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Abstract
This paper considers second-best congestion pricing in the monocentric city, with endogenous 
residential density and endogenous labour supply. A spatial general equilibrium model is 
developed that allows consideration of the three-way interactions between urban density, 
traffic congestion and labour supply. Congestion pricing schemes are analyzed that are 
second-best ‘by design’ (and not because distortions exist elsewhere in the spatial economy), 
like cordon charging and flat kilometre charges. Both for Cobb-Douglas utility and for CES 
utility, the analyses suggest that the relative welfare losses from second-best pricing, 
compared to first-best pricing, are surprisingly small.
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1. Introduction
Practical applications of traffic congestion pricing typically  involve so-called second-best 
pricing regimes, which fail to charge every individual road user his or her exact marginal 
external congestion costs. With pay-lanes, to an increasing extent employed in the US, 
unpriced congestion remains existent on parallel highway lanes. In case of cordon charges, 
such as used in Singapore, every road user passing the cordon pays the same charge 
independent of the distance travelled and route followed before and after passing the cordon, 
and users who remain within or outside the cordon do not pay the charge. Area charges, as 
recently introduced in London, impose the same charge on every user who drives within the 
area independent of the distance travelled, and leaves congestion outside the area uncharged. 
And flat kilometre charges, as currently considered for The Netherlands, would not
differentiate over time and route followed.

A substantial literature has recently emerged on the economics of second-best 
congestion charges (e.g. Lindsey and Verhoef, 2001, provide an overview). Most of these 
studies employ partial equilibrium approaches, in which only the transport (network) market 
is considered explicitly. An exception is the work by authors such as Mayeres and Proost 
(2001) and Parry and Bento (2001), who study traffic congestion and road pricing for 
commuters in general equilibrium settings, allowing for distortions on the labour market. 
Their results suggest that these interactions can be of significant importance for the efficiency 
impacts of both congestion pricing and the use of the associated revenues.

Another non-transport market that is of importance when evaluating congestion 
pricing strategies for urban areas is the (spatial) housing market. Already in the 1970’s, a 
number of studies looked into the interactions between traffic congestion and urban structure 
in the context of the monocentric model (Solow and Vickrey, 1971; Solow, 1972; Kanemoto, 
1976; Arnott, 1979). Anas and Kim (1996) and Anas and Xu (1999) extended this line of 
research by allowing for multicentric configurations, endogenizing the emergence of centres 
through the explicit consideration of agglomeration forces.

The present paper considers second-best congestion pricing in the monocentric city, 
with endogenous residential density and endogenous labour supply. A spatial general 
equilibrium model is developed that allows consideration of the three-way interactions 
between urban density, traffic congestion and labour supply. The model would therefore, for 
example, allow an investigation of second-best congestion pricing with distorted spatial 
labour markets. This matter, however, will be addressed in a companion paper to the present 
one (Verhoef, 2004). The present paper is instead concerned with congestion pricing schemes 
that are second-best ‘by design’, like the examples mentioned above, and not because 
distortions exist elsewhere in the spatial economy.

Prior studies of traffic congestion in the monocentric model have typically looked at 
first-best congestion pricing measures, although second-best issues arising from non-optimal 
allocations of land to road capacity have been considered (e.g. Arnott, 1979). The recent 
contribution by Mun, Kunishi and Yoshikawa (2003) is an exception. They focus on second-



Second-best congestion pricing schemes in the monocentric city2

best optimal cordon pricing in a monocentric city. The policy appeared to perform 
unexpectedly well: when optimizing both the location of the cordon and the charge, welfare 
gains of around 94% of the gains from first-best pricing were found (computed from their 
Table 2). This is remarkably well when realizing that with a cordon charge, some road users 
will not face a congestion charge at all (those who live inside the cordon), some will face a 
charge that exceeds the marginal external costs that they create over their full trip (those who 
live outside but relatively close to the cordon), and a third group faces a charge below their 
marginal external costs (those who live outside and relatively far from the cordon).

Given the potentially far-reaching policy conclusions of this finding, an important 
question is to what extent the result depends on the assumed monocentric spatial 
configuration as such, and to what extent it is the result of other specific features of their 
model, such as the facts that urban densities are assumed given, and that a partial spatial 
equilibrium model was used. One might for instance hypothesize that an important difference 
between cordon charge and first-best tolls would be that the former provides a smaller 
marginal incentive to move closer to the city centre, as there is no reward in terms of a 
reduced congestion charge. At the same time, however, a cordon tax provides a relatively 
strong non-marginal, discrete, incentive to choose a location inside the cordon. The question 
arises whether, as a result of these opposing forces, the average density in the city increases or 
decreases under cordon charges compared to first-best tolling, and to which extent the 
discreteness of the charge and the likely resulting discontinuities of land rents and densities at 
the cordon location induce additional welfare losses. One objective of this paper is to explore 
these questions by using a spatial general equilibrium model of a monocentric city. Compared 
to the model of Mun, Kunishi and Yoshikawa (2003), urban density will be made 
endogenous, trips will be assumed to involve commuting rather than other purposes (such as 
shopping), and only simultaneous equilibria of the transport market, the urban land market 
and the labour market are considered. But as in Mun, Kunishi and Yoshikawa (2003), the 
monocentric urban structure is imposed exogenously, which means in the present model that 
all production is assumed to take place in a (spaceless) CBD. A model that endogenizes the 
formation of agglomerations within the urban area is planned for future work.

An alternative second-best policy is considered as well, and this involves flat 
kilometre charges. This means that a single, ‘flat’ per-kilometre congestion charge can be 
imposed throughout the city, also when marginal external congestion costs per kilometre 
driven vary over space. Like cordon charges, such a policy could be motivated by excessive 
transaction and implementation costs for first-best congestion charges, typically requiring per-
kilometre charges that vary continuously over space. Whereas the cordon tax does imply 
spatial variation of per-kilometre charges but at the cost of creating a discontinuity, the flat 
kilometre charge is in some sense its counterpart by avoiding discontinuities while preventing 
spatial variation of per-kilometre charges.

The two benchmarks against which both policies will be evaluated are the no-toll 
equilibrium on the one hand, and first-best congestion charging on the other.
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2. The analytical model1

This section presents the details of the analytical model. Before turning to a detailed 
description of consumers’ behaviour, the congestion technology, firms, and a characterization 
of general equilibrium, some introductory remarks are in order. First, z will be used to denote 
a one-dimensional continuous urban space. The location of the spaceless CBD is at z=0, and 
the residential area stretches from z=0 to z=z*, with z* being the endogenous city boundary. At 
the boundary of the city, the equilibrium residential bid-rent r(z*) should be equal to the 
exogenous and constant agricultural bid-rent rA. A closed city is considered, meaning that the 
population size N is treated as fixed and given.

It is assumed that all excess land rents above rA are redistributed in a lump-sum
manner among the city’s population.2 Some share of the urban production will therefore not 
be consumed in the urban area, but will be ‘exported’ in exchange for the purchase of land 
against the agricultural rent.

All consumers and producers are price-takers. Households are identical, and so are 
firms. The industrial product can be transported costlessly, and the given world-market price 
of the industrial good p is used as the numéraire. We now turn to the various actors in the city 
and the associated equilibrium conditions.

Consumers
The closed city has N households, which are treated as a continuum of utility-maximizing 
economic entities. A household’s utility depends on the consumption of the industrial good y, 
on the consumption of space or the size of the residence s, and on the consumption of free 
time or leisure Tf. A household’s financial budget then consists of the net wage rate w–τL (w is 
the gross wage, τL the labour tax) times the amount of hours worked Tw, plus the redistributed 
excess land rents (R in total, R/N per household), plus – possibly – a lump-sum government 
transfer G (the government’s budget is always balanced). In equilibrium, the household’s 
budget is fully spent on the consumption of y and s, and – if levied – on road tolls and labour 
taxes. A household’s given time budget is denoted by T, and is exhausted by allocation over 
leisure (Tf), work (Tw) and commuting (Tc). All prices and taxes are treated parametrically by 
the price-taking households.

Commuting therefore does not require financial outlays other than possibly a total toll 
(i.e., over the full trip) τR(z), but does take time: Tt(z) per return trip (the underlying travel 
time function will be discussed below). The number of commuting trips made by a household 

1 The exposition in this section closely follows that in Verhoef and Nijkamp (2002).
2 Alternatively, an ‘absentee land-lord assumption’ could have been used, which assumes that none of the land 
rents generated in the city would be used for consumption in the city. Another possible assumption would be that 
all land rents generated in the city are redistributed among the population, which would in fact imply that the 
endogenous city size could – from the overall city’s perspective – be expanded costlessly. The present 
representation compromises between these two polar cases, and would correspond to the situation where the 
public authority of the city buys the urban land against the relatively low rural land price, implying an equivalent 
(annualized) price of rA, and redistributes all excess rents generated in the city among its population. 
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is assumed to be equal to the amount of effective working time supplied (Tw). Hence, Tw is, as 
it were, expressed in terms of numbers of days worked, each of a fixed duration in hours. The 
total time spent commuting can therefore be written as:

)()()( zTzTzT twc ⋅= (1)
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A household’s simultaneous labour supply and consumption decisions can be modelled by 
using the ‘gross budget’ M(z), that would be available under the maximum possible amount of 
time worked, and to let the household ‘buy back’ leisure time against the prevailing shadow 
price which is given by (w–τL–τR(z))/(1+Tt(z)). Observing that the household’s optimization 
problem is dependent on the residential location z, it can namely be written as:
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so that the ‘gross budget’ M (z) available at location z is defined as:
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The earlier assumption on redistribution of excess land rents implies:
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Both labour taxes and road tolls are collected by the local government, and the revenues are 
lump-sum redistributed in equal shares G. A balanced government budget therefore implies:
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where n(z) gives the density of households at z. 
A spatial equilibrium requires that utility U(z) be constant over z for all 0<z≤z* (and 

exceeds U(z) for z>z*). This implies a particular equilibrium pattern of land-rents. We can be 
explicit about this when postulating a specific form for the utility function. Two types of 
utility function will be considered in this paper: Cobb-Douglas (with a unitary elasticity of 
substitution) and CES (constant elasticity of substitution). In this analytical section, only the 
Cobb-Douglas function is considered, which allows for an analytical expression for 
equilibrium land rents. It is expressed as:
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The unitary elasticity of substitution implies that the gross budget shares spent on y, s and Tf

are constant, and given by the parameters α. Specifically, the conditional demands for y, s and 
Tf are:
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and the indirect utility – for analytical convenience defined as the logarithm of the maximum 
utility achievable under given prices and wage – can be written as:
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The condition that V in (6) be constant over space implies:
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where a prime denotes a ‘space derivative’ (with respect to location). Equation (9) gives a 
first-order differential equation for r(z) that can be solved to yield:
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where K is a constant of integration. Invoking the equilibrium boundary condition that 
r(z*)=rA, we can solve for K: 
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We conclude this part of the analysis with a few identities. We can find the local population 
density n(z) as the inverse of the ‘lot-size’ s(z):
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Total local consumption of the city’s product equals: 
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The total amount of land consumed in the city must be equal to z*, which is by definition true: 
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Travel times
A single radial road of a given, constant capacity is used jointly by all households when 
commuting. The per-unit-of-distance travel time t(z) for a return trip at each point along the 
road depends on the local (traffic) density of commuters, defined by the cumulative labour 
supply between z and z*. A linear travel time function is used, defined by two constants t0 (the 
free-flow travel time for one unit of distance) and t1 (the function’s slope):
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Total commuting time, for a return trip between z and the CBD, can then be written: 
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The congestion externality is clearly reflected in (18): Tt(z) depends on labour supply at every 
location in the city. The same therefore holds for the maximum utility attainable at z; compare 
equations (3) and, specifically for Cobb-Douglas utility, (8). Because labour supply at z in 
turn depends on Tt(z) (compare (7c) for Cobb-Douglas utility), the congestion externality 
induces complex direct and indirect spatial interactions throughout the city, in terms of both 
equilibrium utility obtained and in terms of labour supply decisions.

Absent economic distortions other than the traffic congestion externality, first-best 
road pricing involves spatially differentiated per-unit-of distance charges equal to per-unit-of-
distance marginal external congestion costs. A problem equivalent to determining these is to 
find the marginal external congestion costs from supplying one additional unit of labour at 
every location z, and to derive the total (over the full trip) optimal road prices for trips as a 
function of trip origin z.

An additional unit of labour supplied at z increases Tt(ζ) by t1·z for ζ ≥ z, and by t1·ζ
for ζ < z. The additional travel time loss for the household at ζ is therefore Tw(ζ)·t1·z for ζ ≥ z, 
and Tw(ζ)·t1·ζ for ζ < z. The relevant shadow price of (both leisure and work) time is equal to 
(w–τL–τR(ζ))/(1+Tt(ζ)) (note that the other two consumer prices, p and r(ζ), are not directly 
dependent on Tt(ζ)). This shadow price is therefore in part directly dependent on the 
government’s use of the two tax instruments. Because n(ζ) households will be affected at 
location ζ, the marginal external costs of supplying one additional unit of labour at z, mec( z) 
can therefore be written: 

∫ +
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It is verified in the numerical model in Section 3 below that a policy of Pigouvian road taxes, 
defined by τR(z)=mec( z), with the revenues redistributed in a lump-sum manner via G, indeed 
maximizes equilibrium utility in the city when the labour τL is zero and hence no distortions 
in the labour market are present.

Producers
Probably the simplest possible production structure is assumed to apply. There is a continuum 
of firms, each of which is infinitesimally small relative to the market and takes all prices as 
given. The industrial output is homogeneous. All firms are located in the spaceless CBD, but 
the agglomeration forces that induce this spatial clustering are not modelled explicitly. This 
also means that no market distortions through agglomeration externalities are assumed to 
exist; internal consistency could be achieved by, for example, assuming that zoning regulation 
prohibits firm location outside the CBD. The assumption of exogenous, central firm locations 
is clearly an unattractive feature of the present model, which is, however, made solely to 
allow us to concentrate on the performance of second-best congestion pricing in a 
monocentric city without introducing additional market distortions arising from 
agglomeration externalities. Because these market distortions are expected to be relevant in 
reality, they are considered explicitly in the companion paper Verhoef (2004).
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Firms have a simple linear production technology with one input (labour). A firm’s 
production function thus exhibits constant returns to scale, and therefore qualifies for 
application of Euler’s theorem. The following aggregate production function applies:

LAQ ⋅= (20)

Perfect competition drives profits to zero, with the result that the following equality holds:

wAp =⋅ (21)

General spatial equilibrium
The model described above has 19 unkowns, some of which are functions of z. These 
unknowns are Tc(z), Tw(z), M(z), R, G, y(z), s(z), Tf(z), V(z), r(z), K, n(z), L, Y, z*, t(z), Tt(z), Q, 
and w (recall that  rA, p and N are given; tax levels are treated as exogenous and all other 
scalars are parameters). The 19 equations needed to solve this system are (1), (2), (4), (5ab), 
(7a-c), (8), (10)-(15), (17), (18), (20) and (21). For other types of utility and production 
functions, as long as they imply unique conditional (factor) demands, a similar equality of 
numbers of equations and unkowns should in principle hold. We refrain from a formal 
analysis of existence, uniqueness and stability of equilibria and optima in our model.

In our list of equations, we did not include the ‘aggregate demand equals aggregate 
supply’ relation, which in our partly open system reads:

( ) *zrYQp A ⋅=−⋅ (22)

Equation (22) states that the value of the city’s production in excess of its local consumption 
should be just sufficient to pay for the purchase of land against the exogenous terms of trade 
rA/p. The share of local production not exported is consumed locally. The reason for not 
including this equilibrium condition explicitly is that it will be automatically satisfied under 
the zero profit condition and exhaustion of consumers’ financial budgets – as in fact dictated 
by Walras’ Law. To see why, first observe that zero profits imply that:

LwQp ⋅=⋅ (23)

The exhaustion of consumers’ total financial income, in combination with the balanced 
government budget, implies (in aggregate terms) that the sum of redistributed land rents and 
wage income should be equal to the sum of expenses on the local product and rents:

*
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zrYpLw
RzrYpLwR

A

A

⋅+⋅=⋅⇒

+⋅+⋅=⋅+
(24)

Substitution of (24) into (23) immediately yields (22).
The model does not produce any insightful closed-form (equilibrium) results. We 

therefore now move to the results of a numerical illustration,3 to study the comparative static 
properties of the free-market and some second-best (and first-best) equilibria.

3 The numerical model was written in Mathematica 5.0, and finds spatial equilibria by using a repeated nested 
approach, in which the various markets of interest are successively brought into equilibrium while keeping other 
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3. First-best and second-best road pricing: numerical results
3.1. Calibration

The basic numerical model deploys the Cobb-Douglas utility function also used above. 
Although the model is of course a rather strong abstraction from reality, some effort was put 
in calibrating the model such that the main endogenous results bear resemblance to what is 
observed in reality. We therefore start this section by briefly discussing this calibration. It 
should be borne in mind that the calibration aimed to produce reasonable base-case 
equilibrium outcomes for a model that is in the first place rather abstract, and that in the 
second place is calibrated under the conceptually ‘clean’ but practically unrealistic 
assumption of zero (labour and transport) taxes.

We start with the normalizations used. As stated, the given world-market price of the 
good produced in the city is used as a numéraire, and p is set equal to 1. Also the agricultural 
land rent is assumed to be given, and units of space are chosen such that also the agricultural 
rent rA=1. Next, units of time are chosen such that the total time endowment T=1. And finally, 
the number of households is set at 1000.

The parameters α of the Cobb-Douglas utility function determine the equilibrium 
(gross) budget shares of the industrial good, housing and leisure. The values were set at 
αy=0.2, αs=0.15 and αf=0.65. Because the monetary budget is fully spent on the industrial 
good and on housing, the first two α’s imply that some 43% of total monetary income is spent 
on housing and 57% on other consumption. This seems reasonable for urban areas; 43% on 
rents or mortgages alone would be on the high side, but when considering other costs that 
vary directly with house size (energy, decoration, maintenance) it seems a rather plausible 
figure. The value of αf, in combination with equilibrium city size and commuting times, leads 
to an average Tw of 0.237 (see also Figure 1 and Table 1 below). For an average week, 
consisting of 7·16 hours (excluding 8 hours sleep per day), this means on average 26.5 hours 
working time per week throughout the year. This includes (bank) holidays, part-time workers, 
temporary unemployment, etc. The most central worker has an average labour supply of 
around 36.5 hours per week. 

prices fixed, until convergence is reached (the convergence criterion used in the different loops was set at 1·10–7 
for relative changes in key variables between successive iterations within each loop). Provided reasonable 
starting values are used, this takes (for given policy instrument levels) a few minutes on a modern lap-top 
computer. The flatness of the utility plots U(z) in Figure 1 provides a graphical illustration of the fact that the 
model succeeds in producing a spatial equilibrium in which no incentives for relocation remains. Note that U(z) 
in Figure 1 was calculated  by substituting endogenously found (spatial patterns of) consumption levels into (6), 
so that the flatness is a genuine confirmation of consistency of equilibrium (U(z) itself was not directly equalized 
over space by the algorithm used, which instead solves for (10) and (11)). Other consistency checks, carried out 
for every equilibrium found, involve the zero profit condition for firms; the balanced budget conditions for 
consumers, the government, and the city as a whole (i.e. condition (22)); and the equality of residential and 
agricultural rent at the city fringe z*.
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Legend:             Base
                          First-best
                          Cordon toll
                          Flat km charge

Figure 1. Key results for Cobb-Douglas utility
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The final two parameters to be chosen are t0, set at 3·10–3, and t1, set at 5·10–5. The ratio of 
these two parameters causes the equilibrium speed near the CBD to be just over 20% of the 
free-flow speed (as applying at the city fringe). The absolute sizes of these parameters –
together with the further parametrization – cause the equilibrium city size z* to be such that 
the person living at z* has a commuting time Tc(z*) of 0.64·Tw(z*). With labour supplied in 
units of 8-hour working days, this would mean a maximum commute of around 5 hours per 
working day (for a return trip), or 2.5 hours for a single trip. The average commute takes
around one third of average labour supply; implying around one hour and 20 minutes for a 
single trip.

Finally, in the base equilibrium, wage income forms some 86.5% of total monetary 
income (the remainder being redistributed excess rents).

Figure 1 show the equilibrium spatial patterns of some further variables of interest. 
Note for example that residential land rent near the CBD is around three times as high as the 
agricultural rent and density is nearly twice as high as near the fringe. The convex shape of 
the equilibrium land rent is caused by both the possibility of substitution in consumption, and 
the fact that equilibrium per-unit-of-distance transport costs increase towards the CBD.

3.2. First-best and second-best road pricing: Cobb-Douglas utility

The model is used to evaluate the performance of two second-best road pricing schemes, 
relative to the base equilibrium and the benchmark of optimal Pigouvian congestion charging. 
For each of the three road pricing schemes, it is assumed that toll revenues are redistributed as 
a lump-sum benefit G, which is the optimal type of redistribution (at least for first-best road 
pricing) given that no initial labour taxes are existent (the alternative of recycling through 
negative labour taxes would distort the labour-leisure trade-off). Table 1 summarizes the 
equilibrium levels of the model’s main endogenous non-spatial variables, while Figure 1 
compares spatial patterns for the main spatially differentiated variables. Before turning to 
these, it is useful to discuss the procedures used to find the optimal levels for the tax 
instruments.

Finding first-best and second-best tax levels
The first-best equilibrium was found by consistently applying space-varying per-unit-of-
distance Pigouvian congestion taxes as given in (19):

)()( zmeczR =τ (25a)

The optimality of this policy – when revenues are redistributed in a lump-sum manner – was 
verified by investigating equilibrium utility levels for four perturbations of (25a). The first 
two perturbations applied tax rates τR(z)=0.9·mec(z) and τR(z)=1.1·mec(z). The other two 
tested ‘tilted’ tax schedules: τR(z)=(0.9+0.2·z/z*)·mec(z) and τR(z)=(1.1-0.2·z/z*)·mec(z). All 
perturbations led to utility levels below the first-level (U=0.369067), with deviations 
occurring only from the fifth digit onwards (the fifth and sixth digits became 59, 60, 53, and 
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52, respectively (in order of appearance of the perturbations above), compared to 67 for first-
best pricing).

The second-best cordon tax requires the optimal choice of two instruments: the 
location of the cordon (zcor) and the toll level (τcor). The implied road toll becomes:



 ≥

=
otherwise0

if
)( corcor

R

zz
z

τ
τ (25b)

As was the case for the model in Mun, Kunishi and Yoshikawa (2003), no closed-form 
solutions for the second-best optimal levels of zcor and τcor could be found, and a heuristic grid 
search method was used to identify these. The method entails two stages. First, 4×4 
combinations of zcor and τcor were tested, and a ‘utility hill’ as shown in Figure 2 was 
constructed from the results by means of third-order polynomial interpolation. Its maximum 
defines the first-round prediction of zcor and τcor. Next, the same procedure was applied to 
again 4×4 combinations of zcor and τcor, where for both a narrower range was chosen, namely 
between –20% and +20% of the first-round predictions. The prediction of optimal values in 
this second round was taken to give the second-best optimal instrument levels. Due to the 
flatness of the ‘utility hill’ near the second-best optimum, further refinement seems redundant.

Figure 2 shows that equilibrium utility appears to be relatively speaking more sensitive 
to deviations in τcor than to deviations in zcor (a similar pattern was also found for the CES 
utility function). This is in some sense good news for the design of cordon toll schemes when 
the regulator is uncertain about the second-best optimal levels of  τcor and zcor. Whereas the 
location of the cordon will often involve relatively large fixed costs due to installation of 
necessary equipment, toll levels are in principle more flexible. The pattern shown in Figure 2 
suggests that a relatively small mistake in the location of the cordon need not cause large 
relative welfare losses. The instrument for which mistakes are relatively speaking more 
important – the toll level – is also the one that is probably less costly to adjust in reality.
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Figure 2. ‘Utility hill’ for cordon charging
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The third congestion tolling scheme considered involves ‘flat’ (i.e., not differentiated over 
space) kilometre charges. The tax rate, τkm was again found by a heuristic procedure; a single-
nested one-dimensional variant of the procedure used for cordon charges. The implied road 
tolls now simply becomes: 

kmR zz ττ ⋅=)( (25c)
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Figure 3. ‘Utility hill’ for flat kilometre charges

Figure 3 depicts the ‘utility hill’ for this policy, with the central point being the second-best 
optimum. Again, flatness of the utility hill near the second-best optimum secures that small 
deviations from the truly second-best optimal tax level will not affect the results in any 
significant way.

The impacts and relative performance of first-best and second-best congestion pricing
Figure 1 and Table 1 present the main findings. It is instructive to first consider the main 
impacts of first-best charging. This policy leads to reductions in aggregate kilometrage (KM) 
of around 17% and in aggregate commuting time (TC) of nearly 21%. These reductions are 
achieved partly by a 7.6% decrease in labour supply (and production), and a 9.7% decrease in 
city size (the latter helps explaining why KM decreases more strongly than TC). The result is 
that utility increases by 0.30%; i.e., introduction of optimal congestion pricing raises utility by 
the same amount as equiproportional increases of y, s and Tf by 0.30% would. This may seem 
a modest increase at first sight, but it appears to be reasonably in line with recent predictions 
of surplus gains from optimal road pricing in urban areas.4

Figure 1 confirms that residential density increases throughout the city, while central 
rents rise and rents near the fringe fall (the latter is consistent with the fringe rent for the 
smaller optimal city still being equal to the agricultural rent). The consumption of y falls at 

4 Lindsey et al. (2004) provide estimates of annual per capita social surplus gains from first-best road pricing for 
four European cities (Paris, Brussels, Helsinki and Oslo), which vary from € 111 – 403. The average of these 
extremes, of around € 257, corresponds, in terms of our model, with 0.30% gain in a household’s gross budget if 
the latter amounts to around € 85 700. If, as in our model, 35% of this gross budget is monetary, the households 
monetary income should be around € 30 000 to make the welfare gains from the present study comparable to 
those in Lindsey et al. (2004), which appears a reasonable order of magnitude.
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nearly all locations (although close to the CBD the redistributed revenues dominate the toll 
payments and consumption increases), while the consumption of leisure increases as both 
labour supply and time spent commuting fall. The concave spatial pattern of τR(z) confirms 
the intuitive notion that per-unit-of-distance tolls are zero at the city fringe and rise towards 
the CBD. Equilibrium utility of course remains constant over space, albeit that the level 
increases.

Base equilibrium First-best charginga Cordon charginga Flat km charginga

Policy instruments
τL 0 0 0 0
τR 0 see Fig. 1
τcor 0.167
zcor 17.13
τkm 0.00271
G 0 0.027 0.023 0.018 

 
Endogenous variables
L 237.40 93.37% 94.61% 95.31%
Q 237.40 93.37% 94.61% 95.31%
Y 156.86 94.93% 95.70% 99.20%
z* 80.53 90.34% 92.49% 87.74%
R 37.12 104.88% 102.69% 124.08%
KMb 7889.58 83.13% 85.57% 82.78%
TCc 79.65 78.80% 81.32% 80.04%
TFd 682.95 104.78% 104.05% 103.96%
Toll revenues 0 27.00 23.48 17.66
Tax revenues 0 0.00 0.00 0.00
U 0.367946 100.30% 100.27% 100.27%
ω 0 1 0.880 0.899
Notes:
a Percentages are relative to base equilibrium levels
b Aggregate kilometrage, defined as ∫ z⋅n(z)⋅Tw(z) dz
c Aggregate commuting time,  defined as ∫ n(z)⋅Tc(z) dz
d Aggregate leisure time,  defined as ∫ n(z)⋅Tf(z) dz

Table 1. The relative impacts of first-best and second-best congestion pricing schemes

Both second-best policies perform rather well in terms of relative welfare gains. Both 
accomplish nearly 90% of first-best gains, as shown by the efficiency indicator ω (defined as 
the proportion of the first-best equilibrium utility increase that the policy achieves).

The relative performance of the cordon charge, with ω=0.880, is well in line with the 
findings of Mun, Kunishi and Yoshikawa (2003), who found ω=0.940 for their basic model. 
Of course, the relative welfare losses have doubled compared to those reported by Mun, 
Kunishi and Yoshikawa (2003). Nevertheless, it appears that consideration of neither induced 
changes in residential densities, nor in labour supply decisions, would undermine to any great 
extent the significant welfare gains from cordon charging in the monocentric city that were 
found by Mun, Kunishi and Yoshikawa (2003). Neither the sharp kinks that the policy 
produces at zcor (see Figure 1), nor the inherent distortions resulting from the inability of 
charging all road users and from applying imperfect charges to (nearly) all others, apparently 
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matter too much, provided both the cordon location and toll levels are set in a second-best 
optimal way.

What causes cordon charges to be so efficient? Part of the explanation lies in the fact 
that in aggregate terms, the tax induces both a reduction in labour supply and a reduction in 
city size, which were the main two changes also induced by first-best taxes. The aggregate 
density increases (compared to the base equilibrium) for two reasons. First, land inside the 
cordon becomes relatively attractive, which drives up land rents and hence density (see Figure 
1). Secondly, the toll discourages labour supply outside the cordon, which translates – via 
reduced budgets – into lower land consumption and hence a higher density. Labour supply 
decreases for two reasons. Inside the cordon, the redistributed toll revenues increase the gross 
budget, which encourages the consumption of leisure. Outside the cordon, the toll discourages 
labour supply as the shadow price of leisure decreases. Therefore, the cordon tax does induce 
the same two aggregate responses as first-best tolls do. Of course, the kinks introduced by the 
cordon toll – illustrated in Figure 1 – lead to welfare losses compared to first-best prices. But 
the diagrams show that, provided the cordon location and toll level are set optimally, spatial 
patterns of key variables under cordon charging are nevertheless relatively close to first-best 
results, with ‘too large’ levels inside the cordon often compensated by ‘too low’ levels outside 
the cordon – or vice versa.

The flat kilometre charge, with ω=0.899, performs even better than the cordon charge. 
Again, the policy succeeds in reducing both labour supply and city size. The modesty of 
welfare losses compared to first-best pricing is now intuitively explained by the fact that the 
per-unit-of-distance tax rates are too low near the CBD, and too high near the fringe. Because 
households only consider the full-trip toll, there is a natural tendency for the two errors to 
compensate for each other. Certainly, they can not cancel exactly for all z (which is why 
ω<1), but the optimal flat rate does a good job at finding a reasonably efficient compromise. 
In aggregate terms (Table 1), most results for flat km charges are comparable to those of 
cordon charging. The main exceptions are that optimal toll revenues are significantly lower, 
and aggregate excess land-rents are significantly higher. The latter also exceed first-best rents, 
which is due to the fact that the equilibrium bid-rent is, as expected, less convex under flat 
charges than under first-best pricing, while the city size and the central rent are relatively 
close.

All in all, when comparing the two second-best instruments, the efficiency losses from 
the inability to differentiate tolls over space (under flat km charges) are apparently somewhat 
lower than the efficiency gains from avoiding kinks. When comparing both to first-best 
pricing, it is especially the high relative efficiency that remains surprising. In combination 
with the results of Mun, Kunishi and Yoshikawa (2003), this raises the hypothesis that the 
regularity of the spatial lay-out of the monocentric city probably yields good opportunities for 
minimizing the inherent distortions from which second-best congestion charging mechanisms 
suffer. This raises the question of whether the monocentric model is the appropriate model for 
studying the relative performance of such policies in reality. If anything, a generalization of 
these favourable results to polycentric cities seems premature.
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3.3. First-best and second-best road pricing: CES utility
The Cobb-Douglas utility function deployed up to this point may be critized for its restrictive 
assumption of unitary elasticity of substitution. It is therefore of some interest to investigate 
the impacts of the same policies when a somewhat more general constant elasticity of 
substitution (CES) utility function applies. This leads to changes in equations (6)–(11) above. 
Using primes to denote the relevant ‘CES’ equations, the relevant expressions become:

( ) ( ) ( )( )ρρρρ δδδ
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The elasticity of substitution, σ, is equal to 1/(1–ρ); a convenient parameter when working 
with this type of utility function is χ = ρ/(ρ–1). The conditional demands for y, s and Tf
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The indirect utility can be written as (while writing M(z) in full):
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The space-derivative of V in (8′) is a straightforward but tedious expression and is therefore 
suppressed, while for the implied first-order differential equation for r(z) – to obtain a 
constant utility over space – no closed-form analytical solution could be found. Numerical 
solutions, however, could be obtained, and these will be reported below.
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Calibration
To obtain sufficient contrast with the Cobb-Douglas utility function, the elasticity of 
substitution σ was set equal to 0.5 (with the corresponding ρ and χ following as indicated 
below (6′)). To maximize comparability with the Cobb-Douglas model, all non-utility 
parameters were kept unchanged. Only the parameters δ therefore had to be calibrated, and 
these were set such that with weighted average prices from the Cobb-Douglas equilibrium 
( 1=p , ** /)( zrzRr A⋅+=  and a shadow price of leisure ( −−= Lf wp τ [total toll revenues 
over total labour supply]) / (1 + total time spent commuting over total labour supply)), the 
budget shares from the CES utility function are equal to those from the Cobb-Douglas 
function. Some basic manipulations reveal that this is achieved when, for consumption good x
with a weighted average price xp , δx from the CES function is related to αx from the Cobb-
Douglas function according to χαδ /1/ xxx p= . This yielded δy=25.0; δs=64.9275 and 
δf=1.77225. The base-case results in Table 2 confirm that the aggregate levels of equilibrium 
variables with the CES utility function are indeed close to those with the Cobb-Douglas 
function in Table 1. The spatial patterns shown in Figure 4 also reflect a close correspondence 
with the Cobb-Douglas results, albeit that the lower elasticity of substitution now causes a 
somewhat less pronounced differentiation of quantities consumed over space.

Base equilibrium First-best charginga Cordon charginga Flat km charginga

Policy instruments
τL 0 0 0 0
τR 0 see Fig. 2
τcor 0.185
zcor 18.86
τkm 0.00277
G 0 0.030 0.0274 0.020

Endogenous variables
L 235.01 95.74% 96.29% 96.74%
Q 235.01 95.74% 96.29% 96.74%
Y 155.12 96.57% 96.77% 98.81%
z* 79.88 94.13% 95.37% 92.71%
R 38.50 112.08% 108.73% 133.60%
KMb 8187.35 89.55% 90.94% 89.39%
TCc 83.93 86.66% 88.05% 87.40%
TFd 681.06 103.11% 102.75% 102.68%
Toll revenues 0 30.40 27.40 20.25
Tax revenues 0 0.00 0.00 0.00
U 0.780405 100.20% 100.18% 100.18%
ω 0 1 0.897 0.911
Notes:
a Percentages are relative to base equilibrium levels
b Aggregate kilometrage, defined as ∫ z⋅n(z)⋅Tw(z) dz
c Aggregate commuting time,  defined as ∫ n(z)⋅Tc(z) dz
d Aggregate leisure time,  defined as ∫ n(z)⋅Tf(z) dz

Table 2. The relative impacts of first-best and second-best congestion pricing schemes: CES utility
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First-best and second-best congestion pricing
Table 2 shows the results of first-best and second-best congestion pricing for the CES utility 
function. The main conclusions are (1) that relative gains from congestion pricing, compared 
to the base equilibrium, are lower than under Cobb-Douglas utility due to the reduced 
sensitivity of households to price differences; and (2) the relative welfare gains of the two 
second-best policies, compared to first-best welfare gains, are nearly identical to those under 
Cobb-Douglas utility. In other words, the lower elasticity of substitution affects the size of 
welfare gains from congestion pricing, but not the relative welfare gains from different 
pricing schemes.

An intuitive explanation is as follows. The higher elasticity of substitution for the 
Cobb-Douglas utility function than for the CES function leads to larger behavioural 
adjustments (in terms of the three conditional demands y(z), s(z) and Tf(z)) under optimal
pricing, which boosts the relative size of welfare gains for all pricing schemes. Second-best 
pricing gives imperfect incentives to individuals to adjust their demands. But the relative 
deviations from first-best behavioural adjustments under second-best pricing for each 
consumption good are comparable for both utility functions, because both have constant and 
symmetric elasticities of substitution. And this causes the relative performance of the two 
second-best instruments to be similar for both types of utility function.

4. Conclusion

The results presented in this paper suggest that the surprisingly optimistic conclusions that 
Mun, Konishi and Yoshikawa (2003) reach on the relative performance of cordon pricing in 
the monocentric city are robust with respect to the inclusion of residential land markets, 
endogenous labour supply and general spatial equilibrium formulation conditions. Moreover, 
the result is obtained both for a Cobb-Douglas and for a CES utility function (with a lower 
elasticity of substitution). This raises the suspicion that the regular monocentric configuration, 
which moreover ignores transport network effects, may be the responsible factor for this 
counter-intuitive result. The analysis furthermore showed that also flat kilometre charges 
perform surprisingly well in this setting – even slightly outperforming cordon charges.

A future research agenda is easily sketched. One line of research would endogenize 
the formation of (sub-)centres, by endogenizing firm location decisions and agglomeration 
advantages. A second line of research enabled by the model proposed in this paper concerns 
the investigation of second-best distortions in congestion pricing as arising from the existence 
of distortionary labour taxes in a spatial general equilibrium setting. 
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Legend:             Base
                          First-best
                          Cordon toll
                          Flat km charge

Figure 4. Key results for CES utility
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