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Importance Sampling Simulations of Markovian
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Ad Ridder

Department of Econometrics and Operations Research,

Vrije Universiteit Amsterdam,

de Boelelaan 1105, 1081 HV Amsterdam, Netherlands

Abstract

This paper reports simulation experiments, applying the cross entropy method such

as the importance sampling algorithm for efficient estimation of rare event probabil-

ities in Markovian reliability systems. The method is compared to various failure

biasing schemes that have been proved to give estimators with bounded relative

errors. The results from the experiments indicate a considerable improvement of

the performance of the importance sampling estimators, where performance is mea-

sured by the relative error of the estimate, by the relative error of the estimator,

and by the gain of the importance sampling simulation to the normal simulation.

1 Introduction

Reliability systems occur frequently in many technological environments such as com-

puter systems, communication networks, air traffic control, electrical power systems, etc.

Failure of such a system should be avoided and therefore one should be able to predict

the reliability of the system, specifically during the design stage, to ensure that the actual

system performs at an acceptable level.

In various studies during the 80’s a generic Markovian dependable model was developed

to describe and analyse such reliability systems, from whom we mention Goyal et al.[5],

Goyal and Lavenberg[6], and Goyal et al.[7]. Later, during the 90’s and more recently,

importance sampling simulations were applied to these systems in, e.g., Goyal et al.[8],

Shahabuddin[17, 18], Juneja and Shahabuddin[12, 13]). The importance sampling al-

gorithms in these papers are based on biasing techniques and they may become rather

intricate when certain ‘unpleasant’ properties are present in the system that may lead

to the occurence of high-probability cycles, making the simple biasing schemes to fail,
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see [12, 13]. Our paper is a report of experimental results of an importance sampling

algorithm that uses the cross entropy method for finding the new measure.

The cross entropy method, introduced by Rubinstein in [15] for rare event simulation

and in [16] for combinatorial optimization, attracts nowadays attention in several reseach

areas, inspiring to contributions in queueing ([3, 4]), reliability ([11, 14]) and optimization

([1]). The reliability system that was studied in Hui et al.[11] is a stochastic network con-

sisting of links that may fail. In such a network the problem is to estimate the probability

that certain nodes in the network are connected. The complementary probability should

be typically very small, and hence estimation by simulation needs a variance reduction

technique such as importance sampling; [11] developed an adaptive importance sampling

algorithm based on cross entropy. Lieber et al.[14] considered a reliability model that rep-

resents a transmission system and their problem was to estimate the expected unserved

energy.

We investigate the Markovian reliability systems that we mentioned earlier, in which

failed components are repaired and return to the system being fully operational. The

problem is to estimate the probability of a system failure before the system reaches the

perfect state in which all components work (see also [12, 13, 17, 18]). In its generality,

one can model this as an absorption probability in a finite state Markov chain. Another

example of such a problem is the buffer overflow probability in queueing models. Being

an important issue in communication networks this problem has been studied widely,

also in connection with rare event simulation, recently by de Boer et al.[3, 4] who apply

the cross entropy method. Importance sampling means that one implements some other

matrix of transition probabilities for drawing sample paths of the Markov chain and that

by calculating the likelihood ratios one obtains an unbiased estimator. The remaining

problem is finding a matrix that gives an optimal, suboptimal or asymptotically optimal

estimator (in terms of the variance), and this problem may be formulated as an optimiza-

tion program with as many variables as the number of transitions of the Markov chain.

Usually, the Markov chain in the queueing models is nicely structured, for instance a

phase-homogeneous random walk with only a few phases, and then the dimension of the

optimization program is reduced highly. Also, the matrix of transition probabilities of

the Markov chain describing the reliability system has a structure that is determined by

the failure and repair mechanisms of the system components. The bias heuristics for con-

structing the new importance sampling matrix exploit these structures, see for instance

[12, 13, 17, 18].

Contrary to these heuristics, we consider the full matrix optimization program, applying

the iterative procedure of the cross entropy method for finding the new importance sam-

pling matrix. The advantage is that we do not require the knowledge of the structure of
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the Markov chain, and this means that the implementation of the importance sampling

algorithm is much easier than the intricate biasing schemes. A disadvantage may be

that we need to store large matrices. Our results show that we may get excellent perfor-

mances of the importance sampling estimators, in most cases outperforming the biasing

schemes. However, we emphasize that we have no theoretical justification of these results,

we cannot say whether the method yields always estimators with bounded relative error.

The paper is organised as follows. In Section 2 we present a continuous time Markov

chain, modelling the reliability system, and we phrase the rare event problem. Section 3

describes the associated discrete time Markov chain that is used in the simulations. In

Section 4 we summarize briefly some importance sampling issues, and we review some

biasing schemes developed specifically for the reliability problem. The generic cross en-

tropy method is described in Section 5, whereas Section 6 gives details of the algorithm

for the reliability problem. In Section 7 we present simulation results of three examples,

and we conclude in Section 8 with a summary and further directions.

2 The model

Consider a technological system, made up of d different component types, where type i

contains Ki similar components. Each component fails, independently of other events,

after an exponentially distributed failure time, with failure rate λi for type i components.

Specifically, failures of components are not correlated, which we formulate explicilty in

the following assumption.

Assumption 2.1. There is no failure propagation.

Failed components may be repaired by one or more service men, where we allow service

priority, and group service with minimal or maximal group sizes. The repair times are

exponentially distributed with repair rates µi for type i. Consequently, the system may

be modelled by a continuous-time Markov chain

X(t) =
(
X1(t), X2(t), . . . , Xd(t)

)
,

where Xi(t) denotes the number of failed components of type i at time t. The statespace

of the chain is the cartesian product

S =
d∏

i=1

{0, 1, . . . , Ki},

with size |S| =
∏d

i=1(Ki+1). States are denoted as d-dimensional vectors x = (x1, x2, . . . , xd).

Unit vectors are denoted ei := (0, . . . , 0, 1, 0, . . . , 0) with the 1 at the i-th coordinate. The

perfect state is 0 = (0, 0, . . . , 0) when all components are working.
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This is the generic Markovian dependable model of [5, 6, 7, 8, 12, 13, 17, 18], where also

the following structural property is assumed.

Assumption 2.2. The Markov chain {X(t) : t ≥ 0} is irreducible over its statespace.

Let F ⊂ S be a specific set of states, called the failure set, or the set of down states.

Once in F the system is unavailable, and only after one or more repairs have brought the

system back to a state in S \F , the system is running again. Typical examples of failure

sets are

• F = {K1, K2, . . . , Kd}: all components have failed.

• F = {x ∈ S : xi = Ki for at least one i}: all components of at least one type have

failed.

Associated with the failure set F we can recognize three system performance measures:

• Mean time to failure (MTTF), the mean time to reach the failure set from an

arbitrary system state x ∈ S \ F .

• System unavailability, or the long run fraction of time the system is down:

lim
t→∞

1

t

∫ t

0

1{X(s) ∈ F} ds,

where 1{·} is the usual indicator function.

• Failure entrance probabilities (FEP) γ(x). Let T0 be the time to reach the perfect

state, and TF the time to failure:

T0 := inf{t > 0 : X(t) = 0}, TF := inf{t > 0 : X(t) ∈ F}.

Then we define

γ(x) := Px(TF < T0), (1)

i.e., the probability of reaching the failure set before state 0 starting from state

x ∈ S \ F . (When the starting state is 0 we have to adjust T0 to mean that first

there must have been a jump to some other state before returning to 0.)

In a highly reliable system the MTTF is large and the other two performance measures

are very small—meaning of the order of 10−6 or smaller—, because reaching the failure

set is supposed to be a rare event when the system starts in the perfect state 0 or in a

state x consisting of a few failed components. This may be accomplished by assuming

that the failure rates are several orders of magnitudes smaller than the repair rates,

λi � µi for all types i. For instance, in Shahabuddin[17] it is assumed that all the

repair rates satisfy µi ≥ µmin = 1 and all the failure rates λi ≤ λmax = ε where ε → 0
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becomes small. This ε is called the rarity parameter of the system. In that case, it is

necessary to assume also that any ‘path’ leading to the failure set must pass through

states that have repair transitions. In the next section we shall formulate the precise

assumption making the system highly reliable.

Applying regenerative properties of Markov chains one can show (see, e.g., Goyal et al.

[8]) that the MTTF and the system unavailability can be rewritten into expressions that

consist of FEP and other factors, where these other factors are not small (or large). Thus

when one applies simulation for estimation of the performance measures, it suffices to

implement an efficient algorithm for the failure entrance probabilities. Furthermore, we

restrict to finding the FEP from state 0 only.

Remark 2.3. In this paper we restrict to calculating or estimating the failure entrance

probability γ := γ(0).

3 The Discrete-time Markov Chain

Let {Xn : n = 0, 1, . . .} be the discrete-time Markov chain (DTMC) that results by

embedding the continuous-time process {X(t) : t ≥ 0} at the jump epochs. In fact, when

we would apply discrete event simulation of the continuous-time chain, this would lead

automatically to the DTMC, and, moreover, the failure entrance probability γ = P0(TF <

T0) is the same in both models; (slightly abusing notations, we let T0 and TF be the first

entrance times now for the DTMC). The DTMC has one-step transition probabilities pxy,

defined by pxy = νxy/νx, where νxy is the rate of transition x → y of the continuous-time

Markov chain, and where νx =
∑

y νxy.

The transition probabilities depend on a rarity parameter ε, that is, they are functions

pxy(ε) of a positive parameter ε that becomes very small. For instance, consider the

model of [17]: the failure rates are functions of ε such as λi = εri for some ri ≥ 1, and the

repair rates are constants µi; and suppose that x is a state from where transitions occur

due to failures of types 1 and 2, or due to a repair of a single component of type 1. Then

the transition probability to state y = x + e1 due to failure of a type 1 component is

pxy =
(K1 − x1)ε

r1

(K1 − x1)εr1 + (K2 − x2)εr2 + µ1

,

and to y = x − e1:

pxy =
µ1

(K1 − x1)εr1 + (K2 − x2)εr2 + µ1

.

Let I be the set of internal states, i.e., not being 0 or lying in F :

I := S \ ({0} ∪ F ).
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Under the following assumption reaching the failure set is a rare event, see Juneja and

Shahabuddin[12].

Assumption 3.1. For all states x ∈ I there exists at least one direct path from x to 0

containing no states of F with Θ(1) probability as the rarity parameter ε → 0; and there

do not exist paths from 0 to F with Θ(1) probability.

Here we used the notation Θ for comparing functions: let f(ε), g(ε) be functions of ε > 0.

Then f(ε) = Θ(g(ε)) (as ε → 0) if there exist positive constants c1, c2 such that c1|g(ε)| ≤
|f(ε)| ≤ c2|g(ε)| for all ε sufficiently small. The two transition probabilities given in the

example above are Θ(εr1) and Θ(1) probabilities, respectively. When Assumption 3.1

holds, [12] showed that γ = Θ(εr) for some positive r.

Notice that it is elementary Markov chain theory to set up a system of linear equations

to hold for the probabilities
(
γ(x)

)
x∈I , and then find γ by

γ =
∑

x∈I

p0xγ(x).

The system of equations may be solved numerically by a Gauss-Seidel iteration method

since the matrix of transition probabilities is a sparse matrix, typically in most reliability

applications: transitions due to failure have the form x → x + ei when a component

of type i fails, and transitions due to repair are either x → x − ei for single repair, or

x → x− giei for group repair. Thus the transition probabilities pxy are nonzero only for

a ‘few’ neighboring states. However, the number of states can become very large making

even the sparse matrix implementation too ‘big’. In that case, simulation is an alternative

method.

4 Importance Sampling Simulations

Let (Ω,F) be the coordinate sample space associated with the discrete-time process

{Xn : n = 0, 1, . . .}. It is also the sample space for discrete time simulations. Each

sample ω ∈ Ω is an infinite sample path ω = (ω0, ω1, . . .) with Xn(ω) = ωn ∈ S. Let Q
be a class of probability measures on (Ω,F) such that the process {Xn : n = 0, 1, . . .} is

a Markov chain and such that the chain is irreducible over its state space S. Let P be

the original probability measure (induced by the failure and repair rates of the model),

conditioned on the event that the process starts at 0. It is clear from Assumption 2.2 that

P ∈ Q. We are interested in calculating or estimating the P -probability γ := P (TF < T0)

that the process reaches a failed state (in F ) before returning to the perfect state 0. Let

A ⊂ Ω be the collection of all sample paths that reach F before returning to 0:

A := {ω ∈ Ω : TF (ω) < T0(ω)}.
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Let Z be the output of a simulation experiment, i.e., the random variable 1{A}. Hence,

γ = P (A) = EP [1{A}] = EP [Z],

where we indicate explicitly the expectation w.r.t. P . (And recall that P is a conditional

probability, conditioned on a start in state 0.) Under Assumption 3.1 A is a rare event,

meaning that P (A) decays to zero as a function of the rarity parameter ε.

In the simulations we will deal with sample paths of finite length rather than of infinite

length. In fact, for any probability measure Q ∈ Q, due to the irreducibility,

Q(TF < ∞) = 1 and Q(T0 < ∞) = 1. (2)

Thus in a simulation experiment where we have implemented Q, we will not generate

infinite sample paths ω, but we stop the simulation of a realisation as soon as either F

or 0 has been reached. We denote by Ω0 the subset of all finite sample paths ending in

either F or 0. We denote conveniently finite length paths again as ω:

Ω0 := {ω = (ω0, . . . , ωn) : n = 1, 2, . . . ; ω1, . . . , ωn−1 ∈ I; ωn ∈ {0} ∪ F}.

When we simulate the process—using P—we generate i.i.d. copies Z1, Z2, . . . , ZN of Z

and construct the estimator

γ̂ := 1
N

N∑

i=1

Zi.

Commonly, one calls this the standard or direct simulation method, or the crude Monte

Carlo method (Asmussen and Rubinstein [2]), and it provides easily a variance analysis.

For instance to obtain a relative error RE[γ̂] of 10%—meaning that the 90%-confidence

interval half-width is about 16% relative to γ—one needs a sample size N ≈ 100/γ which

becomes too large for the simulation to be efficient and reliable when γ is very small, say

less that 10−6. Notice that we define RE as the ratio of the standard deviation to the

expectation of the estimator.

Furthermore, it is customary to analyse the variance or the relative error (RE) of the

estimator with respect to the rarity parameter. Considering the standard estimator, a

moment reflection shows that its RE is unbounded when γ = Θ(εr) (where r > 0):

RE[Z] =

√
Var[Z]

E[Z]
=

√
γ − γ2

γ
=

1
√

γ

√
1 − γ ≥ 1

2

1
√

γ
≥ 1

2

1√
c2εr

,

for all ε sufficiently small, and thus RE[Z] → ∞ when ε → 0.

Suppose that one can simulate the process by generating sample paths under some other

probability measure Q. When the original measure P is absolutely continuous with

respect to Q (P � Q), there exists a likelihood ratio L = dP/dQ, and we obtain

EQ[LZ] = EP [Z] = γ,
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hence, we might as well estimate γ by drawing—using Q—i.i.d. copies L1Z1, L2Z2, . . . , LNZN

of LZ and construct the importance sampling (IS) estimator

γ̂Q := 1
N

N∑

i=1

LiZi.

Clearly, the problem is to find a measure Q for which

VarQ[γ̂Q] < VarP [γ̂P ],

and, preferably, for which the lefthand side is as small as possible, because this would

mean that we can reduce the sample size NQ of the importance sampling simulation to

obtain the same performance as the direct simulation method.

Various failure biasing schemes or heuristics have been developed to construct the new

transition matrix Q = (qxy), see e.g. Shahabuddin[17], Juneja and Shahabuddin[12, 13].

The basic idea is to increase the probability of the direct paths to the failure set. It seems

that there are two structural properties that have great influence on the implementation

of a successful biasing scheme.

Property 4.1. From all internal states x ∈ I a repair transition is possible.

Property 4.2. The failure rates satisfy λi = Θ(εs) with the same s ≥ 1 for all types.

In the latter case we say that the failure rates are balanced, otherwise they are unbalanced.

When Properties 4.1 and 4.2 hold, Shahabuddin[17] proved that the importance sampling

estimator has a bounded relative error for any new measure Q under which the transition

probabilities do not depend on ε, i.e., qxy = Θ(1) (whenever pxy > 0). A simple fail-

ure biasing scheme (SFB) with parameter θ suffices: increase the total failure-transition

probability at any state to a constant θ (typically 0.5) while keeping their original mu-

tual proportionalities; similarly, the repair-transition probabilities are reduced to 1 − θ.

In case of unbalanced failure rates (but with Property 4.1) [17] introduced a balanced

failure biasing scheme (BFB) and showed bounded relative error. A BFB scheme with

parameter θ is similar to SFB(θ), however it distributes the total probability θ equally

to the failure-transitions. Difficulties arise when Property 4.1 does not hold, typically in

case of group repair. Juneja and Shahabuddin[12, 13] show that SFB and BFB may fail

(unbounded relative error), and they construct various biasing schemes (IGBS, SB-RBS)

that give bounded relative error. However, these schemes require more knowledge of the

structures of transition probabilities, making these algorithms rather intricate. An IGBS

(implementable general biasing scheme) has two parameters, p and δ, where p is like the

parameter θ of SFB and BFB, and δ is much smaller. Furthermore, the transitions of

the Markov chain are said to be either of high-probability or of low-probability. When

a high-probability transition occurs during a simulation run, the next state is chosen by
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applying SFB (with p) when the failure transitions are balanced, or BFB(p) otherwise; in

case of a low-probability transition the same rule applies with δ (in stead of p). Finally,

the splitting based regular biasing scheme (SB-RBS) goes into much more detail of the

transition structure of the DTMC to identify high-probability cycles, we refer to [13] for

further details.

An optimal measure Q∗ would lead to a zero-variance estimator, but this measure does

not satisfy the condition that P � Q∗, because one shows easily that Q∗(·) = P (·|A),

that is, the optimal probability measure for estimating P (A) is the conditional probabil-

ity measure conditioned on the event A (see, e.g., Heidelberger[9]). Thus, the optimal

measure satisfies

dQ∗(ω) =
dP (ω)Z(ω)

γ
, (3)

for all ω ∈ Ω. Clearly, Q∗ 6∈ Q, because the process {Xn : n = 0, 1, . . .} is not an

irreducible Markov chain under the optimal measure Q∗. However, it suggests that a

measure Q that approximates Q∗ (in some sense) and that satisfies the absolute con-

tinuous property P � Q, would be a ‘good’ candidate for the importance sampling

algorithm. Indeed, this is what we shall show in the forthcoming sections, where we

restrict to measures Q ∈ Q for the following two reasons.

• When the Markov chain is not irreducible under Q, there exist events B ⊂ Ω

(B ∈ F) such that Q(B) = 0 while P (B) > 0: e.g., take two states in two different

Q-closed sets and construct a cycle between these states with positive P -probability.

Then P � Q does not hold and importance sampling is not possible (formally).

• Irreducible chains give finite (with probability one) samples in the simulations,

see (2)

5 Cross Entropy

The cross entropy method has been introduced recently by Rubinstein in [15] for applica-

tion to rare event simulation and in [16] for combinatorial optimization. The basic idea

of the cross entropy method is to consider the Kullback-Leibler distance or divergence as

a distance between probability measures. In our model we define for any two probability

measures µ, ν on (Ω,F) this distance to be

d(µ, ν) := Eµ

[
log

dµ

dν

]
,

if µ � ν, otherwise d(µ, ν) = ∞. Though not being a metric it suits our purposes

to approximate the optimal measure Q∗ for estimating γ by an importance sampling
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measure Q ∈ Q, namely by trying to minimize the Kullback-Leibler distance on Q:

min
Q∈Q

d(Q∗, Q). (4)

Using the expression (3) for Q∗ we rewrite d(Q∗, Q) after some manipulations into

d(Q∗, Q) = EP

[
Z

γ
log

ZdP

γ

]
− 1

γ
EP [Z log dQ].

Thus the optimization problem for approximating the optimal measure Q∗ becomes

max
Q∈Q

EP [Z log dQ].

Suppose that we would use simulation to solve this optimization problem—we would

solve the stochastic counterpart—, then we notice that under the original measure P the

event A is rare, thus we would require many samples ω before we would have sufficiently

many observations of Z = 1. Therefore, let Q0 ∈ Q arbitrary but such that A is ‘less

rare’ and use that

EP [Z log dQ] = EQ0

[
dP

dQ0

Z log dQ

]
.

Our optimization problem has become

max
Q∈Q

EQ0

[
dP

dQ0

Z log dQ

]
. (5)

In the cross entropy method we consider the stochastic counterpart of the optimization

problem (5) and solve it via an iterative scheme. More precisely, we construct a sequence

of probability measures (Qj)j=0,1,... ⊂ Q on (Ω,F) according to

Qj+1 = arg max
Q∈Q

1

Nj

Nj∑

i=1

dP

dQj

(ω(i))Z(ω(i)) log dQ(ω(i)), (6)

where ω(i), i = 1, 2, . . . , Nj are Nj sample paths from Ω generated randomly using mea-

sure Qj. The iteration starts off at the chosen Q0. There are several issues that arise

immediately:

• Can we implement an algorithm based on the iteration (6)?

• Does the iteration converge (and in what sense)?

• How large should the iteration sample size Nj be?

The first issue is problem dependent, and we shall present an algorithm in the next section.

The second question has not been answered yet in full generality. Homem-de-Mello and

Rubinstein[10] and de Boer et al.[3] address this problem in the context of the estimation

of tail probabilities (and buffer overflow probabilities in some queueing models); they
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restrict the class of Q to measures that are parameterized by finite dimensional vectors.

Convergence means here convergence of vectors, e.g. `1-norm, and [10] showed this in

a slightly adapted version of the iteration. The third issue—the sample size—is also

problem dependent and one has to experiment with it. Typically, the sample size Nj in

the j-th iteration is small, much smaller than the sample size N for estimating finally the

probability γ. However, it should be large enough so that the generated sample paths

may solve the optimization program in the iteration (6).

6 A Cross Entropy Algorithm for the Failure En-

trance Probability

Let Q ∈ Q and denote qxy for the transition probabilities of the Markov chain {Xn :

n = 0, 1, . . .} when Q is implemented. For ω ∈ Ω0 (finite sample path ending in either

the failure set F or in state 0) let Uxy(ω) be the number of transitions from state x to

y. Because the process is a Markov chain, we have

dQ(ω) =
∏

(x,y)∈S×S

(qxy)Uxy (ω),

and

dP

dQj

(ω) =
∏

(x,y)∈S×S

(
pxy

q
(j)
xy

)Uxy (ω)

.

We substitute these expressions in the cross entropy iteration (6) while denoting

zi := Z(ω(i)), and ui(x, y) := Uxy(ω(i)),

to obtain

max
Q

Nj∑

i=1

∏

(x,y)

(
pxy

q
(j)
xy

)ui(x,y)

zi log
∏

(x,y)

(qxy)ui(x,y)

= max
Q

Nj∑

i=1

∑

(x,y)

`izi ui(x,y) log qxy, (7)

with likelihood ratios

`i :=
∏

(x,y)

(
pxy

q
(j)
xy

)ui(x,y)

.

Notice that in problem (7) `i, zi, ui(x,y) are numbers returned from the simulation of

Nj sample paths, and that the optimization variables are (qxy)(x,y)∈S×S. In order to be

transition probabilities, they satisfy the conditions qxy ≥ 0 for all x, y ∈ S, and

∑

y∈S

qxy = 1, for all x ∈ S. (8)
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We construct the Lagrange function associated with optimization (7) under the restriction

(8), and solve the first order condition by differentiating partially with respect to qxy.

After some straightforward calculus we get the solution

q(j+1)
xy =

∑Nj

i=1 `iziui(x,y)
∑Nj

i=1 `izi

∑
y ui(x,y)

. (9)

It says that the new transition probability from x to y is the fraction of the x → y

transitions made by only those generated sample paths that reach the failure set (zi = 1)

and compensated by the likelihood ratios (`i).

The cross entropy algorithm reads as:

Step 0: Initialize a measure Q0 ∈ Q. Set j = 0.

Step 1: Generate Nj sample paths randomly using measure Qj.

Step 2: Apply the update formula (9).

Step 3: Stop when convergence has been obtained, otherwise set j = j + 1 and go to

step 1.

Because the sample size Nj in the j-th cross entropy iteration is small, there will be

(many) transitions x → y that have positive probability pxy > 0 originally, but do not

occur in the CE-iteration, and would give update q
(j+1)
xy = 0. This is highly undesirable,

since once a transition gets zero probability, it remains zero, and this leads finally to very

unreliable estimates of γ. To overcome this problem we suggest to adapt the update rule,

where we consider two possibilities:

• Weighting with the original probabilities

q(j+1)
xy = αpxy + (1 − α)

∑Nj

i=1 `iziui(x,y)
∑Nj

i=1 `izi

∑
y ui(x,y)

, (10)

for some α ∈ (0, 1).

• Smoothing with the previous iteration

q(j+1)
xy = αq(j)

xy + (1 − α)

∑Nj

i=1 `iziui(x,y)
∑Nj

i=1 `izi

∑
y ui(x,y)

,

for some α ∈ (0, 1).
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Choice of the Initial Measure Q0

The initial probability measure Q0 should be chosen in such a manner that the set A is

not rare. There are several possibilities.

• Use a—simple—bias scheme, such as SFB.

• Take the uniform transition matrix: whenever pxy > 0 let

q(0)
xy = 1/{number of transitions out of state x}.

7 Examples

We give three examples; the first example is small (125 states) but it has two difficulties,

group repair and unbalanced failure rates so that neither Property 4.1 nor Property 4.2

hold. The second example is from Juneja and Shahabuddin[12] where the Markov chain

has 3125 states with balanced failure rates (Property 4.2) and group repair (so Property

4.1 does not hold). The last example is a bit larger, 40320 states, but now both Properties

4.1 and 4.2 hold.

For each of these examples we present (i) the exact probability γ obtained numerically by

the Gauss-Seidel iteration method for linear systems; (ii) the results of the importance

sampling estimator using the biasing schemes (except SB-RBS) described in Section 4;

(iii) the results of the importance sampling estimator using the cross entropy method.

Since we know the exact value, we calculate the numerical relative error of all estimates:

ratio of absolute error to the exact value. The performance of the estimators is given

through their statistical relative error: ratio of the estimated standard deviation to the

estimated mean. And the estimators are compared through the gain: improvement in

variance taking into account the longer computing times,

gain =
Var[γ̂] × CPU time normal simulations

VarQ[γ̂Q] × CPU time IS simulations with Q
.

These three performances are summarized in one number that we call the performance
number:

performance number := log
( 1

num. rel. error
estimate

× 1

stat. rel. error
estimator

,× gain
)
.

Notice that we treat the three performance measures on the same importance level in

this formula: a ten times higher gain equals a ten times improvement in one of the relative

errors. In our view there is no reason to discriminate between the three measures, because

a good importance sampling algorithm should provide speed up of simulation times as

well as reliable estimates. When only speed would be the critical issue, the formula is

13



easily adapted by giving the gain more weight. The logarithm in the formula is only

for purposes of reducing the resulting number, any other increasing function may be

substituted.

The importance sampling simulations for estimating γ use a constant number of events,

where an event is a transition of the Markov chain. In the cross entropy method we first

simulate, in the j-th itaration, Nj sample paths ending in state 0 or the failure set F ,

and then simulate the same number of events as in the biasing methods for obtaining a

γ estimate. Both parts are counted in the CPU time.

We use the following notation:

SFB(θ) means the simple failure biasing scheme with parameter θ ∈ (0, 1), see [17].

BFB(θ) means the balanced failure biasing scheme with parameter θ ∈ (0, 1), see [17].

IGBS(p; δ) means the implementable general failure biasing scheme with parameter p, δ ∈
(0, 1), see [12].

CE(k;n;α) means the cross entropy method with k iterations each of Nj = n sample

paths and with matrix updates using the weighting factor α, see Section 6.

Remark 7.1. In all our cross entropy simulations we use

• initial matrix Q0 with uniform transition probabilities;

• updating via weighting (10);

• the same number Nj = n for the iteration sample sizes.

In the examples below we will present also the results of the importance sampling

estimator based on the matrix Q0 to illustrate that under the associated initial measure

Q0 of the cross entropy method the event A is indeed less rare.

7.1 Example 1

There are 3 types, each with 4 components, with failure rates λ1 = ε2, λ2 = λ3 = ε

(unbalanced), and repair rates µi ≡ 1. There is a single repairman who applies preemptive

priority according to 1 > 2 > 3 (type 1 has highest priority, etc). For types 1 and 2 group

repair starts after two of that type have failed: all failed components of that type are

repaired simultaneously (when assigned to the repairman) at a rate µi: it is a common

feature in these models that the repair rate remains µi for the group repair. Type 3

components are repaired one by one as soon as one has failed (and type 3 is assigned to

the repairman). Finally, the system breaks down as soon as all components of all types

have failed.
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• ε = 0.1.

γ = 1.179 10−7 exact (numerically).

The normal simulation used 2,000,000,000 events.

The IS methods used 10, 000, 000 events.

All IS results are averages of 5 repetitions.

method RE RE gain performance

estimate estimator number

uniform 0.6155 0.2052 3588 10.25

BFB(0.6) 0.4409 0.2060 4475 10.81

BFB(0.7) 0.5690 0.1375 5544 11.17

BFB(0.8) 0.5935 0.1944 20033 12.03

BFB(0.9) 0.7037 0.1216 9862 11.65

IGBS(0.6;0.1) 0.6002 0.1984 8502 11.18

IGBS(0.7;0.25) 0.5864 0.1133 10893 12.01

IGBS(0.8;0.05) 0.7391 0.1533 16313 11.88

IGBS(0.8;0.25) 0.5988 0.0976 12890 12.30

IGBS(0.9;0.35) 0.6797 0.1301 14239 11.99

CE(3;3000;0.1) 0.0459 0.0147 196309 19.49

CE(5;2500;0.15) 0.0763 0.0408 50502 16.60

CE(5;3000;0.1) 0.0159 0.0299 18267 17.46

CE(7;2000;0.2) 0.0520 0.0440 16066 15.76

CE(7;3000;0.15) 0.0107 0.0162 114716 20.31

• Observations: we experimented with an extensive range of θ’s in the BFB(θ)

schemes and of (p; δ) combinations in IGBS(p, δ) schemes. All estimates are poor

(relative error of 50% and worse), though the gain may be considerable. The per-

formance numbers of the BFB schemes and the IGBS schemes are all in the range

8 - 12 showing not much difference between those of BFB and IGBS. On average

the gains of the IGBS schemes are slightly higher. The schemes shown in the table

are among those with the best performance numbers.

Also, we experimented with various CE(k; n; α) schemes. Here we found excellent

estimates (relative errors of 1% occurring) and huge gains. It suffices to do only a

few iterations, 3 - 7, while choosing the sample size of order 2000 - 3000 and the

weighting factor α ≈ 0.1 - 0.2. Some of the best are tabulated, and, clearly, they

outperform the best bias schemes.
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7.2 Example 2

There are 5 types, each with 4 components, with failure rates λi ≡ ε (balanced), and repair

rates µi ≡ 1. There is a single repairman who applies preemptive priority according to

1 > 2 > 3 > 4 > 5 (type 1 has highest priority, etc). For types 1 and 2, group repair

starts after two of that type have failed: all failed components of that type are repaired

simultaneously (when assigned to the repair man). Type 3,4 and 5 components are

repaired one by one as soon as one has failed (and gets assigned to the repairman). The

system breaks down as soon as all components of at least one type have failed.

• ε = 0.001.

γ = 1.916 10−6 exact (numerically).

The normal simulation used 50,000,000 events.

The IS methods used 25, 000, 000 events.

Results are averages of 5 repetitions.

method RE RE gain performance

estimate estimator number

uniform 0.4878 0.2313 59 6.25

SFB(0.4) 0.2368 0.2646 28 6.12

SFB(0.85) 0.6778 0.1975 207 7.34

SFB(0.9) 0.6299 0.2286 187 7.17

IGBS(0.5; 0.09) 0.0385 0.0807 78 10.13

IGBS(0.7; 0.09) 0.0335 0.0741 87 10.47

IGBS(0.8; 0.06) 0.0706 0.0692 115 10.07

CE(3;3000;0.1) 0.0390 0.0064 48812 19.10

CE(3;2500;0.2) 0.0474 0.0083 48553 18.63

CE(5;1500;0.15) 0.0573 0.0050 52148 19.01

CE(5;1500;0.2) 0.0555 0.0060 79603 19.30

• Observations: generally, similar to Example 1. The IGBS schemes show good

estimates and small relative errors, though the gain is not that much. Overall the

IGBS schemes improve greatly the SFB schemes, however, they are outperformed

by the cross entropy schemes. The latter have excellent performances in all three

criteria. Again, a few iterations suffices taking a a small weighting factor α ≈ 0.1 -

0.2. The sample sizes may vary a bit more.

7.3 Example 3

There are 6 types, with 5, 4, 6, 3, 7, 5 components respectively, with balanced (but differ-

ent) failure rates (2.5ε, ε, 5ε, 3ε, ε, 5ε) and different repair rates (1.0, 1.5, 1.0, 2.0, 1.0, 1.5).
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There is a single repairman who applies preemptive priority according to 1 > 2 > 3 >

4 > 5 > 6 (type 1 has highest priority, etc). All types are repaired one by one as soon as

one has failed (and gets assigned to the repairman). The system breaks down as soon as

all components of at least one type have failed.

• ε = 0.001.

γ = 7.488 10−7 exact (numerically).

The normal simulation used 200,000,000 events.

The IS methods used 1, 000, 000 events.

Results are averages of 5 repetitions.

method RE RE gain performance

estimate estimator number

uniform 0.0358 0.0430 1045 13.43

SFB(0.5) 0.0900 0.2433 38 7.45

SFB(0.7) 0.1742 0.2235 51 7.19

BFB(0.7) 0.0232 0.0509 756 13.37

BFB(0.8) 0.0169 0.0451 975 14.06

IGBS(0.6; 0.2) 0.1211 0.2205 54 7.62

IGBS(0.7; 0.2) 0.1156 0.2455 51 7.50

CE(3;2500;0.1) 0.0271 0.0024 194115 21.82

CE(3;2500;0.15) 0.0277 0.0092 59104 19.26

CE(3;2500;0.2) 0.0134 0.0120 44592 19.43

• Observations: the SFB and IGBS schemes showed the worst performance, though

the failure rates are balanced. Surprisingly, the simple uniform rule gives a perfor-

mance that matches that of the BFB schemes. Again, a few iterations of the cross

entropy method outperforms the bias schemes. Experimenting with more iterations

(e.g. 5), we found that the gain drops due to the fact that the relative errors remain

about the same but the running times increase.

8 Conclusion

We investigated the applicability and usability of the cross entropy method for rare event

simulation in Markovian reliability models. Traditional biasing schemes are susceptible

to the structure of the underlying Markov chain, implicating that simple biasing schemes

may fail, in which cases one needs to implement more complicated biasing algorithms.

On the other hand, our three examples—with three different structures—showed that

one cross entropy implementation worked for all of them, and that the cross entropy

estimators had excellent performance measures, outperforming the biasing estimators.
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Furthermore it is quite remarkable that the parameters of our cross entropy algorithm,

viz. iteration sample sizes, number of iterations, and weighting factor, might be chosen

at about the same values in our three examples, though these are different of size and

structure.

In our implementation of the cross entropy method we need to optimize the full matrix

of transition probabilities, sometimes this is called a state dependent tilting. Although

current computer powers allow storage of huge matrices, there is a limit. An alternative

importance sampling method would be to implement a state independent tilting, the

biasing schemes SFB and BFB are typical examples of this. In a state independent

tilting the transition probabilities are parameterized by a vector of low dimensions, and

it would be interesting to investigate whether cross entropy might be applicable to find

the optimal values of the parameters. In fact, this corresponds to considering a subclass

of the class of probability measures Q in the optimization program (4).
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