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Abstract

A situation in which a finite set of players can generate certain payoffs by cooperation can be
described by a cooperative game with transferable utility. A solution for TU-games assigns
to every TU-game a distribution of the payoffs that can be earned over the individual
players. Two well-known solutions for TU-games are the Shapley value and the egalitarian
solution. The Shapley value is characterized in various ways. Most characterizations use
some axiom related to null players, i.e. players who contribute nothing to any coalition. We
show that in these characterizations, replacing null players by zero players characterizes the
egalitarian solution, where a player is a zero player if every coalition containing this player
earns zero worth. We illustrate this difference between these two solutions by applying

them to auction games.

Keywords: Null players, zero players, Shapley value, egalitarian solution, strong mono-
tonicity, coalitional monotonicity, auction games.
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1 Introduction

A situation in which a finite set of n players N = {1,...,n} can generate certain payoffs
by cooperation can be described by a cooperative game with transferable utility (or simply
a TU-game), being a pair (N,v) where v: 2Y — R is a characteristic function on N
satisfying v(()) = 0. For any coalition S C N, v(S) is the worth of coalition S, i.e. the
members of coalition S can obtain a total payoff of v(.S) by agreeing to cooperate.

A payoff vector x € R" of an n-player TU-game (N, v) is an n-dimensional vector
giving a payoff z; € R to any player i € N. A (single-valued) solution for TU-games is a
function that assigns a payoff vector to every TU-game (N, v).

One of the most famous single valued solutions for TU-games is the Shapley value
(Shapley (1953)) which is widely applied in economic models, see e.g. Rothschild (2001)
for allocating cartel profits, Maniquet (2003) for queueing problems and Graham, Mar-
shall and Richard (1990) for bidder ring formation in auctions. In the game theoretic
literature various axiomatic characterizations of the Shapley value can be found. Usually
these characterizations contain an axiom concerning null players, i.e. players who do not
contribute anything to any coalition. For example, the null player property states that
such null players earn zero payoff. Chun (1989) introduced coalitional strategic equivalence
as a weakening of strong monotonicity (see Young (1985)) stating that if to a game we add
another game in which some player is a null player, then the payoff of this player does not
change.

Instead of null players we can also consider zero players, i.e. players whose presence
in a coalition implies that the coalition generates zero worth, see Deegan and Packel (1979).
It turns out that replacing null players by zero players in axiomatic characterizations of
the Shapley value yield characterizations of the egalitarian solution which distributes the
worth of the ‘grand coalition’ N equally among all players. The null player property then
becomes the zero player property stating that zero players earn a zero payoff. Coalitional
strategic equivalence becomes coalitional standard equivalence stating that if to a game we
add another game in which some player is a zero player, then the payoff of this player does
not change.

We illustrate this difference between the Shapley value and the egalitarian solution
by applying them to auction games which describe situations in which we have to assign
an indivisible good to one out of a set of agents, and determine how the agent who gets
the good has to compensate the others. The agents individually valuate the good at
possibly different values. We discuss allocation rules that are obtained by applying the
Shapley value and the egalitarian solution to the corresponding auction games. Both
rules assign the good to an agent that valuates it the highest, but they differ in the

compensations that are used. In this context the difference between the Shapley value



and the egalitarian solution boils down to different independence axioms. The Shapley
rule (obtained by applying the Shapley value) satisfies independence on higher valuations
which states that the compensation of an agent does not depend on the valuations of
agents with higher valuations for the good. The egalitarian rule (obtained by applying
the egalitarian solution) satisfies independence on lower valuations which implies that the
compensation of an agent does not depend on the valuations of agents with lower valuations
for the good. We show that these independence axioms follow from strong monotonicity
and coalitional monotonicity of solutions for TU-games.

The paper is organized as follows. In Section 2 we state some preliminaries on
TU-games and the Shapley value. In Section 3 we show how replacing null players by zero
players yields characterizations of the egalitarian solution. In Section 4 we apply some
properties concerning null- and zero players to auction games and show the difference
between the allocation rules obtained by applying the Shapley value and the egalitarian

solution in such games. Finally, Section 5 contains some concluding remarks.

2 Preliminaries

In this paper we take the set of players N to be fixed, and therefore denote a TU-game
(N,v) just by its characteristic function v. The collection of all characteristic functions
(which we will thus refer to as games) on N is denoted by GV. The increase in worth when
player ¢ € N joins coalition S C N \ {i} is called the marginal contribution of player i to

coalition S in game v € GV and is denoted by
m; (v) = v(S U {i}) — v(9).

Suppose that the ‘grand coalition’ N forms in a way such that the players enter the coalition
one by one. Such an order of entrance can be represented by a permutation 7: N — N of
the players. We denote the collection of all permutations on N by II(N). The Shapley value
(Shapley (1953)) is the solution Sh: G¥ — IR"™ that assigns to every player its expected
marginal contribution to the coalition of players that enter before him, given that every

order of entrance 7 has equal probability to occur, i.e.

)= 3 = omf e y= 3 IS s foran i e N,

| v |
m€ll(N) w SCN\{i} G

where n = |N|, and for every m € II(N) we denote by P(m,i) = {j € N | n(j) < w(i)}
the set of players that enter before player i in permutation 7. Various axiomatizations of
the Shapley value have been given in the literature. First, it is characterized by efficiency,

the null player property, symmetry and additivity. A solution f satisfies efficiency if it



always exactly distributes the worth of the ‘grand’ coalition, i.e. if Y.\ fi(v) = v(N) for
all v € GV¥. We already mentioned the null player property in the introduction. Player
i € N is a null player in v € GV if m(v) =0 for all S C N\ {i}. A solution f satisfies
the null player property if f;(v) = 0 whenever i is a null player in v. Next, two players
i,j € N are called symmetric in v € GV if v(SU{i}) = v(SU{j}) forall S C N\ {4,5}. A
solution f satisfies symmetry if it always assigns the same payoff to symmetric players?, i.e.
if f;(v) = f;(v) whenever i and j are symmetric players in v € G~. A solution f satisfies
additivity if the payoffs assigned to players in the sum of two games is equal to the sum of
the payoffs assigned to them in the two separate games, i.e. if f(v+w) = f(v)+ f(w) for
every pair of games v,w € GV, where (v+w) € GV is given by (v +w)(S) = v(S) + w(S)
for all S C N.

Another well-known characterization of the Shapley value is given by Young (1985)
who characterized the Shapley value by efficiency, symmetry and strong monotonicity. A
solution f satisfies strong monotonicity if fi(v) > fi(w) for every pair of games v,w € GV
and i € N such that m?(v) > m?(w) for all S C N\ {i}. As argued by Chun (1989),
in Young’s characterization strong monotonicity can be weakened to coalitional strategic
equivalence which says that for v,w € GV it holds that f;(v +w) = f;(v) whenever i is
a null player in w. Other characterizations on a fixed player set? can be found in, e.g.
Feltkamp (1995) and van den Brink (2001).

3 Zero players and the egalitarian solution

The egalitarian solution v: GV — R™ distributes the worth v(IN) of the ‘grand coalition’

equally among all players in any game, i.e.,

N
vi(v) = % for all i € N.

The egalitarian solution satisfies efficiency, symmetry and addivitity. It does not satisfy

the null player property nor strong monotonicity.

Example 3.1 Let N = {1,2}. Consider the game v € GV given by v(S) =1 if 1 € S,

1

and v(S) = 0 otherwise. Then 2(v) = 5 although player 2 is a null player in v.

Considering also the game w € GV given by w(S) =0 for all S C N, we see that vo(w) =
0 < 3 =7(v) although m3(v) = m3(w) for S € {0,{1}}. 0

'In the literature, this symmetry property is also refered to as equal treatment of equals.
2Characterizations on variable player sets can be found in, e.g. Hart and Mas-Colell (1988, 1989).



Replacing null players by zero players in the characterizations mentioned before character-
izes the egalitarian solution. Player i € N is a zero player in v € GV if v(S) = 0 for all
S C N with i € S. A solution f satisfies the zero player property if f;(v) = 0 whenever i
is a zero player in v (see Deegan and Packel (1979) who used this property to characterize

their Deegan-Packel value).

Theorem 3.2 A solution f: GY — IR"™ is equal to the egalitarian solution if and only if it

satisfies efficiency, the zero player property, symmetry and additivity.

PROOF

It is easy to verify that v satisfies the four properties. Uniqueness follows in a similar
way as for the Shapley value, but using the standard basis instead of the unanimity basis®
of a game. For any a € R, the a-scaled standard game of coalition T C N, T # (),
is the game b3 € GV given by b3(S) = a if S = T, and b3(S) = 0 otherwise. Take
T C N, T ¢ {N,0}. Then the zero player property implies that f;(b3) = 0 for all
i € N\ T. Efficiency then implies that ) ..\ fi(b3) = >_,cr fi(b3) = b3(N) = 0. Thus,
with symmetry it follows that f;(b%) = 0 for alli € T. For T' = N, efficiency and symmetry
imply that f,(b%) = Z™) — o — 2 g 4014 € N,

Uniqueness for arbitrary v € GV follows since additivity of f and the fact that v =
S ren b;(T) implies that f;(v) = > rcn fi(b;(T)) = fi(b})\;N)) = @ for every v e GV. O
T#0 T0

Replacing null players by zero players in coalitional strategic equivalence yields the property
which states that the payoff of a player does not change if we add a game in which this player
is a zero player. So, a solution f satisfies coalitional standard equivalence if for v, w € GV
it holds that f;(v + w) = f;(v) whenever 7 is a zero player in w. Replacing coalitional
strategic equivalence by this new property in the characterization of the Shapley value

given in Chun (1989) yields a characterization of the egalitarian solution.

Theorem 3.3 A solution f: GY — R" is equal to the egalitarian solution if and only if it

satisfies efficiency, symmetry and coalitional standard equivalence.

PROOF
It is easy to verify that v satisfies the three properties. Uniqueness follows by induction
ond(v) =[{T C N |v(T) # 0}| (in a similar way as for the Shapley value by induction on

the number of coalitions with non-zero dividend).

3For a € R, the a-scaled unanimity game of coalition T C N, T # 0, is the game u$ € GV given by
ug(S) = aif T C S, and u$(S) = 0 otherwise. As is known, every game v € GV can be written as a

linear combination of unanimity games v = ) rcn u?”(T) with A, (T) = Y gcqr(=D)ITI7181y(S) being the
%0 =

Harsanyi dividends, see Harsanyi (1959).



If d(v) = 0 then efficiency and symmetry imply that f;(v) =0 for all i € N.

Proceeding by induction assume that f;(w) = v;(w) if d(w) < d(v). Let H(v) = {i € N |
v(S)=0forall S C N\ {i}}. For every i € N\ H(v) there exists an S C N \ {i} such
that v(S) # 0. Coalitional standard equivalence and the induction hypothesis then imply
that f;(v) = fi(v — b)) = 5, (v — b%9) = ~i(v) for i € N\ H(v) and S C N\ {i}. (The
last equality follows since bg(s)(N )=0if S C N\ {i}.)

Symmetry and efficiency then imply that f;(v) = U(N)fz‘j;](\; \)I‘””) ) _ vi(v) for all i €
H(v). O

Replacing null players by zero players in Young’s strong monotonicity boils down to replac-
ing marginal contributions by the worths of coalitions. This yields coalitional monotonicity
meaning that f;(v) > f;(w) for every pair of games v, w € GV and player i € N such that
v(S) > w(S) for all S C N withi € S.

It is easy to verify that the egalitarian solution satisfies coalitional monotonicity.
From the previous theorem it then follows that the egalitarian solution is characterized
by replacing strong monotonicity by coalitional monotonicity in Young’s characterization
(since f satisfying coalitional monotonicity implies that f satisfies coalitional standard
equivalence). In this case, symmetry even can be weakened to weak symmetry which only
requires symmetry for games in which all players are symmetric, i.e., a solution f satisfies
weak symmetry if for every v € GV such that all players in N are symmetric in v, there
exists a ¢* € R such that f;(v) = ¢* for all i € N.

Theorem 3.4 A solution f: GY — IR"™ is equal to the egalitarian solution if and only if it

satisfies efficiency, weak symmetry and coalitional monotonicity.

PRrOOF
It is easy to verify that v satisfies efficiency and weak symmetry. Coalitional monotonicity

is satisfied since v(S) > w(S) for all S C N with ¢ € S, implies that v(N) > w(N) and
thus 7;(v) = 200 > 2B — (),

n n
To show uniqueness, suppose that the solution f satisfies the three axioms, and let v € GV.

For i € N, define w' € GV by

; v(N) it =N
wi(S) = minrcy v(T)  otherwise.
i€T

Efficiency and weak symmetry imply that f;(w') = @ for all j € N. In particular,
fi(w?) = %N) Since v(S) > w'(S) for all i € N and S C N with i € S, coalitional
monotonicity implies that f;(v) > f;(w') = %N) for all i € N. Efficiency then implies that
fi(v) = %N) = ~;(v) for all i € N. O



4 An application: auction situations

4.1 Auction games

Consider the situation in which one indivisible good is to be assigned to one out of the set
of n agents N = {1,...,n}. The agents valuate the good at possibly different values. This
situation can be described by the pair (/V,V) where N is the set of agents and V' € R’}
is the vector which i"* component V; € R, is the value at which agent i € N valuates
the indivisible good. The agent who gets the good can compensate the others by giving
them an amount of some numeraire good. We assume that all agents value each unit of
the numeraire good at the same value, normalized to be 1.

An allocation-compensation scheme is a pair (i,c) € N x R, where i € N denotes
the agent who gets the good and ¢ € R" satisfying » | jen ¢ = 0 is the vector of com-
pensations. So, ¢; is the amount of the numeraire good that agent ¢ gives to agent j as
compensation if j # 4, and ¢; is the total compensation that has to be paid by ¢ to the other
agents. The wvalue of an allocation-compensation scheme (i, ¢) is the vector ¢(i,c) € R’}
with ¢;(i,c) =¢; if j € N\ {i}, and ¢;(i,¢) =V, + ¢;.

The main question in this situation is who gets the indivisible good and what is a
‘fair’ way to compensate the others. A popular way to handle such an allocation problem
is using auctions. Therefore, we refer to a pair (N, V) as described above as an auction
situation. Given valuations V' € R’ we define the corresponding auction game as the
TU-game v € GV on a set of players N that coincides with the set of agents in the auction
situation, and which characteristic function assigns to every coalition S C N the maximal

valuation over the agents in S, i.e.,
v(S) = m%x‘/; for all S C N. (4.1)
1€

So, according to the game v, in every coalition we assign the good to the agent who valuates
it the most*?5.

Graham, Marshall and Richard (1990) use a slightly different game to represent
auction situations. Given valuations V' € R}, for every S C N they define a two-player
strategic game® between the two ‘players’ S and N\ S. They show that a dominant strategy

for S in this game is to remain active until the bidding reaches v(S) as given in (4.1), and

4To be precise we should define the auction mapping v: R} — GY such that v(V) is the auction game
corresponding to the auction situation with valuations V' € R';. With slight abuse of notation we write

this game just as v if there is no confusion with respect to the valuations.
®We remark that in an auction situation the good initially is not owned by one of the players. On the

other hand, in market games the initial owner is one of the players in the game.
6For details about this strategic game we refer to Graham, Marshall and Richard (1990).



for N\ S to remain active until the bidding reaches v(N \ S). From this they derive the
worth of a coalition S C N to be equal to

€S JEN\S

w(S) = max{max\/i — max Vj,O}.

It is straightforward to verify that the game w is equal to the dual game v* of the auction
game v, and thus is also equal to the auction game that is studied in Branzei, Fragnelli
and Tijs (2002) and is given by’
(S):=v(N)—v(N = - - for all S C .
v (8) = v(N) = o(N \ 8) = maxV; — maxx 1 for all S C

In the next subsections we apply the Shapley value and the egalitarian solution to auction
games. Since, the Shapley value and egalitarian solution of a game are equal to the Shapley
value, respectively, egalitarian solution of its dual game, it does not matter whether we use

the game v or its dual game w = v* corresponding to an auction situation.

4.2 Allocation rules for auction situations

An allocation rule for auction situations is a function ¢: R} — R which assigns to
every vector of valuations V' € R} the value p(V') € R} of some allocation-compensation
scheme®. In this section we discuss two of such allocation rules. Without loss of generality
we assume that V3 < ... <V,.

Applying the Shapley value to the corresponding auction game as defined in (4.1)
yields the Shapley rule ¢™": R, — R’} given by

LV -V
Sh J j—1 .
V) = —— i N 4.2
PP =3 e N, (4.2
where Vy = 0. The use of the Shapley value in auction games is motivated by Graham,
Marshall and Richard (1990). On the other hand, applying the egalitarian solution to this

game yields the egalitarian rule ¢”: R} — R, which is given by

:maXi—EN%:EforallieN.

TV
©; (V) . "

Both solutions assign the indivisible good to the agent with the highest valuation but differ

in the way this agent compensates the others.

"This can be seen as follows. If max;eg V; > max;cn\ s V; then v*(S) = max;es V; — max;en\s Vi > 0,
and thus v*(5) = w(S). If max;ecsV; < max;en\s V; then v*(S) = maxjem g V; —maxjens V; = 0 =
w(S).

8We again take the set of agents N fixed, and thus represent an auction situation (NN, V) just by its
vector of valuations V.

9 Alternatively, Vy € [0, V1] can be taken as the reservation value of the seller of the good.

7



4.3 Axiomatizations of the Shapley- and egalitarian rule

Next we illustrate the use of axioms that characterize the Shapley value and the egalitar-
ian solution for TU-games, to characterize the corresponding allocation rules for auction
situations. We do this by applying Young’s (1985) characterization of the Shapley value
and Theorem 3.4 for the egalitarian solution. First, efficiency and symmetry for TU-games
applied to auction situations yield the following two properties!®. Efficiency states that
the sum of all values over all agents equals the highest valuation that is attached to the
indivisible good. If we do not allow for negative compensations this implies that the good

is assigned to an agent who valuates it the most.
Axiom 1 (Efficiency) For every V € R} it holds that ),y ¢:i(V) = maxen V;.

Symmetry or equal treatment of equals states that two agents who valuate the good equally
should earn the same. This implies that if the good is not assigned to one of them then they
should be compensated by the same amount. If the good is assigned to one of them, then
this agent should compensate the other such that their values in the resulting allocation-

compensation scheme are equal.

Axiom 2 (Symmetry) For every V € R and i,j € N with V; = V; it holds that
pi(V) = (V).

Applying strong monotonicity to auction situations yields a property that states that the
value obtained by an agent does not change if we increase the valuation of agents who
valuate the good at least as high as ¢. In the context of auction situations we refer to this

property as independence on higher valuations.

Axiom 3 (Independence on higher valuations) Let V.W € R} and i,j € N, i # j,
be such that min{W;, V;} >V, and Wy, =V}, for all h € N\ {j}. Then ¢;(V) = p;(W).

Proposition 4.1 Let f: G¥ — R"™ be a solution for TU-games, and let the allocation
rule p: R} — R for auction situations be given by (V') = f(v), where v is the auction
game corresponding to V€ R’} given by (4.1). Then ¢ satisfies independence on higher

valuations if f satisfies strong monotonicity.

PROOF
Let VW € R} and i,j € N, i # j, be such that min{W;,V;} > V; and W, =V}, for
all h € N\ {j}. Take S C N\ {i}. If j € S then m?(v) = m$(w) since W), = V}, for

10For these two properties we use the same name in auction situations and TU-games. It will be clear

from the context when we speak about auction situations or about TU-games.



all h € N\ {j}. If j € S then m{(v) = m?(w) = 0 since min{W;,V;} > V; = W,, and
thus max,csuqiy Vi = maxpes Vi, and maxpesyugy Wy, = maxpes Wy,. Solution f satisfying
strong monotonicity then implies that ;(V) = ¢;(W), and thus ¢ satisfies independence
on higher valuations. O

The three axioms described above characterize the Shapley rule!!.

Theorem 4.2 An allocation rule p: R’} — R is equal to the Shapley rule if and only if

it satisfies efficiency, symmetry and independence on higher valuations.

PROOF

The Shapley rule satisfying efficiency and symmetry follows easily from its definition, while
independence on higher valuations follows from Proposition 4.1.

Now, suppose that ¢: R — IR satisfies the three axioms, and let V' € R’}. Suppose
without loss of generality that V; < V; if i < j. We prove that ¢;(V) = ¢ (V) by induction
on the label 7.

Let V! = (Vi,..., V1) be such that V! = V; for all i € N. Symmetry and efficiency
imply that ¢;(V1) = % for all : € N. Independence on higher valuations then implies that
p(V) = (V) = &,

Proceeding by induction, assume that we have determined ;(V') for all i < j — 1.

Define V7 = (V{,..., V) such that V/ =V, for all i < j, and V/ = Vj for all i > j. The
induction hypothesis implies that we have determined the values ¢;(V') for all i < j. Inde-
pendence on higher valuations then implies that the values ;(V7) = ;(V) are uniquely
determined for all + < j. Symmetry implies that all ©;(V7) should be equal for all 7 > j.
With efficiency it then follows that ¢;(V7) = %ﬁhﬂ which is uniquely determined
since all ¢, (V), h € {1,...,j— 1}, are uniquely determined. According to independece on
higher valuations it then follows that ¢;(V) = ¢;(V7) is uniquely determined. O

Clearly, the egalitarian rule ¢ does not satisfy independence on higher valuations. Instead
it satisfies independence on lower valuations which states that the value obtained by an
agent does not change if we lower the valuation of agents who value the good at most as

high as 1.

11 Alternatively, we can prove this (and the next) theorem by characterizing the class of auction games
and characterizing the Shapley value and egalitarian solution restricted to this class. As already noted by
Dubey (1975), axiomatizations of the Shapley value on GV not necessarily characterize the Shapley value
on subclasses of games. For our purpose it is more easy and transparent to give direct proofs without

refering to auction games.



Axiom 4 (Independence on lower valuations) Let VW € R and i,j € N, i # j,
be such that max{W;, V;} <V, and W), =V}, for all h € N\ {j}. Then ¢;(V) = p:;(W).

This independence axiom is obtained by applying coalitional monotonicity to the class of

auction games.

Proposition 4.3 Let f: G¥ — R"™ be a solution for TU-games, and let the allocation
rule p: R} — R for auction situations be given by (V') = f(v), where v is the auction
game corresponding to V€ R given by (4.1). Then ¢ satisfies independence on lower

valuations if f satisfies coalitional monotonicity.

PROOF

Let VW € RY and ¢,j € N, i # j, be such that max{WW;,V;} < V; and W, =V}, for all
he N\{j} Take S C N withi € S. If j ¢ S then v(S) = w(S) since W}, =V}, for all
he N\{j}. If j € S then v(S) = w(S) > V; since i € S and W; = V; > max{IW;, V;}, and
thus maxycg Vi, = maxpeg Wp,. Solution f satisfying coalitional monotonicity then implies

that ¢;(V') = ¢;(W), and thus ¢ satisfies independence on lower valuations. O

Replacing independence on higher valuations in Theorem 4.2 by independence on lower

valuations yields a characterization of the egalitarian rule.

Theorem 4.4 An allocation rule p: R — R is equal to the eqalitarian rule ¢7 if and

only if it satisfies efficiency, symmetry and independence on lower valuations.

PRrROOF

The egalitarian rule satisfying satisfying efficiency and symmetry follows easily from its
definition, while independence on lower valuations follows from Proposition 4.3.

Now, suppose that ¢: R} — IR} satisfies the three axioms. Again suppose without loss of
generality that V; < Vj if i < j. We again prove that ¢;(V) = ¢/ (V) by induction on the
label i. (The proof goes along the same lines as the proof of Theorem 4.2, but now we start
with the agent with the highest valuation instead of the one with the lowest valuation.)
Let V" = (V{",...,V;?) € RY be such that V;* =V, for all i € N. Symmetry and efficiency
imply that ¢;(V") = 2= for all i € N. Independence on lower valuations then implies that
(V) = @u(V") = %

Proceeding by induction, assume that ¢;(V) = %= for all i > j + 1.

Define V7 = (V{,...,VJ) € R such that V/ = V; for all i > j and V/ = V; for all
i < j. The induction hypothesis implies that ¢;(V) = % for all ¢+ > j. Independence
on lower valuations then implies that ¢;(V7) = ¢;(V) = %= for all ¢ > j. Symmetry
implies that all ¢;(V7) should be equal for all i < j. With efficiency it then follows that

10



Vn_(n_])%
J - J
implies that ¢;(V) = ¢;(V7) = Lz, O

n

(V7)) = Vn =21 on(V) = 22 Independence on lower valuations finally

Above we stated results in case the valuations V' = (V4,...V,) € R are non-negative.
The results can be re-stated for arbitrary valuations V' € R". If V' € R" then the good
can be seen as an indivisible ‘bad’ that has to be assigned to one of the agents, who all
prefer not to own the good. According to the rules described above, the ‘bad’ will be
assigned to one of the agents who dislikes it the least, who will be compensated by the
others. According to the egalitarian rule all others pay to the agent who obtains the ‘bad’
in such a way that every agent has the same negative value. According to the Shapley rule
the agent who obtains the ‘bad’ might be compensated in such a way that he even obtains
a positive value!'?. If there are both negative and positive valuations, then some agents like
to have the good while at the same time others do not want the good. Again, according to
the egalitarian rule and the Shapley rule the good will be assigned to the agent with the
highest positive valuation'®. According to the egalitarian rule this agent will compensate
the others. According to the Shapley rule not all other agents get compensated by a
positive amount. If the negative valuations are small enough it can even be the case that
the agent with highest positive valuation besides obtaining the good also gets a positive

compensation'?.

5 Concluding remarks

We showed that in characterizations of the Shapley value, replacing null players by zero
players characterizes the egalitarian solution. We illustrated this difference between these

two solutions by applying them to auction games which describe a situation in which the

12With the Shapley- and egalitarian rule we mean the rule that is obtained by applying the Shapley-,
respectively, eqalitarian solution to the corresponding auction game (4.1). Note that expression (4.2) of
the Shapley rule needs some adaptation (e.g. by labeling the agents such that V4 > Vo > ... > V).

Consider, for example, the set of agents N = {1,2,3} with valuations V = (—1,—-2,—3). The egalitarian

rule and Shapley rule assign to this situation the value vectors (f%, f%, f%) and (%, f%,

So, agent 1 gets the ‘bad’ but according to the Shapley rule gets compensated in a way such that his value

—1), respectively.

is positive.

13 Again, we mean the rules obtained by applying the Shapley- respectively eqgalitarian solution to the
corresponding auction game (4.1). Expression (4.2) of the Shapley rule must adapted to distinguish
between the agents with positive and negative valuation.

4 Consider, for example, the set of agents N = {1,2, 3} with valuations V = (1, —1, —2). The egalitarian

rule and Shapley rule assign to this situation the value vectors (%, %, %) and (1%, —%, —1%), respectively.

So, agent 1 gets the good which gives him a positive value of 1, but according to the Shapley rule he even
gets a positive compensation of % because the other agents do not want the good.
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allocation of an indivisible good is done by an auction such that the agent (bidder) who
obtains the good compensates the other agents (bidders). Graham and Marshall (1989)
argue that cooperation appears in English open and Second price sealed bid auctions by
the bidders forming bidder rings. Graham, Marshall and Richard (1990) showed that the
Shapley rule might be the outcome in such auctions when the agents (bidders) form such
bidder rings. On the other hand, if bidder rings are not formed we usually see that the
bidders who do not ‘win’ the auction earn the same payoff. If there is no compensation
then this payoff is zero, so the winner might be better off than the others.

In this application we concentrated on the characterization of the Shapley value
given by Young (1985) and the similar characterization of the egalitarian solution. We saw
that applying these characterizations to the restricted class of auction games characterizes
these solutions. This is not the case for all characterizations of the Shapley value. For
example, taking the characterization that uses efficiency, the null player property, symmetry
and additivity, we saw that efficiency and symmetry can be applied straightforward to the
class of auction games. The same holds for the null player property, which then states that
a player with zero valuation earns a zero payoff'®. However, we can apply additivity only
to two auction games if the sum of these two games is also an auction game. Therefore,
applying additivity to the class of auction games yields the property of additivity over order
preserving valuations'®, meaning that p(V + W) = ¢(V) + ¢(W) whenever V,W € R
satisfy V; > V; if and only if W; > W,. Although the Shapley rule satisfies these four
properties, it is not the unique allocation rule satisfying these properties. For example,
the allocation rule that equally distributes the highest valuation over the agents with the
highest valuation (i.e. the allocation rule ¢: R} — R’ given by ¢;(V) = %7 and
©i(V)) = 0 otherwise, where M (V) = {j € N | V; = maxyen V4, }), also satisfies these four
properties!”.

The idea of replacing null players by zero players to obtain characterizations of some
egalitarian solution also can be applied to games with restricted cooperation, such as games
in coalition structure, games with limited communication (graph) structure, games with a
hierarchical permission structure, or games on more general combinatorial structures. A
next step after that can be to look at the consequences for network formation as done by
Jackson and Wolinsky (1996) for the games with limited communication (graph) structure

as introduced in Myerson (1977).

15Note that zero players appear in auction games only when all players have zero valuation.
16Tt can be shown that adding two auction games that arise from valuation vectors that are not order

preserving yields a game that cannot be the auction game corresponding to some valuation vector.
17A characterization of the Shapley value using additivity over order preserving valuations for (dual)

auction games is given in Algaba, Bilbao, van den Brink and Jiménez-Losada (2003) who add a property
called structural monotonicity.
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We end by mentioning that all axioms in the theorems in this paper are logically
independent.
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