s�n(z � x)�)
1

�sn

Z 1
s�n(z�x)�

y
1
�
�1e�ydy: (16)

7 If the bidder does not have the highest valuation this assumption is harmless since
only the winner has to pay.
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Proof. Given the bounded support, it is well known that partial inte-
gration of (15) gives

b(x) = x� 1

Fn�1(x)

Z x

0
Fn�1(y)d(y); (17)

where the last part signi�es the amount by which the bidder shades down
her valuation in the bidding process. Since by assumption F (x) is in the
maximum domain of attraction of the Weibull extreme value distribution
	�(x), we may again approximate Fn�1(x) with the aid of the EVT. This
means Fn�1(x) � exp(�s�n(z � x)�), for x � z. Substituting this last
expression into (17) gives, after some calculus manipulations, expression
(16).

The problem in (17) is again the presence of the terms Fn�1(x) and
Fn�1(y) which can be well approximated using the EVT. The resulting
expression for b(x) involves the incomplete gamma integral. Fortunately, the
incomplete gamma integral in (16) has been extensively tabulated. Thus,
expression (16) provides in general a signi�cant simpli�cation to (15).

2.4 Examples

To show the relevance of our theoretical results, we build some examples
for speci�c distributions of valuations. We start with the example most
commonly used in auction theory.

Uniform distribution Consider the uniform distribution F (x) = x, for
x 2 [0; 1]. The distribution of the maximum valuation Mn from a sample
of n uniform random variables is FMn(x) = xn. Direct integration yields
E[Mn] = 1� 1=(n+ 1). The expected revenue follows by using the density
h(x) = n(n � 1)(1 � x)xn�2 from (10) and integrating over x, resulting in
E[X(2)] = 1� 2=(n+ 1):

Alternatively, we can use the EVT to compute the distribution of the
maximum and subsequently approximate E[Mn] and E[X(2)]. The max-
imum from a sample of uniformly distributed random variables is in the
domain of attraction of the Weibull distribution with � = 1. In addition,
one shows that sn = n and un = z = 1. Because the lower endpoint of F (x)
is �nite, the condition for moment convergence is satis�ed, and thus from
the expressions in (8) and (14) we obtain

E[Mn] � 1�
1

n
and E[X(2)] � 1�

2

n
:
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Clearly for large n, the approximate maximum valuation and expected
revenue are comparable to their corresponding theoretical values . Note that
the approximate expected revenue is always lower than the theoretical one,
although it still converges to one for n tending to in�nity. As an example
of the quality of the approximation, we compute the theoretical and the
approximated expected revenue for n = 40. These are 0.9513 and 0.95
respectively, and the error is only 0.13 percent. If we would use the upper
endpoint, equal to one, to approximate the seller�s expected revenue, the
error would be of 4.87 percent.

The bid function for the �rst-price sealed-bid auction is

b(x) =

R x
0 y(n� 1)y

n�2dy

xn�1
=
n� 1
n

x:

Using Proposition 6, we can compute the approximate optimal bid function
as

b(x) � x� exp(n(1� x)) 1
n

Z 1
n(1�x)

e�ydy = x� 1

n
:

Note that both the approximate equilibrium bid function and the exact equi-
librium bid function converge to the bidder�s valuation x when the number
of bidders tends to in�nity. As numerical example, consider x = 0:9 and
n = 40. Then, the theoretical optimal bid is 0.877 and the approximate one
is 0.875 with 0.2 percent error.

The uniform distribution example, although instructive, does not give
full credit to the approximation technique, since the simplicity of the uniform
distribution provides us with exact results for Fn(x). Perhaps for this very
reason the uniform distribution is often used in auction theory. In the next
example, we consider a class of distribution functions which includes the
uniform but which is quite di¢ cult to deal with in general.

Power law behavior at the �nite right endpoint Consider the beta
type distribution functions

F (x) = 1�K(z � x)�; for z �K�1=� � x � z, K, � > 0 and z <1:

It is easy to see that for K = � = z = 1 we obtain the uniform distribution.
For ease of comparison with the latter, let us �x K = z = 1, so that
F (x) = 1� (1� x)� for x 2 [0; 1]. These distributions are characterized by
the fact that the higher � the faster they grow to one in comparison with the
uniform, so that high values carry a lower probability the higher is �. This
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set-up is �tting in situations where high valuations have low probability of
occurrence.

If we want to compute the expected revenue to the auctioneer, we need to
compute Fn(x) = (1�(1�x)�)n which is a polynomial 8 of order �n. This is
a computationally demanding task for large n, particularly whenK and z are
di¤erent from one. However, the EVT provides us with an approximation for
the expected revenue. The distributions in this example are in the domain
of attraction of the Weibull with norming constants sn = (nK)1=� = n1=�

and un = z = 1; see Embrechts et al. (1997). Because the lower endpoint
of F (x) is �nite, the condition for moment convergence is also satis�ed and
we easily obtain from expressions in (8) and (14)

E[Mn] �
��(1 + ��1)

n1=�
+ 1 and E[X(2)] �

��(2 + ��1)
n1=�

+ 1: (18)

For � = 1 these expressions coincide with what we had in the previous
example of the uniform distribution. For � > 1 the expected revenue in (18)
is lower than the expected revenue found for � = 1. Consider, as in the other
example n = 40 and suppose that � = 3. Then, the theoretical expected
maximum valuation and the theoretical expected revenue are respectively
equal to 0.740 and 0.653. The approximate values are easily found via
(18) and are 0.738 and 0.651, giving errors of 0.2 percent. In case the
auctioneer uses the upper endpoint of the distribution, equal to one, as a
quick approximation she would make a relatively large error of more than
30 percent.

The corresponding exact equilibrium bid function is

b(x) =

R x
0 ydF

n�1(y)

Fn�1(x)
=

R x
0 � (n� 1) y (1� y)

��1(1� (1� y)�)n�2dy
(1� (1� x)�)n�1 :

The integral is di¢ cult to evaluate for large n. But, the approximate equi-
librium bid function is

b(x) � x� exp(n(1� x)�) 1

�n1=�

Z 1
n(1�x)�

y
1
�
�1e�ydy:

Both the exact and approximate expressions coincide with the corresponding
ones for the case of the uniform distribution when � = 1. As in that example,
�x x = 0:9, n = 40 and choose � = 3. Then the exact equilibrium bid is

8The expression for the power of the polynomial is provided by the Newton�s Binomial
formula (a+ b)n =

Pn
h=0

�
n
h

�
ahbn�h.
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0.730 and the approximate equilibrium bid is 0.731, with only a 0.1 percent
error.

The results obtained so far are valid only for the distributions in the do-
main of attraction of the Weibull extreme value distribution. If we consider
auctions for artwork or collectable or even shares of private companies9, the
hypothesis of the distribution of valuations having a �nite upper endpoint
might be restrictive. Even though prices are always �nite, we can imagine
that there is no �xed value they might converge to. Consider, for example,
artwork and collectibles bought for (eventual) resale. Then, people�s val-
uation might depend on estimates of future prices, which in turn depend
on future valuations. This dependence makes it inappropriate to �x a �-
nite upper endpoint. To see how the theory works when the distribution
of valuations has an in�nite upper endpoint, we refer the reader to Caserta
(2002).

3 On-line Auction Application

In this section we use the theory developed above to answer to the question
"what can one learn from previous held auctions of similar items before
participating oneself?". Surprisingly little attention has been given to this
question. Our analysis below analyzes which price level one can expect to
prevail in a repetition of a similar auction. In contrast to most applied
work, it is not our aim here to test auction theoretic paradigms. We take
the IPVP for consumer goods as given, although we do test the often made
assumption that the distribution of valuation has a �nite upper endpoint.

The large size of the on-line auction audience makes these auctions
amenable to extreme value analysis. We can use data from Internet auc-
tions, assuming that the collected bids are representative of the valuations
of the participants. Such an assumption appears reasonable because the
second-price sealed-bid auction has the unique symmetric dominant equilib-
rium strategy whereby each bidder�s best action is to submit a bid equal to
his own valuation.

In order to study our Internet data, we develop the necessary estimators
extending statistical extreme value theory. The derivation of the estimators
is provided in Appendix B. The methodology we develop can be applied to
the data collected from �rst and second price auctions as well as English
auctions. It can not be applied to the data from a single Dutch auction,

9 Initial public o¤erings of shares are sometimes run via auctions.
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because only one bid (the top one) is observed in such a case. However, also
for traditional �rst price auctions (as procurement auctions) and English
auctions (as artwork auctions), data collection is complex and, in addition,
the number of participating bidders is often relatively low. This is not the
case for on-line second-price auctions, which have lately been booming due
to their use on the Internet10, see Lucking-Reiley (2000).

On-line auction houses post all the bids for any auction and these data
can be easily downloaded. We collected information and bids for three auc-
tions from Yahoo!Auctions, and a summary of the auctions characteristics
is contained in Table 1. We only considered auctions which had no reserve
price and had automatic extension. For a detailed description of the auctions
we refer the reader to Appendix A. Although we can not avoid the situation

Table 1: Auction description

Auc.1 Auc.2 Auc.3

Total Bids 132 139 138
Selling Price $ 311.50 2210.01 825.00

that a bid might not completely reveal a bidder�s true valuation, we use the
bids to test whether the distribution of the maximum valuation conforms to
a Weibull extreme value distribution, and to compute the seller�s expected
revenue.

The theory developed in Section 2 assumes that the bidders�valuations
are drawn from a distribution with a �nite upper endpoint. This is a gener-
ally made assumption when dealing with non-durable consumer goods. Such
assumption is economically easy to justify, as it would not make sense for
items such as mobile telephones or personal computers to be valued above
the prices set by the most expensive outlets. However, to the best of our
knowledge the boundedness of valuations for consumer goods is never tested
for. The existence of a �nite upper endpoint is vital as it (partly) deter-
mines the behavior of the highest statistics and therefore of the expected
revenue. Hence, we start by verifying that the Internet data are drawn from
a distribution which is in the domain of attraction of the Weibull extreme
value distribution. To verify this, we �rst use the exploratory data analysis
technique of the QQ-plot; see Appendix B. We reproduce the double-log
plot for the data of the three auctions in Figure 1.

10Most on-line auction houses run second-price auctions. This is possibly so because of
the simplicity of the optimal bidding strategy.
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Figure 1: QQ-plots bids against Gumbel quantile

From these plots we deduce that the supposition of the data being gen-
erated from a distribution whose maximum values are in the domain of
attraction of a Weibull extreme distribution with �nite upper endpoint, is
tenable, since all three curves are sloping upward at the highest quantiles.
Equivalently, this con�rms the existence of an upper bound for the valua-
tions and the tail index estimates reported below provide further evidence.

With such support for our assumption, we can move on to estimate the
expected revenue and the endpoint of the distribution. We start by estimat-
ing the tail index � needed in (14), which gives further information about
the boundary of the distribution. We use the DEDH estimator described
in Appendix B. For the three auctions, Figure 2 plots the DEDH estimates
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Figure 2: Gamma ̂ = 1=b� estimates for the three auctions
of ̂ � �1=b� against the number k of higher bids taken into account (for k
between 5 and 80). In the central part, the graphs are quite stable with val-
ues between �1 and �0:5. Note that the estimated values are consistently
negative11 for all values of k, further con�rming the hypothesis that the se-
ries are from a distribution whose maximum is in the domain of attraction
of a Weibull. In turn, this implies that the distribution has a �nite upper
endpoint.

Similar plots are made to extract estimates for the expected revenue12

and the upper endpoint. On the basis of these plots we choose the number
of order statistics k employed in the estimation procedure. The results are
presented in Table 2. While it needs not be the case, it turns out that for all
three auctions our expected revenue estimates are below the actual selling
price. This suggests the sellers were lucky in these particular auctions.

As a veri�cation for the validity of our estimates we use the QQ-plot
of the original series against the quantiles of the corresponding estimated
Weibull extreme value distributions. The plots in Figure 3 seem to be su¢ -
ciently straight in the North-East part of the plane, to be satis�ed with the

11 In addition, because the DEDH estimator for the tail index  is asymptotically normal,
see Dekkers et al. (1989), we obtain that at a 90 percent (one-sided) con�dence level the
tail index estimates for the three auctions are negative and in particular they are less than
�0:18, �0:05 and �0:22 for Auc.1, Auc.2 and Auc.3 respectively.
12 It is important to understand that the selling prices reported in Table 1 are natu-

rally the empirical maximums in each of the three data sets. But in practice, for the
very structure of a second-price auction they represent the second highest bid, because
the maximum bid is never shown. Hence, we will estimate the expected revenue to the
auctioneer using the estimator for the maximum, i.e. using (25) and not using (24).
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Table 2: Auction estimates

 $ z $ E[rev]

Auc.1 -0.58 321.70 307.73
k = 22 k = 22 k = 22

Auc.2 -0.52 2242.20 2179.47
k = 14 k = 14 k = 14

Auc.3 -0.82 820.79 815.35
k = 16 k = 14 k = 16

estimates.
Now that the auctioneer has an estimate of her expected revenue, she

might want to capitalize on this estimate. For example, if the auctioneer
were to auction another Sony Pcg-xg29k Vaio Notebook (like the one in
Auc.2) she could use the estimated value as a reference for some of the
facilities provided by on-line auction houses, such as the �Early Close Time�
and the �Buy Price�. The �rst is employed when a seller wants to terminate
the auction as soon as the current bid reaches a satisfactory level. The second
facility can be used to set an amount and simply sell the item to the �rst
person who posts that price.

Internet auction houses clearly explain what a buy price or an early
close time are and that they might be used to shorten the time it takes
to sell the object. However, they do not explicitly suggest how to set the
one or the other. In some cases, they do suggest to navigate around in
search of auctions for comparable items, to see what price was reached in
those auctions. Hence, in our example the seller could follow the evolution
of a new auction and terminates it as soon as the current bid equals the
estimated expected revenue equal to $2179.47 in Auc.2. Similarly, she could
use the estimated value as a �Buy Price�.

4 Conclusions

This paper is dedicated to the analysis of theoretical and empirical auctions
with numerous bidders. In the past few years Internet auction houses have
become one of the most popular marketplaces for the sale of goods such as
collectibles and second-hand items. If we want to analyze these auctions, we
need to adapt the classical theory of auctions to a large number of bidders.
In the auction literature the e¤ect on the seller�s revenue of increasing the
number of bidders has been analyzed only from a theoretical point of view

18



-3

-2

-1

0

0 100 200 300 400

Empirical Quantile

W
ei

bu
ll 

Q
ua

nt
ile

Auc.1

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 500 1000 1500 2000 2500

Empirical Quantile

W
eib

ul
l Q

ua
nt

ile

Auc.2

-5

-4

-3

-2

-1

0

0 200 400 600 800 1000

Empirical Quantile

W
ei

bu
ll 

Q
ua

nt
ile

Auc.3

Figure 3: QQ-plots bids against Weibull quantile for estimated gammas

when the number becomes unbounded.
In the limit case of an in�nite number of bidders, the seller gains a price

equal to the highest possible valuation. Hence, when the number of bid-
ders is large one might either directly compute the seller�s expected revenue
or approximate it by the upper endpoint of the distribution of valuations.
Both suggestions are, however, of little practical use. Direct computation is
extremely di¢ cult to work with, unless a particularly easy distribution func-
tion of valuations applies. And the approximation by the upper endpoint
results in a large approximation error. With the aid of extreme value the-
ory, we have shown how to obtain a simple approximate expression for the
seller�s expected revenue, and for the equilibrium bid function in a �rst-price
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sealed-bid auction.
In the last section we have utilized on-line second-price auction data

to estimate the expected revenue to the auctioneer, relying only on data
from a single auction. In this way we avoided the necessity, typical for
the empirical auction literature, of pooling data from di¤erent auctions of
comparable items.

We have also shown that in order to estimate the expected revenue to
the auctioneer, we do not need to assume a speci�c distribution function for
the bidders�valuations. We only needed to assume that the distribution of
valuations is in the domain of attraction of an extreme value distribution.
Such hypothesis is con�rmed by the empirical results. More precisely, we
have con�rmed that for the three data sample we used, the distributions of
the valuations (bids) is in the domain of attraction of the Weibull extreme
value distribution. In this way we have also veri�ed that the distribution of
valuations possess a �nite upper endpoint, as it is often assumed in auction
literature.

It is important to note that our procedure can also be used directly
to estimate the distributions of the highest bids for other auction formats.
We chose second-price auctions because in that format the optimal bids are
the valuations. Nonetheless, our method is also applicable to (large sets
of) data from �rst-price auctions to estimate the distribution of the largest
bids. Our technique is, therefore, complementary to the one used in Guerre,
Perrigne and Vuong (2000), where kernel density estimators are used to
study the distribution of observed bids from �rst-price auctions. As they
point out, the use of kernel estimators is, by its own nature, problematic for
the largest bids, which are those we focus on and for which our technique
has a comparative advantage.

As it often happens in the analysis of complex problems, we have made
a number of assumptions. Some of these assumptions (such as the use of
distributions of valuations with �nite upper endpoint) are neither necessary
nor restrictive. Others might lead to discrepancies between the theory and
the applications. For example, the study of dependent valuations and val-
uations with di¤erent distribution functions should be considered. Another
interesting problem would be to look at auctions with simultaneously many
bidders and many sellers.
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Appendix A

In this appendix we brie�y describe on-line auctions and provide details for
those we used. It is fair to say that Internet auctions are a mixture between
the English auction and the second-price auction. A bidder can choose
to monitor the bidding process herself and bid as in an English auction.
But since many of the auctions run over multiple days, a bidder can also
submit her maximum valuation like in the second-price auction, and leave
the bidding, called proxy bidding, to the computer program run by the
Internet auction house.

Judging by the answers to the FAQ sections for di¤erent Internet auction
houses, a lot of emphasis is placed on explaining the idea that bidding one�s
valuation, through the proxy bidding system, is a dominant strategy for the
participants. Hence, we can assume that most bids are placed as in a second-
price auction, and therefore are representative of the bidders�valuations.

On-line auctions are run over a �xed time period, traditionally equal to
one week. A practical issue we need to consider is that in some Internet
auction setups, there exists an incentive for under-reporting one�s true val-
uation due to the �xed time period over which the auction runs. Agents
who do not want to reveal their private information bid at the very last
moment, so that others will not be able to exploit this information by over-
bidding. Some auction houses preclude this so called �sniping� e¤ect by
automatically extending the time horizon of the auction at the last bid.

Yahoo!Auctions allows for auctions in which the closing time is auto-
matically extended by �ve extra minutes whenever a bid is posted within
the last �ve minutes of the auction expiration. This option may or may not
be available. In order to avoid sniping and its in�uences, which have been
analyzed in Roth and Ockenfels (2000), we have chosen data from items sold
on Yahoo!Auctions with an automatic extension.

For any auctioned item, Yahoo!Auctions reports an extended bid history
after the auction has �nished. This history contains the bids and the proxy
bids13 of the participating bidders. We use the total collection of bids as
recorded. However, these records may contain di¤erent bids posted by the
same person, if for example the bidder misunderstood the way the system
works. Hence, the same bidder may have posted di¤erent bids at di¤erent
times, which can be detected because the complete bid history contains as
identi�cation the E-mail addresses from the participants. We have veri�ed

13 In the estimation procedure we implicitly assume that these automated bids represent
the bids entered by other bidders.
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that our estimates are robust to the presence of multiple bids by the same
bidder14.

The �rst auction (Auc.1) concerned a ticket for the Backstreet Boys
concert (Minneapolis). It was started on 2000, December 07 at 18:12, and
it ended on December 12 at 17:12. The total number of submitted bids was
69, to which 63 proxy bids were added by the system, resulting in a total
amount of 132 collected bids, as listed in the extended bids history15. The
ticket was sold at $311.5 (to be compared with the o¢ cial price of $136.50).

The second auction (Auc.2) was for a laptop computer, a new Sony Pcg-
xg29k Vaio Notebook. It was started on 2000 November 01 at 11:41, and
it ended on November 4 at 11:41. The total number of entered bids was 73
and the item was sold at $2210.01 (to be compared with the o¢ cial price
of $3599.99). The extended bids history provides us with a total list of 139
bids, both proxy and non-proxy.

The third auction (Auc.3) was for a laptop, a Dell latitude Notebook.
It was started on 2001, April 11 at 15:51, and it ended on April 19 at
20:06. The total number of submitted bids was 83 and the selling price was
$825.00. The extended bids history provides us with a total list of 138 bids,
both proxy and non-proxy.

Appendix B

In this appendix we extend extreme values statistics to obtain estimators
for the expected highest and second highest order statistics. Surprisingly as
it may sound, estimation of the expected extreme order statistics has not
been dealt with in the statistics of extreme values. A lot is known about
estimating the tail index and the norming constants of the limit distribution
but the expected values have not been provided with estimators.

We concentrate on the question of how to estimate the expected revenue
from a single auction (a complete treatment of all the statistical issues in-
volved is outside the scope of the present paper, and we focus only on the
estimators). As shown in Corollary 5, the expected revenue depends on the
coe¢ cients �, un and sn. Estimators for these coe¢ cients exist, but now
need to be combined to obtain an estimator for the expected revenue.

Several estimators for the tail index have been proposed in the extreme

14 Details can be obtained on request from the authors.
15The o¢ cial extended bids history contained 261 data. However, many of these bids

are ties due to the computerized system. We, therefore, removed the multiple bids in
order to avoid arti�cial ties.
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values literature; see Embrechts et al. (1997), Reiss and Thomas (2001)
and references therein. Most estimators use a semi-parametric approach
whereby only information from the upper tail of the distribution function
F (x) is used, because only in the tail area the approximation by the limit
laws for the highest order statistics is appropriate. In those cases in which
more information is available, we could estimate a fully parametric model
and infer the EVT parameters. But in our case we do not have such infor-
mation available. A fully non-parametric method is also not advisable since
typically in the tail area few observations are present, and hence neglecting
the parametric information from the limit distribution is ine¢ cient.

One particular class of semi-parametric estimators is the logarithmic
moment estimators initiated by Hill (1975). The Hill estimator is restricted
to distributions with in�nite upper endpoint. Dekkers, Einmahl and de Haan
(1989) extended the idea of the Hill estimator to encompass the limit laws
with �nite upper endpoint. An alternative for the moment based estimator
of the tail index is the maximum likelihood estimator (MLE) developed in
Smith (1984). However, the use of MLE procedure is valid only when � > 2.
In particular, when � � 1 the likelihood function has no global maximum,
so that MLE estimates are non-existent or not consistent. Since we can not
exclude the possibility of � being lower than 2, we will not rely on the MLE
approach.

Although the MLE approach has been improved in the meantime, we
concentrate on the logarithmic moment estimator proposed by Dekkers et
al. (1989), which we indicate by DEDH. This estimator is a function of the
sample size n and of the number k of upper order statistics X(1) � X(2) �
� � � � X(k) � � � � � X(n) to be used. De�ne � � �1=, then the DEDH
estimator is

̂n = H
(1)
n + 1� 1

2

 
1� (H

(1)
n )2

H
(2)
n

!�1
and �̂n = �

1

̂n
(19)

where

H(1)
n =

1

k

kX
j=1

(logX(j) � logX(k+1)) (20)

and

H(2)
n =

1

k

kX
j=1

(logX(j) � logX(k+1))2: (21)
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We indistinctly indicate by DEDH both �̂n and ̂n, whenever no confusion
is possible. The name of moment estimator stems from the fact that (20)
and (21) can be thought of as empirical moments of the variable logX.

The DEDH estimator applies to extreme value problems in general.
When the distribution function is in the domain of attraction of the Weibull
extreme value distribution, F (x) 2 MDA(	�), then for the estimated tail
index it has to hold ̂n < 0. The other two limit laws are covered by the situ-
ations ̂n = 0 and ̂n > 0. Thus, the sign of the estimate can be taken as an
indication of the appropriate limit law. This fact was used in the application
to test for the assumption of bounded support for the valuations.

We also employed QQ-plots as an alternative means for checking this
presumption. In a QQ-plot the empirical quantiles, i.e. the ordered data,
are plotted against the quantiles of a theoretical distribution. If the data
were drawn by a distribution of the type of the theoretical distribution, then
the QQ-plot should depict a straight line. If the QQ-plot does not resemble
a straight line, the deviations from linearity may provide an indication of
the nature of the mismatch. See Embrechts et al. (1997) for a concise and
clear discussion on the QQ-plot.

Suppose we use a QQ-plot of a data sample against the Gumbel extreme
value distribution16, the so called double-log plot. If the data were generated
by a distribution in the domain of attraction of a Gumbel, then the QQ-
plot should be approximately linear in the area where the highest values are
plotted, that is in the North-East part of the plane. On the contrary, if the
generating distribution is in the domain of attraction of a Weibull, then the
plot curves upward, while in the case of a Fréchet law, it curves downward,
as shown in Figure 4. This �gure contains the theoretical QQ-plot for the
extreme value Weibull (a) and Fréchet (b) distributions against the Gumbel
distribution. Thus, the curvature is indicative of the limit law.

We now move on to the problem of �nding estimators for the sequences
sn and un. A �rst natural choice is to look at estimators which corre-
spond to the possible theoretical values for sn and un: Recall that when
F (x) 2MDA(	�) appropriate theoretical values for the norming constants
are given by

sn =

�
z � F 

�
1� 1

n

���1
and un = z

where z is the upper endpoint of the distribution, and F (1� 1=n) is the
inverse quantile function computed at the 1� 1=n probability level. Hence,
16We can not use the Weibull extreme value distribution at this stage because we would

have to �x a particular value for its tail index.
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Figure 4: QQ-plots

estimators for the upper endpoint and the 1 � 1=n quantile can be used as
estimators for the norming sequences. We use the estimators developed in
Dekkers et al. (1989). As a result, natural choice estimators for the norming
sequences are

bsn =  bz � \
F 

�
1� 1

n

�!�1
=

�
k̂n

�
1� 1

̂n

�
H(1)
n Xk+1

��1
(22)

and bun = bz = �1� 1

̂n

�
H(1)
n Xk+1 +Xk+1: (23)

For further details on the derivation of the estimators bsn and bun, we refer
the reader to Caserta (2002) and the references therein.

On the basis of the above estimators we obtain estimators for E[Mn]
and E[X(2)]. Substituting the three estimators (19), (22) and (23) into
expressions (8) and (14) yields the following estimators.

De�nition 7 Suppose z � supfx : F (x) < 1g > 0, and F (x) 2 MDA(	�)
then for k(n)!1 and k(n)=n! 0, the estimators for E[X(2)] and E[Mn]
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are respectively

\E[X(2)] = bun � �(2 + b��1)bsn = (24)

=
h
1� k̂n�(2� ̂n)

i�
1� 1

̂n

�
H(1)
n Xk+1 +Xk+1:

\E[Mn] = bun � �(1 + b��1)bsn (25)

=
h
1� k̂n�(1� ̂n)

i�
1� 1

̂n

�
H(1)
n Xk+1 +Xk+1:

All extreme value estimators depend on the choice of the number k of
upper order statistics Xk+1. The number k varies with the sample size
and it is, in general, di¤erent for the di¤erent estimators. Moreover, the
number of order statistics has to satisfy two conditions: 1) k ! 1 and
2) k=n ! 0. These conditions state that when the sample size increases
the number of order statistics increases as well, although at a lower rate.
In fact, if too few upper order statistics are used the variance dominates,
but if too many upper order statistics are used a considerable bias appears.
The optimal choice for k can be achieved by balancing the bias squared and
variance through a minimization of the asymptotic mean squared error of
the estimates. Often, the choice for k is made with the aid of a so called
estimates plot; see Embrechts et al. (1997), Reiss and Thomas (2001) and
references therein for a detailed exposition. This is a plot which contains
on the x-axis the number k and on the y-axis the value of the estimator for
the corresponding k. The choice for k is where the graph becomes relatively
stable but before wandering o¤ in one or the other direction due to the bias.
We use this plot in the applications17, since data limitations prevent us
from using methods like the bootstrap or sub-sample bootstrap advocated
in Danielsson et. al. (2001).
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