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Abstract

A situation in which a finite set of players can obtain certain payoffs by cooperation can
be described by a cooperative game with transferable utility, or simply a TU-game. A one-
point solution for TU-games assigns a payoff distribution to every TU-game. In this paper
we discuss a class of solutions containing all convex combinations of the CIS-value, the
ENSC-value, and the egalitarian solution. We characterize this class of solutions using a
general standardness for two player games and reduced game consistency. Specific cases of

these properties characterize specific solutions in this class.

Keywords: TU-game, Equal surplus sharing, CIS-value, ENSC-value, Egalitarian solu-
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1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can
be described by a cooperative game with transferable utility, or simply a TU-game, being
a pair (N,v), where N C IN is a finite set of players with |[N| > 2 and v: 2V — R is a
characteristic function on N such that v(()) = 0. For any coalition S C N, v(5) is called
the worth of coalition S. This is what the members of coalition S can obtain by agreeing
to cooperate. We denote the class of all TU-games by G.

A payoff vector of game (N,v) is an |N|-dimensional real vector z € R", n = |N|,
which represents a distribution of the payoffs that can be earned by cooperation over the
individual players. A (point-valued) solution for TU-games is a function ¢) which assigns a
payoff vector ¥(N,v) to every TU-game (N, v). If a solution assigns to every game a payoff
vector that exactly distributes the worth of the ‘grand coalition” N then the solution is
called efficient!.

In this paper we discuss a class of solutions for TU-games that all have some egal-
itarian flavour in the sense that they assign to every player some initial payoff and dis-
tribute the remainder of v(NN) equally among all players. Examples of such solutions are
the CIS-value, the ENSC-value and the egalitarian solution. The Center-of-gravity of the
Imputation-Set value, shortly denoted by CIS-value (see Driessen and Funaki (1991)), as-
signs to every player its individual worth, and distributes the remainder of the worth of the
grand coalition NV equally among all players. The FEgalitarian Non-Separable Contribution
value, shortly denoted by ENSC-value, assigns to every game (N, v) the CIS-value of its
dual game. The egalitarian solution just distributes the worth of the ‘grand coalition’
equally among all players.

In this paper we define a class of solutions that contains the above mentioned solu-
tions and all convex combinations of these solutions. We begin by defining this class for
two-player games. For this class of games our solutions are defined by a weak standard-
ness for two-player games. The usual standardness for two-player games states that in a
two player game every player earns its own worth plus half of what remains of the worth
of the two-player (‘grand’) coalition (see, e.g. Hart and Mas-Colell (1988, 1989)). The
weaker standardness that we discuss also contains egalitarian standardness for two-player
games. We also discuss some properties, in particular properties that characterize efficient,
symmetric and anonymous solutions for two-player games.

After defining the class of solutions for two-player games we extend the definition
to m-player games, by applying some reduced game consistency. We also discuss some

other properties of the class of solutions obtained in this way. After that we provide some

IEfficient solutions are often called values.



axiomatic characterizations of specific solutions in this class, in particular the CIS-value,
the ENSC-value, their average and the egalitarian solution. Besides characterizations that
follow as corollaries from our main theorem using weak standardness for two-player games
and reduced game consistency, we discuss characterizations using self-duality and weak

individual rationality, and characterizations as compromise values.

The paper is organized as follows. Section 2 discusses some preliminaries on TU-games and
solutions. In Section 3 we define our class of solutions for two-player games. In Section 4 we
extend this definition to n-player games using a reduced game consistency. In Section 5 we
discuss some specific examples of solutions that are obtained in this way, and give axiomatic
characterizations of these examples. In Section 6 we discuss axiomatic characterizations
of the class and some specific solutions using weak individual rationality. In Section 7 we
look at the solutions as compromise values. Section 8 contains some concluding remarks.

Finally, there is an appendix that discusses the reduced games.

2 Preliminaries

A TU-game (N,v) is monotone if v(S) < v(T) for all S C T C N. A TU-game (N,v)
is non-negative if v(S) > 0 for all S N. A TU-game (N,v) is weakly essential if
Yien v({i}) < v(N). A TU-game (N,v) is conver if v(SUT)+v(SNT) > v(S) +v(T)
for all S,T C N.

A (point-valued) solution 1 on a subclass C C G assigns a payoff vector ¢(N,v) €
RNl to every TU-game (N,v) € C. Examples of solutions are the CIS-value, the ENSC-

value and the egalitarian solution. The CIS-value (see Driessen and Funaki (1991)) assigns

<
C

to every player its individual worth, and distributes the remainder of the worth of the

grand coalition NV equally among all players, i.e.,

CIS;(N,v) = v({i}) + ﬁ (v(N) — Zv({ﬁ)) for all i € N.

The dual game (N,v*) of game (N, v) is the game that assigns to each coalition S C N
the worth that is lost by the grand coalition NV if coalition S leaves N, i.e.,

v*(S) =v(N)—v(N\S) for all S C N.



The ENSC-value assigns to every game (N, v) the CIS-value of its dual game, i.e.,

ENSC;(N,v) = CIS;(N,v*) = v*({i}) + |]{]|< )_ZU*({j})>

JEN

= v(N) —v(N\{i}) + |N|<(N)—Z(U(N)—U(N\{j}))>

JeEN

= —o(N\ {i}) + ] <U(N)+ZU(N\{J'})> for all i € N.
jEN
Thus, the ENSC-value assigns to every player in a game its marginal contribution to the
‘grand coalition’ and distributes the (positive or negative) remainder equally among the
players. Using these two solutions we can define a class of solutions by taking any convex

combination of the two, i.e., for b € [0, 1] we define
CIS®(N,v) = bCIS(N,v) + (1 — b)) ENSC(N, v).

A solution ¢ on C C G is self-dual if (N,v) = (N,v*) for all (N,v) € C. The only
self-dual solution in the class of solutions described above is the ‘average’ of the CIS and
ENSC value? obtained by taking b = 1

The solutions discussed above have some egalitarian flavour, in the sense that they
equally split a surplus that is left after all players receive some individual payoff. Ignoring
these individual payoffs we obtain the egalitarian solution given by

1

FGAL(N,0) = o (N

) for all i € N.

Note that this solution is also self-dual. In this paper we discuss a class of solutions that
contains all solutions CIS®, b € [0,1], and the egalitarian solution.

We conclude this section by stating some well-known properties of solutions for TU-
games. We call players i, 7 € N symmetric in game (N,v) if v(SU{i}) = v(SU{j}) for all
S C N\ {i,j}. We call player i € N a null player in game (N,v) if v(SU{i}) = v(S) for
all § C N\ {i}. For game (IV,v) € G and permutation 7: N — N we define the permuted
game (N, 7mv) by mv(S) = v(Uijes{n(i)}) for all S C N. Finally, for (V,v), (N,w) € G and
a,b € R we define (N,av + bw) € G by (av + bw)(S) = av(S) + bw(S) for all § C N.
Solution

e is efficient on C C G if >,y i(N,v) = v(N) for all (NV,v) € C.

o is symmetric on C C G if ¢;(N,v) = ¢;(N,v) whenever i and j are symmetric players

n (NV,v) € C.

2 Another well-known self dual solution for TU-games is the Shapley value (Shapley (1953)).
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e is anonymous on C C G if for every permutation 7 : N — N it holds that ¢;(N,v) =
Vr(s) (N, ) for every (N,v) € C with (N, mv) € C.

e is linear on C C G if Y(N,av + bw) = arp(N,v) + bip(N,w) for all (N,v), (N,w) € C
and a,b € R with (N, av + bw) € C.

e satisfies the null player property on C C G if ¢;(N,v) = 0 whenever i is a null player
n (N,v) € C.

e satisfies individual rationality on C C G if ¥;(N,v) > v({i}) for all i € N and
(N,v) € C.

e is non-negative on C C G if 1;(N,v) > 0 for all i € N and (V,v) € C.

e reacts positive on a change in indwidual worth on C C G if ¢;(N,w) > 1;(N,v) for
every (N,v), (N,w) € C with w({i}) > v({i}) and w(S) = v(S) for all S # {i}.

The first seven properties are well-known. The last property is less familiar.

3 Two-player games

We start by defining a class of solutions for two-player games. An n-player TU-game is
described by 2" — 1 worths of non-empty coalitions. However, in many applications it will
not always be possible to know all worths or not all worths are relevant when we want to
allocate the worth of the grand coalition N over all players. However, in two-player games
their are only three worths of non-empty coalitions, the two singletons and the grand
coalition, and in these games it seems without doubt that all three worths are relevant in
determining a payoff distribution. If we assume the payoff of players in a two-player game
to depend linear on the worths of all coalitions we obtain solutions 1 for which there exist

a;, Bi, Vi, 6; € R, such that for every two-player game (IV,v) with N = {i, j}, we have

$i(N,v) = aiv({i}) + Biv({j}) + 7iv(N) + 6:. (3.1)

From Weber (1988, Theorem 1) this means that we consider linear solutions for two-player
games. Next we require some well-known properties for two-player games to obtain a

subclass of solutions satisfying (3.1). First we require the solution to be symmetric.

Proposition 3.1 A solution v as given by (3.1) is symmetric if and only if a; + f; =
&% +ﬁj, Yi = V5 and 5Z = 5j.



PROOF

The if part is straightforward. To prove the only if part, suppose that 7,7 € N are
symmetric players in (N,v). By symmetry of ¢ it then must hold that ¢;(N,v) = ¢;(N,v),
which is equivalent to a;v({i}) +Biv({j}) +7iv(N)+8; = au({j}) +Bv({i}) +v0(N)+9;.
By symmetry of i, j € N in game (N, v) we have v({i}) = v({j}), and thus («;+5;)v({i})+
Yiv(N) + 6 = (aj + Bj)v({i}) + v;v(N) 4+ 6;. The statement then follows since this must
hold for all (N,v) € G with v({i}) = v({j}). 0

Symmetry is not sufficient to have all parameters of both players to be equal. For that we

need the stronger anonymity property.

Proposition 3.2 A solution v as given by (3.1) is anonymous if and only if o; = «;, f; =

ﬁj,’}ﬁ; = ’}/j and 5@ = 5]’-

PROOF

Again, we just prove the only if part. Consider the permutation 7 : N — N given by
7(i) = j and 7(j) = i. Then wv({i}) = v({j}), mv({j}) = v({i}) and wv(N) = v(N).
By anonymity of ¢ it then must hold that 1;(N,v) = ¥ (N, mv) = ¢;(N,7v), which is
equivalent to a;u({i}) + Biv({j}) + v (N)+0; = aymv({j}) + Bimv({i}) + vjmv(N) +6; =
a;v({i}) + B;v({7}) +v;0(N) +6;. The statement then follows since this must hold for all
(N,v) € G. O

If we restrict ourselves to efficient solutions then the possibilities for the values of the

parameters is even further restricted.

Proposition 3.3 A solution 1) as given by (3.1) is efficient if and only if o; = —B;, o =

PROOF

Again, we just prove the only if part. Efficiency of ¢ implies that ¢;(N,v) + ¢;(N,v) =
a;v({i}) + Biv({5}) +7iv(N) + 0 + aju({j}) + Bjv({i}) +0(N) +6; = (o + 5;)v({i}) +
(o + Bi)v({7}) + (i + vj)v(N) 4+ 6; + 6; = v(N). Since this must hold for all (N,v) € G
we have o + 8 =0, + 5, =0, 7, +v; =1 and §; + 0, = 0. O

Combining symmetry or anonymity with efficiency yields the following corollary.

Corollary 3.4 A solution v as given by (3.1) is efficient and symmetric (or anonymous)

if and only if o = o = =B = =B, Vi = :% and 6; = 6; = 0.



PROOF

The statement with anonymity is immediate from Propositions 3.2 and 3.3. So, we just
show that v being efficient and symmetric implies the conditions for the parameters.
being symmetric implies with Proposition 3.1 that o; + 8; = o + 3;. ¥ being efficient then
implies with Proposition 3.3 that o; — o; = o; — «;, which is equivalent to o; = ;. Then
also 3; = (3;. Finally, with Proposition 3.3 it also follows that o; = a; = —8; = —;. The
conditions for ~; and §;, i € N, follow straightforward. O

Note that equality of oy and «; is not implied by symmetry, but together with efficiency
it is. (The same can be said for §; = /3;). So, under symmetry and efficiency we can write
solutions given by (3.1) as done in the following definition. For notational convenience in

later sections we replace o by 5.

Definition 3.5 Let o € R. A solution 1 satisfies a-standardness for two-player
games if for every (N,v) € G with N = {i,j}, i # j, it holds that

Gi(N.0) = S () — o(UD) + 50(N) for N = {i.j).

A solution ) satisfies weak standardness for two-player games if there exists an
a € R such that for every (N,v) € G with |[N| = 2, ¢ satisfies a-standardness for two-

player games.

Specific choices of « give different versions of standardness for two-player games as encoun-

tered in the literature:

1. Taking o = 1 yields standardness for two-player games as considered in, e.g. Hart and
Mas-Colell (1988,1989): ¢;(N,v) = 2v({i}) — 2v({j}) + 3v(N) = v({i}) + L (v(N) —
v({i}) —v({j})) with N = {i, j}.

2. Taking a = 0, yields egalitarian standardness for two-player games: ;(N,v) =
su(N) for i € N.

In this section we showed how for two-player games the assumption that player’s payoffs
depend linear on the worths of all coalitions, together with symmetry and efficiency yields
a weak standardness for two-player games that generalizes the regular standardness and
the egalitarian standardness for two-player games. Although we will not require the null
player property for our solutions, we can say that requiring efficiency, anonymity and
the null player property on two-player games is equivalent to standardness for two-player
games. In the next section we extend the class of solutions obtained in this section to

n-player games using a reduced game consistency.
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4 An extension to n-player games using a reduced

game consistency

Next we extend the definition of the class of solutions for two-player games satisfying weak
standardness to n-player games using a reduced game consistency. Take a game (V,v), a
payoff vector x € R", and a player j € N. The player set of a reduced game is obtained
by removing player j from the original player set N. The worths of the coalitions in this
reduced game reflect what these coalitions can earn if player j has left the game with its
payoff z;. The worth of the coalition IV \ {j} (the ‘grand coalition’) in the reduced game
is equal to the worth of N minus the payoff x; assigned to player j. Clearly, this is what
is left to be allocated to the players in N\ {j} after sending player j out of the game with
payoff z;. For the other coalitions S C N \ {j} we assume that every majority coalition
has (or thinks it has) the cooperation of j (but has to pay x; to j) and every minority
coalition has not, i.e. coalition S C N\ {j} earns v(SU{j})—=x; if |S| > |N|2_1
v(9)if |9] < |N|T_1 If S is neither a majority nor a minority coalition then we assume that

, and it earns

with probability 5 € [0,1] it does not have player j’s cooperation (and thus earns v(.5))
and with probability 1 — 3 it has the cooperation of j (and earns v(S U {j}) — z;). This
yields the following reduced game.

Definition 4.1 Take 5 € [0,1]. Given a game (N,v) € C with |[N| > 3, a player j € N,
and a payoff vector x € RY, the f-reduced game with respect to j and z is the game
(N\ {3}, v™7) given by

U(N)—ij ZfS:N\{]}
i) = WS- if S € N\ {j} with M= < S| < [N -1
pu(S) + (1 =B (S U{j}) — ) if S C N\ {j} with |S] = ==
v(S) if S C N\ {j} with |5 < 2=,
Note that the case |S| = EL=L does not occur in case [N| is even. The characterization

2
result we present below holds if we take a qualified majority ¢ € {2, ...,|N| — 3} instead of

the simple majority rule. Anyway we require that there exist both majority and minority
coalitions, and thus we do not allow the quota ¢ to be equal to 1 or |N| — 2. Taking
a qualified majority with ¢ = 1 we would obtain a reduced game that is similar to the
reduced games considered in Funaki and Yamato (2001).

We are ready to give a definition of the consistency property of a solution associated

with a reduced game.

Definition 4.2 Let ¢ be a solution on C C G, and 5 € [0,1]. Solution 1 satisfies [3-
consistency on C if and only if for every (N,v) € C with |N| >3, j € N, and x = (N, v)
it holds that (N \ {j},v®?) € C and ;(N \ {j},v®?) = ¢;(N,v) fori e N\ {j}.

7



Consistency implies that given a game (N,v), if x is a solution payoff vector for (N, v),
then for every player j € NV, the payoff vector xy\ ;1 with payoffs for the players in N\ {j},
must be a solution payoff vector of the reduced game (N \ {j},v%?). It is a kind of internal
consistency requirement to guarantee that players respect the recommendations made by
the solution. With a slight abuse of notation we denote in the remainder of the paper the

characteristic function v®# just by v°.

Next we show that for &« € R and 8 € [0, 1], a-standardness for two-player games and

[-consistency implies that the solution is uniquely determined and is given by

e (N, v) = AP (N, v) + |—;]| ( (N) =) AF2(N, m) , (4.2)

jEN
where A*?(N,v) = a(Bo({i}) — (1 — B)v(N \ {i})) for i € N. We denote the class of all
solutions that are obtained in this way by ® := {¢p®? | a € R, 3 € [0,1]}. These all have
some egalitarian flavour. They give each player i in a game (N,v) the value )\?’5 (N,v),
and the remainder of v(N) is equally split among all players. Since for two-player games
(N,v) with N = {4, j} it holds that v({i}) = v(IN \ {j}), the payoff vector assigned to two-
player games does not depend on 5. Obviously, applied to two-player games the solution
¢ satisfies a-standardness for two player games. Next we show that it also satisfies

[-consistency.

Proposition 4.3 Take any $ € [0,1]. For every a € R the solution P satisfies (-

consistency on the class of all games G.

PROOF
Take any 8 € [0, 1] and fix @ € R. Take any (V,v) € G. First, suppose that |N| > 4. For

x = ¢*P(N,v) we have

APANA (G}, 07) = a(Bo"({i}) = (1= B)o" (N \ {i, j})) (4.3)
= a(Bo({i}) — (1= B)(0(N\ {i}) = a)) = A (N,v) + (1 = B)a;

since in that case |{i}| < W% and |N\ {i,5} > W% Put \; = A*P(N,0) and \* =
AZP(N\ {j},v%) with = ¢*#(N,v), i € N. Then with (4.3) it follows that

NN = X e (NG - Y X

keN\{j}

:Ai+(1—5)xj+w,1_1 o(N) == D e+ (1= B)my)

keN\{j}



— >\z+(1_6)x]+ |N|1_ 1 (U(N) - >‘j - % (U(N) - ZAk> - Z Ak) —(1—5)37

kEN kEN\{j}

_ 1 [N[—1 _ o
=\ + M1 ( B (”(M_Z)‘k)) = ™B(N,v).

keN

Second, consider the case |[N| = 3. Let x = ¢*#(N,v), B=1— 3 and N = {i, j, k}. (Note
that | N| = 3 implies that i, j and k are distinct players.) First we remark that

(N, 0) = a(Bo({i}) — Bu(N \ {i})) + % (v(N) — > a(Bu({1}) = Bu(N\ {l}))>

= a(Bu({i}) — Fo({j.k})

1 . : = = . T
+3 (v(N) = apu({i}) = aBo({j}) — aBo({k}) + aBu({j, k}) + afo({k, i}) + aBu({i, })) -
From the definitions of the solution and the reduced game, and the fact that for this three

player game [{i}] = |[{j}| = 55 we have for = = p*#(N, v)

e (N R} 0") = o ({i, ), 0") = %(v‘”({i}) —v*"({7}) + v “({.51)

NIQ

((Bu({}) + Bu({i, k}) — Bxx) — (Bu({5}) + Bv({j, k}) — Bar))

_|_% [v(N) — a (Bv({k}) — Bu({i, j}))

—% (v(N) = aBo({i}) — apv({7}) — apu({k}) + aBv({j, k}) + aBv({k,i}) + aBu({i,j}))

= (afv({i}) — apv({j, k})) + ( aBv({i}) + apv({i,k}) — aBo({j}) + aBv({j, k}))

% (v(N) = apv({k}) + afv({i, j}))) - ( aBu({i}) — aBu({j}) + afv({j, k}) + apv({k,i}))

a(Bu({i}) — pv({j.k}))

% (v(N) = epv({k}) + aBu({i, j})) — apv({i}) — apo({j}) + aBo({j, k}) + apv({k,i}))
v).

- goz (
This completes the proof. O

Next we characterize the solutions .

Theorem 4.4 Take any § € [0,1] and o € R. A solution v satisfies efficiency, -

consistency and a-standardness for two-player games on the class of all games G, if and
only if v = ™.



PROOF

™" satisfying efficiency and a-standardness for two-player games is straightforward. ¢®”
satisfying [-consistency follows from Propositon 4.3. Here we prove the only if part. Take
B € [0,1] and o € R, and let 1) be a solution which satisfies efficiency, [-consistency
and a-standardness for two-player games. If |[N| = 2 then ¥(N,v) = ¢*# follows from
a-standardness for two-player games.

Consider a game (N,v) € G with |N| > 3, and let x = ¢(N,v). Fix i,j € N (i # j). Let
N =i, j, k1, ko, ...kn_o}. By using the -consistency of ¢ repeatedly, we have

Vi(N,v) = (N, v) = (N \ {kp—2},v") — (N \ {kn—2}, v")

= V(N \ {kn—2, kn—3}, (v°)") — (N \ {kn—2, kn—s}, (v*))

= YN\ {Enz, knss coos 1 by (oo ((09)7)0)7) =5 (N iz Ky ooy Kt} (o (07)7).0)7)
= ¥i({i, 7}, (- ((0%)%))7) = ({4, 5}, (. ((0)")..)F).

The a-standardness for two-player games implies that

1/%(N7 1)) - %‘(Na 1))
«
2

= o (( (")) ) {i}) = (- ((07))-)){i}) -

The definition of the reduced game implies that
(( (@) {i}) = Bu{i}) + (1 = B)o({i, kr}) — (1 = By,
(((@W)7)-))EID) = Bv({sh) + (1 = Blo{y k}) — (1 = By, .

Here each last equation is obtained from the definition of the reduced game of three-player

games. Then we have

$i(N,v) = (N, v) = af(v({i}) —v({j})) + (1l = B) ({7, k1}) — v({j, k1}))-

On the other hand, since the solution ¢ also satisfies 3-consistency, we have

i (Nv) = 9 (N o) = aB(u({i}) = ({j}) + a(l = B)(v({i. ki}) = v({j, k1 }),
by the same argument. This implies

Yi(N,0) = ¢5(N,0) = ¢ (N, 0) = 5 (N, v)
for any pair i, 7 € N, (i # j).

10
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)*){i})



These equations together with efficiency imply

Ui(N,v) = &P (N, v)

for all € N. This completes the proof. O

We remark that for the characterization given above it is not necessary to have the param-
eter 3 enter the reduced game for more than three player games. If |N| > 4, instead of
we could take any fixed b € [0, 1] to obtain a characterization. However, it is crucial that
the parameter 3 appears in the reduced game for three player games?.

In the previous section we said that a solution satisfies weak standardness for two-
player games if and only if there exists an o € R such that it satisfies a-standardness
for two-player games. Similar we can say that a solution satisfies weak consistency if and
only if there exists a 8 € [0, 1] such that it satisfies S-consistency. In a similar way as
the proof of Theorem 4.4 it can be shown that these two weaker properties with efficiency

characterize the class of solutions ®.

Corollary 4.5 A solution v satisfies efficiency, weak consistency and weak standardness
for two-player games on the class of all games G, if and only if ¢ € ®.

The a-standardness for two-player games and [-consistency also make clear how the solu-
tions ¢*” depend on these two parameters. The parameter a € IR determines the payoff
distribution in two-player games, while the parameter § € [0, 1] determines the probability
about cooperation of the leaving player j in the coalitions in the reduced game that are
neither majority nor minority coalitions in those games.

We end this section by stating that adding a constant times v(N) to A** yields the

same solution.

Proposition 4.6 For every (N,v) € G it holds that

’B(NU)—)\(NU)—FW( >N NU)

JEN

if \(N,v) = X3(N,v) + kv(N), k> 0.

PROOF

For (N,v) € G and k > 0 it holds that \;(N,v) + ﬁ (v(N) — ZjeNXj(N,'U)>

= AP (N, v)+ko(N)+57 (U(N) — e AN o) = Sy kv(N)) = AN, 0)+ko(N)+
i (0(V) = Zjen X2 (N 0)) = ko (V) = o2 (N, 0), 0

3We give an illustration in the appendix.
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5 Some specific solutions

In this section we discuss some specific solutions in the class ® defined in the previous

sections. Some specific solutions in ¢ are the following:
1. The CIS-value is obtained by taking a = 8 = 1, i.e., CIS(N,v) = Y} (N,v).

2. Taking 8 = 1, a € [0,1] we obtain a solution that assigns to every player a fraction
« of its individual worth, and distributes the remainder of v(N) equally among all

players.
3. The ENSC-value is obtained by taking o = 1, 8 =0, i.e., ENSC(N,v) = o"%(N,v).

4. By taking o = 1, 3 = b we obtain any convex combination CIS® of the CIS-value and
ENSC-value, i.e., CIS*(N,v) = ¢'°(N,v).

5. Taking o = 0 we obtain the egalitarian solution, i.e., EGAL(N,v) = ¢%*(N,v), B €
[0,1].

6. Besides taking convex combinations of the CIS- and ENSC-value, also any convex com-
bination of the CIS-value and the egalitarian solution belongs to ®. More general,
any convex combination of CIS® (i.e. any convex combination of the CIS- and ENSC

value) and the egalitarian solution can be obtained:

e (N, v)

= a(fo({i}) — (1= B)(N\{i}))) +ﬁ (v(N) = alBu({j}) = (1= Be(N\ {j}))>

jEN

= a(Bu{iD) - (=B NN+ (v(zv) = > (Bu{}) = (1= BV \ {j})) + 1|jv|“v<N)

JEN
= aCIS?(N,v) + (1 — o) EGAL(N, v)
fora € R, B €[0,1].

5.1 Some relations between solutions in ¢

From the relations between convex combinations of the CIS- and ENSC-value (see Exam-

ples 1, 3, and 4 above) we find the relation

PP (N, v) = B (N,v) + (1= B) (N, v), 5 €[0,1]. (5.4)
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With the convex combinations of these solutions and the egalitarian solution (see Examples

5 and 6 above) we can generalize (5.4) to

PP (N,v) = ap™?

for o, 8 € [0, 1].

(N, v)+(1=a)p™ (N, v) = aBp" (N, v)+a(1-B)¢" (N, v)+(1-a)™! (N, v)

Next we present two more relations between solutions in ®. In the following we

often use the expression

PP (N,v) = aBo({i})—a(1-B)v (N\{Z})+|—N|v BZ ({5} +W04 )ZU(N\{J'})
] (5.5)
Proposition 5.1 For every a € R, g € [0,1] and (N,v) € G it holds that
1. 9P (N, v) + P (N, v) = ™ (N,v) + ¢*O(N, v);
2. p¥B(N,v) + "B (N,v) = p* T8 (N, v) + P (N, v).
PRrOOF
Let « € R, § €0,1] and (N,v) € G. With (5.5) it then follows that
1.
PP (N, ) + ™ P(N,v)
= afo({i}) — a(l = Bu(N\ {i}) + |N| aﬁz ({5}
+|—;f|a( )Z (NA{ID) +a = Blo({i}) — a(l = (1 = B)v(N\ {i})
1 1
WU(N) - Wa(l )];V ({J})era(l -(1- ];VU NA\{j})
= av({i}) + ™ ( QJ;V {J}> (w(N\ {i}))
o ( a3 oM )
= Soa7l(N7 U) + ()O(X’O(N’ U)?
and
2.

p™P(N,v) + " (N,v) =

13



= apu({i}) — a(l = (N \ {i}) + |N|< ——ﬂwiivﬁ}

’ JEN

+|—;f|a( 5)ZU(N\{j})+’YﬁU({i})—7(1_5)U(N\{Z.})+ﬁv(]v)

= (a+7)(Bo({i}) = (1 = Blo(N \ {i}))
1 , 1
N (U(N) —(a+7) Y B{i}) — 1~ P (N\{J}))> ™ v(N)

JEN
= "IN, ) + P (N, ).

O

In the remainder of this section we give characterizations of some specific solutions in ®,

in particular the CIS-value, the ENSC-value, their average and the egalitarian solution.

5.2 Characterizations using standardness and reduced game con-

sistency

We begin by giving characterizations of some specific solutions by using specific cases of
a-standardness for two-player games and (-consistency. By taking particular values for
$ in Theorem 4.4 we obtain axiomatic characterizations of specific classes ®°, b € [0, 1].
Taking also particular values for a (which can be reflected in a more specific standardness
for two-player games) gives axiomatic characterizations of specific solutions in ®. These
characterizations follow directly from Theorem 4.4, and therefore are stated without further
proof.

Taking o = 1 we obtain characterizations of all convex combinations p'?, 3 € [0, 1],
of the CIS- and ENSC value. Note that taking a = 1 is equivalent to requiring the solution
to satisfy standardness for two-player games.

Corollary 5.2 Take any (5 € [0,1]. A solution v satisfies 3-consistency, standardness for
two-player games and efficiency if and only if ¢ is the C1S” value ',

Taking # = a = 1 we obtain a characterization of the CIS-value. Note that § = 1 yields
1-consistency meaning consistency associated with the reduced game (N \ {j},v"), j € N,

x € R", given by

14



o(N) — z, if 5= N\ {j}
v (S) =< w(SU{j}) —x; if S N\ {j} with 2L < |S] < |N] -1
v(S) if S N\ {j} with |S] < 2L,
So, to have the participation of the leaving player j a coalition needs a strict majority in

the reduced game.

Corollary 5.3 A solution v satisfies 1-consistency, standardness for two-player games
and efficiency if and only if 1 is the CIS-value @"'.

Taking # = 0 and a = 1 we obtain a characterization of the ENSC-value. Note that 5 =0
yields O-consistency meaning consistency associated with the reduced game (N \ {j}, v"),
J € N and x € R", given by

v(N) — if $=N\{j}
v(S) ={ v(SU{j}) — x5 if S N\ {j} with 2L < |S] < |[N| -1
() if S N\ {j} with |S] < F=

So, to have the participation of the leaving player j a strict majority in the reduced game

is not necessary.

Corollary 5.4 A solution ) satisfies 0-consistency, standardness for two-player games
and efficiency if and only if 1 is the ENSC-value ©'°.

Note that according to the above two corollaries the difference between the CIS- and ENSC-
value is only with respect to how we treat coalitions that are neither majority nor minority
coalitions in the reduced game.

Besides taking 5 = 0 or § = 1 as done above we can, for example, take 5 = % This
yields in the reduced game that coalitions that are not majority nor minority coalitions
have the leaving player’s cooperation with probability % The corresponding solution is the
average of the CIS- and ENSC value.

Finally, we mention that taking egalitarian standardness for two player games (i.e. taking

a = 0) yields a characterization of the egalitarian solution.

Corollary 5.5 Take any 5 € [0,1]. A solution v satisfies B-consistency, egalitarian stan-

dardness for two-player games and efficiency if and only if 1 is the egalitarian solution.

Note that the last corollary implies that the egalitarian solution is axiomatized by egal-
itarian standardness for two-player games, efficiency and any consistency as discussed in

this section.
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5.3 Characterizations using self-duality

In this subsection we provide characterizations of some solutions in ¢ using self-duality.
Although these characterizations can be stated for fixed player set N, we continue our
previous notation and consider the class of all games G.

Before using self-duality in characterizing some solutions in ¢, we state that the
class of solutions & itself is closed under duality, meaning that for every solution in this

class it holds that its dual solution is also in the class. More specific, we state the following

property.

Proposition 5.6 For every a € R, € [0,1] and (N,v) € G it holds that p*°(N,v*) =
PN, v).

PROOF
Let a € R, 8 € [0,1] and (N,v) € G. Then

P (N, v*) = AP (N, v*) + |N| ( Z)\aﬁ (N, v* )

JEN

= a(Bu*({i}) = (L= B)" (N \ {i}))+ ,]i” ( N) - aZ(ﬁv*({j}) — (L= B (N \ {j}))>
= a(Bu(N) = Bu(N\ {i}) — (1 = B)o(N) + (1 = B)o({i}))

+’_]1V’( ) —a) (Bu(N) = Bo(N\ {j}) - (1- )v(N)+(1—6)v({j}))>

JEN

=u(N) (Ozﬁ—a(l —B) _‘_L B |Nlafs n |V |ee(1 —ﬁ))

[Nl [N [V

+a ((1 — B({i}) = Bu(N\{i}) + = v - Z Au(NA\{j}) - (1 ﬁ)v({j}))>

= T+l (-8R AN\~ (Z al(1 = Bul{s}) — Bo(N \ {j})))

= 900"1’5(]\], v).

Although the class @ is closed under duality, this does not imply that every solution in ®
is self-dual. Taking a =0 or 5 = % yields self-duality. The corresponding solutions are the

only self dual solutions in the class .
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Proposition 5.7 Consider solution ¢*? € ®. Then ¢*? is self dual if and only if a = 0
or =3

PROOF

From Proposition 5.6 it is straightforward to show that these solutions are self-dual. To
show that these are the only self-dual solutions in the class ®, suppose that p*?(N,v) =
©*P(N,v*) for all (N,v) € G. Then with Proposition 5.6 we have

Spaﬂ(Nv U) = ‘:Oaﬁ(N’ U*)

P (N, v) = ™' (N, v)

)\aﬁ(Nv)—l—l—M( ZA”NU>=A“5(NU)+W< ZX“MW)

JEN JEN

a(Bu({iy) — (1 = Blo(N\{i})) + ﬁ (v(N) = alBo({j}) = (1= Be(N '\ {j}))>

JjEN

= a((1-B)v{i})—Bu(N\{i}))+ |]1,| ( (V) - Z a((1=B({s}) — Bu(N\ {J'})))
Since this must hold for all (N,v) € G we have aff = «(1 — (3), which is equivalent to
a(26—-1)=0. So,a=0o0r 3=1. O

So, the only self-dual solutions in ® are the egalitarian solution, the average of the CIS-
and ENSC-value, and all convex combinations of these two solutions. Now we can add
more properties to distinguish between the egalitarian solution (with o = 0) and the other
self dual solutions. The egalitarian solution is the only self dual solution satisfying non-

negativeness for non-negative games.

Proposition 5.8 Consider solution ¢®® € ®. Then ¢™° is self dual and non-negative for

non-negative games if and only if it is the egalitarian solution.

PROOF
Obviously the egalitarian solution is self-dual and non-negative for non-negative games. To

prove that it is the only solution in ® that is self-dual and non-negative for non-negative
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games, take a game (N,v) € G with |[N| > 3 such that for some i € N, v({i}) = 1, and
v(S) =0 for S # {i}. (This is also called the standard game of {i}.) With (5.5) it then
follows that

a,f3 o _L o 1
PN 0) = = e = (1= ) o

Since v(S) > 0 for all S C N, non-negativeness of ¢®” implies that (1
af >0 since 1 > |N‘

Next, take a game (N,7) € G such that for some i € N, 5(S) = 1if S = {j}, j # i, and
7(S) = 0 otherwise. With (5.5) it then follows that

0P (N, Z af = ('J\EV_’1>Q/5_

JEN\{ }

>a6>0 So,

INT

Since 7(S) > 0 for all S C N, non-negativeness of ¢ implies that — ('A‘[]L;‘l> af > 0. So,
af < 0 since |]\\[J‘V_|1 > 0.
So, we conclude that aff = 0. Thus g = % implies that a = 0. With Proposition 5.7

self-duality then implies that o = 0. O

Note that by Theorem 4.4, instead of requiring the solution to belong to ® we could also

require that there exists a § € [0, 1] such that the solution satisfies S-consistency.

Corollary 5.9 There ezists a [ € [0,1] such that solution 1) satisfies [-consistency, 0-
weak standardness for two-player games, efficiency, self-duality and is non-negative for

non-negative games if and only if 1 is the egalitarian solution.

We obtain the other self dual solutions (i.e., § = %) by requiring that payoffs react positively

on a change in individual worth.

Proposition 5.10 Solution ¢®” € ® is self dual and reacts positive on a change in indi-
vidual worth if and only if p = =

PROOF

Obviously the solutions @a’%, a € R, are self-dual and react positive on a change in
individual worth. To show that these are the only solutions in ® that react positive on
a change in individual worth, take a null game (V,v) € G, i.e., v(S) = 0 for all S C N.
With (5.5) it follows that ¢®”(N,v) = 0 for all i € N.

Next, again take the standard game of some singleton, i.e. for some 7 € N take the game
(N,7) with 7({i}) = 1, and 9(S) = 0 for S # {i}. Again with (5.5) it follows that
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gof"ﬁ (N,v) = (1 ] ]i, ) af. Since ¢™? reacts positive on a change in individual worth, it

must hold that (1 ﬁ) aff > 0, and thus a8 > 0. With Proposition 5.7, self duality

implies that § = % O

Again using Theorem 4.4, we can state the following corollary.

Corollary 5.11 There exists a 5 € [0,1] such that solution v satisfies (B-consistency,
standardness for two-player games, efficiency, self-duality and reacts positive on a change
i individual worth if and only if 1 is equal to the average of the CIS- and ENSC-value
b3,

The CIS-value is not self-dual. We can single out the CIS-value from the class ® by
requiring individual rationality on weakly essential games. Clearly, individual rationality

and efficiency contradict if the game is not weakly essential.

Proposition 5.12 Consider solution ¢*° € ®. Then o*P is individually rational on
weakly essential games if and only if it is the CIS-value ™!

PROOF

It is known that the CIS-value is individually rational for weakly essential games. To prove
that it is the only solution in ® that satisfies individual rationality, take a game (N, v) € G
with |N| > 3 such that for some i € N, v({i}) = v(N) = 1 and v(S) = 0 otherwise. Then
we have with (5.5) that

1 af 1 1
a75
= b (1Y gyt
[N [N V] INI
Since v is weakly essential, individual rationality of ¢®# implies that (1 — ﬁ) af +ﬁ > 1.

Since (1 ‘N|> af + ‘N| > 1< (1 — %) (af — 1) > 0, we conclude that o > 1 since
1> |N\

For j € N\ {i} we find with (5.5) that

1 af 1

BN )= — — 2 — (1
e N0 = 1 T i T

—af).

Individual rationality of ©®# then implies that ™ N| (1—apf) > 0. So, aff <1 since T N| > 0.

So, we conclude that af = 1.

Next take a game (N,v) € G with |N| > 3 such that for some i € N, (N \ {i}) = 1, and
v(S) = 0 otherwise. With (5.5) it follows that

P, 0) = —all = §)+ Tnall = §) =a(1 = 8) (7 1)
V] V]
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Since 7 is weakly essential, individual rationality of ¢ implies that a:(1—3) (L — 1) > 0.

[Nl
So, a(l — ) < 0 since ﬁ < 1.

For j € N\ {i} we find with (5.5) that

N 1
P 76(N7 v) = Wa(l — ).
Individual rationality of ©®# then implies that ﬁa(l — ) > 0, which is equivalent to
a(l—p) > 0.
So, we conclude that a(1 — ) = 0.
Since we already showed the a8 = 1 it must hold that o = 1, and thus also § = 1. O

Again using Theorem 4.4, we can state the following corollary.

Corollary 5.13 There exists a 5 € [0,1] such that solution v satisfies B-consistency,
standardness for two-player games, efficiency and individual rationality on weakly essential

games if and only if 1 is the CIS-value o'

6 Characterizations of ¢ using weak individual ratio-

nality

In this section we again start by considering the whole class of solutions ®, and give a
characterization of this class using a generalization of individual rationality for weakly
essential games. First, for « € R and § € [0,1], a game (N,v) is called («a, 3)-weakly
essential if v(N) > Y,y AP (N, v) with A7 (N, v) = a(Bv({i}) — (1 — B)u(N \ {i})) as
before.

Definition 6.1 A solution 1 satisfies (o, f)-individual rationality for « € R and g €
[0,1], if ¥s(N,v) > AP (N, v) for every (o, B)-weakly essential game (N,v) and i € N.

In van den Brink (2001) an axiomatic characterization of the Shapley value is given using
efficiency, the null player property and fairness. Fairness states that if to a game (N, v)
we add a game (N, w) in which players i and j are symmetric, then the payoffs of players i
and j change by the same amount. Replacing the null player property by («, 3)-individual
rationality characterizes ¢®”. Although the solutions ®? satisfy fairness, it is sufficient
to require the weaker fairness property which states that the payoffs of all players change

by the same amount if we only change the worth of the grand coalition.
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Definition 6.2 A solution 1 satisfies weak fairness if and only if (N,v),(N,w) € G
satisfying v(S) = w(S) for all S # N, implies that there is a ¢* € R such that

¥i(N,w) — ;(N,v) = c* for alli € N.

Theorem 6.3 A solution 1 satisfies efficiency, weak fairness and («, 3)-individual ratio-

nality if and only if ¥ is equal to 5.

PROOF

Obviously, ¢*# satisfies the three properties. Now, suppose that solution 1 satisfies ef-
ficiency, weak fairness and (o, )-individual rationality. For every (N,v) € G define the
game (N,7) by T(S) = v(S) if S # N, and T(N) = 3 ,en AP (N, 0). (e, B)-individual
rationality and efficiency imply that ;(N,7) = A*?(N,v) for all i € N. Weak fairness
implies that there is a ¢* € R such that ¢;(NV,v) — ¢;(N,7) = ¢* for all i € N. Effi-
ciency then implies that ¢* = ﬁ (v(N) —B(N)) = 1 (U(N) =D jen AP (N, v)) Thus

|V J

Ui(N,0) = & + (N, T) = gy (0(V) = Ejen APP(N,0)) + AT (N, 0) = 90 (Nyw). 8
Similar as with weak standardness and weak consistency, we formulate weak individual
rationality as follows.

Definition 6.4 A solution v satisfies weak individual rationality if there exist « € R
and B € [0,1] such that ¢ satisfies («, 5)-individual rationality.

In a similar way as done with weak standardness and weak consistency, this property can
be used to characterize the class of solutions ®.

Corollary 6.5 A solution v satisfies efficiency, weak fairness and weak individual ratio-
nality, if and only if ¥ € .

Next we again discuss some specific solutions that we discussed before. For the special case
a = f =1, (o, f)-individual rationality yields individual rationality for weakly essential

games, and we obtain a characterization of the CIS-value.

Corollary 6.6 A solution v satisfies efficiency, weak fairness and individual rationality

for weakly essential games if and only if 1 is equal to the CIS-value o',

If & = 0 then (a, #)-individual rationality states that all players earn non-negative payoffs

whenever v(N) is nonnegative, and we obtain a characterization of the egalitarian solution.

Corollary 6.7 A solution v satisfies efficiency, weak fairness and non-negativity for games

with non-negative worth of N if and only if 1 is equal to the egalitarian solution.
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In a similar way we characterize the solutions ¢®? and the class ® by replacing the null

player property in the characterization of the Shapley value as given in Shapley (1953).

Theorem 6.8 A solution 1 satisfies efficiency, symmetry, linearity and (o, 3)-individual

rationality if and only if 1 is equal to ¢*P € ®.

PROOF

Obviously, ¢*# satisfies the four properties. Now, suppose that solution 1/ satisfies effi-
ciency, symmetry, linearity and («, #)-individual rationality. For every (IV,v) € G define
the game (N, 7) as done in the proof of Theorem 6.3, i.e. T(S) = v(S)if S # N, and v(N) =
Y ieN A%F(N,v). Further define the game (N,7) by 5(N) = v(N) — djen A?’ﬁ(N, v), and
v(S) = 0 otherwise. Efficiency and (o, 3)-individual rationality again imply that ¢;(N,7) =
A%P (N, v). Efficiency and symmetry imply that (N, ) = ﬁ (v(N) — D ien /\;?‘75(N, U))
for alli € N. Since v = 7+, with additivity it follows that ¢;( N, v) = 1;(N,v)+1;(N,v) =

N(N.0) + iy (1) = 5 7 (N.0)) = (Vo). ’

Again, by taking specific values for o and 3 we obtain characterizations of specific solutions*.

Corollary 6.9 A solution 1 satisfies efficiency, symmetry, linearity and individual ratio-
nality for weakly essential games if and only if 1 is equal to the CIS-value %!,
A solution v satisfies efficiency, symmetry, linearity and non-negativity for games with

non-negative worth of N if and only if 1 is equal to the egalitarian solution.
Finally, we have the following characterization of the class ®.

Corollary 6.10 A solution v satisfies efficiency, symmetry, linearity and weak individual
rationality if and only if ¢ € ®.

7 Compromise values

We conclude by looking at the solutions in ® as compromise values. The literature on
compromise values starts with the introduction of the 7-value in Tijs (1981). This is an
efficient solution for a special class of TU-games which is defined using the following two
(non-efficient) solutions on G. The marginal contribution (to the ‘grand’ coalition) is the
solution M™ given by M7 (N,v) = v(N) —v(N \ {i}) for all i € N. The minimal right is

4An alternative characterization of the egalitarian solution is given in van den Brink (2004).
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the solution m” given by mJ (N, v) = maxscy (U(S) — D jesviy M (N, v)) foralli e N. A
i€S

game (N,v) € G is called quasi-balanced if the following two conditions are satisfied

m”(N,v) < M"(N,v) and » m](N,v) <v(N) <> M (N,v). (7.6)
ieN iEN

The class of all quasi-balanced games is denoted by @B. If (N,v) € B then the payoff

vectors m”™(N,v) and M7 (N, v), respectively, can be seen as lower- and upper bounds for

the distribution of v(N) over the players in N. The 7-value is the efficient solution on ()B

which assigns to every quasi-balanced game the unique efficient payoff vector on the line
segment between m” (N, v) and M7 (N, v), i.e., for every (IN,v) € @B it is given by

7(N,v) =m™(N,v) + B(0)(M"(N,v) —m"(N,v))

with

S en (7 (N0) - (N.0)) (7.7)

YN Teen WO (N ) £ MT(N, )
Bv) =
0 else.

In Tijs (1987) it is shown that the 7-value is the unique efficient solution on the class QB
of quasi-balanced games that satisfies the minimal right property and restricted propor-

tionality. Solution ¢ satisfies

1. the minimal right property if for every (N, v) € @B it holds that (N, v) = m™(N,v)+
w(v - mT(Na 1)))

2. restricted proportionality if for every (N,v) € QBy := {(N,v) € @B | m"(N,v) = 0}
the vector (N, v) € R" is proportional to the vector M7 (N,v) € R".

Note that the marginal contribution and minimal right vectors that are used in the defini-
tion of the T-value appear in the two properties that characterize the 7-value. The minimal
right property can be replaced by the property of Covariance® which is stronger than the
minimal right property but does not use the specific minimal right vector. But the min-
imal right and marginal contribution vector still appear in the restricted proportionality
property.

A disadvantage of the 7-value is that it does not exist for games that are not quasi-
balanced. For these games the marginal contribution and minimal right are inadequate as

upper- and lower bounds for the distribution of payoffs. But for such games other bounds

®The solution 1), satisfies the Covariance property on C C G if ¥(N,kv + ¢) = ki(N,v) + ¢ for all
(N,v) € C, k € R4 and ¢ € R" such that (N,kv + ¢) € C, where the game (N, kv + ¢) is given by
(kv +¢)(S) = kv(S) + 3 s ¢
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can be appropriate yielding alternative compromise values. If we take two solutions m and
M such that for game (N, v) the conditions stated under (7.6) are satisfied with m”™ and
M replaced by m and M, respectively, then the values m(N,v) and M (N, v) can be seen
as lower- and upper bounds for the distribution of payoffs in game (N,v). Denoting by
G(m, M) C G the class of games for which the conditions under (7.6) are satisfied in terms
of m and M, we define '™ as the solution which assigns to every (N,v) € G(m, M) the
unique efficient payoff vector on the line segment between m(N,v) and M(N,v). (Thus
7 =t0""M) ) If m and M satisfy covariance then ¢(™M) can be axiomatized similarly as
the 7-value by replacing m™ and M™ in the minimal right and restricted proportionality
properties by m and M, respectively. (The proof of this result is similar to the proof of
the characterization of the 7-value as given in Tijs (1987)%.)

By taking as lower- and upper bounds the solutions m®? and M®# given by
m (N, v) = X7 (N, )
and

Mia,ﬁ(M v) = v(N) — Z m?ﬁ(]\r, v) =v(N) — Z Aj"ﬁ(N, v) for all i € N,
JEN\{i} JEN\{i}

we obtain the solution t™*”M*”) which assigns to every (N,v) € G(m®?, M*#) the unique
efficient payoff vector on the line segment between m®? and M*”. This solution is equal
to p*# € ®. Since m®? and M*? both satisfy covariance, 1)*? € ® is characterized by
efficiency, covariance (or the minimal right property) and restricted proportionality stated

with the appropriate bounds. Solution ¢ satisfies

1. the minimal right property with respect to m®? if for every (N, v) € @B it holds that
w(Nv U) = maﬁ(N’ U) + w(v - maﬁ(N’ U))

2. restricted proportionality with respect to m®? and MP if for every (N,v) € QBy :=
{(N,v) € QB | m*?(N,v) = 0} the vector ¢»(N,v) € R" is proportional to the vector
M8 (N,v) € R"

Corollary 7.1 The solution p** is the unique solution b on G(m®? M) that satisfies
efficiency, the minimal right property with respect to m®” and restricted proportionality
with respect to m™? and M*>P.

In that proof only twice use is made of the specific formula’s of m”(N,v) and M7(N,v). This is
to show that for every v € G, m”™ (v — m7 (N, v)) is the nullvector (which is satisfied for all m satsifying
covariance), and to show that M7 satisfies covariance.
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8 Concluding remarks

In this paper we defined a class of solutions for two-player games satisfying a-standardness
for some o € R, and extended this to n-player games using [-consistency, 5 € [0,1].
Within this class every solution is characterized by values of the parameters a € R and
B € 10,1]. Note that the parameter 5 does not appear in the standardness property, while
the parameter oo does not appear in the consistency property. Basically, the parameter « is
some measure of equity. The closer « is to zero, the closer our solution is to the egalitarian
solution. For a given equity measure «, the parameter 3 € [0, 1] determines to what extent
we use the individual worths v({i}) or the marginal contributions v(N) — v(N \ {i}) in
defining our solution. This difference is also reflected in the reduced games.

We once more remark that for every solution ¢*# € ® the values of the parameters
are fixed and are the same for every game. We obtain a larger class of solutions if we
allow these parameters to depend on the game. Allowing the value of a to depend on the
game we could take a(v) = WJ\Q({]}) whenever v({i}) + v({j}) # 0. This yields propor-
tional standardness for two-player games as satisfied by, e.g. the Proper Shapley value as
introduced in Vorob’ev and Liapunov (1998): for N = {i,j}, ¢ # j, we have ¢;(N,v) =

v(N) (U({Z} B U({]})) + %U(N) _ v({i})*v({j})+v({i})+v({j})U(N) v({i}) (N)

) —
2(v({zh)+v({7}) 2(v({itv({s}) = w@+uGn Y
In van den Brink and Funaki (2004) it is shown that the 7-value, although not a solution

in @, for convex games always is a convex combination of the CIS- and ENSC-value with
weights determined by the parameter 5. However, for different games the weight assigned
to these two solutions is different. So, allowing the parameter 5(v) to depend on the game
we also consider the 7-value when we restrict ourselves to convex games’. In the future we
study the generalized class of solutions with parameters o and S depending on the game,
and in that way obtaining new characterizations of (solutions related to) the 7-value and
the Proper Shapley value.

Given our class of solutions ® we can also define a new set-valued solution for TU-
games by assigning to every game the union of all payoff vectors assigned by any solution
in ® to that game, i.e. we can consider the set-valued solution ¥ given by ¥(N,v) =
{p®P(N,v) | « € R, € [0,1]}. Finding axiomatic characterizations for this set-valued
solution is a plan for future research. Further, the solutions considered in Joosten (1996)
and Ju, Borm and Ruys (2004) who, respectively, consider all convex combinations of the
egalitarian solution and the Shapley value, and all convex combinations of the CIS-value
and the Shapley value, can be generalized by considering all convex combinations of any
solution ©*# € ® and the Shapley value.

Finally, we mention that it is interesting to find an implementation of the solutions

"The weight parameter 3(v) is exactly given by (7.7).
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in ®.

Appendix

As mentioned in Section 4, it is not necessary to have the parameter [ enter the reduced
game for more than three player games. If | N| > 4 we could take any 5 € [0, 1] to obtain a
characterization of the solutions in ®?. However, it is crucial that the parameter 3 appears
in the reduced game for three player games. Besides the reduced game defined in this
paper we could also use other reduced games. An illustration of such a reduced game is
the following.

Take a game (IN,v), a payoff vector x, and a player j. The player set of a reduced
game again is obtained by removing player j from the original player set N. The worth of
the coalition N \ {j} is equal to the worth of N minus the payoff z;. In the case |[N| > 4,
the worth of a proper subcoalition with |S| < |N| —3 in N \ {j} is equal to the same
amount as in the original game and the worth of a proper subcoalition with |S| = |N| — 2
in N\ {j} is equal to the worth of S U {j}. In the case |[N| = 3, the worth of a proper
subcoalition (one-player coalition) is a convex combination of the worth of the coalition

and the union of the coalition and the removing player for the original game.

Definition 8.1 Take 5 € [0,1]. Given a game (N,v) € C with |[N| > 3, a player j € N,
and a payoff vector v € RY, the B-reduced game with respect to j and x is the game
(N\ {j},v") where, for the case |N| > 4,

v(N) — x; if S=N\{j}
v (8) = ¢ v(SU{j}) if SC N\{j} 5| =[N[-2
v(S) if SC N\{j} S| <[N[-3.

and, for the case |N| = 3,

v(N) — x; if S =N\{j}
V() = q Bu(S) + (1= P(Su{j}) if S N\{j}, S #0,
0 if S = 0.

Indeed, we need v*(S) = v(S) for |S| =1 and v*(S5) = v(SU{j}) for |S| = |N| —2.
For other coalitions S with 2 < |S| < |N| — 3, we can define any value for the worth of
those coalitions by some consistent way, such that the order of removing players from the

original set has no effect on the worth. However the first two definitions are inconsistent for
the case of |N| = 3. Then we need a different definition: v*(S) = fv(S)+(1—5)v(SU{j}),
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which depends on a coefficient 3. This 3 is related to our value @™ of n-player games.
The reduced game for |N| > 4 is similar to the reduced games considered in Funaki and
Yamato (2001). But they use v(S U {j}) — x; instead of v(S U {j}).

[-consistency now can be defined in a similar way as in Section 5, but taking the
reduced game from Definition 8.1 instead of the reduced game of Definition 4.1. Similar

as Theorem 4.4 in the main text we can show the following theorem.

Theorem 8.2 Take any § € [0,1] and o € R. A solution v satisfies efficiency, -
consistency with respect to the reduced game of Definition 8.1 and a-standardness for two-

player games on the class of all games G, if and only if 1 = 5.

In this way all the solutions in ® satisfy the same conistency for more than three-player
games, but for the different 3 € [0, 1] the solutions in ®” are characterized by the different
consistency properties with different 3 for three-player games. Similar as in Section 5 we

obtain characterization of specific solutions from ® as corollaries.
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